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Abstract

Partial updating of LMS �lter coeÆcients is an e�ective method for reducing the computational load
and the power consumption in adaptive �lter implementations. Several algorithms have been proposed in
the literature based on partial updating. Unfortunately, it has been observed that these algorithms don't have
good convergence properties in practice. In particular, there generally exist signals for which these algorithms
stagnate or diverge. In this paper, we propose a new algorithm, called the Stochastic Partial Update LMS
(SPU-LMS) algorithm which attempts to remedy some of the drawbacks of existing algorithms. The SPU-
LMS algorithm di�ers from the existing algorithms in that the subsets to be updated are chosen in a random
manner at each iteration. We derive conditions for �lter stability, convergence rate, and steady state mean-
square error for the proposed algorithm and show that SPU-LMS su�ers no loss in steady state performance
when compared to the regular (full-update) LMS algorithm.
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1 Introduction

The LMS algorithm is a popular algorithm for adaptation of weights in the �eld of adaptive beamforming

using antenna arrays. This has application in many areas including interference cancellation, space time

modulation and coding, signal copy in surveillance and wireless communications. Some of the applications

like echo cancellation and channel equalization require a large number of �lter coeÆcients and hence the

coeÆcient updates might prove too expensive for mobile units with limited processing power. Therefore,

partial updating of the LMS adaptive �lter has been proposed to reduce these per-iteration computational

costs [9, 10, 15] of the algorithm.

Two types of partial update LMS algorithms are prevalent in the literature and have been described

in [7]. They are referred to as the \Periodic LMS algorithm" and the \Sequential LMS algorithm". To

reduce computation by a factor of P , the Periodic LMS algorithm (P-LMS) updates all the �lter coeÆcients

every P th iteration instead of every iteration. The Sequential LMS (S-LMS) algorithm updates only a

fraction of coeÆcients every iteration. Another variant referred to as \Max Partial Update LMS algorithm"

(Max PU-LMS) has been proposed in [5, 6] and [1]. In this algorithm, the subset of coeÆcients to be updated

is dependent on the input signal. The subset is chosen so as to minimize the increase in the mean squared

error due to partial as opposed to full updating. The input signals multiplying each coeÆcient are ordered

according to their magnitude and the coeÆcients corresponding to the largest 1
P of input signals are chosen

for update in an iteration. Some analysis of this algorithm has been performed in [6] for the special case of

P = 1 but, analysis for more general cases still needs to be completed.

In [11], the authors have analysed the convergence of S-LMS for stationary and cyclo-stationary signals.

For stationary signals, it was shown that for any arbitary sequence of updates, S-LMS converges in the mean

if LMS converges. For a class of cyclo-stationary signals, for the case of even-odd updates, it was shown that

the convergence in the mean conditions on � were much stricter than that for regular LMS. However, as will

be shown in this paper there exist signals for which there is no region of � for which S-LMS will converge.

The important characteristic of S-LMS and P-LMS is that the coeÆcients to be updated at an iteration

are pre-determined. It is this characteristic which renders P-LMS and S-LMS unstable for certain signals

and which makes random coeÆcient updating attractive.

The algorithm proposed in the paper is similar to S-LMS except that the subset of the �lter coeÆcients

that are updated each iteration is selected at random. The algorithm, referred to as Stochastic Partial

Update LMS algorithm (SPU-LMS), involves selection of a subset of size N
P coeÆcients out of P possible

subsets from a �xed partition of the N coeÆcients in the weight vector. For example, �lter coeÆcients

can be partitioned into even and odd subsets and either even or odd coeÆcients are randomly selected to

be updated in each iteration. In this paper we derive conditions on the step-size parameter which ensures
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convergence in the mean and the mean square sense for stationary signals, for deterministic signals and the

general case of mixing signals.

The contributions of this paper can be summarized as follows:

� We demonstrate signal scenarios for which the prevalent partial update algorithms do not converge.

� We propose a new algorithm called the Stochastic Partial Update LMS Algorithm (SPU-LMS) based

on random updating of �lter coeÆcients that ensures convergence of �lter coeÆcients.

� We derive stability conditions for SPU-LMS for stationary signal scenarios and demonstrate that the

steady state performance of the new algorithm is as good as that of the regular LMS algorithm.

� We derive the persistence of excitation condition for the convergence of SPU-LMS for the case of

deterministic signals and show that this condition is same as that of the regular LMS algorithm.

� For the general case of mixing signals we show that the stability conditions for SPU-LMS are same as

that of LMS. We extend the analysis of [2] to SPU-LMS and use the results to show that SPU-LMS

does not su�er a degradation in steady state performance as compared to LMS even when we relax

the assumptions made for the performance analysis of the algorithm for stationary signals.

� We demonstrate through di�erent examples that for non-stationary signal scenarios (echo cancellation

in telephone networks, digital communication systems) partial updating using P-LMS and S-LMS

should not be employed as these are not guaranteed to converge. SPU-LMS is a better choice because

of its convergence properties.

The organization of the paper is as follows. First, a brief description of the algorithm is given in Section 2

followed by analysis of the stochastic partial update algorithm for stationary stochastic signals in Section 2.1,

for deterministic signals in Section 2.2 and for mixing signals in Section 3. Section 4 discusses the advantage

of the new algorithm over the existing Partial Update LMS algorithms. This is followed by Section 4.1

where veri�cation of theoretical analysis in Section 2.1 of the new algorithm is carried out via simulations

and examples are given to illustrate the usefulness of SPU-LMS. Sections 4.2 and 4.3 apply the analysis in

Section 3 to separate signal scenarios for comparing the steady state performance of LMS and SPU-LMS.

Finally conclusions and directions for future work are indicated in Section 5.

2 The Stochastic PU LMS Algorithm

For description purposes we will assume that the �lter coeÆcients can be divided into P mutually exclusive

subsets of equal size, i.e. the �lter length N is a multiple of P . For convenience, de�ne the index set

S = f1; 2; : : : ; Ng. Partition S into P mutually exclusive subsets of equal size, S1; S2; : : : ; SP .
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Let Wk = [wk;1; wk;2; : : : ; wk;N ]
T be the column weight vector at iteration k of the LMS algorithm. Let

Xk be as de�ned in section 1. De�ne Ii by zeroing out the jth row of the identity matrix I if j =2 Si. In

that case, IiXk will have precisely N
P non-zero entries. Let the sentence \choosing Si at iteration k" stand

to mean \choosing the weights with their indices in Si for update at iteration k".

The SPU-LMS algorithm is described as follows. At a given iteration, k, one of the sets Si, i = 1; : : : ; P ,

is chosen at random from fS1; S2; : : : ; SP g with probability 1
P and the update is performed. i.e.

wk+1;j =

�
wk;j + �e�kxk;j if j 2 Si
wk;j otherwise

(1)

where ek = dk�WH
k Xk. The above update equation can be written in a more compact form in the following

manner

Wk+1 =Wk + �e�kIiXk (2)

where Ii now is a randomly chosen matrix.

2.1 Analysis: Stationary Stochastic Signals

In this setting the o�ine problem is to choose an optimal W such that

�(W ) = E [(dk � yk)(dk � yk)
�]

= E
�
(dk �W

HXk)(dk �W
HXk)

�
�

is minimized, where a� denotes the complex conjugate of a. The solution to this problem is given by

Wopt = R�1r (3)

where R = E[XkX
H
k ] and r = E[d�kXk]. The minimum attainable mean square error �(W ) is given by

�min = E[dkd
�
k]� r

HR�1r:

For the following analysis, we assume that the desired signal, dk satis�es the following relation2 [7]

dk =WH
optXk + nk (4)

where Xk is a zero mean complex circular Gaussian3 random vector and nk is a zero mean circular complex

Gaussian (not necessarily white) noise, with variance �min, uncorrelated with Xk.

2Note: the model assumed for dk is same as assuming dk and Xk are jointly Gaussian sequences. Under this assumption
dk can be written as dk = W

H
optXk + mk, where Wopt is as in (3) and mk = dk �W

H
optXk. Since E[mkXk] = E[Xkdk] �

E[XkX
H
k
]Wopt = 0 and mk and Xk are jointly Gaussian we conclude that mk and Xk are independent of each other which is

same as model (4).
3A complex circular Gaussian random vector consists of Gaussian random variables whose marginal densities depend only

on their magnitudes. For more information see [16, p. 198] or [14]
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We also make the usual independence assumption used in the analysis of standard LMS [3]. We assume

that Xk is a Gaussian random vector and that Xk is independent of Xj for j < k. We also assume that Ii

and Xk are mutually independent.

For convergence-in-mean analysis we obtain the following update equation conditioned on a choice of Si.

E[Vk+1jSi] = (I � �IiR)E[VkjSi]

which after averaging over all choices of Si gives

E[Vk+1] = (I �
�

P
R)E[Vk]: (5)

To obtain the above equation we have made use of the fact that the choice of Si is independent of Vk and

Xk. Therefore, � has to satisfy 0 < � < 2P
�max

to guarantee convergence in mean.

For convergence-in-mean square we are interested in the convergence of E[eke
�
k]. Under the independence

assumptions we obtain E[eke
�
k] = �min + trfRE[VkV H

k ]g where �min is as de�ned earlier.

We have followed the procedure of [13] for our mean-square analysis. First, conditioned on a choice of

Si, the evolution equation of interest for trfRE[VkV H
k ]g is given by

RE[Vk+1V
H
k+1jSi] = RE[VkV

H
k jSi]� 2�RIiRE[VkV

H
k jSi] +

�2IiRIiE[XkX
H
k AkXkX

H
k jSi] + �2�minRIiRIi

where Ak = E[VkV
H
k ]. For simplicity, consider the case of block diagonal R satisfying

PP
i=1 IiRIi = R.

Then, we obtain the �nal equation of interest for convergence-in-mean square to be

Gk+1 = (I �
2�

P
� +

�2

P
�2 +

�2

P
�211T )Gk +

�2

P
�min�

21 (6)

where Gk is a vector of diagonal elements of �E[UkU
H
k ] where Uk = QVk with Q such that QRQH = �. It

is easy to obtain the following necessary and suÆcient conditions (see Appendix A) for convergence of the

SPU-LMS algorithm

0 < � < 2
�max

(7)

�(�)
def
=
PN

i=1
��i

2���i
< 1

which is independent of P and identical to that of LMS.

We use the integrated MSE di�erence J =
P1

k=0[�k��1] introduced in [8] as a measure of the convergence

rate andM(�) = �1��min

�min
as a measure of misadjustment. The misadjustment factor is simply (see Appendix

C)

M(�) =
�(�)

1� �(�)
(8)
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which is the same as that of the standard LMS. Thus, we conclude that random update of subsets has no

e�ect on the �nal excess mean-squared error.

Finally, it is straightforward to show (see Appendix B) the integrated MSE di�erence is

J = P trf[2��� �2�2 � �2�211T ]�1(G0 �G1)g (9)

which is P times the quantity obtained for standard LMS algorithm. Therefore, we conclude that for block

diagonal R, random updating slows down convergence by a factor of P without a�ecting the misadjustment.

Furthermore, it can be easily veri�ed that a much simpler condition 0 < � < 1
trfRg , is a suÆcient region for

convergence of SPU-LMS and the standard LMS algorithm.

2.2 Analysis: Deterministic Signals

Here we followed the analysis for LMS with real signals given in [17, pp. 140{143]. This analysis can be

easily extended to SPU-LMS with complex signals which we present here. We assume that the input signal

Xk is bounded, that is supk(X
H
k Xk) � B <1 and that the desired signal dk follows the model

dk =WH
optXk

which is di�erent from (4) in that we assume that there is no noise present at the output.

De�ne Vk =Wk �Wopt and ek = dk �WH
k Xk.

Lemma 1 If � < 2=B then e2k ! 0 as k ! 1. Here, f�g indicates statistical expectation over all possible

choices of Si, where each Si is chosen uniformly from fS1; : : : ; SP g.

Proof: See Appendix D

Theorem 1 If � < 2=B and the signal satis�es the following persistence of excitation condition:

For all k, there exist K <1, �1 > 0 and �2 > 0 such that

�1I <

k+KX
i=k

XiX
H
i < �2I (10)

then Vk
H
Vk ! 0 and V H

k Vk ! 0 exponentially fast.

Proof: See Appendix D

Condition (10) is identical to the persistence of excitation condition for standard LMS. Therefore, the

suÆcient condition for exponential stability of LMS is enough to guarantee exponential stability of SPU-LMS.
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3 Analysis of SPU-LMS: Mixing Signals

In this section, we analytically compare the performance of LMS and SPU-LMS in terms of stability and

misconvergence when the independent snapshots assumption is invalid. For this we employ the theory

developed in [12] and [2]. Even though the theory developed is for the case of real random variables it can

easily be adapted to the case of complex circular random variables.

In this section, results for stability and performance for the case of SPU-LMS are developed for describing

the performance hit taken when going from LMS to SPU-LMS. One of the important results obtained is

that for stability LMS and SPU-LMS have the same necessary and suÆcient conditions. The theory used

for stability analysis and performance analysis follows along [12] and [2], respectively.

3.1 Stability Analysis

Notations are the same as those used in [12]. kAkp is used to denote the Lp-norm of a random matrix A

given as kAkp
def
= fEkAkpk1=p for p � 1 where kAk

def
= f

P
i;j jaj

2
ijg

1=2 is the Euclidean norm of the matrix

A. Note that in [12], kAk
def
= f�max(AA

H )g1=2. Since the two norms are related by a constant the results

in [12] could as well have been stated with the de�nition used here. Our de�nition is identical to the norm

de�ned in [2].

A process Xk is said to be �-mixing if there is a function �(m) such that �(m)! 0 as m!1 and

sup
A2Mk

�1
(X);B2M1

k+m
(X)

jP (BjA)� P (B)j � �(m);8m � 0; k 2 (�1;1)

whereMj
i (X), �1 � i � j � 1 is the �-algebra generated by fXkg, i � k � j

For any random matrix sequence F = fFkg, de�ne Sp(�; ��) for �� > 0 and 0 < � < 1=�� by

Sp(�; �
�) =

8<
:F :


kY

j=i+1

(I � �Fj)


p

� K�;��(F )(1� ��)
k�i

8� 2 (0; ��];8k � i � 0

)

Sp(�; ��) is the family of Lp-stable random matrices.

Similarly, the averaged exponentially stable family is de�ned as S(�; ��) for �� > 0 and 0 < � < 1=��

by

S(�; ��) =

8<
:F :


kY

j=i+1

(I � �E[Fj ])


p

� K�;��(E[F ])(1� ��)
k�i (11)

8� 2 (0; ��];8k � i � 0

)
:
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We also de�ne Sp and S as Sp
def
= [��2(0;1) [�2(0;1=��)Sp(�; �

�) and S
def
= [��2(0;1) [�2(0;1=��)S(�; �

�).

Let Xk be the input signal vector generated from the following process

Xk =

1X
j=�1

A(k; j)�k�j +  k (12)

with
P1

j=�1 supk kA(k; j)k < 1. f kg is a d-dimensional deterministic process, and f�kg is a general

m-dimensional �-mixing sequence. The weighting matrices A(k; j) 2 Rd�m are assumed to be deterministic.

De�ne the index set S = f1; 2; : : : ; Ng. Partition S into P mutually exclusive subsets of equal size,

S1; S2; : : : ; SP . De�ne Ii by zeroing out the jth row of the identity matrix I if j =2 Si. Let Ij be a sequence

of i.i.d d� d masking matrices chosen with equal probability from Ii, i = 1; : : : ; P .

Then, we have the following theorem which is similar to Theorem 2 in [12].

Theorem 2 Let Xk be as de�ned above with f�kg a �-mixing sequence such that it satis�es for any n � 1

and any increasing integer sequence j1 < j2 < : : : < jn

E

"
exp

 
�

nX
i=1

k�jik
2

!#
�M exp(Kn) (13)

where �, M , and K are positive constants. Then for any p � 1, there exist constants �� > 0, M > 0, and

� 2 (0; 1) such that for all � 2 (0; ��] and for all t � k � 02
4E


tY

j=k+1

(I � �IjXjX
H
j )


p3
5
1=p

�M(1� ��)t�k

if and only if there exists an integer h > 0 and a constant Æ > 0 such that for all k � 0

k+hX
i=k+1

E[XiX
H
i ] � ÆI: (14)

Proof: The proof is just a slightly modi�ed version of the proof of Theorem 2 derived in Section IV of [12,

pp. 766-769]. The modi�cation takes into account that Fk in [12] is Fk = XkX
H
k whereas it is Fk = IkXkX

H
k

in the present context. 2

Note that the LMS algorithm has the same necessary and suÆcient conditions for convergence (Theorem

2 in [12]). Therefore, the necessary and suÆcient conditions for convergence of SPU-LMS are same as that

of LMS. Also note that, Theorem 2 in [12] can be stated as a corollary to Theorem 2 by setting Ij = I for

all j.

3.2 Performance Analysis

For performance analysis, we assume that

dk = XH
k Wopt;k + nk

8



Wopt;k varies as follows Wopt;k+1 �Wopt;k = wk+1, where wk+1 is the lag noise. Then for LMS we can write

the evolution equation for the tracking error Vk
def
= Wk �Wopt;k as

Vk+1 = (I � �XkX
H
k )Vk + �Xknk � wk+1

and for SPU-LMS the corresponding equation can be written as

Vk+1 = (I � �IkXkX
H
k )Vk + �Xknk � wk+1

Now, Vk+1 can be decomposed [2] as Vk+1 =
uVk + �nVk +

wVk where

uVk+1 = (I � �PkXkX
H
k )uVk;

uV0 = V0 = �Wopt;0

nVk+1 = (I � �PkXkX
H
k )nVk + PkXknk;

nV0 = 0

wVk+1 = (I � �PkXkX
H
k )wVk � wk+1;

nV0 = 0

where Pk = I for LMS and Pk = Ik for SPU-LMS. fuVkg denotes the unforced term, reecting the way

the successive estimates of the �lter coeÆcients forget the initial conditions. fnVkg accounts for the errors

introduced by the measurement noise, nk and fvVkg accounts for the errors associated with the lag-noise

fwkg.

In general nVk and wVk obey the following inhomogeneous equation

Æk+1 = (I � �Fk)Æk + �k; Æ0 = 0

Æk can be represent by a set of recursive equations as follows

Æk = J
(0)
k + J

(1)
k + : : :+ J

(n)
k +H

(n)
k

where the processes J
(r)
k ; 0 � r < n and H

(n)
k are described by

J
(0)
k+1 = (I � � �Fk)J

(0)
k + �k; J

(0)
0 = 0

J
(r)
k+1 = (I � � �Fk)J

(r)
k + �ZkJ

(r�1)
k ; J

(r)
k = 0; 0 � k < r

H
(n)
k+1 = (I � �Fk)H

(n)
k + �ZkJ

(n)
k ; H

(n)
k = 0; 0 � k < n

where Zk = Fk � �Fk and �Fk is an appropriate deterministic process, usually chosen as �Fk = E[Fk ]. In [2]

under appropriate conditions it was shown that there exists some constant C <1 and �0 > 0 such that for

all 0 < � � �0, we have

sup
k�0
kH(n)

k kp � C�
n=2:

Now, we modify the de�nition of weak dependence as given in [2] for circular complex random variables.

The theory developed in [2] can be easily adapted for circular random variables using this de�nition. Let
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q � 1 and X = fXngn�0 be a (l � 1) matrix valued process. Let � = (�(r))r2N be a sequence of positive

numbers decreasing to zero at in�nity. The complex processX = fXngn�0 is said to be (Æ; q)-weak dependent

if there exist �nite constants C = fC1; : : : ; Cqg, such that for any 1 � m < s � q and m-tuple k1; : : : ; km

and any (s�m)-tuple km+1; : : : ; ks, with k1 � : : : � km < km + r � km+1 � : : : � ks, it holds that

sup
1�i1;:::;is�l;fk1 ;i1 ;fk2;i2 :::fkm;im

���cov�fk1;i1( ~Xk1;i1) � : : : � fkm;im( ~Xkm;im);

fkm+1;im+1( ~Xkm+1;im+1) � : : : � fks;is( ~Xks;is)
���� � Cs�(r)

where ~Xn;i denotes the i-th component of Xn �E(Xn) and the set of functions fn;i() that the sup is being

taken over are given by fn;i( ~Xn;i) = ~Xn;i and fn;i( ~Xn;i) = ~X�
n;i.

De�ne N (p) from [2] as follows

N (p) =

�
� :
Pt

k=sDk�k


p
� �p(�)

�Pt
k=s jDkj

2
�1=2

80 � s � t

and 8D = fDkgk2N(q � l) deterministic matrices g

where �p(�) is a constant depending only on the process � and the number p.

Fk can be written as Fk = PkXkX
H
k where Pk = I for LMS and Pk = Ik for SPU-LMS. It is assumed

that the following hold true for Fk . For some r; q 2 N , �0 > 0 and 0 < � < 1=�0

� F1(r; �; �0): fFkgk�0 is in S(r; �; �0) that is fFkg is Lr-exponentially stable.

� F2(�; �0): fE[Fk]gk�0 is in S(�; �0), that is fE[Fk]gk�0 is averaged exponentially stable.

Conditions F3 and F4 stated below are trivially satis�ed for Pk = I and Pk = Ik .

� F3(q; �0): supk2N sup�2(0;�0] kPkkq <1 and supk2N sup�2(0;�0] jE[Pk]j <1

� F4(q; �0): supk2N sup�2(0;�0] �
�1=2kPk �E[Pk]kq <1

The excitation sequence � = f�kkk�0 [2] is assumed to be decomposed as �k =Mk�k where the processes

M = fMkgk�0 is a d� l matrix valued process and � = f�kgk�0 is a (l�1) vector-valued process that veri�es

the following assumptions

� EXC1: fMkgk2Z isMk
0(X)-adapted4 andMk

0(�) andM
k
0(X) are independent.

� EXC2(r; �0): sup�2(0;�0] supk�0 kMkkr <1, (r > 0; �0 > 0)

� EXC3(p; �0): � = f�kgk2N belongs to N (p), (p > 0; �0 > 0)

4A sequence of random variables, Xi is called adapted with respect to a sequence of �-�elds Fi if Xi is Fi measurable [4].
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The following theorems from [2] are relevant.

Theorem 3 (Theorem 1 in [2]) Let n 2 N and let q � p � 2. Assume EXC1, EXC2(pq=(q�p); �0) and

EXC3(p; �0). For a; b; � > 0, a�1 + b�1 = 1, and some �0 > 0, assume in addition F2(�; �0), F4(aqn; �0)

and

� fGkgk�0 is (�; (q + 2)n) weakly dependent and
P
(r + 1)((q+2)n=2)�1�(r) <1

� supk�0 kGkkbqn <1

Then, there exists a constant K < 1 (depending on �(k), k � 0 and on the numerical constants

p; q; n; q; b; �0; � but not otherwise on fXkg, f�kg or on �), such that for all 0 < � � �0, for all 0 � r � n

sup
s�1
kJ (r)

s kp � K�p(�) sup
k�0
kMkkpq=(q�p)�

(r�1)=2:

Theorem 4 (Theorem 2 in [2]) Let p � 2 and let a; b; c > 0 such that 1=a+1=b+1=c = 1=p. Let n 2 N .

Assume F1(a; �; �0) and

� sups�0 kZskb <1

� sups�0 kJ
(n+1)
s kc <1

Then there exists a constant K 0 < 1 (depending on the numerical constants a; b; c, �; �0; n but not on the

process f�kg or on the stepsize parameter �), such that for all 0 < � � �0,

sup
s�0
kH(n)

s kp � K
0 sup
s�0
kJ (n+1)

s kc:

We next show that if LMS satis�es the assumptions above (assumptions in section 3.2 in [2]) then so

does SPU-LMS. Conditions F1 and F2 follow directly from Theorem 2. It is easy to see that F3 and F4

hold easily for LMS and SPU-LMS.

Lemma 2 The constant K in Theorem 3 calculated for LMS can also be used for SPU-LMS.

Proof: Here all that is needed to be shown is that if LMS satis�es the conditions (EXC1), (EXC2) and

(EXC3) then so does SPU-LMS. Moreover, the upper bounds on the norms for LMS are also upper bounds

for SPU-LMS. That easily follows because MLMS
k = Xk whereas M

SPU�LMS
k = IkXk and kIkk � 1 for any

norm k � k. 2

Lemma 3 The constant K 0 in Theorem 4 calculated for LMS can also be used for SPU-LMS.
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Proof: First we show that if for LMS sups�0 kZskb <1 then so it is for SPU-LMS. First, note that for

LMS we can write ZLMS
s = XsX

H
s �E[XsX

H
s ] whereas for SPU-LMS

ZSPU�LMS
s = IsXsX

H
s �

1

P
E[XsX

H
s ]

= IsXsX
H
s � IsE[XsX

H
s ] + (Is �

1

P
I)E[XsX

H
s ]

That means kZSPU�LMS
s kb � kIskbkZLMS

s kb+kIs�
1
P IkbkE[XsX

H
s ]kb. Therefore, since sups�0 kbE[XsX

H
s ]kb <

1 and sups�0 kZ
LMS
s kb <1 we have

sup
s
kZSPU�LMS

s kb <1:

Since all conditions for Theorem 2 have been satis�ed by SPU-LMS in a similar manner the constant obtained

is also the same. 2

The results in this section are an extension of analysis in [2] to SPU-LMS. The results enable us to

predict the steady state behaviour of SPU-LMS without the standard independent snapshots assumption

employed in Section 2.1. Moreoever, the two lemmas in this section state that the error terms for LMS and

SPU-LMS are bounded above by the same constants. These results are very useful for comparison of steady

state errors of SPU-LMS and LMS in the sense that the error terms are of the same magnitude. This will

become evident in Section 4.2 and Section 4.3 where we compare the steady state performance of the two

algorithms for two di�erent scenarios.

4 Discussion and Examples

It is useful to compare the performance of the new algorithm to those of the existing algorithms namely

the peridic Partial Update LMS Algorithm (P-LMS) and the sequential Partial Update LMS Algorithm

(S-LMS).

For P-LMS, the update equation can be written as follows

Wk+P =Wk + �e�kXk

For the Sequential LMS algorithm the update equation is same as (2) except that the choice of Ii is no longer

random. The sequence of Ii as k progresses is pre-determined and �xed.

For the P-LMS algorithm, using the method of analysis described in [13] we conclude that the conditions

for convergence are identical to standard LMS. That is (7) holds also for P-LMS. Also, the misadjustment

factor remains the same. The only di�erence between LMS and P-LMS is that the measure J for P-LMS

is P times that of LMS. Therefore, we see that the behavior of SPU-LMS and P-LMS algorithms is very

similar for stationary signals.

12



The di�erence between P-LMS and SPU-LMS becomes evident from the persistence of excitation condi-

tion for deterministic signals. From [7] we conclude that the persistence of excitation condition for P-LMS

is stricter than that for SPU-LMS. For mixing signals, the persistence of excitation condition can similarly

be shown to be stricter than that of SPU-LMS. In fact, in the next section we construct signals for which

P-LMS is guaranteed not to converge whereas SPU-LMS will converge.

The convergence of Sequential LMS algorithm has been analyzed using the small � assumption in [7].

Theoretical results for this algorithmwithout this assumption is an open problem. [11] analyses this algorithm

for its convergence in the mean properties, but so far mean square convergence for stationary, non-stationary

and mixing signals is still untacked. However, we show through simulation examples that this algorithm

diverges for certain signals and therefore should be employed with caution.

4.1 Numerical Examples

In the �rst two examples, we simulated an m-element uniform linear antenna array operating in a multiple

signal environment. Let Ai denote the response of the array to the i
th plane wave signal:

Ai = [e�j(m2 � ~m)!i e�j(m2 �1� ~m)!i : : : ej(
m
2 �1� ~m)!i ej(

m
2 � ~m)!i ]T

where ~m = (m + 1)=2 and !i =
2�D sin �i

� , i = 1; : : : ;M . �i is the broadside angle of the i
th signal, D is the

inter-element spacing between the antenna elements and � is the common wavelength of the narrowband

signals in the same units as D and 2�D
� = 2. The array output at the kth snapshot is given by Xk =PM

i=1Aisk;i+nk whereM denotes the number of signals, the sequence fsk;ig the amplitude of the ith signal

and nk the noise present at the array output at the k
th snapshot. The objective, in both the examples, is to

maximize the SNR at the output of the beamformer. Since the signal amplitudes are random the objective

translates to obtaining the best estimate of sk;1, the amplitude of the desired signal, in the MMSE sense.

Therefore, the desired signal is chosen as dk = sk;1.

Example 1: In the �rst example (Figure 1), the array has 4 elements and a single planar waveform with

amplitude, sk;1 propagates across the array from direction angle, �1 =
�
2 . The amplitude sequence fsk;1g is

a binary phase shifty keying (BPSK) signal with period four taking values on f�1; 1g with equal probability.

The additive noise nk is circular Gaussian with variance 0:25 and mean 0. In all the simulations for SPU-

LMS, P-LMS, and S-LMS the number of subsets for partial updating, P was chosen to be 4. It can be easily

determined from (7) that for Gaussian and independent signals the necessary and suÆcient condition for

convergence of LMS and SPU-LMS is � < 0:67. Figure 2 shows representative trajectories of the empirical

mean-squared error for LMS, SPU-LMS, P-LMS and S-LMS algorithms averaged over 100 trials for � = 0:6

and � = 1:0. All algorithms were found to be stable for the BPSK signals even for � values greater than

0:67. It was only as � approached 1 that divergent behavior was observed. As expected, LMS and SPU-LMS

13



sk

D=λ/π

x
1,k

x x
3,k

x
2,k 4,k

BPSK Signal,
=0Broadside angle 

4-element Uniform Array

kX  = A s  + nk k

d  = s k k

Figure 1: Signal Scenario for Example 1

were observed to have similar � regions of convergence. It is also clear from Figure 2, that as, expected

SPU-LMS, P-LMS, and S-LMS take roughly 4 times longer to converge than LMS.

Example 2: In the second example, we consider an 8-element uniform linear antenna array with one signal

of interest propagating at angle �1 and 3 interferers propagating at angles �i, i = 2; 3; 4. The array noise

nk is again mean 0 circular Gaussian but with variance 0:001. We generated signals, such that sk;1 is

stationary and sk;i, i = 2; 3; 4 are cyclostationary with period four, which make both S-LMS and P-LMS

non-convergent. All the signals were chosen to be independent from time instant to time instant. First, we

found signals for which S-LMS doesn't converge by the following procedure. Make the small � approximation

I � �
PP

i=1 IiE[Xk+iX
H
k+i] to the transition matrix

QP
i=1(I � �IiE[Xk+iXk+i]) and generate sequences sk;i,

i = 1; 2; 3; 4 such that
PP

i=1 IiE[Xk+iX
H
k+i] has roots in the negative left half plane. This ensures that

I � �
PP

i=1 IiE[Xk+iX
H
k+i] has roots outside the unit circle. The sequences found in this manner were then

veri�ed to cause the roots to lie outside the unit circle for all �. One such set of signals found was: sk;1 is

equal to a BPSK signal with period one taking values in f�1; 1g with equal probability. The interferers, sk;i,

i = 2; 3; 4 are cyclostationary BPSK type signals taking values in f�1; 1g with the restriction that sk;2 = 0

if k % 4 6= 1, sk;3 = 0 if k % 4 6= 2 and sk;4 = 0 if k % 4 6= 3. Here a % b stands for a modulo b. �i,

i = 1; 2; 3; 4 are chosen such that �1 = 1:0388, �2 = 0:0737, �3 = 1:0750 and �4 = 1:1410. These signals

render the S-LMS algorithm unstable for all �.

The P-LMS algorithm also fails to converge for the signal set described above irrespective of � and the

choice of �1, �2, �3, and �4. Since P-LMS updates the coeÆcients every 4th iteration it sees at most one

of the three interfering signals throughout all its updates and hence can place a null at atmost one signal

incidence angle �i. Figure 4 shows the envelopes of the e
2
k trajectories of S-LMS and P-LMS for the signals

given above with the representative value � = 0:03. As can be seen P-LMS fails to converge whereas S-LMS

shows divergent behavior. SPU-LMS and LMS were observed to converge for the signal set described above
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Figure 2: Trajectories of MSE for Example 1

when � = 0:03.

Example 3: In the third example, we consider a 4-tap �lter (N = 4) with a time series input, that is

Xk = [xk xk�1 xk�2 xk�3]. The input, the �lter coeÆcients and the desired output are all real valued.

xk is given by sk + nk where sk is a BPSK signal with a symbol duration of 4 time intervals and nk is

a zero mean Gaussian noise with variance 0:01. The desired output dk, is given by dk = W T
optSk where

Sk = [sk sk�1 sk�2 sk�3] and Wopt = [1 2 3 4]T . The update is such that one coeÆcient is updated per

iteration, i.e. P = 4. For this signal it was veri�ed that S-LMS diverges for all values of �. Figures 5 and 6

show the trajectory of mean-squared error for LMS, SPU-LMS, P-LMS and S-LMS for a representative value

of � = 0:05, respectively. As can be seen P-LMS and S-LMS fail to converge whereas LMS and SPU-LMS

do.

4.2 I.i.d Gaussian Input Sequence

In this section, we assume that Xk = [xk xk�1 : : : xk�N+1]
T where N is the length of the vector Xk. fxkg

is a sequence of zero mean i.i.d Gaussian random variables. We assume that wk = 0 for all k � 0. In that

case

Vk+1 = (I � �PkXkX
H
k )Vk +Xknk V0 = �Wopt;0 =Wopt

where for LMS we have Pk = I and Pk = Ik in case of SPU-LMS. We assume nk is a white i.i.d. Gaussian

noise with variance �2v . We see that since the conditions (13) and (14) are satis�ed for theorem 2 both

15



D=λ/π 4-element Uniform Linear Array

Broadside angle =

Broadside angle =

Broadside angle 

−π/4

Cyclostationary BPSK type Interferer, s

s Cyclostationary BPSK type Interferer,

BPSK Signal,s1,k

3,k

2,k

k
d  = s k 1,k

1X  = A  s   + A   s    + A   s    + n2 2,k k1,k 3 3,k

π/6

=π/4

Figure 3: Signal Scenario for Example 2
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Figure 4: Trajectories of MSE for Example 2

LMS and SPU-LMS are exponentially stable. In fact both have the same � exponent of decay. Therefore,

conditions F1 and F2 are satis�ed.

We rewrite Vk = J
(0)
k + J

(1)
k + J

(2)
k +H

(2)
k . Choosing �Fk = E[Fk] we have E[PkXkX

H
k ] = �2I in the case

of LMS and 1
P �

2I in the case of SPU-LMS. By Theorems 3 and 4 and Lemmas 2 and 3 we can upperbound

both jJ
(2)
k j and jH

(2)
k j by exactly the same constants for LMS and SPU-LMS. In particular, there exists some

constant C <1 such that for all � 2 (0; �0], we have

sup
t�0

���E[J (1)
t (J

(2)
t +H

(2)
t )H ]

��� � CkX0kr(r+Æ)=Æ�
2
r(v)�

1=2

sup
t�0

���E[J (0)
t H

(2)
t ]
��� � C�r(v)kX0kr(r+Æ)=Æ�

1=2:

Next, for LMS we concentrate on

J
(0)
k+1 = (1� ��2)J (0)

k +Xknk
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J
(1)
k+1 = (1� ��2)J

(1)
k + �(�2I �XkX

H
k )J

(0)
k

and for SPU-LMS we concentrate on

J
(0)
k+1 = (1�

�

P
�2)J

(0)
k + IkXknk

J
(1)
k+1 = (1�

�

P
�2)J

(1)
k + �(

�2

P
I � IkXkX

H
k )J

(0)
k :

Solving (see Appendix E), we obtain for LMS

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� ��2)

I

lim
k!1

E[J
(0)
k (J

(1)
k )H ] = 0

lim
k!1

E[J
(0)
k (J

(2)
k )H ] = 0

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

N�2�2v
(2� ��2)2

I
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=
N�2�2v

4
I +O(�)I

which yields limk!1 E[VkV
H
k ] =

�2v
2� I +

N�2�2v
4 I +O(�1=2)I and for SPU-LMS we obtain

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �

P �
2)
I

lim
k!1

E[J
(0)
k (J

(1)
k )H ] = 0

lim
k!1

E[J
(0)
k (J

(2)
k )H ] = 0

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

(N+1)P�1
P �2�2v

(2� �
P �

2)2
I

=
(N+1)P�1

P �2�2v
4

I +O(�)I

which yields limk!1 E[VkV
H
k ] =

�2v
2� I +

(N+1)P�1
P

�2�2v
4 I + O(�1=2)I . Therefore, we see that SPU-LMS is

marginally worse than LMS in terms of misadjustment.

4.3 Temporally Correlated Spatially Uncorrelated Array Output

In this section we consider Xk given by

Xk = �Xk�1 +
p
1� �2Uk

where Uk is a vector of circular Gaussian random variables with unit variance. Similar to section 4.2, we

rewrite Vk = J
(0)
k + J

(1)
k + J

(2)
k +H

(2)
k . Since, we have chosen �Fk = E[Fk ] we have E[PkXkX

H
k ] = I in the

case of LMS and 1
P I in the case of SPU-LMS. Again, conditions F1 and F2 are satis�ed because of Theorem

2. By [2] and Lemmas 1 and 2 we can upperbound both J
(2)
k and H

(2)
k by exactly the same constants for

LMS and SPU-LMS. By Theorems 3 and 4 and Lemmas 2 and 3 we have that there exists some constant

C <1 such that for all � 2 (0; �0], we have

sup
t�0

���E[J (1)
t (J

(2)
t +H

(2)
t )H ]

��� � CkX0kr(r+Æ)=Æ�
2
r(v)�

1=2

sup
t�0

���E[J (0)
t H

(2)
t ]
��� � C�r(v)kX0kr(r+Æ)=Æ�

1=2:

Next, for LMS we concentrate on

J
(0)
k+1 = (1� �)J (0)

k +Xknk

J
(1)
k+1 = (1� �)J (1)

k + �(I �XkX
H
k )J

(0)
k

and for SPU-LMS we concentrate on

J
(0)
k+1 = (1�

�

P
)J

(0)
k + IkXknk

J
(1)
k+1 = (1�

�

P
)J

(1)
k + �(

1

P
I � IkXkX

H
k )J

(0)
k :
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Solving (see Appendix F), we obtain for LMS

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �)

I

lim
k!1

E[J
(0)
k (J

(1)
k )H ] = �

�2�2vN

2(1� �2)
I +O(�)I

lim
k!1

E[J
(0)
k (J

(2)
k )H ] =

�2�2vN

4(1� �2)
I +O(�)I

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

(1 + �2)�2vN

4(1� �2)
I +O(�)I

which leads to limk!1 E[VkV
H
k ] =

�2v
2� I +

N�2v
4 I +O(�1=2)I and for SPU-LMS we obtain

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �

P )
I

lim
k!1

E[J
(0)
k (J

(1)
k )H ] = �

�2�2vN

2(1� �2)P
I +O(�)I

lim
k!1

E[J
(0)
k (J

(2)
k )H ] =

�2�2vN

4(1� �2)P
I +O(�)I

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

�2v
4
[
N

P

1 + �2

1� �2
+ (N + 1)

P � 1

P
]I +O(�)I

which leads to limk!1 E[VkV
H
k ] =

�2v
2� I +

�2

4 [N +1� 1
P ]I +O(�

1=2)I . Again, SPU-LMS is marginally worse

than LMS in terms of misadjustment.

5 Conclusion

We have proposed a new algorithm based on randomization of �lter coeÆcient subsets for partial updating

of �lter coeÆcients. The conditions on step-size for convergence-in-mean and mean-square were shown to

be equivalent to those of standard LMS. It was veri�ed by theory and by simulation that LMS and SPU-

LMS have similar regions of convergence. We also have shown that the Stochastic Partial Update LMS

algorithm has the same performance as the Periodic LMS algorithm for stationary signals but, can have

superior performance for some non-stationary signals. We also demonstrated that the randomization of

�lter coeÆcient updates does not increase the �nal steady state error as compared to the regular LMS

algorithm.

The idea of random choice of subsets proposed in the paper can be extended to include arbitrary subsets

of size N
P and not just subsets from a particular partition. No special advantage is immediately evident

from this extension though. In future work, we will analyze the algorithm in the time-series setting, that is,

without the independent snapshots assumption.

The Max PU-LMS described in Section 1 is similar SPU-LMS in the sense that the coeÆcient subset

chosen to be updated at an iteration are also random. However, update equations (5) and (6) are not valid
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for Max PU-LMS as we can no longer assume that Xk and Ii are independent since the coeÆcients to be

updated in an iteration explicitly depend on Xk. The analysis of this algorithm is an open problem.

APPENDICES

A Derivation of Stability Condition (7)

We will follow the Z-transform method of [13]. Let ~�(z) donate the Z-transform of �k and ~Gi(z) donate the

Z-transform of the ith component of Gk. Then we have the following

~�(z) = �min
1

1� z�1
+

NX
i=1

~Gi(z)

~Gi(z) = (1�
2�

P
�i +

2�2

P
�2i ) ~Gi(z) +

�2

P
�2i z

�1~�(z) +Gi(0)

which leads to

~�(z) =

�min
1

1�z�1 +
PN

i=1
Gi(0)

1�z�1(1� 2�
P
�i+

2�2

P
�2
i
)

1�
PN

i=1

�2

P
�2
i
z�1

1�z�1(1� 2�
P
�i+

2�2

P
�2
i
)

(15)

and

~Gi(z) =
1

D(z)

�2

P �
2
iN(z) +Gi(0)D(z)

1� z�1(1� 2�
P �i +

2�2

P �2i )
(16)

where N(z) and D(z) denote the numerator and the denominator in (15). Therefore, the condition for

stability is that the roots of

z � (1�
2�

P
�i +

2�2

P
�2i ) = 0

for i = 1; : : : ; N and

NY
i=1

�
z � (1�

2�

P
�i +

2�2

P
�2i )

�
�

NX
i=1

�2

P
�2i
Y
k 6=i

�
z � (1�

2�

P
�k +

2�2

P
�2k)

�
= 0

should lie within the unit circle.

The reader should note that (16) should be used to determine the stability of ~Gi(z) and not

~Gi(z) =

�2

P �
2
i z
�1
h
�min

1
1�z�1 +

P
k 6=i

~Gk(z)
i
+Gi(0)

1� z�1(1� 2�
P �i +

3�2

P �2i )

that was used in [13].

Following the rest of the procedure as outlined in [13] exactly, we obtain the conditions for stability to

be (7).
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B Derivation of expression (9)

Here we follow the procedure in [8]. Assuming Gk converges we have the expression for G1 to be

G1 = P [2��� 2�2�� �2�211T ]�1�
2

P
�21�min:

Then we have

Gk+1 �G1 = F (Gk �G1)

where F = I � 2�
P �+ 2�2

P � + �2

P �211T . Since �k = trfGkg we have

1X
k=0

(�k � �1) = trf
1X
k=0

(Gk �G1)g

= trf
1X
k=0

F k(G0 �G1)g

= trf(I � F )�1(G0 �G1)g

from which (9) follows.

C Derivation of the misadjustment factor (8)

Here we follow the approach of [13]. The misadjustment numerator and denominator is de�ned as M(�) =

�1��min

�min
. Since �1 = limz!1(1� z�1)~�(z) and the limits of (1� z�1)�(z) are �nite, we have

�1 =

limz!1

�
�min + (1� z�1)

PN
i=1

Gi(0)

1�z�1(1� 2�
P
�i+

2�2

P
�2
i
)

�

limz!1

�
1�

PN
i=1

�2

P
�2
i
z�1

1�z�1(1� 2�
P
�i+

2�2

P
�2
i
)

� ;

that is

�1 =
�min

1� 1
2

PN
i=1

��i
1���i

=
�min

1� �(�)
;

from which (8) follows.

D Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1: First note that ek = �V H
k Xk. Next, consider the Lyapunov function Lk+1 = V H

k+1Vk+1

where f�g is as de�ned in Lemma 1. Averaging the following update equation for V H
k+1Vk+1

V H
k+1Vk+1 = V H

k Vk � �trfVkV
H
k XkX

H
k Iig � �trfVkV

H
k IiXkX

H
k g+ �2trfVkV

H
k XkX

H
k IiXkX

H
k g
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over all possible choices of Si, i = 1; : : : ; P we obtain

Lk+1 = Lk �
�

P
trfVkV H

k Xk(2� �XkX
H
k )XH

k g:

Since supk(X
H
k Xk) � B <1 the matrix (2I � �XkX

H
k )� (2I � �BI) is positive de�nite. Therefore,

Lk+1 � Lk �
�

P
(2� �B)trfVkV H

k XkX
H
k g:

Since � < 2=B

Lk+1 � Lk � trfVkV H
k XkX

H
k g

Noting that e2k = trfVkV H
k XkX

H
k g we obtain

Lk+1 +

kX
l=0

e2k � L0

since L0 <1 we have e2k = O(1=k) and limk!1 e2k = 0 2

Before proving Theorem 1 we need Lemmas 4 and 5. We reproduce the proof of Lemma 4 from [17] using

our notation because this enables to understand the proof of Lemma 5 better.

Lemma 4 [17, Lemma 6.1 p. 143-144] Let Xk satisfy the persistence of excitation condition in Theorem 1.

let

�k;k+D =

� Qk+D
l=k (I � �

PXlX
H
l ) if D � 0

1 if D < 0

and

Gk =
KX
l=0

�H
k;k+l�1Xk+lX

H
k+l�k;k+l�1

where K is as de�ned in Theorem 1 then Gk � �I is a positive de�nite matrix for some � > 0 and 8k.

Proof: Proof is by contradiction. Suppose not then for some vector ! such that !H! = 1 we have

!HGk! � c2 where c is any arbitrary positive number.

Then

KX
l=0

!H�H
k;k+l�1Xk+lX

H
k+l�k;k+l�1! � c

2

) !H�H
k;k+l�1Xk+lX

H
k+l�k;k+l�1! � c

2 for 0 � l � K:

Choosing l = 0 we obtain !HXkX
H
k ! � c

2 or k!HXkk � c.

Choosing l = 1 we obtain k!H(I � �
PXkX

H
k )Xk+1k � c. Therefore,

k!HXk+1k � k!H(I �
�

P
XkX

H
k )Xk+1k+

�

P
k!HXkkkX

H
k Xk+1k

� c+
�

P
Bc = c(1 + 2=P ):
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Choosing l = 2 we obtain k!H(I � �
PXkX

H
k )(I � �

PXk+1X
H
k+1)Xk+2k � c. Therefore,

k!HXk+2k � k!H(I �
�

P
XkX

H
k )(I �

�

P
Xk+1X

H
k+1)Xk+2k+

�

P
k!HXkX

H
k Xk+2k

+
�

P
k!HXk+1X

H
k+1Xk+2k+

�2

P 2
k!HXkX

H
k Xk+1X

H
k+1Xk+2k

� O(c):

Proceeding along similar lines we obtain k!HXk+lk � Lc for l = 0; : : : ;K where L is some constant.

This implies !H
Pk+K

l=k XlX
H
l ! � (K +1)L2c2. Since c is arbitrary we obtain that !H

Pk+K
l=k XlX

H
l ! < �1

which is a contradiction. 2

Lemma 5 Let Xk satisfy the persistence of excitation condition in Theorem 1. let

Pk;k+D =

� Qk+D
l=k (I � �IlXlX

H
l ) if D � 0

1 if D < 0

where Il is the randomly chosen masking matrix and let


k =

KX
l=0

�H
k;k+l�1Xk+lXH

k+l�k;k+l�1

where K is as de�ned in Theorem 1 and f�g is the average over randomly chosen Il then 
k�I is a positive

de�nite matrix for some  > 0 and 8k.

Proof: Proof is by contradiction. Suppose not then for some vector ! such that !H! = 1 we have

!H
k! � c2 where c is any arbitrary positive number.

Then

KX
l=0

!H PHk;k+l�1Xk+lXH
k+lPk;k+l�1 ! � c

2

) !H PHk;k+l�1Xk+lXH
k+lPk;k+l�1 ! � c

2 for 0 � l � K:

Choosing l = 0 we obtain !HXkX
H
k ! � c

2 or k!HXkk � c.

Choosing l = 1 we obtain !H (I � �XkXH
k Ik)Xk+1XH

k+1(I � �IkXkXH
k ) ! � c2. Therefore,

!HXk+1X
H
k+1! �

�

P
!HXkX

H
k Xk+1X

H
k+1! �

�

P
!HXk+1X

H
k+1XkX

H
k !+

�2

P
!HXkX

H
k

"
PX
i=0

IiXk+1X
H
k+1Ii

#
XkX

H
k ! � c2:

Now

k!HXkX
H
k Xk+1X

H
k+1!k � k!HXkkkXkkkX

H
k+1Xk+1kk!k

� cB3=2
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and

k!HXkX
H
k

"
PX
i=0

IiXk+1X
H
k+1Ii

#
XkX

H
k !k � c

2PB2:

Therefore, !HXk+1X
H
k+1! = O(c) which implies k!HXk+1k = O(c1=2). Proceeding along the same lines

we obtain k!HXk+1k = O(c1=L) for l = 0; : : : ;K for some constant L. This implies !H
Pk+K

l=k XlX
H
l ! =

O(c2=L). Since c is arbitrary we obtain that !H
Pk+K

l=k XlX
H
l ! < �1 which is a contradiction. 2

Now, we are ready to Prove Theorem 1.

Proof of Theorem 1: First, we will prove the convergence of V
H
k V k. We have V k+1 = (I � �

PXkX
H
k )V k.

Proceeding as before, we obtain the following update equation for V kV
H

k

V
H
k+K+1V k+K+1 = V

H
k+KV k+K � 2

�

P
V
H
k+KXk+KX

H
k+KV k+K

+
�2

P 2
V
H
k+KXk+KX

H
k+KXk+KX

H
k+KV k+K

� V
H

k+KV k+K �
�

P
V
H

k+KXk+KX
H
k+KV k+K :

The last step follows from the fact that � < 2=B. Using the update equation for Vk repeatedly, we obtain

V
H

k+K+1V k+K+1 � V
H

k V k �
�

P
V
H

k GkV k:

From Lemma 4 we have,

V
H
k+K+1V k+K+1 � (1�

�

P
�)V

H
k V k

which ensures exponential convergence of trfV kV
H
k g.

Next, we prove the convergence of V H
k Vk . First, we have the following update equation for trfVkV H

k g

trfVk+K+1V H
k+K+1g � trfVk+KV H

k+Kg �
�

P
trfXk+KX

H
k+KVk+KV

H
k+Kg: (17)

Using (17) and also

Vk+1V H
k+1 = (I � �IkXkXH

k )VkV H
k (I � �XkXH

k Ik)

repeatedly, we obtain the following update equation

trfVk+K+1V H
k+K+1g � trfVkV H

k g � trf
kVkV H
k g:

From Lemma 5 we have

trfVk+K+1V H
k+K+1g � (1� �)trfVkV H

k g

which ensures the exponential convergence of trfVkV H
k g. 2
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E Derivation of Expressions in Section 4.2

In this section, we will need the following identity
1X
s=0

s(1� ��)2s =
(1� ��)2

�2�2(2� ��)2
:

First, we have the following expressions for LMS

J0
k+1 =

kX
s=0

(1� ��2)k�sXsns

J1
k+1 = �

kX
s=0

(1� ��2)k�s�1D1(k; s+ 1)Xsns

J2
k+1 = �2

kX
s=0

(1� ��2)k�s�2D2(k; s+ 1)Xsns

where

D1(k; s) =

kX
u=s

Zu k � s D1(k; s) = 0 s > k

D2(k; s) =
kX

u=s

D1(k; u+ 1)Zu

and Zu = E[XuX
H
u ]�XuX

H
u .

This leads to

lim
k!1

E[J0
k+1(J

0
k+1)

H ] = lim
k!1

�2v

kX
s=0

(1� ��2)2(k�s)E[X0X
H
0 ]

and we �nally obtain

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� ��2)

I:

Similarly,

lim
k!1

E[J0
k+1(J

1
k+1)

H ] = ��2v

kX
s=0

(1� ��2)2s�1E[D1(s; 1)X0X
H
0 ]:

Now, E[ZuX0X
H
0 ] = E[XuX

H
u ]E[X0X

H
0 ]�E[XuX

H
u X0X

H
0 ] = 0 which gives

E[D1(s; 1)X0X
H
0 ] = 0:

Thus, limk!1 E[J
(0)
k (J

(1)
k )H ] = 0.

Next,

lim
k!1

E[J1
k+1(J

1
k+1)

H ] = �2v�
2
1X
u=0

(1� ��2)2u�2E[D1(u; 1)X0X
H
0 D1(u; 1)

H ]

E[ZvX0X
H
0 Z

H
u ] = �6I � �2E[XvX

H
v X0X

H
0 ]� �2E[X0X

H
0 XuX

H
u ] +

E[XvX
H
v X0X

H
0 XuX

H
u ]

= 0 if v 6= u

= N�6I if v = u:
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Therefore, E[D1(u; 1)X0X
H
0 D1(u; 1)

H ] = uN�6I and we obtain

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

N�2�2v
(2� ��2)2

I:

Next, we have limk!1 E[J0
k+1(J

2
k+1)

H ] = �2�2v
P1

s=0 E[D2(s; 1)X0X
H
0 ]. Now,

E[ZvZuX0X
H
0 ] = �6I � �2E[XvX

H
v X0X

H
0 ]� �2E[XuX

H
u X0X

H
0 ] +

E[XvX
H
v XuX

H
u X0X

H
0 ]

= 0 if v 6= u:

Therefore, E[D2(s; 1)X0X
H
0 ] = 0 and consequently limk!1 E[J0

k+1(J
2
k+1)

H ] = 0.

Second, we have the following expressions for SPULMS

J0
k+1 =

kX
s=0

(1�
�

P
�2)k�sIsXsns

J1
k+1 = �

kX
s=0

(1�
�

P
�2)k�s�1D1(k; s+ 1)IsXsns

J2
k+1 = �2

kX
s=0

(1�
�

P
�2)k�s�2D2(k; s+ 1)IsXsns

where

D1(k; s) =

kX
u=s

Zu k � s D1(k; s) = 0 s > k

D2(k; s) =

kX
u=s

D1(k; u+ 1)Zu

and Zu = IuXuX
H
u �

1
P E[XuX

H
u ].

This leads to

lim
k!1

E[J0
k+1(J

0
k+1)

H ] = lim
k!1

�2v

kX
s=0

(1� ��2)2(k�s)E[I0X0X
H
0 I0]

and

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �

P �
2)
I:

Similarly,

lim
k!1

E[J0
k+1(J

1
k+1)

H ] = ��2v

kX
s=0

(1� ��2)2s�1E[D1(s; 1)I0X0X
H
0 I0]:

Now, E[ZuI0X0X
H
0 I0] = E[IuXuX

H
u ]E[I0X0X

H
0 I0]�E[IuXuX

H
u I0X0X

H
0 I0] = 0 which gives

E[D1(s; 1)X0X
H
0 ] = 0

so that limk!1 E[J0
k+1(J

1
k+1)

H ] = 0.
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lim
k!1

E[J1
k+1(J

1
k+1)

H ] = �2v�
2
1X
u=0

(1� ��2)2u�2E[D1(u; 1)I0X0X
H
0 I0D1(u; 1)

H ]:

Furthermore

E[ZvI0X0X0I0Z
H
u ] = �6I � �2E[IvXvX

H
v I0X0X

H
0 I0]� �

2E[I0X0X
H
0 I0XuX

H
u Iu]

+E[IvXvX
H
v I0X0X

H
0 I0XuX

H
u Iu]

= 0 if v 6= u

=
(N + 1)P � 1

P 3
�6I if v = u:

Therefore, E[D1(u; 1)X0X
H
0 D1(u; 1)

H ] = u (N+1)P�1
P 3 �6I and we obtain

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

(N+1)P�1
P �2�2v

(2� �
P �

2)2
I:

Finally, we consider limk!1 E[J0
k+1(J

2
k+1)

H ] = �2�2v
P1

s=0E[D2(s; 1)X0X
H
0 ]. Now

E[ZvZuX0X
H
0 ] = �6I � �2E[IvXvX

H
v I0X0X

H
0 I0]� �

2E[IuXuX
H
u I0X0X

H
0 I0]

+E[IvXvX
H
v IuXuX

H
u I0X0X

H
0 I0]

= 0 if v 6= u:

Therefore, E[D2(s; 1)X0X
H
0 ] = 0 and consequently limk!1 E[J0

k+1(J
2
k+1)

H = 0.

F Derivation of Expressions in Section 4.3

In this section, we will need the following identities

sX
v;w=1

a2jv�wj =
s(1� a4)� 2a2 + 2a2(s+1)

(1� a2)2

sX
v;w=1

ajv�wjav+w =
a2

(1� a2)2
[1 + a2 � (2s+ 1)a2s + (2s� 1)a2s+2]

1X
s=0

s(1� ��)2s =
(1� ��)2

�2�2(2� ��)2
:

First, we have the following expressions for LMS

J0
k+1 =

kX
s=0

(1� �)k�sXsns

J1
k+1 = �

kX
s=0

(1� �)k�s�1D1(k; s+ 1)Xsns

J2
k+1 = �2

kX
s=0

(1� �)k�s�2D2(k; s+ 1)Xsns
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where

D1(k; s) =

kX
u=s

Zu k � s D1(k; s) = 0 s > k

D2(k; s) =

kX
u=s

D1(k; u+ 1)Zu

and Zu = E[XuX
H
u ]�XuX

H
u .

This leads to

lim
k!1

E[J0
k+1(J

0
k+1)

H ] = lim
k!1

�2v

kX
s=0

(1� �)2(k�s)E[X0X
H
0 ]

and as a result

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �)

I:

Next,

lim
k!1

E[J0
k+1(J

1
k+1)

H ] = ��2v

kX
s=0

(1� �)2s�1E[D1(s; 1)X0X
H
0 ]:

Now, E[ZuX0X
H
0 ] = E[XuX

H
u ]E[X0X

H
0 ]�E[XuX

H
u X0X

H
0 ] = � N

P 3 �
2u which gives

E[D1(s; 1)X0X
H
0 ] = �

N

P 3
�2

1� �2s

1� �2
:

Therefore, limk!1 E[J
(0)
k (J

(1)
k )H ] = � �2�2vN

2(1��2)I +O(�)I . Next we consider,

lim
k!1

E[J1
k+1(J

1
k+1)

H ] = �2v�
2
1X
u=0

(1� �)2u�2E[D1(u; 1)X0X
H
0 D1(u; 1)

H ]:

Note that,

E[ZvX0X
H
0 Z

H
u ] = I � E[XvX

H
v X0X

H
0 ]�E[X0X

H
0 XuX

H
u ] +E[XvX

H
v X0X

H
0 XuX

H
u ]

= [(N2 + 1)�v+u�jv�uj +N�2jv�uj:

Therefore,

E[D1(u; 1)X0X
H
0 D1(u; 1)

H ] = (N2 + 1)

uX
s=1

uX
t=1

�jv�uj�v+u +N

uX
s=1

uX
t=1

�2jv�uj

and consequently

lim
k!1

E[J
(1)
k (J

(1)
k )H ] =

(1 + �2)�2vN

4(1� �2)
I +O(�)I:

Finally, we have limk!1 E[J0
k+1(J

2
k+1)

H ] = �2�2v
P1

s=0 E[D2(s; 1)X0X
H
0 ]. Now

E[ZvZuX0X
H
0 ] = I �E[XvX

H
v X0X

H
0 ]�E[XuX

H
u X0X

H
0 ] +E[XvX

H
v XuX

H
u X0X

H
0 ]

= [(N2 + 1)�v+u�jv�uj +N�2jv�uj:

Therefore,

E[D2(s; 1)X0X
H
0 ] = (N2 + 1)

uX
s=1

uX
t=s+1

�jv�uj�v+u +N

uX
s=1

uX
t=s+1

�2jv�uj
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and

lim
k!1

E[J
(0)
k (J

(2)
k )H ] =

�2�2vN

4(1� �2)
I +O(�)I:

Second, we have the following expressions for SPULMS

J0
k+1 =

kX
s=0

(1�
�

P
)k�sIsXsns

J1
k+1 = �

kX
s=0

(1�
�

P
)k�s�1D1(k; s+ 1)IsXsns

J2
k+1 = �2

kX
s=0

(1�
�

P
)k�s�2D2(k; s+ 1)IsXsns

where

D1(k; s) =

kX
u=s

Zu k � s D1(k; s) = 0 s > k

D2(k; s) =

kX
u=s

D1(k; u+ 1)Zu

and Zu = IuXuX
H
u �

1
P E[XuX

H
u ].

This leads to

lim
k!1

E[J0
k+1(J

0
k+1)

H ] = lim
k!1

�2v

kX
s=0

(1� �)2(k�s)E[I0X0X
H
0 I0]

and therefore,

lim
k!1

E[J
(0)
k (J

(0)
k )H ] =

�2v
�(2� �

P )
I:

Next,

lim
k!1

E[J0
k+1(J

1
k+1)

H ] = ��2v

kX
s=0

(1� �)2s�1E[D1(s; 1)I0X0X
H
0 I0]:

Furthermore, E[ZuI0X0X
H
0 I0] = E[IuXuX

H
u ]E[I0X0X

H
0 I0]�E[IuXuX

H
u I0X0X

H
0 I0] = �

N
P 3�

2u which gives

E[D1(s; 1)X0X
H
0 ] = �

N

P 3
�2

1� �2s

1� �2

and as a result

lim
k!1

E[J
(0)
k (J

(1)
k )H ] = �

�2�2vN

2(1� �2)P
I +O(�)I:

Next, consider

lim
k!1

E[J1
k+1(J

1
k+1)

H ] = �2v�
2
1X
u=0

(1� �)2u�2E[D1(u; 1)I0X0X
H
0 I0D1(u; 1)

H ]:

Since,

E[ZvI0X0X0I0Z
H
u ] = I �E[IvXvX

H
v I0X0X

H
0 I0]�E[I0X0X

H
0 I0XuX

H
u Iu]

+E[IvXvX
H
v I0X0X

H
0 I0XuX

H
u Iu]
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=
1

P 3
[(
N2

P
+ 1)�v+u�jv�uj +N�2jv�uj]I if v 6= u

=
1

P 3
[(
N2

P
+ 1)�v+u�jv�uj +N�2jv�uj]I

+
P � 1

P 3
[(N + 1) +

N2 + 2N + 1

P
�2u]I if v = u

we have limk!1 E[J
(1)
k (J

(1)
k )H ] =

�2v
4 [

N
P

1+�2

1��2 + (N + 1)P�1
P ]I +O(�)I .

Finally, we have limk!1 E[J0
k+1(J

2
k+1)

H ] = �2�2v
P1

s=0E[D2(s; 1)X0X
H
0 ]. Furthermore,

E[ZvZuX0X
H
0 ] = �6I � �2E[IvXvX

H
v I0X0X

H
0 I0]� �

2E[IuXuX
H
u I0X0X

H
0 I0]

+E[IvXvX
H
v IuXuX

H
u I0X0X

H
0 I0]

=
1

P 3
[(
N2

P
+ 1)�v+u�jv�uj +N�2jv�uj]I if v 6= u

which leads to limk!1 E[J
(0)
k (J

(2)
k )H ] =

�2�2vN
4(1��2)P I +O(�)I .
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