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Abstract

This paper introduces a class of k-nearest neighbor (k-NN) estimators called bipartite plug-in (BPI) estimators for

estimating integrals of non-linear functions of a probability density, such as Shannon entropy and Rényi entropy. The

density is assumed to be smooth, have bounded support, and be uniformly bounded from below on this set. Unlike

previous k-NN estimators of non-linear density functionals, the proposed estimator uses data-splitting and boundary

correction to achieve lower mean square error. Specifically, we assume that T i.i.d. samples Xi ∈ R
d from the density

are split into two pieces of cardinality M and N respectively, with M samples used for computing a k-nearest-neighbor

density estimate and the remaining N samples used for empirical estimation of the integral of the density functional.

By studying the statistical properties of k-NN balls, explicit rates for the bias and variance of the BPI estimator are

derived in terms of the sample size, the dimension of the samples and the underlying probability distribution. Based

on these results, it is possible to specify optimal choice of tuning parameters M/T , k for maximizing the rate of

decrease of the mean square error (MSE). The resultant optimized BPI estimator converges faster and achieves lower

mean squared error than previous k-NN entropy estimators. In addition, a central limit theorem is established for the

BPI estimator that allows us to specify tight asymptotic confidence intervals.

Index Terms

Entropy estimation, bipartite k-NN graphs, adaptive estimators, data-splitting estimators, convergence rates, bias

and variance tradeoff, concentration bounds.

I. INTRODUCTION

Non-linear functionals of a multivariate density f of the form
∫
g(f(x), x)f(x)dx arise in applications includ-

ing machine learning, signal processing, mathematical statistics, and statistical communication theory. Important

examples of such functionals include Shannon and Rényi entropy. Entropy based applications for image matching,

image registration and texture classification are developed in [1, 2]. Entropy functional estimation is fundamental to
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independent component analysis in signal processing [3]. Entropy has also been used in Internet anomaly detection [4]

and data and image compression applications [5]. Several entropy based nonparametric statistical tests have been

developed for testing statistical models including uniformity and normality [6, 7]. Parameter estimation methods

based on entropy have been developed in [8, 9]. For further applications, see, for example, Leonenko etal [10].

In these applications, the functional of interest must be estimated empirically from sample realizations of the

underlying densities. Several estimators of entropy measures have been proposed for general multivariate densities

f . These include consistent estimators based on entropic graphs [11, 12], gap estimators [13], nearest neighbor

distances [14, 10, 15, 16], kernel density plug-in estimators [17, 18, 19, 20, 21, 22], Edgeworth approximations [23],

convex risk minimization [24] and orthogonal projections [25].

The class of density-plug-in estimators considered in this paper are based on k-nearest neighbor (k-NN) distances

and, more specifically, bipartite k-nearest neighbor graphs over the random sample. The basic construction of the

proposed bipartite plug-in (BPI) estimator is as follows (see Sec. II.A for a precise definition). Given a total of T

data samples we split the data into two parts of size N and size M , N +M = T . On the part of size M a k-NN

density estimate is constructed. The density functional is then estimated by plugging the k-NN density estimate

into the functional and approximating the integral by an empirical average over the remaining N samples. This can

be thought of as computing the estimator over a bipartite graph with the M density estimation nodes connected

to the N integral approximating nodes. The BPI estimator exploits a close relation between density estimation

and the geometry of proximity neighborhoods in the data sample. The BPI estimator is designed to automatically

incorporate boundary correction, without requiring prior knowledge of the support of the density. Boundary correction

compensates for bias due to distorted k-NN neighborhoods that occur for points near the boundary of the density

support set. Furthermore, this boundary correction is adaptive in that we achieve the same MSE rate of convergence

that can be attained using an oracle BPI estimator having knowledge of boundary of the support. Since the rate of

convergence relates the number of samples T = N+M to the performance of the estimator, convergence rates have

great practical utility. A statistical analysis of the bias and variance, including rates of convergence, is presented

for this class of boundary compensated BPI estimators. In addition, results on weak convergence (CLT) of BPI

estimators are established. These results are applied to optimally select estimator tuning parameters M/T, k and to

derive confidence intervals. For arbitrary smooth functions g, we show that by choosing k increasing in T with order

O(T−2/(2+d)), an optimal MSE rate of order O(T −4/(2+d)) is attained by the BPI estimator. For certain specific

functions g including Shannon entropy (g(u) = log(u)) and Rényi entropy (g(u) = u α−1), a faster MSE rate of

order O(((log T )6/T )4/d) is achieved by BPI estimators by correcting for bias.

A. Previous work on k-NN functional estimation

The authors of [26, 14, 10, 15] propose k-NN estimators for Shannon entropy (g(u) = log(u)) and Rényi

entropy(g(u) = uα−1). Evans etal [27] consider positive moments of the k-NN distances (g(u) = u k, k ∈ N).

Recently, Baryshnikov etal [28] proposed k-NN estimators for estimating f -divergence
∫
φ(f0(x)/f(x))f(x)dx
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between an unknown density f , from which sample realizations are available, and a known density f 0. Because

f0 is known, the f -divergence
∫
φ(f0(x)/f(x))f(x)dx is equivalent to a entropy functional

∫
g(f(x), x)dx for a

suitable choice of g. Wang etal [16] developed a k-NN based estimator of
∫
g(f1(x)/f2(x), x)f2(x)dx when both

f1 and f2 are unknown. The authors of these works [26, 14, 27, 16] sestablish that the estimators they propose

are asymptotically unbiased and consistent. The authors of [15] analyze estimator bias for k-NN estimation of

Shannon and Rényi entropy. For smooth functions g(.), Evans etal [29] show that the variance of the sums of these

functionals of k-NN distances is bounded by the rate O(k 5/T ). Baryshnikov etal [28] improved on the results

of Evans etal by determining the exact variance up to the leading term (c k/T for some constant ck which is a

function of k). Furthermore, Baryshnikov etal show that the entropy estimator they propose converges weakly to a

normal distribution. However, Baryshnikov etal do not analyze the bias of the estimators, nor do they show that the

estimators they propose are consistent. Using the results obtained in this paper, we provide an expression for this

bias in Section III-E and show that the optimal MSE for Baryshnikov’s estimators is O(T −2/(1+d)).

In contrast, the main contribution of this paper is the analysis of a general class of BPI estimators of smooth

density functionals. We provide asymptotic bias and variance expressions and a central limit theorem. The bipartite

nature of the BPI estimator enables us to correct for bias due to truncation of k-NN neighborhoods near the boundary

of the support set; a correction that does not appear straightforward for previous k-NN based entropy estimators.

We show that the BPI estimator is MSE consistent and that the MSE is guaranteed to converge to zero as T →∞
and k →∞ with a rate that is minimized for a specific choice of k, M and N as a function of T . Therefore, the

thus optimized BPI estimator can be implemented without any tuning parameters. In addition a CLT is established

that can be used to construct confidence intervals to empirically assess the quality of the BPI estimator. Finally,

our method of proof is very general and it is likely that it can be extended to kernel density plug-in estimators,

f -divergence estimation and mutual information estimation.

Another important distinction between the BPI estimator and the k-NN estimators of Shannon and Rényi entropy

proposed by the authors of [26, 14, 10] is that these latter estimators are consistent for finite k, while the proposed

BPI estimator requires the condition that k → ∞ for MSE convergence. By allowing k → ∞, the BPI estimators

of Shannon and Rényi entropy achieve MSE rate of order O(((log T ) 6/T )4/d). This asymptotic rate is faster than

the O(T−2/d) MSE convergence rate [15] of the previous k-NN estimators [26, 14, 10] that use a fixed value of

k. It is shown by simulation that BPI’s asymptotic performance advantages, predicted by our theory, also hold for

small sample regimes.

B. Organization

The remainder of the paper is organized as follows. Section II formulates the entropy estimation problem and

introduces the BPI estimator. The main results concerning the bias, variance and asymptotic distribution of these

estimators are stated in Section III and the consequences of these results are discussed. The proofs are given in the

Appendix. We discuss bias correction of the BPI estimator for the case of Shannon and Rényi entropy estimation
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in Section IV. We numerically validate our theory by simulation in Section V. A conclusion is given in Section VI.

Notation: Bold face type will indicate random variables and random vectors and regular type face will be used

for non-random quantities. Denote the expectation operator by the symbol E and conditional expectation given Z

by EZ. Also define the variance operator as V[X] = E[(X−E[X])2] and the covariance operator as Cov[X,Y] =

E[(X− E[X])(Y − E[Y])]. Denote the bias of an estimator by B.

II. PRELIMINARIES

We are interested in estimating non-linear functionals G(f) of d-dimensional multivariate densities f with support

S, where G(f) has the form

G(f) =

∫
g(f(x), x)f(x)dμ(x) = E[g(f(x), x)],

for some smooth function g(f(x), x). Let B denote the boundary of S. Here, μ denotes the Lebesgue measure and E

denotes statistical expectation w.r.t density f . We assume that i.i.d realizations {X1, . . . ,XN ,XN+1, . . . ,XN+M}
are available from the density f . Neither f nor its support set are known.

The plug-in estimator is constructed using a data splitting approach as follows. The data is randomly subdivided

into two parts XN = {X1, . . . ,XN} and XM = {XN+1, . . . ,XN+M} of N and M points respectively. In the

first stage, a boundary compensated k-NN density estimator f̃k is estimated at the N points {X1, . . . ,XN} using

the M realizations {XN+1, . . . ,XN+M}. Subsequently, the N samples {X1, . . . ,XN} are used to approximate the

functional G(f) to obtain the basic Bipartite Plug-In (BPI) estimator:

ĜN (̃fk) =
1

N

N∑
i=1

g(f̃k(Xi),Xi). (II.1)

As the above estimator performs an average over the N variablesX i of the function g(f̃(Xi), Xi), which is estimated

from the other M variables, this estimator can be viewed as averaging over the edges of a bipartite graph with N

and M nodes on its left and right parts.

A. Boundary compensated k-NN density estimator

Since the probability density f is bounded above, the observations will lie strictly on the interior of the support

set S. However, some observations that occur close to the boundary of S will have k-NN balls that intersect the

boundary. This leads to significant bias in the k-NN density estimator. In this section we describe a method that

compensates for this bias. The method can be interpreted as extrapolating the location of the boundary from extreme

points in the sample and suitably reducing the volumes of their k-NN balls.

Let d(X,Y ) denote the Euclidean distance between points X and Y and dk(X) denote the Euclidean distance

between a point X and its k-th nearest neighbor amongst the M realizations XN+1, ..,XN+M . Define a ball with

radius r centered at X contained in the support S: Sr(X) = {Y ∈ S : d(X,Y ) ≤ r}. The k-NN region is
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Sk(X) = {Y : d(X,Y ) ≤ dk(X)} and the volume of the k-NN region is Vk(X) =
∫
Sk(X)

dZ . The standard k-NN

density estimator [30] is defined as

f̂k(X) =
k − 1

MVk(X)
.

If a probability density function has bounded support, the k-NN balls S k(X) centered at points X close to the

boundary may intersect with the boundary B, or equivalently S k(X) ∩ Sc �= φ, where Sc is the complement of S.

As a consequence, the k-NN ball volume Vk(X) will tend to be higher for points X close to the boundary leading

to significant bias of the k-NN density estimator.

Let Rk(X) correspond to the coverage value (1 + pk)k/M , i. e. , Rk(X) = inf{r :
∫
Sr(X)

f(Z)dZ = (1 +

pk)k/M}, where pk =
√
6/(kδ/2) for some fixed δ ∈ (2/3, 1). Define

εBC = N exp(−3k(1−δ)).

Define Nk(X) as the region corresponding to the coverage value (1 + p k)k/M , i.e. Nk(X) = {Y : d(X,Y ) ≤
Rk(X)}. Finally, define the interior region SI

SI = {X ∈ S : Nk(X) ∩ Sc = φ}. (II.2)

We show in Appendix B that the bias of the standard k-NN density estimate is of order O((k/M) (2/d)) for points

X ∈ SI and is of order O(1) at points X ∈ S− SI . This motivates the following method for compensating for this

bias. This compensation is done in two stages: (i) the set of interior points IN ⊂ XN are identified using variation

in k-nearest neighbor distances in Algorithm 1 (see Appendix B for details) and it is show that IN /∈ S− SI with

probability 1−O(εBC); and (ii) the density estimator at points in BN = XN − IN are corrected by extrapolating to

the density estimates at interior points IN that are close to the boundary points. We emphasize that this nonparametric

correction strategy does not assume knowledge about the support of the density f .

For each boundary point Xi ∈ BN , let Xn(i) ∈ IN be the interior sample point that is closest to Xi. The corrected

density estimator f̃k is defined as follows.

f̃k(Xi) =

⎧⎨⎩ f̂k(Xi) {Xi ∈ IN}
f̂k(Xn(i)) {Xi ∈ BN}

(II.3)

III. MAIN RESULTS

Let Z denote an independent realization drawn from f . Also, define Z−1 ∈ SI to be Z−1 = argminx∈SI d(x,Z).

Define h(X) = Γ(2/d)((d + 2)/2)f−2/d(X)tr[∇2(f(X))]. Denote the n-th partial derivative of g(x, y) wrt x

by g(n)(x, y). Also, let g′(x, y) := g(1)(x, y) and g′′(x, y) := g(2)(x, y). For some fixed 0 < ε < 1, define

pl = ((k− 1)/M)(1− ε)ε0 and pu = ((k− 1)/M)(1+ ε)ε∞. Also define ε1 = 1/(cdD
d), where D is the diameter

of the bounded set S and define q l = ((k − 1)/M)ε1 and qu = (1 + ε)ε∞. Let p be a beta random variable with

parameters k,M − k + 1.
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A. Assumptions

(A.0) : Assume that M , N and T are linearly related through the proportionality constant α frac with: 0 <

αfrac < 1, M = αfracT and N = (1−αfrac)T . (A.1) : Let the density f be uniformly bounded away from 0 and

finite on the set S, i.e., there exist constants ε0, ε∞ such that 0 < ε0 ≤ f(x) ≤ ε∞ <∞ ∀x ∈ S. (A.2): Assume that

the density f has continuous partial derivatives of order 2ν in the interior of the set S where ν satisfies the condition

(k/M)2ν/d = o(1/M), and that these derivatives are upper bounded. (A.3): Assume that the function g(x, y) has λ

partial derivatives w.r.t. x, where λ satisfies the conditions k−λ = o(1/M) and O((λ2((k/M)2/d + 1/M))/M) =

o(1/M). (A.4): Assume that max{6, 2λ} < k <= M . (A.5): Assume that the absolute value of the functional

g(x, y) and its partial derivatives are strictly bounded away from ∞ in the range ε 0 < x < ε∞ for all y. (A.6):

Assume that supx∈(ql,qu) |(g(r)/r!)2(x, y)|e−3k(1−δ)

<∞, E[supx∈(pl,pu) |(g(r)/r!)2(x/p, y)|] <∞, for r = 3, λ.

B. Bias and Variance

Below the asymptotic bias and variance of the BPI estimator of general functionals of the density f are specified.

These asymptotic forms will be used to establish a form for the asymptotic MSE.

Theorem III.1. The bias of the BPI estimator Ĝk(f) is given by

B[ĜN (̃fk)] = c1

(
k

M

)2/d

+ c2

(
1

k

)
+ c3(k,M,N) +O(εBC) + o

(
1

k
+

(
k

M

)2/d
)
,

where c3(k,M,N) = E[1{Z∈S−SI}(g(f(Z−1),Z−1) − g(f(Z),Z))] = O(k/M)2/d, and the constants c1 =

E[g′(f(Z),Z)h(Z)], c2 = E[f2(Z)g′′(f(Z),Z)/2].

The leading terms c1(k/M)2/d + c2/k arise due to the bias and variance of k-NN density estimates respectively

(see Appendix A), while the term c3(k,M,N) arises due to boundary correction (see Appendix B). Henceforth, we

will refer to c3(k,M,N) by c3. It is shown in Appendix B that c3 = O((k/M)2/d) (B.11). The term O(εBC) arises

from a concentration inequality that gives the probability of the event IN /∈ S− SI as 1−O(εBC). Observe that if

k increases logarithmically in M , specifically (log(M))2/(1−δ)/k → 0, then O(εBC) = o(N/M3) = o(1/T ).

Theorem III.2. The variance of the BPI estimator ĜN (̃fk) is given by

V[ĜN (̃fk)] = c4

(
1

N

)
+ c5

(
1

M

)
+O(εBC) + o

(
1

M
+

1

N

)
,

where the constants c4 = V[g(f(Z),Z)] and c5 = V[f(Z)g′(f(Z),Z)].

The term c4/N is due to approximation of the integral
∫
g(f(x), x)f(x)dx by the sample mean (1/N)

∑N
i=1 g(f(Xi),Xi).

The term c5/M on the other hand is due to the covariance between density estimates f̃(Xi) and f̃ (Xj), i �= j.

C. Optimized parameter tuning

Theorem III.1 implies that k → ∞ and k/M → 0 in order that the BPI estimator ĜN (̃fk) be asymptotically

unbiased. Likewise, Theorem III.2 implies that N → ∞ and M → ∞ in order that the variance of the estimator
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converge to 0. It is clear from Theorem III.1 that the MSE is minimized when k grows in polynomially in M .

Throughout this section, we assume that k = k0M
r for some r ∈ (0, 1). This implies that O(εBC) = O(NC(k)) =

o(1/M) = o(1/T ).

1) Assumptions: Under the condition k = k0M
r, the assumptions (A.2) and (A.3) reduce to the following

equivalent conditions: (A.2): Let the density f have continuous partial derivatives of order 2r in the interior of the

set S where r satisfies the condition 2r(1− t)/d > 1. (A.3): Let the functional g(x, y) have λ partial derivatives

w.r.t. x, where λ satisfies the conditions tλ > 1.

2) Optimal choice of k: Theorems III.1 and III.2 provide an optimal choice of k that minimizes asymptotic MSE.

Minimizing the MSE over k is equivalent to minimizing the square of the bias over k. Define c o = c1+c3/(k/M)2/d.

The optimal choice of k is given by

kopt = argmin
k

B(ĜN (̃fk)) = �k0M 2
2+d 
, (III.1)

where �x
 is the closest integer to x, and the constant k0 is defined as k0 = (|c2|d/2|c0|) d
d+2 when c0c2 > 0 and

as k0 = (|c2|/|c0|) d
d+2 when c0c2 < 0.

Observe that the constants c0 and c2 can possibly have opposite signs. When c0c2 > 0, the bias evaluated at kopt

is b+0 M
−2
2+d (1 + o(1)) where b+0 = c0k

2/d
0 + c2/k0. Let kfrac = k0M

2
2+d − kopt. When c0c2 < 0, observe that

c0((kfrac + kopt)/M)2/d + c2/(kfrac + kopt) is equal to zero. When c0c2 < 0, a higher order asymptotic analysis

is required to specify the bias at the optimal value of k (see Page 10, [31]). The bias evaluated at k opt in this case

is given by b−0 M
−4
2+d (1 + o(1)) where b−0 is a constant which depends on the underlying density f .

Even though the optimal choice kopt depends on the unknown density f (via the constant k 0), we observe from

simulations that simply matching the rates, i.e. choosing k = k̄ =M2/(2+d), leads to significant MSE improvement.

This is illustrated in Section V.

3) Choice of αfrac =M/T : Observe that the MSE of ĜN (̃fk) is dominated by the squared bias (O(M−4/(2+d)))

as contrasted to the variance (O(1/N + 1/M)). This implies that the MSE rate of convergence is invariant to the

choice of αfrac. This is corroborated by the experimental results shown in Fig. 6.

4) Discussion on optimal choice of k: The optimal choice of k grows at a smaller rate as compared to the total

number of samples M used for the density estimation step. Furthermore, the rate at which k/M grows decreases

as the dimension d increases. This can be explained by observing that the choice of k primarily controls the bias

of the entropy estimator. For a fixed choice of k and M (k < M), one expects the bias in the density estimates

(and correspondingly in the estimates of the functional G(f)) to increase as the dimension increases. For increasing

dimension an increasing number of the M points will be near the boundary of the support set. This in turn requires

choosing a smaller k relative to M as the dimension d grows.

5) Optimal rate of convergence: Observe that the optimal bias decays as b+0 (T
−2
2+d )(1 + o(1)) when c0c2 > 0

and b−o (T
−4
2+d )(1 + o(1)) when c0c2 < 0. The variance decays as Θ(1/T )(1 + o(1)).
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D. Central limit theorem

In addition to the results on bias and variance shown in the previous section, it is shown here that the BPI

estimator, appropriately normalized, weakly converges to the normal distribution. The asymptotic behavior of the

BPI estimator is studied under the following limiting conditions: (a) k/M → 0, (b) k → ∞ and (c) N → ∞. As

shorthand, the above limiting assumptions will be collectively denoted by Δ→ 0.

Theorem III.3. The asymptotic distribution of the BPI estimator ĜN (̃fk) is given by

lim
Δ→0

Pr

⎛⎝ĜN (̃fk)− E[ĜN (̃fk)]√
V[ĜN (̃fk)]

≤ α
⎞⎠ = Pr(S ≤ α),

where S is a standard normal random variable.

E. Comparison with results by Baryshnikov etal

Recently, Baryshnikov etal [28] have developed asymptotic convergence results for estimators of f -divergence

G(f0, f) =
∫
f(x)φ(f0(x)/f(x))dx for the case where f0 is known. Their estimators are based on sums of

functionals of k-NN distances. They assume that they have T i.i.d realizations from the unknown density f , and that

f and f0 are bounded away from 0 and ∞ on their support. The general form of the estimator of Baryshnikov etal

is given by

G̃N (̂fkS) =
1

T

T∑
i=1

g(f̂kS(Xi)),

where f̂kS(Xi) is the standard k-NN density estimator [32] estimated using the T −1 samples {X1, ..,XT }−{Xi}.
Baryshnikov etal do not show that their estimator is consistent and do not analyze the bias of their estimator.

They show that the leading term in the variance is given by ck/T for some constant ck which is a function of the

number of nearest neighbors k. Finally they show that their estimator, when suitably normalized, is asymptotically

normal. In contrast, we assume higher order conditions on continuity of the density f and the functional g (see

Section 3) as compared to Baryshnikov etal and provide results on bias, variance and asymptotic distribution of

data-split k-NN functional estimators of entropies of the form G(f) =
∫
g(f(x))f(x)dx. Note that we also require

the assumption that f is bounded away from 0 and ∞ on its support. Because we are able to establish expressions

on both the bias and variance of the BPI estimator, we are able to specify optimal choice of free parameters k,N,M

for minimum MSE.

For estimating the functional G(f) =
∫
g(f(x))f(x)dx, the estimator of Baryshnikov can be used by restricting

f0 to be uniform. In Appendix C it is shown that under the additional assumption that (A.6) is satisfied by g̃ = g,

the bias of G̃N (̂fkS) is

B(G̃N (̂fkS)) = O((k/T )1/d) +O(1/k). (III.2)
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In contrast, Theorem III. 1 establishes that the bias of the BPI estimator ĜN (f̃k) decays as Θ((k/M)2/d +1/k) +

O(εBC) and the variance decays as Θ(1/T ). The bias of the BPI estimator has a higher exponent (2/d as opposed

to 1/d) and this is a direct consequence of using the boundary compensated density estimator f̃k in place of f̂k.

It is clear from III.2 that the estimator of Baryshnikov will be unbiased iff k →∞ as T →∞. Furthermore, the

optimal rate of growth of k is given by k = T 1/(1+d). Furthermore, ck = Θ(1) and therefore the overall optimal bias

and variance of G̃N (̂fkS) is given by Θ(T−1/(1+d)) and Θ(T−1) respectively. On the other hand, the optimal bias

of the BPI estimator decays as b+0 (T
−2
2+d )(1+o(1)) when c1c2 > 0 and b−o (T

−4
2+d )(1+o(1)) when c1c2 < 0 and the

optimal variance decays as Θ(1/T ). The BPI estimator therefore has faster rate of MSE convergence. Experimental

MSE comparison of Baryshnikov’s estimator against the proposed BPI estimator is shown in Fig. 6.

IV. BIAS CORRECTION FACTORS

When the density functional of interest is the Shannon entropy (g(u) = − log(u)) or the Rényi -α entropy(g(u) =

uα−1), a bias correction can be added to the BPI estimator that accelerates rate of convergence. Goria et.al. [10]

and Leonenko et.al. [14] developed consistent Shannon and Rényi estimators with bias correction. The authors of

[15] analyzed the bias for these estimators. When combined with the results of Baryshnikov etal, one can easily

deduce the variance of these estimators and establish a CLT.

Let ĤS be the Shannon entropy estimate G̃N (̂fkS) with the choice of functional g(x) = − log(x). Let Îα,S be

the estimate of the Rényi α-integral estimate G̃N (̂fkS) with the choice of functional g(x) = xα−1. Define H̃S =

ĤS+[log(k−1)−Ψ(k)], where ψ(.) is the digamma function, and Ĩα,S = [(Γ(k+(1−α))/Γ(k))(k−1)α−1 ]−1Îα,S .

Also define the Rényi entropy estimator to be H̃α,S = (1 − α)−1 log(Ĩα,S). The estimators H̃S and H̃α,S are the

Shannon and Rényi entropy estimators of Goria etal [14] and Leonenko etal [10] respectively. In [15], it is shown

that the bias of H̃S and Ĩα,S is given by Θ((k/T )1/d), while the variance was shown by Baryshnikov etal to be

O(1/T ). In contrast, by (III.2), the bias of ĤS and Îα,S is given by Θ((k/T )1/d + (1/k)) (III.2). This can be

understood as follows. From the results by [15], we have

E[ĤS ] = I − [log(k − 1)−Ψ(k)] + c0,0(k/T )
1/d + o((k/T )1/d) (IV.1)

and

E[Îα,S ] = [(Γ(k + (1 − α))/Γ(k))(k − 1)α−1]Iα + c0,α(k/T )
1/d + o((k/T )1/d) (IV.2)

for some functionals of the density c0,0 and c0,α. Note that [(Γ(k + (1− α))/Γ(k))(k − 1)α−1] = 1 +O(1/k) and

Ψ(k) = log(k−1)+O(1/k) as k→∞. From the above equations, the scale factor [(Γ(k+(1−α))/Γ(k))(k−1)α−1]

and the additive factor [log(k − 1) − Ψ(k)] account for the O(1/k) terms in the expressions for bias of ĤS and

Îα,S , thereby removing the requirement that k → ∞ for asymptotic unbiasedness. These bias corrections can be

incorporated into the BPI estimator as follows.
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A. Main results

For a general function g(x, y), if there exist functions g1(k,M) and g2(k,M), such that

(i) E[g((k − 1)x/Mp, y)] = g(x, y)g1(k,M) + g2(k,M) + o(1/M),

(ii) ((k − 1)/M)E[g′((k − 1)x/Mp, y)p2/d−1] = g′(x, y)(k/M)2/d + o((k/M)2/d),

(iii) lim
k→∞

g1(k,M) = 1,

(iv) lim
k→∞

g2(k,M) = 0, (IV.3)

then define the BPI estimator with bias correction as

ĜN,BC (̃fk) =
ĜN (̃fk)− g2(k,M)

g1(k,M)
. (IV.4)

1) Bias and Variance: In addition to the assumptions listed in section III-A, assume that k = O((log(M)) 2/(1−δ)).

Below the asymptotic bias and variance of the BPI estimator with bias correction are specified.

Theorem IV.1. The bias of the BPI estimator ĜN,BC (̃fk) is given by

B[ĜN,BC (̃fk)] = c1

(
k

M

)2/d

+ c3(k,M,N) + o

((
k

M

)2/d
)
. (IV.5)

Theorem IV.2. The variance of the BPI estimator ĜN,BC (̃fk) is given by

V[ĜN,BC (̃fk)] = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
.

2) CLT:

Theorem IV.3. The asymptotic distribution of the BPI estimator ĜN,BC (̃fk) is given by

lim
Δ→0

Pr

⎛⎝ĜN,BC (̃fk)− E[ĜN,BC (̃fk)]√
V[ĜN,BC (̃fk)]

≤ α
⎞⎠ = Pr(S ≤ α),

where S is a standard normal random variable.

3) MSE: Theorem IV. 1 specifies the bias of the BPI estimator, ĜN,BC (̃fk), as Θ((k/M)2/d). Theorem IV. 2 spec-

ifies the variance as Θ(1/N+1/M). By making k increase logarithmically inM , specifically, k = O((log(M))2/(1−δ))

for any value δ ∈ (2/3, 1), the MSE is given by the rate Θ(((log(T ))2/(1−δ)/T )4/d). The BPI estimator there-

fore has a faster rate of convergence in comparison to both Baryshnikov etal’s estimators ĤS and Îα,S (MSE

= Θ(T−2/(1+d))) and Leonenko etal’s and Goria etal’s estimators H̃S and Ĩα,S (MSE = Θ(T−2/d)). Experimental

MSE comparison of Leonenko’s estimator against the BPI estimator in Section V shows the MSE of the BPI

estimator to be significantly lower. Finally, note that such bias correction cannot be applied for general entropy

functionals, and the bias correction factors cannot in general be incorporated. In the next section, the application of

BPI estimators for estimation of Shannon and Rényi entropies is illustrated.
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B. Shannon and Rényi entropy estimation

For the case of Shannon entropy (g(u) = − log(u)), it can be verified that g 1(k,M) = 1, g2(k,M) = ψ(k) −
log(k − 1) satisfy (IV.3). Similarly, for the case of Rényi entropy (g(u) = uα−1), g1(k,M) = (Γ(k)/Γ(k + 1 −
α))(1/(k − 1)α−1), g2(k,M) = 0 satisfy (IV.3).

For Shannon entropy (g(u) = − log(u)) and Rényi entropy (g(u) = uα−1), the assumptions in Section III-A reduce

to the following under the condition k = O((log(M))2/(1−δ)). Assumption (A.1) is unchanged. Assumption (A.2)

holds for any r such that 2r > d. The assumption (A.3) is satisfied by the choice of λ = log(M). Assumption

(A.4) holds for (g(u) = − log(u)) and (g(u) = uα−1). Next, it will be shown that (A.5) is also satisfied by

(g(u) = − log(u)) and (g(u) = uα−1).

We note that g̃ = (g(3)/6)2 for the choice of g(u) = − log(u) is given by g̃ = cu−6 for some constant c.

Therefore,

sup
x∈(ql,qu)

|g̃(x, y)|e−3k(1−δ)

= |cε−6
1 |(M/k)6O(e−3k(1−δ)

)

= |cε−6
1 |(M/k)6O(e−3(log(M))2)

= |cε−6
1 |O(e−3(log(M))2+6 log(M)−6 log(k)) = o(1),

and by (A.7), E[supx∈(pl,pu) |g̃(x/p, y)|] = |c|((1 − ε)ε0)−6
E[(Mp/(k − 1))6] = |c|((1 − ε)ε0)−6O(1) = O(1).

Similarly, g̃ = (g(λ)/(λ!))2 for the choice of g(u) = − log(u) is given by g̃ = λ−2u−2λ. Then,

sup
x∈(ql,qu)

|g̃(x, y)|e−3k(1−δ)

= O((M/k)2λe−3k(1−δ)

)

= O((M/k)2λe−3(log(M))2)

= O(e−3(log(M))2+2(log(M))2−2 log(M) log(k)) = o(1),

and by (A.7), E[supx∈(pl,pu) |g̃(x/p, y)|] = O(E[(Mp/(k − 1))2λ)] = O(1). In an identical manner, (A.5) is

satisfied when g(u) = uα−1.

To summarize, for functions g(u) = − log(u) and g(u) = uα−1, Theorem IV.1, IV.2 and IV.3 hold under

the following assumptions: (i) (A.0), (ii) (A.1), (iii) the density f has bounded continuous partial derivatives

of order greater than d and (iv) k = O((log(M))2/(1−δ)). Furthermore the proposed BPI estimator ĜN,BC (̃fk)

can be used to estimate Shannon entropy (g(u) = − log(u)) and Rényi entropy (g(u) = u α−1) at MSE rate of

Θ(((log(T ))2/(1−δ)/T )4/d).

V. EXPERIMENTS

Here the theory established in Section 3 and Section 4 is validated. A three dimensional vectorX = [X 1, X2, X3]
T

was generated on the unit cube according to the i.i.d. Beta plus i.i.d. uniform mixture model:

f(x1, x2, x3) = (1 − ε)
3∏

i=1

fa,b(xi) + ε, (V.1)
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Fig. 1. Comparison of theoretically predicted bias of BPI estimatorĜN (̃fk) against experimentally observed bias as a function of k. The Shannon

entropy (g(u) = − log(u)) is estimated using the BPI estimator ĜN (f̃k) on T = 104 i. i. d. samples drawn from the d = 3 dimensional

uniform-beta mixture density (V.1). N,M were fixed as N = 3000, M = 7000 respectively. The theoretically predicted bias agrees well with

experimental observations. The predictions of our asymptotic theory therefore extend to the finite sample regime. The theoretically predicted

optimal choice of kopt = 52 also minimizes the empirical bias.
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Fig. 2. Comparison of theoretically predicted bias of BPI estimator ĜN,BC (̃fk) against experimentally observed bias as a function of k. The

Shannon entropy (g(u) = − log(u)) is estimated using the proposed BPI estimator ĜN,BC(f̃k) on T = 104 i. i. d. samples drawn from

the d = 3 dimensional uniform-beta mixture density (V.1). N,M were fixed as N = 3000, M = 7000 respectively. The empirical bias is in

agreement with the bias approximations of Theorem IV. 1 and monotonically increases with k.
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Fig. 3. Comparison of theoretically predicted variance of BPI estimator ĜN (̃fk) against experimentally observed variance as a function of

M . The Shannon entropy (g(u) = − log(u)) is estimated using the proposed BPI estimator ĜN (f̃k) on T = 104 i. i. d. samples drawn from

the d = 3 dimensional uniform-beta mixture density (V.1). k is chosen to be kopt = k0M2/(2+d). The theoretically predicted variance agrees

well with experimental observations.

where fa,b(x) is a univariate Beta density with shape parameters a and b. For the experiments the parameters were

set to a = 4, b = 4, and ε = 0.2. The Shannon entropy (g(u) = − log(u)) is estimated using the BPI estimators

ĜN (f̃k) and ĜN,BC(f̃k).

In Fig. 1, the bias approximations of Theorem III. 1 are compared to the empirically determined estimator bias

of ĜN (f̃k). N and M are fixed as N = 3000, M = 7000. Note that the theoretically predicted optimal choice of

kopt = 52 minimizes the experimentally obtained bias curve. Thus, even though our theory is asymptotic it provides

useful predictions for the case of finite sample size, specifying bandwidth parameters that achieve minimum bias.

Further note that by matching rates, i.e. choosing k = k̄ = M2/(2+d) = 83 also results in significantly lower MSE

when compared to choosing k arbitrarily (k < 10 or k > 150). In Fig. 2, the bias approximations of Theorem

IV. 1 are compared to the empirically determined estimator bias of ĜN,BC(f̃k). Observe that the empirical bias, in

agreement with the bias approximations of Theorem IV. 1, monotonically increases with k.

In Fig. 3, the empirically determined variance of ĜN (f̃k) is compared with the variance expressed by Theorem

III. 2 for varying choices of N and M , with fixed N +M = 10, 000. The theoretically predicted variance agrees

well with experimental observations. A Q-Q plot of the normalized BPI estimate ĜN (f̃k) and the standard normal

distribution is shown in Fig. 4. The linear Q-Q plot validates the Central Limit Theorem III. 3 on the uncompensated

BPI estimator. For Shannon entropy (g(u) = − log(u)), the uncompensated and compensated BPI estimators are

related by

ĜN,BC (̃fk) = ĜN (̃fk) + log(k − 1)− ψ(k).
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Fig. 4. Q-Q plot comparing the quantiles of the BPI estimator ĜN (̃fk) (with g(u) = − log(u)) on the vertical axis to a standard normal

population on the horizontal axis. The Shannon entropy (g(u) = − log(u)) is estimated using the proposed BPI estimatorĜN (f̃k) on T = 104

i. i. d. samples drawn from the d = 3 dimensional uniform-beta mixture density (V.1). k,N,M are fixed as k = kopt = 52, N = 3000 and

M = 7000 respectively. The approximate linearity of the points validates our central limit theorem III.3.
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Fig. 5. 95% coverage intervals of BPI estimator ĜN,BC (f̃k), predicted using the Central limit theorem III.3, as a function of sample size

T . The Shannon entropy (g(u) = − log(u)) is estimated using the proposed BPI estimator ĜN,BC (f̃k) on T i. i. d. samples drawn from

the d = 3 dimensional uniform-beta mixture density (V.1). The lengths of the coverage intervals are accurate to within 12% of the empirical

confidence intervals obtained from the empirical distribution of the BPI estimator.
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Fig. 6. Variation of MSE of k-nearest neighbor estimator of Leonenko etal [14] and the k-nearest neighbor estimator of Baryshnikov etal [28]

and BPI estimators with and without boundary correction, as a function of sample size T . The Rényi entropy (g(u) = uα−1) is estimated for

α = 0.5 using these estimators on T i. i. d. samples drawn from the d = 3 dimensional uniform-beta mixture density (V.1). The figure shows

that the proposed BPI estimator has the fastest rate of convergence.

The variance and normalized distribution of these estimators are therefore identical. Consequently, Fig. 3 and Fig. 4

also validate Theorem IV. 2 and Theorem IV. 3 respectively.

Finally, using the CLT, the 95% coverage intervals of the BPI estimator ĜN,BC(f̃k) are shown as a function of

sample size T in Fig. 5. The lengths of the predicted confidence intervals are accurate to within 12% of the true

confidence intervals (determined by simulation over the range of 80% to 100% coverage - data not shown). These

coverage intervals can be interpreted as confidence intervals on the true entropy, provided that the constants c 1, .., c5

can be accurately estimated.

A. Experimental comparison of estimators

The Rényi α-entropy (g(u) = uα−1) is estimated for α = 0.5, with the same underlying 3 dimensional mixture

of the beta and uniform densities defined above. Several estimators are compared: Baryshnikov’s estimator Îα,S , the

k-NN estimator Ĩα,S of Leonenko etal [14], the BPI estimator without bias correction ĜN (̃fk) and the proposed BPI

estimator with bias correction ĜN,BC (̃fk). The results are shown in Fig. 6. It is clear from the figure that the BPI

estimator ĜN,BC (̃fk) has the fastest rate of convergence, consistent with our theory. Note that, in agreement with

our analysis in Section III-E, the bias uncompensated BPI estimator ĜN (̃fk) outperforms Baryshnikov’s estimator

Îα,S .
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VI. CONCLUSIONS

A new class of boundary compensated bipartite k-NN density plug-in estimators was proposed for estimation

of smooth non-linear functionals of densities that are strictly bounded strictly away from 0 on their finite support.

These estimators, called bipartite plug-in (BPI) estimators, correct for bias due to boundary effects and outperform

previous k-NN entropy estimators in terms of MSE convergence rate. Expressions for asymptotic bias and variance

of the estimator were derived estimator in terms of the sample size, the dimension of the samples and the underlying

probability distribution. In addition, a central limit theorem was developed for the proposed BPI estimators. The

accuracy of these asymptotic results were validated through simulation and it was established that the theory can

be used to specify optimal finite sample estimator tuning parameters such as bandwidth and optimal partitioning of

data samples.

Using the theory presented in the paper, one can tune the parameters of the plug-in estimator to achieve minimum

asymptotic estimation MSE. Furthermore, the theory can be used to specify the minimum necessary sample size

required to obtain requisite accuracy. This in turn can be used to predict and optimize performance in applications

like structure discovery in graphical models and dimension estimation for support sets of low intrinsic dimension.

The reader can refer to [31] for details on these and other applications.
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For the reader’s convenience, the notation used in this paper is listed in the table below.

Notation Description

ĜN (f̃k) BPI estimator (II.1)

ĜN,BC (f̃k) BPI estimator with bias compensation (IV.4)

g1(k,M), g2(k,M) Bias correction factors

S Support of density f

d dimension of support S

cd unit ball volume in d dimensions

{X1, . . . ,XT ,Y,Z} T + 2 independent realizations drawn from f

XN {X1, . . . ,XN}
XM {XN+1, . . . ,XN+M}
SI Interior of support

IN Interior points subset of XN

BN Boundary points subset of XN

Z−1 Closest interior point to Z; Z−1 = argminx∈SI d(x,Z)

Xn(i) Xn(i) ∈ IN is the interior sample point that is closest to Xi ∈ BN

δ Constant; δ ∈ (2/3, 1)

εBC = N exp(−3k(1−δ)) Probability of misclassification of x ∈ S− SI as interior point

dk(X) k-NN ball radius

Sk(X) k-NN ball

Vk(X) k-NN ball volume

P(X) Coverage function

f̂k(X) k-NN density estimate

f̃k(X) Boundary corrected k-NN density estimate

g(n)(x, y) n-th derivative of g(x, y) wrt x

p beta random variable with parameters k,M − k + 1

αfrac Proportionality constant; M = αfracT and N = (1− αfrac)T

ε0, ε∞ constants such that ε0 ≤ f(x) ≤ ε∞ ∀x ∈ S

2ν Number of times f is assumed to be differentiable

λ Number of times g(x, y) is assumed to be differentiable wrt x

c1, .., c5 Constants appearing in Theorems III.1, III.2, III.3 and IV.1, IV.2, IV.3

C(k) Function which satisfies the rate of decay condition C(k) = O(e−3k(1−δ)

)

kM kM = (k − 1)/M

�(X) The event P(X) > (1− pk)kM

�−1(X) The event P(X) < (1 + pk)kM

��(X) The event (1− pk)kM < P(X) < (1 + pk)kM

ek(X) Error function ek(X) = f̂k(X) − E[f̂k(X) | X]

e(X) Error function e(X) = f̃k(X)− E[f̃k(X) | X]
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APPENDIX A

k-NN DENSITY ESTIMATES

In this appendix, moment properties of the standard k-NN density estimate f̂k(X) are derived conditioned on

X1, . . . , XN . As the samples X1, . . . , XN , XN+1, . . . , XT , T = M + N are i.i.d., these conditional moments are

independent of the N samples X1, ..,XN .

A. Preliminaries

Let d(X,Y ) denote the Euclidean distance between points X and Y and d
(k)
X denote the Euclidean distance

between a point X and its k-th nearest neighbor amongst XN+1, ..,XN+M . Let cd denote the unit ball volume in

d dimensions. The k-NN region is

Sk(X) = {Y : d(X,Y ) ≤ d
(k)
X }

and the volume of the k-NN region is

Vk(X) =

∫
Sk(X)

dZ.

The standard k-NN density estimator [30] is defined as

f̂k(X) =
k − 1

MVk(X)
.

Define the coverage function as

P(X) =

∫
Sk(X)

f(Z)dZ.

Define spherical regions

Sr(X) = {Y ∈ R
d : d(X,Y ) ≤ r}.

1) Concentration inequality for coverage probability: It has been previously established that P(X) has a beta

distribution with parameters k, M − k + 1 [33]. Using Chernoff inequalities, we can then establish the following

concentration inequality (Section B.1, [31]). For some 0 < p < 1/2,

Pr(P(X) > (1 + p)(k − 1)/M) = O(e−p2k/2(1+p))

Pr(P(X) < (1 − p)(k − 1)/M) = O(e−p2k/2(1−p)). (A.1)

Define

kM = (k − 1)/M.

Let 	(X) denote the event

P(X) < (pk + 1)kM , (A.2)

where pk =
√
6/(kδ/2). Then, 1− Pr(	(X)) = O(e−p2

kk/2) = O(e−3k(1−δ)

). Equivalently,

1− Pr(	(X)) = O(C(k)), (A.3)
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where C(k) is a function which satisfies the rate of decay condition C(k) = O(e−3k(1−δ)

). Similarly, let 	−1(X)

denote the event

P(X) > (1− pk)kM , (A.4)

Then

1− Pr(	−1(X)) = O(C(k)), (A.5)

Also let 		(X) = 	(X) ∩ 	−1(X). Then

1− Pr(		(X)) = O(C(k)), (A.6)

Finally, we note that Γ(x+ a)/Γ(x) = xa + o(xa). Then for any a < k, E[P−a(X)] exists and is given by

E[P−a(X)] =
Γ(k − a)Γ(M + 1)

Γ(k)Γ(M + 1− a) = Θ((kM )−a). (A.7)

2) Interior points: Let S′ to be any arbitrary subset of SI (II.2) satisfying the condition Pr(Y /∈ S ′) = o(1) where

Y is random variable with density f . This implies that given the event 	(X), the k-NN neighborhoods S k(X) of

points X ∈ S′ will lie completely inside the domain S. Therefore the density f has continuous partial derivatives of

order 2ν in the k-NN ball neighborhood Sk(X) for each X ∈ S′ (assumption (A.2)). We will now derive moments

for the interior set of points X ∈ S′. This excludes the set of points X close to the boundary of the support whose

k-NN neighborhoods Sk(X) intersect with the boundary of the support. We will deal with these points in Appendix

B.

3) Taylor series expansion of coverage probability: Let X ∈ S ′. Given the event 	(X), the coverage function

P(X) can be represented in terms of the volume of the k-NN ball Vk(X) by expanding the density f in a Taylor

series about X as follows. In particular, for some fixed x ∈ S ′, let

p(u) =

∫
Su(x)

f(z)dz.

Using (A.2), we can write, by a Taylor series expansion of f around x using multi-index notation [34]

f(z) =
∑

0≤|α|≤2ν

(z − x)α
α!

(∂αf)(x) + o(||z − x||2ν) (A.8)

Assuming Su(x) ⊂ S, we can then write

p(u) =

∫
Su(x)

f(z)dz

=

∫
Su(x)

⎛⎝ ∑
|0≤α≤2ν|

(z − x)α
α!

(∂αf)(x)

⎞⎠ dz + o(ud+2ν)

= f(x)cdu
d +

ν−1∑
i=1

ci(x)c
1+2i/d
d ud+2i + o(ud+2ν). (A.9)
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where ci(x) are functionals of the derivatives of f . Now, denote v(u) =
∫
Su(x)

dz to be the volume of Su(x). Let

uinv(v) be the inverse function of v(u). Note that this inverse is well-defined since v(u) is monotonic in u. Since

Su(x) ⊂ S, v(u) = cdu
d. This gives uinv(v) = (v/cd)

1/d. Define

P (v) =

∫
Suinv(v)(x)

f(z)dz.

Using (A.9),

P (v) = f(X)v +

ν−1∑
i=1

ci(X)v1+2i/d + o(v1+2ν/d). (A.10)

Now denote V (p) = P inv(p) to be the inverse of P (.). Note that this inverse is well-defined since P (v) is monotonic

in v. Dividing (A.10) by vP (v) on both sides, we get

1

v
=

f(X)

P (v)
+

ν−1∑
i=1

ci(X)

P (v)
v2i/d + o(v2ν/dP−1(v)) (A.11)

By repeatedly substituting the LHS of (A.11) in the RHS of (A.11), we can obtain (A.12):

1

V (p)
=

f(X)

p
+

ν−1∑
i=1

hi(X)

p1−2i/d
+ o(p2ν/d−1), (A.12)

From our derivation of (A.12) using (A.10), it is clear that h i(X) are of the form

hi(X) =
∑

{ai}=A;A∈A

∏ν−1
i=1 c

ai

i

fa0(X)

where A is a ν-tuple of positive real numbers a0, .., aν−1 and the cardinality of A is finite. By assumptions (A.1) and

(A.2), this implies that the constants hi(X) are bounded. Also, we note that h(X) = h1(X) = c(X)f−2/d(X) [33],

where c(X) := c1(X) = Γ(2/d)(d+2
2 )tr[∇2(f(X))]. This then implies that under the event 	(X)

1

Vk(X)
=
f(X)

P(X)
+
∑
t∈T

ht(X)

P1−t(X)
+ hr(X), (A.13)

where T = {2/d, 4/d, 6/d.., 2ν/d} and hr(X) = o(P2ν/d−1(X)). Now, by (A.2), we have (k/M)2ν/d = o(1/M).

This implies that 2ν/d > 1. Under the event 	(X), we have P(X) ≤ (pk +1)k/M , which, in conjunction with the

condition 2ν/d > 1 implies that

hr(X) = o(P2ν/d−1(X)) = o((k/M)2ν/d−1) = o(1/kMM). (A.14)

On the other hand, under the event, 	c(X), (pk + 1)k/M ≤ P(X) ≤ 1, which gives

hr(X) = O(1). (A.15)
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4) Approximation to the k-NN density estimator: Define the coverage density estimate to be,

f̂c(X) = f(X)
k − 1

M

1

P(X)
.

The estimate f̂c(X) is clearly not implementable. Note also that the two estimates - f̂c(X) and f̂k(X) - are identical

in the case of the uniform density.

1

Vk(X)
=
f(X)

P(X)
+

h(X)

P1−2/d(X)
+ hs(X), (A.16)

where hs(X) = o(1/P1−2/d(X)). This gives,

f̂k(X) = f̂c(X) +

(
k − 1

M

)
h(X)

P1−2/d(X)
+
k − 1

M
hs(X). (A.17)

whenever 	(X) is true.

5) Bounds on k-NN density estimates: Let X be a Lebesgue point of f , i.e., an X for which

lim
r→0

∫
Sr(X)

f(y)dy∫
Sr(x)

dy
= f(X).

Because f is an density, we know that almost all X ∈ S satisfy the above property. Now, fix ε ∈ (0, 1) and find

δ > 0 such that

sup
0<r≤δ

∫
Sr(X)

f(y)dy∫
Sr(x)

dy
− f(X) ≤ εf(X).

This in turn implies that, for P(X) ≤ P (δ),
P(X)

(1 + ε)f(X)
≤ Vk(X) ≤ P(X)

(1− ε)f(X)
(A.18)

and in turn implies

(1− ε)f̂c(X) ≤ f̂k(X) ≤ (1 + ε)f̂c(X). (A.19)

Also, because δ > 0 is fixed, we note that the event P(X) ≤ P (δ) is a subset of 	(X) and therefore (A.18) holds

under 	(X).

Under the event 	c(X), we can bound Vk(X) from above by cdDd. Also, since Vk(X) is monotone in P(X),

under the event 	c(X), we can bound Vk(X) from below by (1 + pk)(k − 1)/M(1− ε)f(X) and therefore by

(k − 1)/M(1− ε)f(X). Written explicitly,

(k − 1)

M(1− ε)f(X)
≤ Vk(X) ≤ cdDd (A.20)

and in turn implies

(k − 1)/(McdD
d) ≤ f̂k(X) ≤ (1 − ε)f(X). (A.21)

Finally, note that kM/P(X) is bounded above by O(1) under the event 	(X). This implies that for any a < k,

E[	c(X)]kaMP−a(X) ≤ O(1)Pr(	c(X)) = O(C(k)). (A.22)
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B. Bias of the k-NN density estimates

Let X ∈ S′. We can analyze the bias of k-NN density estimates as follows by using (A.17)

E[1�(X)f̂k(X)] = E[1�(X)f̂c(X)] + E

[
1�(X)

(
k − 1

M

)
h(X)

P1−2/d(X)

]
+ E

[
1�(X)

k − 1

M
hs(X)

]
= E[1�(X)f̂c(X)] + E

[
1�(X)

(
k − 1

M

)
h(X)

P1−2/d(X)

]
+ o

(
E

[
1�(X)

k − 1

M
P2/d−1(X)

])
= E[f̂c(X)] + E

[(
k − 1

M

)
h(X)

P1−2/d(X)

]
+ o

(
k

M

)2/d

+O(C(k))

= f(X) + h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

, (A.23)

where we used the fact that under the event 	c(X), ((k − 1)/M)P1−t(X) = O(1) for any t >= 0, which in turn

gives E[1�c(X)((k − 1)/M)P1−t(X)] = O(Pr(	c(X))) = O(C(k)). This implies that

E[f̂k(X)]− f(X) = E[1�(X)f̂k(X)] + E[1�c(X)f̂k(X)]− f(X)

= h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

+O(C(k)) + E[1�c(X)f̂k(X)]

= h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

+O(C(k)), (A.24)

where the last step follows because , by (A.21), 1�c(X)f̂k(X) = O(1). This expression is true for k >= 3 by (A.7).

Next, assuming that (IV.3) holds, we evaluate E[g( f̂k(X), X)] in an identical fashion to the derivation of (A.24).

E[1�(X)g(f̂k(X), X)] = E

[
1�(X)g

(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMhs(X), X

)]
= E

[
1�(X)g

(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMo((P(X))2/d−1), X

)]
= E

[
g
(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMo((P(X))2/d−1), X

)]
+O(C(k))

= E

[
g(f̂c(X), X) + g′(f̂c(X), X)kMh(X)(P(X))2/d−1 + o(kMP(X))2/d−1)

]
+O(C(k))

= g(f(X), X)g1(k,M) + g2(k,M) + g′(f(X), X)h(X)(k/M)2/d + o((k/M)2/d) +O(C(k)).

This gives,

E[g(f̂k(X), X)] = E[1�(X)g(f̂k(X), X)] + E[1�c(X)g(f̂k(X), X)]

= g(f(X), X)g1(k,M) + g2(k,M) + g′(f(X), X)h(X)(k/M)2/d + o((k/M)2/d) +O(C(k)). (A.25)

C. Moments of error function

Let γ1(X), γ2(X) be arbitrary continuous functions satisfying the condition: supX [γi(X)] is finite, i = 1, 2. Also

let γ(X) = γ1(X). Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f . Let q, r be arbitrary

positive integers less than k. Define the error function

ek(X) = f̂k(X)− E[f̂k(X) | X ].
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Then,

Lemma A.1.

E
[
1{X∈S′}γ(X)eqk(X)

]
= O(k−qδ/2) + o(1/M) +O(C(k)). (A.26)

Lemma A.2.

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= O

(
1

k((q+r)δ/2−1)M

)
+O(k

2/d
M /M)

+ O(1/M2) +O(C(k)). (A.27)

Define the operator M(Z) = Z− E[Z]. Let β be any positive real number and define

Eβ(X) = kβM (M(P−β(X))). (A.28)

Define the terms

ec(X) = f̂c(X)− E[f̂c(X) | X ], (A.29)

et(X) = M

(∑
t∈T

kMht(X)

P1−t(X))

)
, (A.30)

er(X) = M(kMhr(X)). (A.31)

Note that

ec(X) = f(X)E1(X) (A.32)

and

et(X) = (
∑
t∈T

ktMht(X)(E1−t(X))). (A.33)

Define the event {X ∈ S′}∩{	(X)} by †(X). Note that under the event †(X), ek(X) = ec(X)+et(X)+er(X) =:

eo(X). Also, under the event 	(X), P(X) ≤ (1 + pk)kM , which implies that under the event 	(X), the following

hold

Eβ(X) = O(1), ec(X) = O(1), et(X) = O(1), er(X) = O(1), eo(X) = O(1). (A.34)

Furthermore, by (A.21), under the event 	(X),

ek(X) = O(1). (A.35)

Proof: of Lemma A.1. Since P(X) is a beta random variable, the probability density function of P(X) is

given by

f(pX) =
M !

(k − 1)!(M − k)!p
k−1
X (1− pX)M−k.
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By (A.7), E[P−β(X)] = Θ((k/M)−β) if β < k. We will first show that E[Eq
β(X)] = O(1) if qβ < k. This in turn

implies that, by (A.32) and (A.33), E[eq
c(X)] = O(1) and E[eqt (X)] = O(1) for any q < k.

E[Eq
β(X)] = E

[
kqβM (P−β(X)− E[P−β(X)])q

]
= kqβM

q∑
i=1

(
q

i

)
(−1)q−i

E[P−iβ(X)]E[P−(q−i)β(X)]

= kqβM

q∑
i=1

(
q

i

)
(−1)q−iΘ((k/M)−iβ)Θ((k/M)−(q−i)β)

=

q∑
i=1

(
q

i

)
(−1)q−iΘ(1) = O(1). (A.36)

By (A.6) and (A.36),

E[1��c(X)E
q
β(X)] = O(C(k)).

By the definition of 		(X),

1��(X)E
q
β(X) = O

(
k−(δq/2)

)
, (A.37)

and therefore

E[1��(X)E
q
β(X)] = O

(
k−(δq/2)

)
.

This gives,

E[Eq
β(X)] = O(k−δq/2) +O(C(k)). (A.38)

From this analysis on Eβ(X), it trivially follows from (A.32) that

E[elc(X)] = O(k−δl/2) +O(C(k)). (A.39)

Also observe that by (A.14) and (A.15),

E[elr(X)] = E[1�(X)e
l
r(X)] + E[1�c(X)e

l
r(X)] = o(1/M l) +O(C(k)). (A.40)

We will now bound el
t(X). Let L =

∑
t∈T ltt. Now, using (A.33), el

t(X) can be expressed as a sum of terms of the

form (k/M)L
(

l
l1,..,lt

)∏
t∈T(h

l
t(X)Elt

t (X)) where
∑

t lt = l. Now, we can bound each of these summands using

(A.37) as follows:

(k/M)lE[
∏
t∈T

Elt
t (X)] = (k/M)LE[1��(X)

∏
t∈T

Elt
t (X)] + (k/M)LE[1��c(X)

∏
t∈T

Elt
t (X)]

= (k/M)L
∏
t∈T

O(k−ltδ/2) +O(C(k))

= (k/M)LO(k−lδ/2) +O(C(k))

= o(k−lδ/2) +O(C(k)). (A.41)

This implies that

E[elt(X)] = o(k−lδ/2) +O(C(k)). (A.42)
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Note that eqo(X) will contain terms of the form (ec(X) + et(X))l(er(X))q−l. If l < q, the expectation of this

term can be bounded as follows

|E[(ec(X) + et(X))l(er(X))q−l]|

≤
√
E[(ec(X) + et(X))2l]E[(er(X))2(q−l)]

=
√
O(1)2l(o(1/M))2(q−l)

= O(1) × (o(1/M))q−l = o(1/M). (A.43)

Let us concentrate on the case l = q. In this case, eq
k(X) will contain terms of the form (ec(X))m(et(X))q−m.

For m < q,

|E[(ec(X))m(et(X))q−m]|

≤
√

E[(ec(X))2l]E[(et(X))2(q−l)]

=
(
O(k−mδ/2)× o(k−(q−m)δ/2)

)
+ C(k) = o(k−qδ/2) +O(C(k)). (A.44)

This therefore implies that, by (A.39), (A.40), (A.42), (A.43) and (A.44),

E[eqo(X)] = E[eqc(X)] + o(k−qδ/2) + C(k)

= O(k−qδ/2) + o(k−qδ/2) + o(1/M) + C(k)

= O(k−qδ/2) + o(1/M) + C(k). (A.45)

This finally implies that

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1†(X)γ(X)eqk(X)

]
+O(C(k)) (by(A.35))

= E
[
1†(X)γ(X)eqo(X)

]
+O(C(k))

= E
[
1{X∈S′}γ(X)eqo(X)

]
+O(C(k)) (by(A.34))

= O(k−qδ/2) + o(1/M) +O(C(k)). (A.46)

This concludes the proof.

Before proving Lemma A.2, we seek to answer the following question: for which set of pair of points {X,Y }
are the k-NN balls disjoint?

1) Intersecting and disjoint balls: Define Ψε := {X,Y } ∈ S′ : ||X − Y || ≥ Rε(X) +Rε(Y ) where Rε(X) and

Rε(Y ) are the ball radii of the spherical regions Su(X) and Su(Y ), such that
∫
Su(X) f(z)dz =

∫
Su(Y ) f(z)dz =

(1 + pk)kM . We will now show that for {X,Y } ∈ Ψε, the k-NN balls will be disjoint with exponentially high

probability. Let d(k)
X and d

(k)
Y denote the k-NN distances from X and Y and let Υ denote the event that the k-NN
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balls intersect. For {X,Y } ∈ Ψε,

Pr(Υ) = Pr(d
(k)
X + d

(k)
Y ≥ ||X − Y ||)

≤ Pr(d
(k)
X + d

(k)
Y ≥ Rε(X) +Rε(Y )).

≤ Pr(d
(k)
X ≥ Rε(X)) + Pr(d

(k)
Y ≥ Rε(Y ))

= Pr(P(X) ≥ (pk + 1)((k − 1)/M))

+Pr(P(Y ) ≥ (pk + 1)((k − 1)/M))

= 2C(k),

where the last inequality follows from the concentration inequality (A.1). We conclude that for {X,Y } ∈ Ψ ε, the

probability of intersection of k-NN balls centered at X and Y decays exponentially in p 2
kk. Stated in a different

way, we have shown that for a given pair of points {X,Y }, if the ε balls around these points are disjoint, then the

k-NN balls will be disjoint with exponentially high probability. Let Δ ε(X,Y ) denote the event {X,Y } ∈ Ψc
ε . From

the definition of the region Ψε, we have Pr({X,Y} ∈ Ψc
ε) = O(k/M).

Let {X,Y } ∈ Ψε and let q, r be non-negative integers satisfying q + r > 1. The event that the k-NN balls

intersect is given by Υ := {d(k)
X + d

(k)
Y > ||X − Y ||}. The joint probability distribution of P(X) and P(Y ) when

the k-NN balls do not intersect =: Υc is given by

fΥc(pX , pY ) =M !
(pXpY )

k−1

(k − 1)!2
(1− pX − pY )M−2k

(M − 2k)!
.

Define

i(pX , pY ) =
Γ(t)Γ(u)Γ(v)

Γ(t+ u+ v)
pt−1
X pu−1

Y (1− pX − pY )v−1,

and note that ∫ 1

pX=0

∫ 1

pY =0

1{pX+pY ≤1}i(pX , pY )dpXdpY = 1.

Now note that i(pX , pY ) corresponds to the density function fΥc(pX , pY ) for the choices t = k, u = k and

v =M − 2k+1. Furthermore, for {X,Y } ∈ Ψε, the set Q := {pX , pY } : pX , pY ≤ (1 + pk)(k− 1)/M is a subset

of the region T := {pX , pY } : 0 ≤ pX , pY ≤ 1; pX + pY ≤ 1. Note that E[1Q] = 1 − C(k). This implies that

expectations over the region R := {pX , pY } : 0 ≤ pX , pY ≤ 1; should be of the same order as the expectations

over T with differences of order C(k). In particular, for t, u < k,

E[P−t(X)P−u(Y )] = E[1TP
−t(X)P−u(Y )] + C(k).

From the joint distribution representation, it follows that

E[1TP
−t(X)P−u(Y )]

E[P−t(X)]E[P−u(Y )]
=

Γ(M − t)Γ(M − u)
Γ(M − t− u)Γ(M)

= − tu
M

+O(1/M2). (A.47)
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Now observe that

(kM )t+uCov(P−t(X),P−u(Y ))

= (kM )t+u[E[P−t(X)P−u(Y )]− E[P−t(X)]E[P−u(Y )]]

= (kM )t+u
E[P−t(X)]E[P−u(Y )]

[
E[P−t(X)P−u(Y )]

E[P−t(X)]E[P−u(Y )]
− 1

]
= (kM )t+uΘ(k−t

M )Θ(k−u
M )

[
1− tu

M
+ o(1/M2)− 1

]
(by (A.7) and (A.47))

= −
(
tu

M

)
+O(1/M2). (A.48)

Then, the covariance between the powers of the error function E β , for qt, ru < k is given by

Cov(Eq
t (X),Er

u(Y )) = k
(tq+ur)
M Cov

([
P−t(X)− E

[
P−t(X)

]]q
,
[
P−u(Y )− E

[
P−u(Y )

]]r)
=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
[(−1)a+b + o(1)]k

(ta+ub)
M Cov(P−ta(X),P−ub(Y ))

= −tu
q∑

a=1

r∑
b=1

(
q

a

)(
r

b

)
(−1)aa(−1)bb

M
+O

(
1

M2

)
= 1{q=1,r=1}

(−tu
M

)
+O(1/M2). (A.49)

Proof: of Lemma A.2. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f . Then, identical

to the derivation of (A.46) in the proof of Lemma A.1,

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= Cov

[
1{X∈S′}γ1(X)eqo(X), 1{Y∈S′}γ2(Y)ero(Y)

]
+O(C(k)).

Using the exact same arguments as in proof of Lemma A.1, it can be shown that the contribution of terms

er(X),er(Y) to the R.H.S. of the above equation is o(1/M). Define 
(X,Y) := γ1(X)γ2(Y)Cov{X,Y}[(ec(X)+

et(X))q, (ec(Y ) + et(Y ))r]. Thus,

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= E[1{X,Y∈S′}
(X,Y)] +O(C(k))

= E[1Δε
c(X,Y)
(X,Y)] + E[1Δε(X,Y)
(X,Y)] +O(C(k))

= I + II +O(C(k)).
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For {X,Y } ∈ Ψc
ε: The covariance term Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r] can be shown to be

O(k−(q+r)δ/2) for q, r < k by using Cauchy-Schwarz and (A.43), (A.44) as follows.

|Cov[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]| ≤
√
V[(ec(X) + et(X))q]V[(ec(Y ) + et(Y ))r]

≤
√
E[(ec(X) + et(X))2q]E[(ec(Y ) + et(Y ))2r]

=
√
O(k−(2q)δ/2)O(k−(2r)δ/2)

= O(k−(q+r)δ/2). (A.50)

This implies that

II = E[1Δε(X,Y)
(X,Y)] = E

[
1Δε(X,Y)O(k

−(q+r)δ/2)
]
= O

(
1

k((q+r)δ/2−1)M

)
,

where the last but one step follows since the probability Pr({X,Y} ∈ Ψc
ε) = O(k/M).

For {X,Y } ∈ Ψε: Now note that (ec(X)+et(X))q will contain terms of the form (ec(X))m(et(X))q−m. For

m < q, the term (ec(X))m(et(X))q−m will be a sum of terms of the form (k/M)(m+u)P−(m+v)(X) for arbitrary

v < q−m with u− v >= 2/d. By (A.48), the covariance term Cov[(ec(X))m(et(X))q−m, (ec(Y ))n(et(Y ))r−m]

will be therefore be O(k2/dM /M) if either m < q or n < r.

On the other hand, if m = q and n = r, Cov[(ec(X))q, (ec(Y ))r ] = 1{q=1,r=1}O(1/M) +O(1/M2) by noting

that the error ec(X) = f(X)E1(X) and subsequently invoking (A.49). Therefore

I = E[1Δc
ε(X,Y)
(X,Y)]

= E

[
1Δc

ε(X,Y)

(
1{q=1,r=1}O(1/M) +O(k

2/d
M /M) +O(1/M2)

)]
= 1{q=1,r=1}O(1/M) +O(k

2/d
M /M) +O(1/M2),

where the last step follows from the fact that probability Pr({X,Y} ∈ Ψ ε) = 1−O(k/M) = O(1).

D. Specific cases

We now focus on evaluating the specific cases

E
[
1{X∈S′}γ(X)e2k(X)

]
and

Cov
[
1{X∈S′}γ1(X)ek(X), 1{Y∈S′}γ2(Y)ek(Y)

]
,

for k > 2.
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1) Evaluation of E
[
1{X∈S′}γ(X)e2k(X)

]
: P(X) has a beta distribution with parameters k,M −k+1. Therefore

for k > 2

E[E2
β(X)] = E

[
k2βM (P−β(X)− E[P−β(X)])2

]
= k2βM E[P−2β(X)]− (

E[P−β(X)]
)2

= k2βM

(
Γ(k − 2β)Γ(M + 1)

Γ(k)Γ(M + 1− 2β)
−
(
Γ(k − β)Γ(M + 1)

Γ(k)Γ(M + 1− β)
)2

)
= O(1/k) (A.51)

where the last step follows by noting that for any a > 0,

Γ(x)

Γ(x+ a)
= x−a(1 + o(1/x)).

From ( A.46),

E
[
1{X∈S′}γ(X)e2k(X)

]
= E

[
1{X∈S′}γ(X)e2o(X)

]
+O(C(k)). (A.52)

Note that e2o(X) = (ec(X) + et(X) + er(X))2 is a sum of terms of the form (ec(X))2−l−m(et(X))l(er(X))m.

Also,

E[e2c(X)] = f2(X)E
[
k2M (P−1(X)− E[P−1(X)])2

]
= f2(X)k2ME[P−2(X)]− (

E[P−1(X)]
)2

= f2(X)k2βM

(
Γ(k − 2)Γ(M + 1)

Γ(k)Γ(M + 1− 2)
−
(
Γ(k − 1)Γ(M + 1)

Γ(k)Γ(M)

)2
)

=
1

k
+ o

(
1

k

)
. (A.53)

Using (A.51), identical to the derivation of (A.43) and (A.44), it is clear that if l+m > 0, E[(e c(X))2−l−m(et(X))l(er(X))m] =

o(k−1) + o(1/M) +O(C(k)). This implies that

E
[
1{X∈S′}γ(X)e2k(X)

]
= E

[
1{X∈S′}γ(X)e2o(X)

]
+O(C(k))

= f2(X)

(
1

k

)
+ o

(
1

k

)
. (A.54)
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2) Evaluation of Cov
[
1{X∈S′}γ1(X)ek(X), 1{Y∈S′}γ2(Y)ek(Y)

]
: We separately analyze disjoint balls and

intersecting balls as follows:

Cov
[
1{X∈S′}γ1(X)ek(X), 1{Y∈S′}γ2(Y)ek(Y)

]
= E[

[
1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)ek(X)ek(Y)

]
]

= E[
[
1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)eo(X)eo(Y)

]
] +O(C(k))

= E[
[
1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)(ec(X) + et(X) + er(X))(ec(Y) + et(Y) + er(Y))

]
] +O(C(k))

= E[
[
1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)(ec(X) + et(X))(ec(Y) + et(Y))

]
] +O(C(k)) + o(1/M)

= E[1Δε
c(X,Y)γ1(X)γ2(Y)E{X,Y}[(ec(X) + et(X))(ec(Y ) + et(Y ))]]

+E[1Δε(X,Y)γ1(X)γ2(Y)E{X,Y}[(ec(X) + et(X))(ec(Y ) + et(Y ))]]

+O(C(k)) + o(1/M)

= I + II +O(C(k)) + o(1/M).

For {X,Y } ∈ Ψε:

E[(ec(X))(ec(Y ))] = Cov[(ec(X)), (ec(Y ))] =
−f(X)f(Y )

M
+O(1/M2)

by noting that the error ec(X) = E1(X)/f(X) and subsequently invoking (A.49) in conjunction with the condition

k > 2. Similarly, using (A.32), (A.33) and (A.49),

E[(ec(X))(et(Y ))] = O(k
2/d
M /M) +O(1/M2),

E[(et(X))(ec(Y ))] = O(k
2/d
M /M) +O(1/M2),

E[(et(X))(et(Y ))] = O(k
4/d
M /M) +O(1/M2).

This implies that

I = E[1Δc
ε(X,Y)E{X,Y}[(ec(X) + et(X))(ec(Y ) + et(Y ))]]

= E

[
1Δc

ε(X,Y)

(
−f(X)f(Y )(1/M) +O(k

2/d
M /M) +O(1/M2)

)]
= E[1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)(f(X)f(Y))]

(
−1/M +O(k

2/d
M /M) +O(1/M2)

)
= −E[1{X∈S′}γ1(X)f(X)]E[1{Y∈S′}γ2(Y)f(Y)]

1

M
+O(k

2/d
M /M) +O(1/M2). (A.55)

where the last but one step follows from the fact that probability Pr({X,Y} ∈ Ψ ε) = 1−O(k/M) = O(1).

For {X,Y } ∈ Ψc
ε: First observe that by Cauchy Schwarz, and by (A.51) |E[E t(X)Eu(X)]| ≤√

E[E2
t (X)]E[E2

u(X)] =

O(1/k). This implies that

E[(ec(X) + et(X))(ec(Y ) + et(Y ))] = E[ec(X)ec(Y )] +O(k
2/d
M /k). (A.56)
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In subsection A-F, we will show Lemma A.5, which states that

E[1Δε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)]

= E[1{X∈S′}γ1(X)γ2(X)f2(X)]

(
1

M
+ o

(
1

M

))
This implies that

II = E[1Δε(X,Y)E{X,Y}[(ec(X) + et(X))(ec(Y ) + et(Y ))]]

= E[1Δε(X,Y)E{X,Y}[ec(X)ec(Y )] +O(k
2/d
M /k)]

= E[1Δε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)] + E

[
1Δε(X,Y)

(
O(k

2/d
M /k)

)]
= E[1{X∈S′}γ1(X)γ2(X)/f2(X)]

(
1

M
+O(k

2/d
M /M) + o

(
1

M

))
(A.57)

where the last step follows from recognizing that Pr({X,Y} ∈ Ψc
ε) = O(k/M) and O(k/M)× 1/k = O(1/M).

This implies that

Cov
[
1{X∈S′}γ1(X)ek(X), 1{Y∈S′}γ2(Y)ek(Y)

]
= I + II +O(C(k)) + o(1/M)

= Cov[1{X∈S′}γ1(X)/f(X), 1{Y∈S′}γ2(Y)/f(Y)]

(
1

M

)
+ o(1/M) +O(C(k)). (A.58)

E. Summary

Noting that δ > 2/3, the equations (A.26), (A.2), (A.54), (A.58) imply that for positive integers q, r < k,

E
[
1{X∈S′}γ(X)eqk(X)

]
= 1{q=2}E

[
1{X∈S′}γ(X)f2(X)

] (1

k

)
+ o

(
1

k

)
+O(C(k)), (A.59)

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M
+ o(1/M)

)
+ 1{q+r>2}

(
O

(
1

k((q+r)δ/2−1)M

)
+O(k

2/d
M /M) +O(1/M2)

)
+O(C(k)). (A.60)

F. Evaluation of E[ec(X)ec(Y )] for {X,Y } ∈ Ψc
ε

For {X,Y } ∈ Ψc
ε, it will be shown that the cross-correlations E[ec(X)ec(Y )] of the coverage density estimator

and an oracle uniform kernel density estimator (defined below) are identical up to leading terms (without explicitly

evaluating the cross-correlation between the coverage density estimates) and then derive the correlation of the oracle

density estimator to obtain corresponding results for the coverage estimate.
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Oracle ε ball density estimate: In order to estimate cross moments for the k-NN density estimator, the ε

ball density estimator is introduced. The ε-ball density estimator is a kernel density estimator that uses a uniform

kernel with bandwidth which depends on the unknown density f . Let the volume of the kernel be V ε(X) and

the corresponding kernel region be S ε(X) = {Y ∈ S : cd||X − Y ||d ≤ Vε(X)}. The volume is chosen such

that the coverage Qε(X) =
∫
Sε(X)

f(z)dz is set to (1 + pk)k/M . Let lε(X) denote the number of points among

{X1, ..,XM} falling in Sε(X): lε(X) = ΣM
i=11Xi∈Sε(X). The ε ball density estimator is defined as

f̂ε(X) =
lε(X)

MVε(X)
. (A.61)

Also define the error eε(X) as eε(X) = f̂ε(X)− E[f̂ε(X)]. It is then possible to prove the following lemma using

results on the volumes of intersections of hyper spheres (refer Appendix A, [31] for details).

Lemma A.3. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y denote M + 2 i.i.d

realizations of the density f . Then,

E
[
1Δε(X,Y)γ1(X)eε(X)γ2(Y)eε(Y)

]
= E[1{X∈S′}γ1(X)γ2(X)f2(X)]

(
1

M
+ o

(
1

M

))
.

Next, the cross-correlations of the coverage density estimator and the ε ball density estimator are shown to be

asymptotically equal. In particular,

Lemma A.4.

E[ec(X)ec(Y )] = E[eε(X)eε(Y )] + o(1/k).

Proof:

We begin by establishing the conditional density and expectation of f̂ε(X) given f̂c(X). We drop the dependence

on X and denote lε = ΣM
i=11{Xi∈Sε(X)}, the k-NN coverage by P and the ε ball coverage Q ε(X) by Q. Let

q = Q/P and r = (Q − P)/(1 − P). The following expressions for conditional densities and expectations are

derived in [35]

Pr{lε = l|P;P > Q}

=

⎧⎨⎩
(
k−1
l

)
ql(1− q)k−1−l l = 0, 1, . . . , k − 1

0 l = k, k + 1, . . . ,M

Pr{lε = l|P;P ≤ Q}

=

⎧⎨⎩ 0 l = 0, 1, . . . , k − 1(
M−k
l−k

)
rl−k(1 − r)M−l l = k, k + 1, . . . ,M
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which implies

E[lε = l|P;P > Q] = (k − 1)Q/P

E[lε = l|P;P ≤ Q] =

(
1−Q
1−P

)
(k −M) +M

Using the above expressions for conditional expectations, the following marginal expectation are obtained. Denote

the density of the coverage P by fk,M (p). Also let P̂ be the coverage corresponding to the k− 2 nearest neighbor

in a total field of M − 3 points. Then

E[ẽc(X)ẽε(X)] = E[f̂ε(X)f̂c(X)]− E[f̂c(X)]E[f̂ε(X)]

= E

[((
1−Q

P(1 −P)

)
(k −M) +M/P

)
1P≤Q

]
+
f2(X)(k − 1)

kM
E
[(
(k − 1)Q/P2

)
1P>Q

] − f2(X)

k
MQ.

=
f2(X)

k

(M − 1)(M − 2)

(k − 2)(M − k) ×

E[(1 −QP̂)(k −M) +MP̂(1− P̂)]− f2(X)

k
MQ

+E[((k − 1)Q(1− P̂)− (1−QP̂)(k −M) +MP̂(1− P̂))(1P̂>Q)]

= C × (I − II + III).

It can be shown that C × (I − II) = f2(X)
k (1−Q) using the fact that P̂ has a beta distribution. Note that from

the definition of Q = ((1+ pk)(k− 1)/M), from the concentration inequality we have that E[1 P̂>Q] = C(M). The

remainder (C × III) can be simplified and bounded using the Cauchy-Schwarz inequality and the concentration

inequality to show C × III = o(1/M).

Therefore,

E[ec(X)eε(X)] =
f2(X)

k
(1−Q) + C(M).

=
f2(X)

k
− f2(X)

M
+ o

(
1

M

)
= f2(X)

(
1

k
+ o

(
1

k

))
. (A.62)

Now denote E(X) = (ec(X)− eε(X)). Note that E[E2(X)] = E[ec(X)2]−2E[ec(X)eε(X)]+E[eε(X)2]. Since

E[ec(X)2] = f2(X) 1k + o(1/k) and E[eε(X)2] = f2(X)(1/k + o(1/k)) it follows from (A.62) that E[E(X)] =

o(1/k). This result means ec(X) and eε(X) are almost perfectly correlated. Next express the covariance between
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the coverage density estimates in terms of the covariance between the ε ball estimates as follows:

E[ec(X)ec(Y )]

= E[(eε(X) +E(X))(eε(Y ) +E(Y ))]

= E[eε(X)eε(Y )] + E[eε(X)(E(Y ))]

+E[eε(Y )(E(X))] + E[(E(X))(E(Y ))]

= I + II + III + IV.

Using Cauchy-Schwarz, a bound on each of the terms II , III and IV is obtained in terms of E[E(X)]:

|II| ≤ √
E[E(Y )]E[eε2(X)], |III| ≤ √

E[E(X)]E[eε2(Y )] and |IV | ≤ √
E[E(X)]E[E(Y )]. Note that the above

application of Cauchy-Schwarz decouples the problem of joint expectation of density estimates located at two

different points Xand Y to a problem of estimating the error E between two different density estimates at the same

point(s). Therefore all the three terms II , III and IV are o(1/k). This concludes the proof of Lemma A.4.

For Lemma A.4 to be useful, E[eε(X)eε(Y )] must be orders of magnitude larger than the error o(1/k), which

is indeed the case for {X,Y } ∈ Ψε
c since E[eε(X)eε(Y )] = O(1/k) (Lemma A.2, Appendix .1) for such X and

Y . This lemma can be used along with previously established results on co-variance of ε-ball density estimates

(Lemma A.3) to obtain the following result:

Lemma A.5. Let γ1(X), γ2(X) be arbitrary continuous functions. Let X1, ..,XM ,X,Y denote M + 2 i.i.d

realizations of the density f . Then,

E[1Δε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)]

= E[1{X∈S′}γ1(X)γ2(X)f2(X)]

(
1

M
+ o

(
1

M

))
Proof:

E[1Δε(X,Y)γ1(X)γ2(Y)EX,Y [ec(X)ec(Y )]]

= E[1Δε(X,Y)γ1(X)γ2(Y)eε(X)eε(Y)] + o(1/k)

= E[1{X∈S′}γ1(X)γ2(X)f2(X)]

(
1

M
+ o

(
1

M

))
.

In the second to last step, o(1/M) is obtained for the second term by recognizing that Pr({X,Y} ∈ Ψ c
ε) = O(k/M)

and O(k/M)× o(1/k) = o(1/M).

APPENDIX B

BOUNDARY EXTENSION

In the previous section, moment results were established for the standard k-NN density estimate f̂k(X) for points

X in any deterministic set S′ with respect to the samples XM = {XN+1, ..,XN+M} satisfying the condition
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Pr(X /∈ S′) = o(1) and S′ ⊂ SI , where X is an realization from density f . In this section, these moment results

are extended to boundary corrected k-NN density estimate f̃k(X) for all X ∈ S as follows.

Specify the set S′ to be S′ = SI as defined in (II.2). Exclusively using the set XN = {X1, ..,XN}, a set of

interior points IN ⊂ XN are determined such that IN ⊂ S′ with high probability 1 − O(NC(k)). Define the set

of boundary points BN = XN − IN. For points X ∈ IN , the boundary corrected k-NN density estimate f̃k(X)

is defined to be the standard k-NN estimate f̂k(X), and we invoke the moment properties of the standard k-NN

density estimate f̂k(X) derived in the previous section. For points X ∈ BN, the density estimate f̃k(X) is defined

as f̂k(Yn) for points Yn ∈ IN , and we invoke the moment properties of the standard k-NN density estimate f̂k(X)

derived in the previous section.

A. Bias in the k-NN density estimator near boundary

If a probability density function has bounded support, the k-NN balls centered at points close to the boundary

are often truncated at the boundary. Let

αk(X) =

∫
Sk(X)∩S

dZ∫
Sk(X)

dZ

be the fraction of the volume of the k-NN ball inside the boundary of the support. Also define V k,M (X) to be

the k-NN ball volume in a sample of size M . For interior points X ∈ S ′, αk(X) = 1, while for boundary points

X ∈ S− S′, αk(X) is closer to 0 when the points are closer to the boundary. For boundary points we then have

E[f̂k(X)]− f(X) = (1− αk(X))f(X) + o(1). (B.1)

Therefore the bias is much higher at the boundary of the support (O(1)) as compared to its interior (O((k/M) 2/d))

(A.24). Furthermore, the bias at the support boundary does not decay to 0 as k/M → 0.

In the next section, we detect interior points IN which lie in S′ with high probability O(NC(k)). The results on

bias, variance and cross-moments derived in the previous Appendix for points X ∈ S ′ therefore carry over to the

points IN. A density estimate at points BN is then proposed that will reduce the bias of density estimates close to

the boundary.

B. Boundary point detection

Define Vk,M (X) := k
Mαk(X)f(X) . Let p(k,M) be any positive function satisfying p(k,M) = Θ((k/M)2/d) +

(
√
6/kδ/2). From the concentration inequality (A.1) and Taylor series expansion of the coverage function (A.13),

for small values of k/M , we have

1− Pr
(∣∣∣∣Vk,M (X)

Vk,M (X)
− 1

∣∣∣∣ ≤ p(k,M)

)
= O(C(k)).

To determine IN and BN, we first construct a K-NN graph on the samples XN where K = �k× (N/M)
. For any

X ∈ XN, from the concentration inequality (A.1)

1− Pr
(∣∣∣∣VK,N (X)

VK,N (X)
− 1

∣∣∣∣ ≤ p(K,N)

)
= O(C(K)) = O(C(k)), (B.2)
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where C(K) = O(C(k)) because by (A.0), K = θ(k). This implies that, with high probability, the radius of the

K-NN ball at X concentrates around (VK,N (X)/cd)
1/d. By this concentration inequality (B.2), this choice of K

guarantees that the size of the k-NN ball in the partitioned sample is the same as the the size of the K-NN ball in

the pooled sample with high probability 1− C(k). By the union bound and (B.2), the probability that∣∣∣∣VK,N (X)

VK,N (X)
− 1

∣∣∣∣ ≤ p(K,N)

is satisfied by every Xi ∈ XN is lower bounded by 1−O(NC(k)).

Using the K-NN graph, for each sample X ∈ XN, we compute the number of points in XN that have X as a l-th

nearest neighbor (l-NN), l = {1, . . . ,K}. Denote this count as count(X). Let Y be the l-nearest neighbor of X ,

l = {1, . . . ,K}. Then Y can be represented as Y = X +RK(X)u where u is an arbitrary vector with ||u|| ≤ 1.

For X to be one of the K-NN of Y it is necessary that RK(Y ) ≥ ||Y −X || or equivalently, RK(Y )/RK(X) ≥
||u||. Using the concentration inequality (B.2) for RK(X) and RK(Y ), a sufficient condition for this is

αK(X)f(X)

αK(Y )f(Y )
(1 − 2p(K,N)) ≥ ||u||. (B.3)

Because f is differentiable and has a finite support, f is Lipschitz continuous. Denote the Lipschitz constant by

L. Then, we have |f(Y )− f(X)| ≤ L(K/cdNε0)
1/d. Define q(K,N) = (L/ε0)(K/cdNε0)

1/d + 2
√
6/kδ/2. Then

(B.3) is satisfied if
αK(X)

αK(Y )
(1 − q(K,N)) ≥ ||u||.

For points X ∈ S′, αK(X) = 1 with probability 1 − C(k). This implies that X will be one of the K-NN of Y if

||u|| ≤ 1 − q(K,N). This implies that, with probability 1 − O(NC(k)), count(X) ≥ K(1 − q(K,N)) whenever

X ∈ S′. On the other hand, forX ∈ S− S ′, αK(X) < 1 with probability 1−C(k). It is also clear that for small values

of K/N , αK(X) < αK(Y ) for at least K/2 l-NN Y of X . This then implies that count(X) < K(1−q(K,N)) for

X ∈ S− S′ with probability 1−O(NC(k)). We therefore can apply the threshold K(1−q(K,N)) to detect interior

points IN = XN ∩ S′ and boundary points BN = XN − IN = XN ∩ (S− S′) with high probability 1−O(NC(k)).

Algorithm 1, shown below, codifies this into a precise procedure.

C. Boundary corrected density estimator

Here the boundary corrected k-NN density estimator is defined and its asymptotic rates are computed. The

proposed density estimator corrects the k-NN ball volumes for points that are close to the boundary. To estimate

the density at a boundary point X ∈ BN, we find a point Y ∈ IN that is close to X. Because of the proximity of

X and Y, f(X) ≈ f(Y). We can then estimate the density at Y instead and use this as an estimate of f(Y). This

informal argument is made more precise in what follows.

Consider the corrected density estimator f̃k defined in (II.3). This estimator has bias of order O((k/M)1/d), which

can be shown as follows. Let X denote Xi for some fixed i ∈ {1, .., N}. Also, let X−1 = argminx∈S′ d(x,X).
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Algorithm 1 Detect boundary points BN

1. Construct K-NN tree on XN

2. Compute count(X) for each X ∈ XN

3. Detect boundary points BN:

for each X ∈ XN do

if count(X) < (1 − q(K,N))K then

BN ← X

else

IN ← X

end if

end for

Given XN , if X ∈ IN , then by (A.24),

E[f̃k(X)] = E[f̂k(X)] = f(X) +O((k/M)2/d) +O(C(k)).

Next consider the alternative case X ∈ BN . Let Xn ∈ IN be the closest interior point to X . Define h = X−Xn. h

can be rewritten as h = h1+h2, where h1 = X−X−1 and h2 = X−1−Xn. Since X ∈ BN implies that X ∈ S− S′

with probability 1−O(NC(k)), consequently ||h1|| = ||X−X−1|| = O((k/M)1/d) with probability 1−O(NC(k)).

Again with probability 1−O(NC(k)), Xn ∈ S′ and consequently ||h2|| = ||X−1−Xn|| = o((k/M)1/d) [31]. This

implies that ||h|| = O((k/M)1/d). Now,

f(X) = f(Xn) +O(||h||).

If Xn is located in the interior S′, by (A.24),

E[f̂k(Xn)] = f(Xn) +O((k/M)2/d) +O(C(k)), (B.4)

and therefore

E[f̃k(X)] = E[f̂k(Xn)] +O(NC(k))

= f(Xn) +O((k/M)2/d) +O(NC(k))

= f(X) +O(||h||) +O((k/M)2/d) +O(NC(k))

= f(X) +O((k/M)1/d) +O(NC(k)), (B.5)

where the O(NC(k)) accounts for error in the case of the event that Xn(i) /∈ S′. This implies that the corrected

density estimate has lower bias as compared to the standard k-NN density estimate (compare to (A.24) and (B.1)).

In particular, boundary compensation has reduced the bias of the estimator at points near the boundary from O(1)

to O((k/M)1/d) +O(NC(k)).
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D. Properties of boundary corrected density estimator

By section B-B, IN ∈ S′ with probability 1 − NC(k). The results on bias, variance and cross-moments of the

standard k-NN density estimator f̂k derived in the previous Appendix for points X ∈ S ′ therefore carry over to the

corrected density estimator f̃k for points IN with error of order O(NC(k)).

In the definition of the corrected estimator f̃k in (II.3), f̂k(Xn(i)) is the standard k-NN density estimates and

Xn(i) ∈ S′ . It therefore follows that the variance and other central and cross moments of the corrected density

estimator f̃k will continue to decay at the same rate as the standard k-NN density estimator in the interior, as given

by (A.59) and (A.60).

Given these identical rates and that the probability of a point being in the boundary region S− S ′ is O((k/M)1/d) =

o(1), the contribution of the boundary region to the overall variance and other cross moments of the boundary

corrected density estimator f̃k are asymptotically negligible compared to the contribution from the interior. As a

result we can now generalize the results from Appendix A on the central moments and cross moments to include

the boundary regions as follows. Denote f̃k(X)− EX [f̃k(X) | X ] by e(X).

1) Central and cross moments: For positive integers q, r < k

E[γ(X)eq(X)] = 1{q=2}E
[
γ(X)f2(X)

] (1

k

)
+ o

(
1

k

)
+O(NC(k)), (B.6)

Cov[γ1(X)eq(X), γ2(Y)er(Y)]

= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M
+ o(1/M)

)
+ 1{q+r>2}

(
O

(
1

k((q+r)δ/2−1)M

)
+O(k

2/d
M /M) +O(1/M2)

)
+O(NC(k)). (B.7)

Next, we derive the following result on the bias of boundary corrected estimators.

2) Bias: For k > 2,

E[γ(E[f̃k(X) | X])− γ(f(X)))] = E

[
E

[
(γ(f̃k(X)) − γ(f(X))) | XN

]]
= E

[
E

[
1{X∈IN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
+ E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
= I + II. (B.8)

From (A.24), and Pr(X ∈ BN ) = O((k/M)1/d), we have

I = E [γ′(f(X))h(X)]

(
k

M

)2/d

+ o

(
k

M

)2/d

+O(NC(k)). (B.9)

Next, we will now derive II .

II = E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
= E

[
E

[
1{X∈BN}(γ(f(Xn))− γ(f(X))) +O

(
k

M

)2/d

| XN

]]
+O(NC(k)), (B.10)
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where the last step follows by (B.4). Let us concentrate on the inner expectation now. By section B-B, we know

that with probability 1 − O(NC(k)), if X ∈ BN , then X ∈ S− S′ and if Xn ∈ IN , then Xn ∈ S′. Furthermore,

||X −X−1|| = O(k/M)1/d and ||X−1 −Xn|| = o(k/M)1/d with probability 1−O(NC(k)). This implies that

E

[
1{X∈BN}(γ(f(Xn))− γ(f(X))) +O

(
k

M

)2/d

| XN

]

= E
[
1{X∈S−S′}(γ(f(X−1))− γ(f(X))) | XN

]
+ o

(
k

M

)1/d

+O(NC(k)).

Since Pr(X ∈ S− S′) = O((k/M)1/d), this in turn implies that

II = E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
= E[1{X∈S−S′}(γ(f(X−1))− γ(f(X)))] + o

(
k

M

)2/d

+O(NC(k)). (B.11)

We therefore finally get,

E[γ(E[f̃k(X) | X])− γ(f(X)))] = I + II

= E [γ′(f(X))h(X)]

(
k

M

)2/d

+ E[1{X∈S−S′}(γ(f(X−1))− γ(f(X)))] + o

(
k

M

)2/d

+O(NC(k)).(B.12)

Note that ||X−X−1|| = O((k/M)1/d) with probability 1−O(NC(k)). This therefore implies that

c3 = E[1{X∈S−S′}(γ(f(X−1))−γ(f(X)))] = O((k/M)1/d)×O((k/M)1/d)+O(NC(k)) = O((k/M)2/d)+O(NC(k)).

3) Optimality of boundary correction: Comparing (B.12), (B.6) and (B.7) with (A.24), (A.59) and (A.60) re-

spectively, oracle rates of convergence of bias, and central and cross moments for the boundary corrected density

estimate are attained. The oracle rates are defined as the rates of MSE convergence attainable by the oracle density

estimate that knows the boundary of S

f̃k,o =
k − 1

MVk,o(X)
,

where Vk,o(X) is the volume of the region Sk(X)∩ S. It follows that the boundary compensated BPI estimator is

adaptive in the sense that it’s asymptotic MSE rate of convergence is identical to that of a k-NN plug-in estimator

that knows the true boundary.

APPENDIX C

PROOF FOR BIAS AND VARIANCE OF PLUG-IN ESTIMATORS

Lemma C.1. Assume that U(x, y) is any arbitrary functional which satisfies

(i) sup
x∈(ε0,ε1)

|U(x, y)| = G0 <∞,

(ii) sup
x∈(ql,qu)

|U(x, y)|C(k) = G1 <∞,

(iii)E[ sup
x∈(pl,pu)

|U(x/p, y)|] = G2 <∞.
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Let Z denote Xi for some fixed i ∈ {1, .., N}. Let ζZ be any random variable which almost surely lies in the range

(f(Z), f̃k(Z)). Then,

E[|U(ζZ,Z)|] <∞.

Proof:

We will show that the conditional expectation E[|U(ζZ , Z)| | XN ] <∞. Because 0 < ε0 < f(X) < ε∞ <∞ by

(A.1), it immediately follows that

E[|U(ζZ,Z)|] = E[E[|U(ζZ , Z)| | XN ]] <∞.

For fixed XN , Z ∈ IN or Z ∈ BN . These two cases are handled seperately.

Case 1: Z ∈ IN : In this case, f̃k(Z) = f̂k(Z). By (A.19) and (A.1), we know that if 	(Z) holds, p l/P(Z) <

f̂k(Z) < pu/P(Z). On the other hand, if 	c(Z) holds, by (A.21) and (A.1), ql < f̂k(Z) < qu. This therefore

implies that if 	(Z) holds, min{ε0, pl/P(Z)} < ζZ < max{ε∞, pu/P(Z)} and if 	c(Z) holds, min{ε0, ql} < ζZ <

max{ε∞, qu}. Then,

E[|U(ζZ , Z)| | XN ] = E[1�(Z)|U(ζZ , Z)| | XN ] + E[1�c(Z)|U(ζZ , Z)| | XN ]

≤ G0 + E[1�(Z) sup
x∈(pl,pu)

|U(x/P(Z), Z)|] + max{G0, G1/C(k)}(1− Pr(	(Z)))

≤ G0 + E[ sup
x∈(pl,pu)

|U(x/P(Z), Z)|] + max{G0, G1/C(k)}(1− Pr(	(Z)))

= G0 +G2 +max{G1/C(M), G0}C(k)

= G0 +G2 +max{G1, G0C(k)} <∞ (C.1)

where the final step follows from the fact that C(k) = o(1).

Case 2: Z ∈ BN : If Z ∈ BN , let Yn be the nearest neighbor of Z in the set IN . Then,

f̃k(Z) = f̂k(Yn) (C.2)

This implies that we can now condition on the event 	(Yn), and follow the exact procedure as in case 1 to obtain

E[|U(ζZ , Z)| | XN ] = E[1�(Yn)|U(ζZ , Z)| | XN ] + E[1�c(Yn)|U(1/ζZ , Z)| | XN ]

≤ G0 +G2 +max{G1, G0C(k)} <∞ (C.3)

where the final step follows from the fact that C(k) = o(1). This concludes the proof.

Proof of Theorem III.1.

Proof:
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Using the continuity of g ′′′(x, y), construct the following third order Taylor series of g( f̃k(Z),Z) around the

conditional expected value EZ [f̃k(Z)] = E[f̃k(Z) | Z].

g(f̃k(Z),Z) = g(EZ[f̃k(Z)],Z) + g′(EZ[f̃k(Z)],Z)e(Z)

+
1

2
g′′(EZ[f̃k(Z)],Z)e

2(Z) +
1

6
g(3)(ζZ,Z)e

3(Z),

where ζZ ∈ (EZ[f̃k(Z)], f̃k(Z)) is defined by the mean value theorem. This gives

E[(g(f̃k(Z),Z)− g(EZ[f̃k(Z)],Z))]

= E

[
1

2
g′′(EZ[f̃k(Z)],Z)e

2(Z)

]
+ E

[
1

6
g(3)(ζZ,Z)e

3(Z)

]
Let Δ(Z) = 1

6g
(3)(ζZ,Z). Direct application of Lemma C.1 in conjunction with assumptions (A.5) , (A.6) implies

that E[Δ2(Z)] = O(1). By Cauchy-Schwarz and assumption (A.4) applied to (B.6) for the choice q = 6,∣∣∣∣E[16Δ(Z)e3(Z)

]∣∣∣∣ ≤
√
E

[
1

36
Δ2(Z)

]
E [e6(Z)] = o

(
1

k

)
+O(NC(k)).

By observing that the density estimates { f̃k(Xi)}, i = 1, . . . , N are identical, we therefore have

E[ĜN (̃fk)]−G(f) = E[g(f̃k(Z),Z) − g(f(Z),Z)]

= E[g(EZ[f̃k(Z)],Z) − g(f(Z),Z)] + E

[
1

2
g′′(EZ[f̃k(Z)],Z)e

2(Z)

]
+ o(1/k) +O(NC(k)).

By (B.12) and (B.6) for the choice q = 2, in conjunction with assumption (A.4),this implies that

E[ĜN (̃fk)]−G(f) = E[g′(f(Z),Z)h(Z)]
(
k

M

)2/d

+ E[1{Z∈S−SI}(g(f(Z−1),Z−1)− g(f(Z),Z))]

+E[f2(Z)g′′(EZ[f̃k(Z)],Z)/2]

(
1

k

)
+O(NC(k)) + o

(
1

k
+

(
k

M

)2/d
)

= E[g′(f(Z),Z)h(Z)]
(
k

M

)2/d

+ E[1{Z∈S−SI}(g(f(Z−1),Z−1)− g(f(Z),Z))]

+E[f2(Z)g′′(f(Z),Z)/2]
(
1

k

)
+O(NC(k)) + o

(
1

k
+

(
k

M

)2/d
)

= c1

(
k

M

)2/d

+ c2

(
1

k

)
+ c3 +O(NC(k)) + o

(
1

k
+

(
k

M

)2/d
)
,

where the last but one step follows because, by (A.24) and (B.5), we know EZ[f̃k(Z)] = f(Z) + o(1). This in

turn implies E[f 2(Z)g′′(EZ[f̃k(Z)],Z)/2] = E[f2(Y)g′′(f(Y),Y)/2]. Finally, by assumption (A.5) and (A.2), the

leading constants c1 and c2 are bounded. We have also shown in equation (B.11) that c 3 = O((k/M)2/d). This

concludes the proof.

Proof of Theorem IV.1
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Proof: Let X denote Xi for some fixed i ∈ {1, .., N}. Also, let X−1 = argminx∈SI d(x,X). Using (A.25),

we can derive the following in an identical manner to (B.12):

B(ĜN,BC (̃fk)) = E[ĜN,BC (̃fk)]−
∫
g(f(x), x)f(x)dx

= (E[g(f̃k(Z),Z)] − g2(k,M))/g1(k,M)−
∫
g(f(x), x)f(x)dx

= E[E[(g(f̃k(Z),X)− g2(k,M))/g1(k,M) | XN ]]−
∫
g(f(x), x)f(x)dx

= E[E[(g(f̃k(X),X)− g2(k,M))/g1(k,M) | XN ], X ∈ IN ]

+E[E[(g(f̃k(X),X) − g2(k,M))/g1(k,M) | XN ], X ∈ BN ]

−
∫
g(f(x), x)f(x)dx

= E[g(f(X),X) +
g′(f(X),X)h(X)

g1(k,M)
(k/M)2/d

+
1{X∈S−S′}
g1(k,M)

(g(f(X−1),X−1)− g(f(X),X))

+o((k/M)2/d) +O(NC(k))] −
∫
g(f(x), x)f(x)dx

=
c1

g1(k,M)

(
k

M

)2/d

+
c3

g1(k,M)
+ o

((
k

M

)2/d
)

+O(NC(k)).

Because we assume the logarithmic growth condition k = O((log(M))2/(1−δ)), it follows that O(NC(k)) =

O(N/M3) = o(1/T ). Also, by (IV.3), g1(k,M) = 1 + o(1). This implies that

B(ĜN,BC (̃fk)) = c1

(
k

M

)2/d

+ c3 + o

((
k

M

)2/d
)
. (C.4)

Proof of Theorem III.2 and Theorem IV.2.

Proof: By the continuity of g (λ)(x, y), we can construct the following Taylor series of g( f̃k(Z),Z) around the

conditional expected value EZ [f̃k(Z)].

g(f̃k(Z),Z) = g(EZ[f̃k(Z)],Z) + g′(EZ[f̃k(Z)],Z)e(Z)

+

(
λ−1∑
i=2

g(i)(EZ[f̃k(Z)],Z)

i!
ei(Z)

)
+
g(λ)(ξZ,Z)

λ!
eλ(Z),

where ξZ ∈ (g(EZ [f̃k(Z)], g(f̃k(Z))). Denote (gλ(ξZ,Z))/λ! by Ψ(Z). Further define the operator M(Z) = Z−E[Z]
and

pi = M(g(EXi [f̃k(Xi)],Xi)),

qi = M(g′(EXi [f̃k(Xi)],Xi)e(Xi)),

ri = M

(
λ∑

i=2

g(i)(EXi [f̃k(Xi)],Xi)

i!
ei(Xi)

)
si = M

(
Ψ(Xi)e

λ(Xi)
)
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The variance of the estimator ĜN (̃fk) is given by

V[ĜN (̃fk)] = E[(Ĝ(f)− E[Ĝ(f)])2]

=
1

N
E
[
(p1 + q1 + r1 + s1)

2
]

+
N − 1

N
E[(p1 + q1 + r1 + s1)(p2 + q2 + r2 + s2)].

Because X1, X2 are independent, we have E[(p1)(p2 + q2 + r2 + s2)] = 0. Furthermore,

E
[
(p1 + q1 + r1 + s1)

2
]

= E[p1
2] + o(1) = V[g(EZ[f̂(Z)],Z)] + o(1).

From assumption (A.4) applied to (B.6) and (B.7), in conjunction with assumption (A.3), it follows that

• E[p1
2] = V[g(EZ[f̃k(Z)],Z)]

• E[q1q2] = V[g′(EZ[f̃k(Z)],Z)f(Z)]
(

1
M

)
+ o

(
1
M

)
+O(NC(k))

• E[q1r2] =
∑λ−1

i=2 O
(

1
k((1+i)δ/2−1)M

)
+O

(
λ(k

2/d
M +1/M)

M

)
+O(NC(k)) = o

(
1
M

)
+O(NC(k))

• E[r1r2] =
∑λ−1

i1=2

∑λ−1
i2=2O

(
1

k((i1+i2)δ/2−1)M

)
+O

(
λ2(k

2/d
M +1/M)

M

)
+O(NC(k)) = o

(
1
M

)
+O(NC(k))

Since q1 and s2 are 0 mean random variables

E[q1s2] = E

[
q1Ψ(X2)(f̂(X2)− EX2 [f̃k(X2)])

λ
]

= E

[
q1Ψ(X2)(f̂(X2)− EX2 [f̃k(X2)])

λ
]

≤
√
E [Ψ2(X2)]E

[
q21(f̂(X2)− EX2 [f̃k(X2)])2λ

]
=
√
E [Ψ2(Z)]

(
o

(
1

kλ

)
+O(NC(k))

)
Direct application of Lemma C.1 in conjunction with assumptions (A.5), (A.6) implies that E

[
Ψ2(Z)

]
= O(1).

Note that from assumption (A.3), o
(

1
kλ

)
= o(1/M) . In a similar manner, it can be shown that E[r1s2] =

o
(

1
M

)
+ O(NC(k)) and E[s1s2] = o

(
1
M

)
+ O(NC(k)). Finally, by (A.24) and (B.5), we know EZ[f̃k(Z)] =

E[f̃k(Z)] = f(Z) + o(1). This implies that

V[ĜN (̃fk)] =
1

N
E
[
p1

2
]
+

(N − 1)

N
E[q1q2] +O(NC(k)) + o

(
1

M
+

1

N

)
= V[g(EZ[f̃k(Z)],Z)]

(
1

N

)
+ V[g′(EZ[f̃k(Z)],Z)f(Z)]

(
1

M

)
+O(NC(k)) + o

(
1

M
+

1

N

)
= V[g(f(Z),Z)]

(
1

N

)
+ V[g′(f(Z),Z)f(Z)]

(
1

M

)
+O(NC(k)) + o

(
1

M
+

1

N

)
= c4

(
1

N

)
+ c5

(
1

M

)
+O(NC(k)) + o

(
1

M
+

1

N

)
,

where the last but one step follows because, by (A.24) and (B.5), we know EZ[f̃k(Z)] = f(Z) + o(1). This in

turn implies V[g(EZ[f̃k(Z)],Z)] = V[g(f(Z),Z)] and V[g′(EZ[f̃k(Z)],Z)f(Z)] = V[g′(f(Z),Z)f(Z)]. Finally, by

assumptions (A.5) and (A.2), the leading constants c4 and c5 are bounded. This concludes the proof of Theorem III.2.
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Under the logarithmic growth condition k = O((log(M))2/(1−δ)), g2(k,M) = o(1) and g1(k,M) = 1+ o(1) by

assumption (IV.3). Theorem IV.2 follows by observing that ĜN,BC (̃fk) = (ĜN (̃fk)− g1(k,M))/g2(k,M)

Bias of Baryshnikov’s estimator: Proof of equation (III.2)

Proof: We will first prove that

B(G̃N (̂fk)) = Θ((k/M)1/d + 1/k), (C.5)

Because the standard k-NN density estimate f̂kS(Xi) is identical to the partitioned k-NN density estimate f̂k(Xi)

defined on the partition {Xi} and {X1, ..,XT } − {Xi}, it follows that

B(G̃N (̂fkS)) = Θ((k/T )1/d + 1/k). (C.6)

From the definition of set S′ in section A-A2, we can choose the set S′, such that Pr(Z /∈ S′) = O((k/M)1/d).

E[ĜN (̂fk)]−G(f) = E[g(f̂k(Z),Z) − g(f(Z),Z)]

= E[1{Z∈S′}g(f̂k(Z),Z) − g(f(Z),Z)] + E[1{Z∈S−S′}g(f̂k(Z),Z) − g(f(Z),Z)]

= I + II (C.7)

Using the exact same method as in the Proof of Theorem III.1, using (A.24) and (A.59), and the fact that

Pr(Z /∈ S′) = O((k/M)1/d) = o(1), we have

I = E[g′(f(Z),Z)h(Z)]
(
k

M

)2/d

+ E[f2(Z)g′′(f(Z),Z)/2]
(
1

k

)
+O(C(k)) + o

(
1

k
+

(
k

M

)2/d
)
,

Because we assume that g satisfies assumption (A.6), from the proof of Lemma C.1, for Z ∈ S− S ′, we have

E[g(f̂k(Z), Z)− g(f(Z), Z)] = O(1). This implies that,

II = E[1{Z∈S−S′}g(f̂k(Z),Z) − g(f(Z),Z)]

= E

[
E[g(f̂k(Z), Z)− g(f(Z), Z)] | 1{Z∈S−S′}

]
× Pr(Z /∈ S′)

= O(1)×O((k/M)1/d) = O((k/M)1/d). (C.8)

This concludes the proof.

APPENDIX D

CLT FOR INTERCHANGEABLE PROCESSES

Define the random variables {YM,i; i = 1, . . . , N} for any fixed M

YM,i =
g(̃fk(Xi),Xi)− E[g(̃fk(Xi),Xi)]√

V[g(̃fk(Xi),Xi)]
,

and define the sum SN,M

SN,M =
1√
N

N∑
i=1

YM,i,
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where the indices N and M explicitly stress the dependence of the sum SN,M on the number of random variables

N+M . Observe that the random variables {YM,i; i = 1, . . . , N} belong to an 0 mean, unit variance, interchangeable

process [36] for all values of M . To establish the CLT for SN,M , we will exploit the fact the random variables

{YM,i; i = 1, . . . , N} are interchangeable by appealing to DeFinetti’s theorem, which we describe below.

A. De Finetti’s Theorem

Let F be the class of one dimensional distribution functions and for each pair of real numbers x and y define

F(x, y) = {F ∈ F|F (x) ≤ y}. Let B be the Borel field of subsets of F generated by the class of sets F(x, y). Then

De Finetti’s theorem asserts that for any interchangeable process {Z i} there exists a probability measure μ defined

on B such that

Pr{B} =
∫
F

PrF {B}dμ(F ), (D.1)

for any Borel measurable set defined on the sample space of the sequence {Z i}. Here Pr{B} is the probability of

the event B and PrF {B} is the probability of the event B under the assumption that component random variables

Xi of the interchangeable process are independent and identically distributed with distribution F .

B. Necessary and Sufficient conditions for CLT

For each F ∈ F define m(F ) and σ2(F ) as m(F ) =
∫∞
−∞ xdF (x), σ(F ) =

∫∞
−∞ x2dF (x) − 1 and for all real

numbers m and non-negative real numbers σ 2 let Fm,σ2 be the set of F ∈ F for which m(F ) = m and σ2(F ) = σ2.

Let {Zi; i = 1, 2, . . .} be an interchangeable stochastic process with 0 mean and variance 1. Blum etal [36]

showed that the random variable SN = 1√
N

∑N
i=1 Zi converges in distribution to N(0, 1) if and only if μ(F0,0) = 1.

Furthermore, they show that the condition μ(F0,0) = 1 is equivalent to the condition that Cov(Z1,Z2) = 0 and

Cov(Z2
1,Z

2
2) = 0. We will extend Blum etal’s results to interchangeable processes where Cov(Z1,Z2) = o(1) and

Cov(Z2
1,Z

2
2) = o(1).

In particular, we will show that Cov(YM,1,YM,2) and Cov(Y2
M,1,Y

2
M,2) are O(1/M). Subsequently we will

show that the random variable SN,M = 1√
N

∑N
i=1 YM,i converges in distribution to N(0, 1) and conclude that

Theorem III.3 holds.
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C. CLT for Asymptotically Uncorrelated processes

Let X be a random variable with density f . In the proof of Theorem III.2, we showed that

Cov(YM,i,YM,j) =
Cov(g(̃fk(Xi),Xi), g(̃fk(Xj),Xj))√
V[g(̃fk(Xi),Xi)]V[g(̃fk(Xj),Xj)]

=
Cov(pi + qi + ri + si, pj + qj + rj + sj)√

V[g(̃fk(Xi),Xi)]V[g(̃fk(Xj),Xj)]

=
Cov(pi + qi + ri + si, pj + qj + rj + sj)√

V[g(̃fk(Xi),Xi)]V[g(̃fk(Xj),Xj)]

=
V(g′(f(X),X)f(X))

V[g(f(Xi),Xi)]

(
1

M

)
+ o

(
1

M

)
+O(NC(k))

=
V(g′(f(X),X)f(X))

V[g(f(Xi),Xi)]

(
1

M

)
+ o

(
1

M

)
, (D.2)

where the last but one step follows by observing that NC(k)/M → 0 under the logarithmic growth condition

k = O((log(M))2/(1−δ)). Define the function d(x, y) = g(x, y)(g(x, y)−c), where the constant c = E[g( f̃k(X),X)].

Then, similar to the derivation of (D.2), we have,

Cov(Y2
M,i,Y

2
M,j) =

Cov(d(̃fk(Xi),Xi), d(̃fk(Xj),Xj))√
V[d(̃fk(Xi),Xi)]V[d(̃fk(Xj),Xj)]

=
V(d′(f(X),X)f(X))

V[d(f(Xi),Xi)]

(
1

M

)
+ o

(
1

M

)
. (D.3)

Proof of Theorem III.3 and Theorem IV.3.

Proof:

Let δμ(M) and δσ(M) be a strictly positive functions parameterized by M such that δμ(M) = o(1); 1
Mδμ(M) =

o(1), δσ(M) = o(1); 1
Mδσ(M) = o(1). Denote the set of F ∈ F with Fm,δ,M := {m2(F ) ≥ δμ(M)}; Fσ,δ,M :=

{σ2(F ) ≥ δσ(M)}; F∗
m,δ,M := {m2(F ) ∈ (0, δμ(M))} and F∗

σ,δ,M := {σ2(F ) ∈ (0, δσ(M))}. Denote the measures

of these sets by μm,δ,M , μσ,δ,M , μ∗
m,δ,M and μ∗

σ,δ,M respectively. We have from (D.1) that∫
F

m2(F )dμ(F ) = Cov(YM,i,YM,j)∫
F

σ2(F )dμ(F ) =

∫
F

[EF [Z
2 − 1]]2dμ(F ) = Cov(Y2

M,i,Y
2
M,j). (D.4)

Applying the Chebyshev inequality, we get

δμ(M)μm,δ,M ≤ Cov(YM,i,YM,j),

δσ(M)μσ,δ,M ≤ Cov(Y2
M,i,Y

2
M,j).

Because the covariances decay at O(1/M), μm,δ,M and μσ,δ,M → 0 as M → ∞. From the definition of F∗
m,δ,M

and F∗
σ,δ,M , we also have that μ∗

m,δ,M and μ∗
σ,δ,M → 0 as M →∞. We also have

1− (μm,δ,M + μσ,δ,M + μ∗
m,δ,M + μ∗

σ,δ,M ) ≤ μ(F0,0) ≤ 1,
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and therefore

lim
M→∞

μ(F0,0) = 1. (D.5)

We will now show that G̃N (̃fk) = (ĜN (̃fk)− E[ĜN (̃fk)])/(

√
V[ĜN (̃fk)]) converges weakly to N(0, 1). Denote

g(̃fk(Xi),Xi) by gi. Observe that

lim
Δ→0

Pr{G̃N (̃fk) ≤ α} = lim
Δ→0

∫
F

PrF {G̃N (̃fk) ≤ α}dμ(F )

= lim
Δ→0

∫
F0,0

PrF {G̃N (̃fk) ≤ α}dμ(F ) + lim
Δ→0

∫
F

1{F∈F−F0,0}PrF {G̃N (̃fk) ≤ α}dμ(F )

= lim
Δ→0

∫
F0,0

PrF {G̃N (̃fk) ≤ α}dμ(F ) +
∫
F

lim
Δ→0

(
1{F∈F−F0,0}PrF {G̃N (̃fk) ≤ α}

)
dμ(F ) (D.6)

= lim
Δ→0

∫
F0,0

PrF {G̃N (̃fk) ≤ α}dμ(F ) (D.7)

= lim
Δ→0

∫
F0,0

PrF

⎧⎨⎩ 1

N

N∑
i=1

⎛⎝g(̃fk(Xi),Xi)− E[g(̃fk(Xi),Xi)]√
V[ĜN (̃fk)]

⎞⎠ ≤ α
⎫⎬⎭ dμ(F )

= lim
Δ→0

∫
F0,0

PrF

{
1

N

N∑
i=1

(
g(̃fk(Xi),Xi)− E[g(̃fk(Xi),Xi)]√
V[gi]/N + ((N − 1)/N)Cov[gi,gj ]

)
≤ α

}∫
F0,0

dμ(F )

= lim
Δ→0

∫
F0,0

PrF

⎧⎨⎩ 1

N

N∑
i=1

⎛⎝ g(̃fk(Xi),Xi)− E[g(̃fk(Xi),Xi)]√
V[gi]/N + ((N − 1)/N)

√
V[gi]V[gj ]Cov[YM,i,YM,j]

⎞⎠ ≤ α
⎫⎬⎭ dμ(F )

= lim
Δ→0

∫
F0,0

PrF

{
1

N

N∑
i=1

(
g(̃fk(Xi),Xi)− E[g(̃fk(Xi),Xi)]√

V[gi]/N

)
≤ α

}
dμ(F ) (D.8)

= lim
Δ→0

∫
F0,0

PrF

{
1√
N

N∑
i=1

YM,i ≤ α
}
dμ(F )

=

∫
F

lim
Δ→0

(
1{F∈F0,0}PrF

{
1√
N

N∑
i=1

YM,i ≤ α
})

dμ(F )

=

∫
F

φ(α)dμ(F ) = φ(α), (D.9)

where φ(.) is the distribution function of a Gaussian random variable with mean 0 and variance 1. Step (D.6)

follows from the Dominated Convergence theorem. By (D.5), limΔ→0 1{F∈F−F0,0} = 0 almost surely. This gives

Step (D.7). Step (D.8) is obtained by observing that, by (D.4), Cov[YM,i,YM,j] = 0 when F ∈ F0,0. The last step

(D.9) follows from the CLT for sums of 0 mean, unit variance, i.i.d random variables and (D.5). This concludes the

proof of Theorem III.3.

To show Theorem IV.3, observe that under the logarithmic growth condition k = O((log(M)) 2/(1−δ)), g2(k,M) =

o(1) and g1(k,M) = 1+o(1) by assumption (IV.3). Since ĜN,BC (̃fk) = (ĜN (̃fk)−g1(k,M))/g2(k,M), it follows

that the asymptotic distribution of
ĜN,BC (̃fk)− E[ĜN,BC (̃fk)]√

V[ĜN,BC (̃fk)]
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is equal to the asymptotic distribution of G̃N (̃fk) = (ĜN (̃fk)− E[ĜN (̃fk)])/(

√
V[ĜN (̃fk)]).
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