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ABSTRACT

Functionals of densities play a fundamental role in statistics, signal processing,

machine learning, information theory and related fields. This class of functionals

includes entropy, divergence and mutual information measures of densities, intrinsic

dimension of data embedded in manifolds, and minimum volume sets of densities.

k-nearest neighbor (k-NN) graph based estimators are widely used for the estimation

of these functionals. While several consistent k-NN estimators have been previously

proposed for estimating these functionals, general results on rates of convergence of

these estimators and confidence intervals on the estimated functional are not available.

Since the rate of convergence relates the number of samples to the performance of

the estimator, convergence rates have great practical utility.

In this thesis, a new class of estimators based on bipartite k-nearest neighbor

graphs is proposed for estimating functionals of probability density functions. This

class includes entropy and divergence estimators, intrinsic dimension estimators and

estimates of p-values for testing membership of data in minimum volume sets. For

this class of estimators, large sample theory is used to characterize performance of the

estimators. Specifically, large sample expressions for estimator bias and variance is

derived and a central limit theorem for the distribution of the estimators is established.

This theory is applied to accurately estimate functionals of interest by optimizing

the mean squared error over free parameters, e.g. the number of neighbors k, and

obtaining confidence intervals on the estimated functional by invoking the central

limit theorem. Furthermore, this theory provides significant insight into the statistical

xxi



behavior of these bipartite k-NN estimators, leading to the development of modified

k-NN estimators with faster rates of convergence. In particular, a weighted ensemble

of bipartite k-NN estimators for functional estimation is proposed, and it is shown

using this theory, that the weighted ensemble estimator outperforms the state-of-the-

art. This theory can therefore be used to accurately estimate functionals of densities

with confidence in a wide variety of applications.

Using this theory, the thesis develops performance-driven algorithms in several

applications. First, the theory is applied to determine entropy with confidence to

facilitate anomaly detection at desired false alarm rates in wireless sensor networks.

Second, the theory is applied to determine complexity of high-dimensional data lying

on a manifold, and subsequently applied to fusion and segmentation applications.

Finally, the thesis introduces an efficient anomaly detection algorithm based on es-

timation of p-values of membership in training-sample minimum volume sets using

bipartite k-NN graphs.
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CHAPTER I

Introduction

1.1 Background

Functionals of probability distributions play a fundamental role in statistics, sig-

nal processing, machine learning, information theory and related fields. This class

of functionals includes entropy, divergence and mutual information measures of den-

sities [2, 22], intrinsic dimension of data embedded in manifolds [29], and minimum

volume (MV) sets of densities [76, 74].

This thesis introduces a new class of estimators based on bipartite k-nearest neigh-

bor (k-NN) graphs for estimating general functionals of probability densities. These

tools come with asymptotic expressions for estimator bias and variance that can be

used to predict and improve estimator performance. The tools also come with a

central limit theorem that can be used to develop confidence intervals and p-values.

This thesis illustrates the use of these tools for several applications including: entropy

estimation; dimension estimation; and minimum volume set estimation.

1.1.1 Divergence estimation

Information divergence is the distance between probability distributions of dif-

ferent random variables. There are many applications of divergence functional es-

timation including the following. Divergence based methods for image matching,
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image registration and texture classification are developed in [37, 58]. Entropy has

been used in Internet anomaly detection [45], data and image compression appli-

cations [40], communications [19] and quantization theory [33]. Information flow

measures are used in bio-informatics [68] and brain-machine interfaces [65]. Several

divergence based nonparametric statistical tests have been developed for testing sta-

tistical models including uniformity and normality [85, 24]. Parameter estimation

methods based on divergence have been developed in [67].

1.1.1.1 Error exponents

Divergence functionals arise naturally as they specify detection and classification

error exponents in asymptotic large sample hypothesis testing problems. For instance,

the Kullback-Leibler divergence specifies the exponential rate of decay of error prob-

ability for the optimal Neyman-Pearson likelihood test of simple binary hypotheses.

Similarly, the Chernoff distance appears as the corresponding error exponent for the

optimal Bayesian likelihood ratio test. The relation between divergence functionals

and error exponents has motivated divergence maximization approaches to circumvent

the intractable problem of direct minimization of the probability of error [21, 43, 5].

1.1.2 Dimension estimation

The intrinsic dimension of sample data roughly characterizes the number of vari-

ables needed to explain the phenomenon originating the data and therefore charac-

terizes the complexity of the true underlying probability distribution generating the

observed sample data. Intrinsic dimension estimation has been utilized significantly

for the purpose of inferring an appropriate projection or embedding dimension in

dimension reduction algorithms [29]. Dimension estimation has also been used in

tasks where dimension reduction is not the final goal. For instance, intrinsic dimen-

sion has been used to analyze the local complexity of signals to detect anomalies in
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router networks [14]. Dimension estimation has also been used for image and texture

segmentation [16, 63].

1.1.3 MV set estimation

A minimum volume (MV) set of a probability density is a region of minimum size

among the regions covering a given probability mass of the density. MV sets pro-

vide useful summaries of multi-dimensional functions for many applications including

clustering [35, 82], anomaly detection [74, 81, 86], functional neuroimaging [64], bioin-

formatics [88] and digital elevation mapping [78].

1.2 Previous work

An inherent problem in the aforementioned applications is that we do not have

access to the true underlying probability distributions, but rather, have access only to

realizations of random variables drawn from the distributions. It is therefore crucial to

estimate these functional measures to a high degree of accuracy from the realizations

and to quantify estimation error.

1.2.1 Entropy and divergence estimation

The problem of entropy and divergence estimation of densities f1, f2 of the form∫
g(f1(x)/f2(x), x)f2(x)dx from sample realizations has received significant attention

in the mathematical statistics community. These include consistent estimators based

on entropic graphs [38, 58, 60], gap estimators [84], nearest neighbor distances [32,

49, 51, 87], Edgeworth approximations [39], convex risk minimization [59] and kernel

density estimates [25].

Bickel and Ritov [9] treat the problem for the specific case of
∫
f 2(x)dx and show

convergence at the parametric rate n−1/2. This result was generalized to
∫
g(f(x), x)dx
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for arbitrary g for univariate densities by Eggermont et al. [25] and for certain re-

stricted classes of densities by Birge and Massart [10] and Laurent [47].

Several entropy and divergence estimators based on sums of functionals of k-

NN distances have been proposed in the literature. The authors of [77, 32, 51]

only deal with estimators corresponding to Shannon entropy (g(u) = log(u)) and

Rényi entropy(g(u) = uα−1). Evans et al. [27] on the other hand analyze only

positive moments of the k-NN distances (g(u) = uk, k ∈ N). Recently, Barysh-

nikov et al. [6] and Wang et al. [87] developed k-NN based estimators of divergence∫
g(f1(x)/f2(x), x)f2(x)dx when f1(.) is known and when f1(.) has to be estimated

from samples respectively .

The authors of [77, 32, 27, 87] show that the estimators they propose are asymp-

totically unbiased and consistent. Finally, CLT for k-NN estimators of Rényi entropy

was alluded to by Leonenko et al. [32] by inferring from experimental results. The

authors of [51] analyze the bias for cases of Shannon and Rényi entropy. For arbi-

trary smooth functionals g(.), Evans et al. [26] show that the variance of the sums

of these functionals of k-NN distances is bounded by the rate O(k5/T ). Recently,

Baryshnikov et al. [6] improved on the results of Evans et al. by determining the ex-

act variance up to the leading term for entropy estimation, and divergence estimation

when f1(.) is assumed to be known. Furthermore, they show that the entropy and

divergence estimators they propose converge weakly to a normal distribution. Chat-

terjee [15] proved CLT results for general functionals of k-NN graphs for fixed values

of k.

In this thesis, in addition to proving consistency of bipartite k-NN estimators for

entropy, divergence and mutual information, we have successfully developed a large

sample theory for the MSE and central limit results on the asymptotic distribution

of these estimators.
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1.2.2 Dimension estimation

A common approach to the problem of intrinsic dimensionality estimation is based

on projecting data on subspaces of different dimensions and choosing the intrinsic di-

mension to be the dimension of the subspace that provides the best fit [41]. An

example of this approach includes principal component analysis (PCA) which is ap-

plied to estimate dimension of linear subspaces. As these methods do not account for

non-linearities, linear methods tend to overestimate intrinsic dimension.

More sophisticated methods are based on the idea of observing the rate of growth

of the number of points falling in a fixed ball as a function of the ball radius or the

rate of growth of the size of k-nearest neighbor balls for varying values of k. This

rate of growth has the property that it grows exponentially in the number of data

samples with exponent inversely proportional to the intrinsic dimension. Examples of

such estimators include Costa and Hero’s k-nearest neighbor (k-NN) graph dimension

estimator [20], Levina and Bickel’s [50] maximum likelihood estimator and Farahmand

et al.’s dimension estimator based on nearest neighbor distances [28]. In this thesis

we formulate the problem of intrinsic dimension as a divergence functional estimation

problem and derive provably better estimators.

1.2.3 MV set estimation

Estimation of minimum volume sets is a difficult problem, especially for high

dimensional data. There are two types of approaches to this problem: (1) transform

the MV estimation problem to an equivalent density level set estimation problem,

which requires estimation of the nominal density; and (2) directly identify the minimal

set using function approximation and non-parametric estimation [75, 61, 73]. Both

types of approaches involve explicit approximation of high dimensional quantities -

the multivariate density function in the first case and the boundary of the minimum

volume set in the second - and are therefore not easily applied to high dimensional

5



problems.

The GEM principle developed by Hero [36], and also used by Zhao et al. [89],

for determining MV sets circumvents the above difficulties by using the asymptotic

theory of random Euclidean graphs instead of function approximation. However, the

GEM based K-kNNG minimum volume detection scheme proposed in [36] and the

K-LPE scheme proposed in [89] become computationally difficult as the number of

data points becomes large. To address this issue, a surrogate L1O-kNNG anomaly

detection scheme was proposed in [36]. L1O-kNNG is computationally simpler than

K-kNNG, but loses some desirable properties of the K-kNNG, including asymptotic

consistency, as shown in this thesis. We introduce a new estimator for level sets that

is consistent yet has low computational complexity.

1.2.4 k-NN estimators

Several of the estimators discussed above fall under the class of k-NN graph based

estimators. These include entropy and divergence estimators such as entropic graph

estimators [38, 58], spacing estimators [84] and k-nearest neighbor based estima-

tors [60, 32, 49, 6], dimension estimators including Costa’s [20] and Levina’s [50]

estimators, and level set estimators proposed by Hero [36] and Zhao et al. [89].

The general idea behind these k-NN estimators is that (k-NN) graphs are non-

parametric structures that convey local geometry of points in a sample. This attribute

has resulted in a wide variety of machine learning applications for k-NN graphs,

for e.g., density estimation, manifold learning and non-parametric classification and

entropy estimation. The local nature of k-NN graph estimators enables development

of k-NN graph estimators for data lying on embedded manifolds.

However, general results on rates of convergence of k-NN graph based estimators

are unavailable. This is due to the highly dependent nature of k-NN edges in a data

sample, which makes analysis of MSE and asymptotic distribution of k-NN estimators
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difficult. This thesis provides results on MSE and asymptotic distributions of k-NN

graph estimators by studying the statistical behavior of k-NN neighborhoods in a

data sample and exploiting the interchangeable, albeit dependent, nature of k-NN

edge lengths.

1.3 Contribution of thesis

In this thesis, we propose a wide class of non-parametric estimators based on

bipartite k-nearest neighbor (k-NN) graphs for estimating functionals of densities.

The basic construction of the proposed bipartite plug-in estimator is as follows. Given

a total of T data samples we split the data into two parts of size N and size M ,

N +M = T . On the part of size M a k-NN density estimate is constructed. The

density functional is then estimated by plugging the k-NN density estimate into the

functional and approximating the integral by an empirical average over the remaining

N samples. This can be thought of as computing the estimator over a bipartite graph

with the M density estimation nodes connected to the N integral approximating

nodes. This is illustrated in Fig. 1.1.

Our proposed class of estimators include estimators of entropy, divergence and

mutual information measures of density functions on Euclidean space (Chapter 2)

and on manifolds (Chapter 4), intrinsic dimension estimator of data embedded in

manifolds (Chapter 4) and estimator of p-values for testing memberships in level sets

(Chapter 5).

For this class of estimators, we derive a large sample theory to characterize per-

formance of the estimators. Specifically, we derive large sample expressions for the

bias and variance for this class of estimators and develop a central limit theorem for

the distribution of the estimators. Our analysis of MSE of these estimators studies

the statistical behavior of k-NN neighborhoods in a data sample. This analysis is

not available previously in literature and helped solve a long standing problem of
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Figure 1.1: Illustration of a 2-NN bipartite graph.

characterizing correlation between k-NN neighborhoods centered at different points.

Since the rate of convergence relates the number of samples to the performance of

the estimator, convergence rates have great practical utility. To develop the central

limit theorem, we prove a general result showing that the distribution of suitably

normalized sums of interchangeable processes converges weakly to the standard nor-

mal distribution. We subsequently establish that our class of estimators falls under

the framework of sums of interchangeable processes, thereby establishing the central

limit theorem.

Our analysis led to the development of modified bipartite k-NN estimators with

faster rates of convergence. In particular, boundary compensated k-NN estimators,

that compensate for bias due to truncation of k-NN neighborhoods near the boundary

of the density support, are proposed in Chapter 3 and in Section 6.5. Furthermore, un-

der higher order smoothness assumptions on the density, we have proposed weighted

ensembles of bipartite k-NN estimators in Chapter 6, and show that these estimators
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have parametric O(1/n) MSE rates of convergence and outperform state-of-the art

k-NN estimators.

1.3.1 Entropy, divergence and mutual information estimation

General results on rates of convergence and asymptotic distribution of k-NN es-

timators of entropy, divergence and mutual information were previously unavailable,

except for Shannon and Rényi entropy estimators [32, 49], in which case rates for the

bias were provided in [51] and variance and asymptotic distribution were provided

in [6].

In Chapter 2, we have successfully developed a large sample theory for the MSE

of bipartite k-NN estimators for entropy, divergence and mutual information. The

results developed above can be used to improve the rate of convergence of these

estimators. For instance, we tune the parameters of the estimator (for example, the

number of neighbors k) to achieve optimal mean square error performance in Chapter

2. In the specific case of Shannon and Rényi entropy estimation, in comparison to

the estimators proposed by [32, 49, 6], we are able to exploit the bipartite nature of

our estimators to improve the rate of convergence (see Section 2.7 and Section 3.5.4

for further details).

We have also developed a general central limit theorem showing the asymptotic

distribution of bipartite k-NN estimators to be standard normal. The central limit

result can be used to help characterize the error in the estimate via statistical confi-

dence intervals. Furthermore, we have applied this result to do anomaly detection in

router networks at desired false alarm rates. Our CLT, in contrast to the result by

Chatterjee [15], applies to the case where k grows to ∞ with T , which is a necessary

condition for consistency of the proposed bipartite k-NN estimators.

In Chapter 3, we show that for densities with finite support, k-NN density es-

timators behave differently in the interior of the support as opposed to near the
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boundary of the support. Our analysis in Chapter 2 lead to insight about k-NN be-

havior near the boundary of support of density. Specifically, our analysis showed that

k-NN neighborhoods are bloated close to the boundary because of the discontinuity

of the density function at the boundary of the support. This results in increased bias

in k-NN density estimates near the boundary and in turn increased bias in entropy,

divergence and mutual information estimators proposed in Chapter 2. To compen-

sate for this bias, we propose boundary compensated compensated k-NN graphs in

Chapter 3 and in Section 6.5, by suitably reducing the size of k-NN neighborhoods

near the boundary of the support. We show that the use of boundary compensated

graphs reduces the bias from O(T−1/(1+d)) to O(T−2/(2+d)) without correction factors

and from O(T−1/d) to O(T−2/d) with correction factors.

In Chapter 4, we extend results on entropy and divergence estimation to the case

where the support of the density is on a smooth Riemannian manifold embedded in

R
D with intrinsic dimension d.

1.3.2 Dimension estimation

In Chapter 4, we introduce a new dimensionality estimator that is based on fluc-

tuations of the sizes of nearest neighbor balls centered at a subset of the data points.

The rate of growth function of the k-NN ball size can be directly related to the en-

tropy functional of the underlying data and therefore directly fits in our framework

directly.

In this respect it is similar to Costa and Hero’s k-nearest neighbor (k-NN) graph

dimension estimator [20], Levina and Bickel’s [50] maximum likelihood estimator and

to Farahmand et al.’s dimension estimator based on nearest neighbor distances [28].

The estimator can also be related to the Leonenko et al.’s Rényi entropy estimator [49].

However, unlike these estimators, our new dimension estimator is derived directly

from a mean squared error (MSE) optimality condition for partitioned k-NN esti-
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mators of entropy of multivariate densities on manifolds. This guarantees that our

estimator has the best possible MSE convergence rate among estimators in its class.

Empirical experiments are presented that show that this asymptotic optimality trans-

lates into improved performance in the finite sample regime.

Intrinsic dimension can be used as an indication of the complexity associated with

data and can be a useful statistic for discriminating different types of data. We have

used this characterization of dimension to detect anomalies in internet network data.

We have also used this statistic to analyze geographic formations from hyper-spectral

images by computing the spectral complexity of different regions in the formations.

This characterization was used to subsequently segment the image (into different

regions - for e.g., vegetation, water body, urban area).

1.3.3 MV set testing

In Chapter 5, we propose a novel bipartite k-nearest neighbor graph (BP-kNNG)

estimator to estimate p-values for testing membership in minimum volume sets. Our

bipartite estimator retains all the desirable theoretical properties of the K-kNNG,

while being computationally simpler than the K-kNNG and the surrogate L1O-kNNG

detectors. We show that BP-kNNG is asymptotically consistent in recovering the p-

value of each test point.

We use the proposed p-value estimator to detect anomalies in data sets. Given

a set of normal events, the anomaly detection problem aims to identify unknown,

anomalous events that deviate from the normal set. Novelty detection is crucial to

various applications where failure to detect anomalous activity could lead to catas-

trophic outcomes. These include, for instance, detection of faults in mission-critical

systems, quality control in manufacturing and medical diagnosis. Learning minimum

volume sets of an underlying nominal distribution is a very effective approach to

anomaly detection [75, 81, 86]. Experimental results are given that illustrate the
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superior performance of BP-kNNG as compared to the L1O-kNNG and other state

of the art anomaly detection schemes.

1.3.4 Ensemble Estimation

For d-dimensional data, it is shown that the variance of the k-NN graph estimators

decay as O(T−1), where T is the sample size, while the bias, because of the curse

of dimensionality, decays as O(T−1/(1+d)). The squared bias O(T−2/(1+d)) therefore

dominates the mean square error (MSE) in high dimensions.

To address this large bias in high dimensions, we propose a weighted k-NN estima-

tor in Chapter 6, where the weights serve to lower the bias to O(T−1/2), which then

ensures convergence of the weighted estimator at the parametric rate of O(T−1/2).

These weights are determined by solving a convex optimization problem. The pro-

posed weighted ensemble estimators are applied to various problems including density

estimation, Shannon and Rényi entropy estimation, intrinsic dimension estimation,

and minimum volume set estimation. It is shown by simulation that the weighted

ensemble estimators uniformly outperform other, including state-of-the-art, k-NN es-

timators.

1.4 Conclusion

To conclude, my thesis lays the groundwork for effectively characterizing and

optimizing performance in applications that are based on functionals of densities.

For instance, the framework developed in this thesis has thus far led to the successful

development of performance-driven algorithms for entropy and dimension estimation,

anomaly detection and structure discovery in data. This ability to successfully develop

and predict performance of a variety of algorithms based on functional estimation from

a theoretical analysis of large sample error underlines the significance of this work.
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CHAPTER II

k-NN plug-in estimators of entropy and divergence

2.1 Introduction

Non-linear functionals of the densities f1, f2 of the form
∫
g(f1(x)/f2(x), x)f2(x)dx

arise in applications of machine learning, signal processing and statistical estimation.

Important examples of such functionals include Shannon and Rényi entropy, Shan-

non mutual information and other forms of f-divergences. Entropy and divergence

based applications for image matching, image registration and texture classification

are developed in [37, 58]. Entropy functional estimation is fundamental to indepen-

dent component analysis in signal processing [56]. Entropy has also been used in

Internet anomaly detection [45] and data and image compression applications [40].

Several entropy based nonparametric statistical tests have been developed for testing

statistical models including uniformity and normality [85, 24]. Parameter estimation

methods based on entropy have been developed in [18, 67].

In these applications, the functional of interest must be estimated empirically from

sample realizations of the underlying densities. This problem has received significant

attention in the mathematical statistics community. Several estimators of divergence

measures have been proposed for general multivariate densities f . These include

consistent estimators based on entropic graphs [38, 60], gap estimators [84], nearest

neighbor distances [32, 49, 51, 87], kernel density plug-in estimators [1, 25, 9, 34, 10],
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Edgeworth approximations [39], orthogonal projections [47] and convex risk mini-

mization [59].

Several of the estimators discussed above fall under the class of k-NN graph based

estimators. These include entropy and divergence estimators such as entropic graph

estimators [38, 58], spacing estimators [84] and k-nearest neighbor based estima-

tors [60, 32, 49, 6]. However, general results on rates of convergence of these k-NN

estimators are unavailable. Since the rate of convergence relates the number of sam-

ples to the performance of the estimator, convergence rates have great practical utility.

In this paper we derive convergence rates for a class of bipartite k-NN estimators of

non-linear functionals.

The authors of [77, 32, 51] only deal with estimators corresponding to Shannon

entropy (g(u) = log(u)) and Rényi entropy(g(u) = uα−1). Evans et al. [27] on the

other hand analyze only positive moments of the k-NN distances (g(u) = uk, k ∈ N).

Wang et al. and Baryshnikov et al. [6] propose estimators based on k-NN distances for

estimating the f -divergence between densities. The authors of [77, 32, 27, 87] show

that the estimators they propose are asymptotically unbiased and consistent. Finally,

CLT for k-NN estimators of Rényi entropy was alluded to by Leonenko et al. [32] by

inferring from experimental results. The authors of [51] analyze the bias for cases of

Shannon and Rényi entropy. For arbitrary smooth functionals g(.), Evans et al. [26]

show that the variance of the sums of these functionals of k-NN distances is bounded

by the rate O(k5/T ). Recently, Baryshnikov et al. [6] improved on the results of

Evans et al. by determining the exact variance up to the leading term (ck/T for some

constant ck which is a function of k) for entropy estimation. Furthermore, they show

that the entropy estimator they propose converges weakly to a normal distribution.

However, Baryshnikov etal do not analyze the bias of the estimators, nor do they

show that the estimators they propose are consistent. Using the results obtained in

this paper, we provide an expression for this bias in Section 2.7 and show that the
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optimal MSE for Baryshnikov’s estimators is O(T−2/(1+d)). Chatterjee [15] proved

CLT results for general functionals of k-NN graphs for fixed k.

In contrast, the main contribution of this chapter is the analysis of a general

class of bipartite k-NN estimators of smooth density functionals. We exploit a close

relation between density estimation and the geometry of proximity neighborhoods in

the data sample to establish asymptotic statistical analysis of the bias and variance.

We then show that the bipartite k-NN estimator is MSE consistent and that the MSE

is guaranteed to converge to zero as T → ∞ and k → ∞ with a rate that is minimized

for a specific choice of k, M and N as a function of T . Therefore, the thus optimized

bipartite k-NN estimator can be implemented without any tuning parameters. In

addition a CLT is established that can be used to construct confidence intervals to

empirically assess the quality of the bipartite k-NN estimator. Finally, our method of

proof is very general and it is likely that it can be extended to kernel density plug-in

estimators, f -divergence estimation and mutual information estimation.

An important distinction between the bipartite k-NN estimator and the k-NN

estimators of Shannon and Rényi entropy proposed by the authors of [77, 32, 49] is

that these latter estimators are consistent for finite k, while the proposed bipartite

k-NN estimator require the condition that k → ∞ for MSE convergence. We show

in Chapter 3 and Chapter 6 that by exploiting the condition k → ∞, bipartite k-NN

estimators with superior rates of convergence can be derived. Also note that our

CLT, in contrast to the result by Chatterjee [15], applies to the case where k grows

to ∞ with T , which is a necessary condition for consistency of the proposed bipartite

k-NN estimators.

Organization

The reminder of the chapter is organized as follows. Section 2.3 formulates the

entropy estimation problem and introduces the data-split plug-in estimator. The main
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results concerning the bias, variance and asymptotic distribution of these estimators

are stated in Section 2.3.1 and the consequences of these results are discussed. The

proofs for these results are given in the Appendix. We extend our entropy estimator

to estimate divergence in Section 2.4 and mutual information in Section 2.5. We

validate our theory using simulation studies in Section 3.5. We discuss our results in

Section 2.9.

In Chapter 3, we will illustrate the advantage of using data-split estimators over

unsplit estimators for estimating entropy by deriving boundary-corrected k-NN den-

sity estimates which account for high bias in density estimates near the boundary of

the support of the density. We will show that our data-split boundary corrected k-NN

plug-in estimators have lower bias and MSE and are also computationally faster to

implement as compared to standard sums of sums of functionals of k-NN distances.

We take further advantage of this in Chapter 6 by deriving ensemble estimators based

on data-split plug-in estimators which have a parametric rate of convergence.

Notation

We will use bold face type to indicate random variables and random vectors and

regular type face for constants. We denote the expectation operator by the sym-

bol E and conditional expectation given Z using the notation EZ. We also define

the variance operator as V[X] = E[(X − E[X])2] and the covariance operator as

Cov[X,Y] = E[(X− E[X])(Y − E[Y])]. We denote the bias of an estimator by B.

2.2 k-NN density estimate

Let d(X, Y ) denote the Euclidean distance between points X and Y and dk(X) de-

note the Euclidean distance between a point X and its k-th nearest neighbor amongst

M i.i.d realizations from a density d-dimensional f , XN+1, ..,XN+M . The k-NN re-

gion is Sk(X) = {Y : d(X, Y ) ≤ dk(X)} and the volume of the k-NN region is
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Vk(X) =
∫
Sk(X)

dZ. The standard k-NN density estimator [53] is defined as

f̂k(X) =
k − 1

MVk(X)
.

Define the coverage function as P(X) =
∫
Sk(X)

f(Z)dZ.

Observe that the k-NN density estimate at X will be singular iff the k-nearest

neighbors of X in the set XN+1, ..,XN+M are identically equal to X . This event will

occur with probability 0 for any continuous density f . Equivalently stated, when the

density f is continuous, the density estimate f̂k(X) is almost surely non-singular for

any X. While the k-NN density estimate does not integrate to 1 over the support

S of the density, the integral E[
∫
X∈S f̂k(X)dX] asymptotically does evaluate to 1 as

k → 0 and k/M → 0 [30]. The k-NN density estimate evaluated in the interval [−3, 3]

using 1000 sample realizations drawn from a 1-dimensional density f uniform in the

interval [−0.5, 0.5] is shown in Fig. 2.1.

Analysis of moments of k-NN density estimates is a crucial ingredient in our

development of large sample theory for estimators of functionals of densities. This

analysis can be found in Appendix B.

2.3 Data-split plug-in estimators of entropy

We are interested in estimating non-linear functionalsG(f) of d-dimensional multi-

variate densities f with support S, where G(f) has the form

G(f) =

∫
1{x∈S′}g(f(x), x)f(x)dμ(x) = E[1{x∈S′}g(f(x), x)],

for some smooth function g(f(x), x) and some subset S ′ ⊂ S of the support S.

Let B denote the boundary of S. Here, μ denotes the Lebesgue measure and E

denotes statistical expectation w.r.t density f . We assume that i.i.d realizations
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Figure 2.1: k-NN density estimate evaluated in the interval [−3, 3] using 1000 sample
realizations drawn from a 1-dimensional density f uniform in the interval
[−0.5, 0.5].

{X1, . . . ,XN ,XN+1, . . . ,XN+M} are available from the density f .

The plug-in estimator is constructed using a data splitting approach as follows.

The data is randomly subdivided into two disjoint parts XN = {X1, . . . ,XN} and

XM = {XN+1, . . . ,XN+M} of N and M points respectively. In the first stage, we

estimate the k-NN density estimator f̂k at the N points {X1, . . . ,XN} using the M

realizations {XN+1, . . . ,XN+M}. Subsequently, we use the N samples {X1, . . . ,XN}

to approximate the functional G(f) to obtain the plug-in estimator:

Ĝk(f) =
1

N

N∑
i=1

1{Xi∈S′}g(f̂k(Xi),Xi). (2.1)

We note that the k-NN density estimates at {X1, . . . ,XN} can be determined

by constructing a bipartite k-nearest neighbor graph from the set of N samples

{X1, . . . ,XN} to the set of M samples {XN+1, . . . ,XN+M} with the k-the nearest
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Figure 2.2: Illustration of a 2-NN bipartite graph.

neighbor edge from each Xi ∈ {X1, . . . ,XN} linking the two sets. This is illustrated

in Fig. 2.2 and Fig. 2.3.

2.3.1 Assumptions

Let δ be a fixed number in (2/3, 1). For some fixed 0 < ε < 1, define pl =

((k − 1)/M)(1 − ε)ε0 and pu = ((k − 1)/M)(1 + ε)ε∞. Also define ε1 = 1/(cdDd),

where D is the diameter of the bounded set S and define ql = ((k − 1)/M)ε1 and

qu = (1 + ε)ε∞. Let p be a beta random variable with parameters k,M − k + 1. Let

Y, Z denote i.i.d. random variables with density f and define c(X) = Γ(2/d)((d +

2)/2)f−2/d(X)tr[∇2(f(X))].

We assume that k grows polynomially in M , i.e. k = Mα for α ∈ (0, 1). We

require that the density f be uniformly bounded away from 0 and finite on the set S ′,

i.e., there exist constants ε0, ε∞ such that 0 < ε0 < ε∞ <∞ such that ε0 ≤ f(x) ≤ ε∞

∀x ∈ S ′. We assume that the density f has continuous partial derivatives of order
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Figure 2.3: 1-NN bipartite graph constructed on 2-d data (red = N samples used
for entropy estimation, blue = M samples used for entropy estimation,
purple = 1-NN edges).

2r in the interior of the set S ′ where r satisfies the condition 2r(1 − α)/d > 1. We

also assume that the functional g(x, y) has λ partial derivatives w.r.t. x, where λ

satisfies the condition αλ > 1. Finally we assume that the absolute value of the

functional g(x, y) and its partial derivatives are strictly bounded away from ∞ in the

range ε0 < x < ε∞ for all y. Assume that supx∈(ql,qu) |(g(r)/r!)2(x, y)|e−3k(1−δ)
< ∞,

E[supx∈(pl,pu) |(g(r)/r!)2(x/p, y)|] <∞, for r = 3, λ.

Define the set SI as follows. For any X ∈ S, let r(X) be the shortest distance from

X to B. For any set R, define the statistic m(R) =
∫
x∈R r(X)dx. Let SI = SI(f)

then be the set with minimum measure m(.), with probability mass at least ε2∞k/M

wrt the density f . We show in Appendix B that for any X ∈ SI , the probability that

the k-NN ball centered at X intersects with the boundary B is exponentially small.

We note that if S ′ ∩ B = φ, then for sufficiently small values of k/M , S ′ ∩ SI = S ′.
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2.3.2 Bias and Variance

Theorem II.1. The bias of the plug-in estimator Ĝk(f) is given by

B(Ĝk(f)) = c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ c2

(
1

k

)

+o

(
1

k
+

(
k

M

)1/d
)
,

where c0, c1 and c2 are constants which depend on the density f and the set S ′. The

constant c2 is given by c2 = E[1{Y∈S′}f
2(Y)g′′(f(Y),Y)/2]. Furthermore, c0 = 0 and

c1 = E[1{Y∈S′}g
′(f(Y),Y)c(Y)] if and only if S ′ ⊂ SI .

Proof. The principal idea here involves Taylor series expansions of the functional

g(f̂(X), X) about the true value g(f(X), X), and subsequently (a) using the moment

properties of density estimates to obtain the leading terms, and (b) bounding the

remainder term in the Taylor series and showing that it can be ignored in comparison

to the leading terms. We show in appendix B that the k-NN density estimate satisfies

assumptions A .1 and A .2 listed in Appendix D, which in turn implies that lemma

D.1 holds. This gives:

E[Ĝk(f)]−G(f) = E[1{Z∈S′}(g(EZ[f̂k(Z)],Z)− g(f(Z),Z))]

+c2

(
1

k

)
+ o(1/k).

Using the properties of standard k-NN density estimates ( C.2), we can then show

E[1{Z∈S′}(g(EZ[f̂k(Z)],Z)− g(f(Z),Z))]

= c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
.

This concludes the proof.
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The source of the leading term c0(k/M)1/d is due to the fact that if a probability

density function has bounded support, the k-NN balls centered at points close to the

boundary are often truncated at the the boundary, resulting in estimator bias. For

details, please refer Appendix C.

We note that if c0 �= 0, the bias is minimized by choosing k = O(M1/(1+d)), giving

the optimal rate of the bias to be O(M−1/(1+d)). In Chapter 3, we discuss boundary

compensation methods to force c0 = 0 and discuss the optimal choice of k for the

case c0 = 0 in detail in section 3.4.1.

Theorem II.2. The variance of the plug-in estimator Ĝk(f) is given by

V(Ĝk(f)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 = V[1{Y∈S′}g(f(Y),Y)] and c5 = V[1{Y∈S′}f(Y)g′(f(Y),Y)].

Proof. We once again use Taylor series expansion and bound higher order terms. We

shown in Appendix B that the k-NN density estimate satisfies assumptions A .1, A .2

and A .3. This in turn implies that lemma D.2 holds. This concludes the proof.

While Theorem II.1 and Theorem II.2 hold for any choice of positive integers

k,M,N , for asymptotic consistency we require that k → ∞, k/M → 0 and N → ∞.

This holds for all expressions for bias and variance that are derived in the rest of the

thesis. For the optimal choice of k = O(M1/(1+d)) to minimize bias, the MSE is given

by O(M−2/(1+d) + 1/M + 1/N). The optimal choice of partition N,M to minimize

MSE is given by Nopt = O(T (3+d)/(2(1+d))).

In the higher order terms in Theorem II.1 and Theorem II.2 denoted by o(.), the

corresponding constants in front are functionals of derivatives of the density f and the

functional g, which by the assumptions in Section 2.3.1 are finite. This observation is

true for all expressions for bias and variance that are derived in the rest of the thesis.
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2.3.3 Central limit theorem

In addition to the results on bias and variance shown in the previous section,

we show that our plug-in estimator, appropriately normalized, weakly converges to

the normal distribution. We study the asymptotic behavior of the plug-in estimates

under the following limiting conditions: (a) k/M → 0, (b) k → ∞, and (c) N → ∞.

As shorthand, we will collectively denote the above limiting assumptions by Δ → 0.

Theorem II.3. The asymptotic distribution of the plug-in estimator Ĝk(f) is given

by

lim
Δ→0

Pr

⎛
⎝Ĝk(f)− E[Ĝk(f)]√

V[Ĝk(f)]
≤ α

⎞
⎠ = Pr(S ≤ α),

where S is a standard normal random variable.

Proof. Define the random variables {YM,i; i = 1, . . . , N} for any fixed M

YM,i =
1{Xi∈S′}(g(̂fk(Xi),Xi)− E[1{Xi∈S′}g(̂fk(Xi),Xi)])√

V[1{Xi∈S′}g(̂fk(Xi),Xi)]
,

and define the sum SN,M

SN,M =

∑N
i=1YM,i√

V[
∑N

i=1YM,i]
,

where the indices N and M explicitly stress the dependence of the sum SN,M on the

number of random variables N +M . Observe that the random variables {YM,i; i =

1, . . . , N} belong to an 0 mean, unit variance, interchangeable process [11] for all

values of M .

We will first show that Cov(YM,1,YM,2) and Cov(Y
2
M,1,Y

2
M,2) are O(1/M). Sub-

sequently we will show that the random variable SN,M converges in distribution to
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N(0, 1). Let X be a random variable with density f . Define the function d(x, y) =

g(x, y)(g(x, y)− c), where the constant c = E[g(̂f(X),X)].

From (C.4), we have

Cov(YM,i,YM,j) = Cov(g(̂fk(Xi),Xi), g(̂fk(Xj),Xj))

=
V(g′(f(X),X)f(X))

M
+ o

(
1

M

)
.

Define d(x, y) = g(x, y)(g(x, y) − c), where the constant c = E[g(̂fk(X1),X1)].

Then,

Cov(Y2
M,i,Y

2
M,j) = Cov(d(̂fk(Xi),Xi), d(̂fk(Xj),Xj))

=
V(d′(f(X),X)f(X))

M
+ o

(
1

M

)

=
V(g′(f(X),X)(g(f(X),X)− E[g(f(X),X)])f(X))

M
+ o

(
1

M

)
.

AsM gets large, we then have that Cov(YM,i,YM,j) → 0 and Cov(Y2
M,i,Y

2
M,j) →

0. By lemma E.1, we have that SN,M converges in distribution to N(0, 1) as both N

and M get large. Finally, note that establishing CLT for

Ĝk(f)− E[Ĝk(f)]√
V[Ĝk(f)]

is equivalent to establishing CLT for the function SN,M . This concludes the proof.

The central limit theorem for k-NN estimators of Rényi entropy was alluded to by

Leonenko et al. [32] by inferring from experimental results. Theorem II.3 establishes

the CLT for k-NN estimators of arbitrary functionals, including Rényi entropy.
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2.4 Estimation of f-divergences

In this section, we are concerned with the estimation of f -divergences of the form

G(f1, f2) =
∫
1{x∈S′}g2(f1(x)/f2(x), x)f2(x)dx for smooth functionals g2 and densities

f1(x), f2(x) which are bounded away from 0 and ∞ on the set S ′. The choice

of g(x) = − log(x) defies Kullback-Leibler information, g(x) = 2(1 −
√
x)2 yields

the square of the Hellinger distance, g(x) = x log(x) yields the log-likelihood ratio

statistic or I-divergence of Kullback-Leibler, g(x) = (x− 1)2/2 yields the chi-squared

divergence,and g(x) = xr yields Rényi information gain of order r, r > 0.

We consider two cases. In the first case, we assume that f1 is a known density.

Then using our estimator Ĝ(f2), it is possible to compute the f -divergence G(f1, f2)

by defining the corresponding functional g to be g(x, y) = g2(f1(x)/x). In this case,

theorems II.1, II.2 and II.3 on the bias, variance and CLT will hold provided the

necessary conditions on the density f2 and the functional g(x, y) = g2(f1(x)/x) listed

in Section 3 are satisfied.

In the second case, we assume that f1 is also unknown and that Y1, . . .YM1 i.i.d

realizations are available from the density f1 and X1, . . .XN+M2 i.i.d realizations are

available from the density f2. We construct the following estimator:

Ĝk(f1, f2) =

(
1

N

N∑
i=1

g2(f̂1k(Xi)/f̂2k(Xi),Xi)

)
, (2.2)

where f̂1k and f̂2k are k-NN density estimates constructed from the M1 samples

Y1, . . .YM1 and the M2 samples XN+1, . . .XN+M2 respectively.

2.4.1 Assumptions

Denote the ratio f1(x)/f2(x) by f(x). We again assume that k grows polynomially

in M , i.e. k = Mα for α ∈ (0, 1). We assume that the densities f1, f2 satisfy

(i) that the ratio f be uniformly bounded away from 0 and finite on the set S ′
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of f2, i.e., there exist constants ε0, ε∞ such that 0 < ε0 < ε∞ < ∞ such that

ε0 ≤ f(x) ≤ ε∞ ∀x ∈ S. (ii) have continuous partial derivatives of order 2r in

the interior of the support S where r satisfies the condition 2r(1 − α)/d > 1. We

also assume that the functional g2(x, y) has λ partial derivatives w.r.t. x, where λ

satisfies the condition αλ > 1. Finally we assume that the absolute value of the

functional g2(x, y) and its partial derivatives are strictly bounded away from ∞ in

the range ε0 < x < ε∞ for all y. Let Y denote a random variable with density f2

and define ci(X) = Γ(2/d)((d+ 2)/2)f
−2/d
i (X)tr[∇2(fi(X))], i = 1, 2. Finally, assume

that supx∈(ql,qu) |(g
(r)
2 /r!)2(x, y)|e−3k(1−δ)

< ∞, E[supx∈(pl,pu) |(g
(r)
2 /r!)2(x/p, y)|] < ∞,

for r = 3, λ.

Define SI = SI(f1) ∩ SI(f2). We note that if S ′ ∩ B = φ, then for sufficiently

small values of k/M , S ′ ⊂ SI .

2.4.2 Bias and Variance

Theorem II.4. The bias of the plug-in estimator Ĝk(f1, f2) is given by

B(Ĝk(f1, f2)) = c1

(
k

M

)2/d

+ c2

(
1

k

)

+o

(
1

k
+

(
k

M

)2/d
)
,

where c0, c1 and c2 are constants which depend on the densities f1, f2, the functional g

and the set S ′. The constant c2 is given by c2 = E[1{Y∈S′}f
2(Y)g′′2(f(Y),Y)/2]. Fur-

thermore, c0 = 0 and c1 = E[1{Y∈S′}f(Y)g′2(f(Y),Y)(c1(Y)/f1(Y)− c2(Y)/f2(Y))]

if and only if S ′ ⊂ SI .

Proof. Define f̂(Xi) = f̂1k(Xi)/f̂2k(Xi). The k-NN density estimators f̂1(.) and f̂2(.)

satisfy assumptions A .1 and A .2 (see Appendix C.1). This implies that lemma D.3

holds. This gives,
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E[Ĝ(f1, f2)]−G(f1, f2) = E[1{Z∈S′}(g2(EZ[f̂k(Z)],Z)− g2(f(Z),Z))] + o(1/k)

+E
[
1{Z∈S′}

(
g′2(f(Z),Z)f(Z) + g′′2(f(Z),Z)f(Z)

2
)] (1

k

)
.

We note that

g2(EZ[f̂k(Z)],Z)− g2(f(Z),Z) = g′2(f(Z),Z)(EZ[f̂k(Z)]− f(Z))(1 + o(1))

= g′2(f(Z),Z)(EZ[f̂1k(Z)]/EZ[f̂2k(Z)]− f1(Z)/f2(Z))(1 + o(1))

= g′2(f(Z),Z)(EZ[f̂1k(Z)]/EZ[f̂2k(Z)]− f1(Z)/f2(Z))(1 + o(1))

= g′2(f(Z),Z)f(Z)(h1(Z)/f1Z− h2(Z)/f2Z)

(
k

M

)2/d

(1 + o(1))

where the last but one step follows from (C.2). It follows that

E[1{Z∈S′}(g(EZ[f̂k(Z)],Z)− g(f(Z),Z))]

= c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
.

This concludes the proof.

Theorem II.5. The variance of the plug-in estimator Ĝ(f1, f2) is given by

V(Ĝk(f1, f2)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 = V[1{Y∈S′}g2(f(Y),Y)] and c5 = V[1{Y∈S′}f(Y)g′2(f(Y),Y)].

Proof. The k-NN density estimators f̂1(.) and f̂2(.) satisfy assumptions A .1, A .2

and A .3 (see Appendix C.1). This implies that lemma D.4 holds. This concludes the

proof.
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2.4.3 Central limit theorem

Theorem II.6. The asymptotic distribution of the plug-in estimator Ĝ(f1, f2) is

given by

lim
Δ→0

Pr

⎛
⎝Ĝk(f1, f2)− E[Ĝk(f1, f2)]√

V[Ĝk(f1, f2)]
≤ α

⎞
⎠ = Pr(S ≤ α),

where S is a standard normal random variable.

Proof. Define f̂(Xi) = f̂1k(Xi)/f̂2k(Xi). Define the random variables {YM,i; i =

1, . . . , N} for any fixed M

YM,i =
1{Xi∈S′}(g(̂f(Xi),Xi)− E[1{Xi∈S′}g(̂f(Xi),Xi)])√

V[1{Xi∈S′}g(̂f(Xi),Xi)]
,

Using the fact that f̂1k(x) and f̂2k(Xi) are conditionally independent given x, in

conjunction with (C.4), it is straightforward to show that Cov(YM,i,YM,j) → 0 and

Cov(Y2
M,i,Y

2
M,j) → 0. Applying Lemma E.1 concludes the proof.

2.5 Estimation of f-MI

In this section, we are concerned with the estimation of f-Mutual Information

measures of the form G(f12) =
∫
1{x∈S′}g(f1(x)f2(y)/f12(x, y), (x, y))f12(x, y)dxdy for

smooth functionals g and joint density f12(x) bounded away from 0 and ∞ on the

set S ′, where f1(.) and f2(.) are the marginal densities of f12 along x and y. (Note: x

and y can be of arbitrary dimension, but have to be disjoint partitions). Denote the

N +M i.i.d. realizations from f12 by {Z1, ..,ZN+M} and their marginal components

corresponding to f12 by {Z1, ..,ZN+M} and f12 by {Z1, ..,ZN+M} respectively.
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We consider the following estimator:

Ĝk(f12) =

(
1

N

N∑
i=1

g(f̂1k(Xi)f̂2k(Yi)/ ˆf12k(Zi),Zi)

)
, (2.3)

where ˆf12k, (respectively f̂1k and f̂2k) is the k-NN density estimates constructed from

the M samples Z1, . . .ZM (X1, . . .XM and Y1, . . .YM).

For convenience, we will henceforth adopt the following convention where for a

point z = (x, y), we will use f1(z) to denote f1(x) (respectively f2(z) to denote f2(y)).

Likewise, for a random variable Z = (X,Y), let f̂1(Z) denote f̂1(X) (respectively f̂2(Z)

denote f̂2(Y)).

2.5.1 Assumptions

Denote the ratio f1(x)f2(y)/f12(x, y) = f1(z)f2(z)/f12(z) by f(z). We again as-

sume that k grows polynomially in M , i.e. k = Mα for α ∈ (0, 1). We assume that

the densities f1, f2 satisfy (i) that the ratio f be uniformly bounded away from 0 and

finite on the set S ′ of f2, i.e., there exist constants ε0, ε∞ such that 0 < ε0 < ε∞ <∞

such that ε0 ≤ f(x) ≤ ε∞ ∀x ∈ S. (ii) have continuous partial derivatives of order

2r in the interior of the support S where r satisfies the condition 2r(1 − α)/d > 1.

We also assume that the functional g2(x, y) has λ partial derivatives w.r.t. x, where

λ satisfies the condition αλ > 1. Finally we assume that the absolute value of the

functional g2(x, y) and its partial derivatives are strictly bounded away from ∞ in

the range ε0 < x < ε∞ for all y. Let Y denote a random variable with density f2

and define ci(X) = Γ(2/d)((d + 2)/2)f
−2/d
i (X)tr[∇2(fi(X))], i = 1, 2. Assume that

supx∈(ql,qu) |(g(r)/r!)2(x, y)|e−3k(1−δ)
< ∞, E[supx∈(pl,pu) |(g(r)/r!)2(x/p, y)|] < ∞, for

r = 3, λ.

Define SI = SI(f12) ∩ SI(f1) ∩ SI(f2). We note that if S ′ ∩ B = φ, then for

sufficiently small values of k/M , S ′ ⊂ SI .
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2.5.2 Bias and Variance

Theorem II.7. The bias of the plug-in estimator Ĝk(f12) is given by

B(Ĝk(f12)) = c1

(
k

M

)2/d

+ c2

(
1

k

)

+o

(
1

k
+

(
k

M

)2/d
)
,

where c0, c1 and c2 are constants which depend on the densities f1, f2, the functional g

and the set S ′. The constant c2 is given by c2 = E[1{Y∈S′}f
2(Y)g′′2(f(Y),Y)/2]. Fur-

thermore, c0 = 0 and c1 = E[1{Y∈S′}f(Y)g′2(f(Y),Y)(c1(Y)/f1(Y)− c2(Y)/f2(Y))]

if and only if S ′ ⊂ SI .

Proof. The k-NN density estimators f̂1k(.), f̂2k(.) and f̂12k(.) satisfy assumptions A .1,

A .2, A .3 and A .4(a) (refer section C.1 and section C.2). This implies that lemma

D.5 holds. This concludes the proof.

Theorem II.8. The variance of the plug-in estimator Ĝ(f12) is given by

V(Ĝk(f12)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 = V[1{Y∈S′}g(f(Y),Y)] and c5 = V[1{Y∈S′}f(Y)g′(f(Y),Y)].

Proof. The k-NN density estimators f̂1k(.), f̂2k(.) and f̂12k(.) satisfy assumptions A .1,

A .2, A .3 and A .4(b) (refer section C.1 and section C.2). This implies that lemma

D.6 holds. This concludes the proof.
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2.5.3 Central limit theorem

Theorem II.9. The asymptotic distribution of the plug-in estimator Ĝ(f1, f2) is

given by

lim
Δ→0

Pr

⎛
⎝Ĝk(f1, f2)− E[Ĝk(f1, f2)]√

V[Ĝk(f12)]
≤ α

⎞
⎠ = Pr(Z ≤ α),

where Z is a standard normal random variable.

Proof. Define f̂(Xi) = f̂1k(Xi)̂f2k(Xi)/f̂12k(Xi). Next, define the random variables

{YM,i; i = 1, . . . , N} for any fixed M as

YM,i =
1{Xi∈S′}(g(̂f(Xi),Xi)− E[1{Xi∈S′}g(̂f(Xi),Xi)])√

V[1{Xi∈S′}g(̂f(Xi),Xi)]
,

From (B.47), it follows that the covariance terms Cov(YM,i,YM,j) → 0 and

Cov(Y2
M,i,Y

2
M,j) → 0. Applying Lemma E.1 concludes the proof.

2.6 Bias correction factors

In this section, we restrict our attention to estimation of Shannon and Rényi -

α entropy, divergence and Mutual Information (MI). Previously, Goria et al. [49],

Leonenko et al. [32], Wang et al. [87] and Pocsoz et al. [12] have developed consistent

estimators of these quantities. In this chapter, we provide rates for these estimators

and establish weak convergence of the same. An important distinction in the case of

Shannon and Rényi entropy and divergence estimation is that it suffices for k to grow

polynomially in log(M) (necessary condition for the result on variance to go through)

rather than grow polynomially in M . These results are formally stated below.
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2.6.1 Main results

For a general function g(x, y), if there exist functions g1(k,M) and g2(k,M), such

that

(i) E[g((k − 1)x/Mp, y)] = g(x, y)g1(k,M) + g2(k,M) + o(1/M),

(ii) ((k − 1)/M)E[g′((k − 1)x/Mp, y)p2/d−1] = g′(x, y)(k/M)2/d + o((k/M)2/d),

(iii) lim
k→∞

g1(k,M) = 1,

(iv) lim
k→∞

g2(k,M) = 0, (2.4)

then define the BP-kNN plug-in estimator with bias correction as

Ĝk,BC(f) =
Ĝk(f)− g2(k,M)

g1(k,M)
. (2.5)

2.6.1.1 Bias and Variance

In addition to the assumptions listed in section 2.3.1, assume the growth condi-

tion that k = Θ((log(M))2/(1−δ)) instead of the condition that k = Θ(Mβ). Below

the asymptotic bias and variance of the plug-in estimator with bias correction are

specified.

Theorem II.10. The bias of the BPI estimator Ĝk,BC(f) is given by

B[Ĝk,BC(f)] = c0

(
k

M

)1/d

+ o

((
k

M

)1/d
)
. (2.6)
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Proof.

B(Ĝk,BC(f) = E[Ĝk,BC(f)]−
∫
g(f(x), x)f(x)dx

= (E[g(f̂k(Z),Z)]− g2(k,M))/g1(k,M)−
∫
g(f(x), x)f(x)dx

= E[E[(g(f̂k(Z),X)− g2(k,M))/g1(k,M) | XN ]]−
∫
g(f(x), x)f(x)dx

= E[E[(g(f̂k(X),X)− g2(k,M))/g1(k,M) | XN ], X ∈ S ′]

+E[E[(g(f̂k(X),X)− g2(k,M))/g1(k,M) | XN ], X /∈ S ′]

−
∫
g(f(x), x)f(x)dx

= I + II. (2.7)

Now, by (B.34),

I = E[g(f(X),X) +
g′(f(X),X)h(X)

g1(k,M)
(k/M)2/d

=
c1

g1(k,M)

(
k

M

)2/d

+
c3

g1(k,M)
+ o

((
k

M

)2/d
)
.

Also, by (2.4), g1(k,M) = 1 + o(1). This implies that

I = c1

(
k

M

)2/d

+ c3 + o

((
k

M

)2/d
)
. (2.8)

On the other hand, for Z ∈ S − S ′, we have E[g(f̂k(Z), Z)− g(f(Z), Z)] = O(1).

This implies that,

II = E[1{Z∈S−S′}g(f̂k(Z),Z)− g(f(Z),Z)]

= E

[
E[g(f̂k(Z), Z)− g(f(Z), Z)] | 1{Z∈S−S′}

]
× Pr(Z /∈ S ′)

= O(1)×O((k/M)1/d) = O((k/M)1/d). (2.9)
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This concludes the proof.

Theorem II.11. The variance of the plug-in estimator Ĝk,BC(f) is given by

V[Ĝk,BC(f)] = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
.

Proof. Under the logarithmic growth condition k = O((log(M))2/(1−δ)), g2(k,M) =

o(1) and g1(k,M) = 1+o(1) by assumption (2.4). Theorem II.11 follows by observing

that Ĝk,BC(f) = (Ĝk(f)− g1(k,M))/g2(k,M) and invoking Theorem II.2 .

2.6.1.2 CLT

Theorem II.12. The asymptotic distribution of the plug-in estimator Ĝk,BC(f) is

given by

lim
Δ→0

Pr

⎛
⎝Ĝk,BC(f)− E[Ĝk,BC(f)]√

V[Ĝk,BC(f)]
≤ α

⎞
⎠ = Pr(S ≤ α),

where S is a standard normal random variable.

Proof. Under the logarithmic growth condition k = O((log(M))2/(1−δ)), g2(k,M) =

o(1) and g1(k,M) = 1+o(1) by assumption (2.4). Theorem II.12 follows by observing

that Ĝk,BC(f) = (Ĝk(f)− g1(k,M))/g2(k,M) and invoking Theorem II.3.

2.6.1.3 MSE

Theorem IV. 1 specifies the bias of the plug-in estimator Ĝk,BC(f) as Θ((k/M)2/d).

Theorem IV. 2 specifies the variance as Θ(1/N + 1/M). By making k increase loga-

rithmically in M , specifically, k = O((log(M))2/(1−δ)) for any value δ ∈ (2/3, 1), the

MSE is given by the rate Θ(((log(T ))2/(1−δ)/T )4/d). This estimator therefore has a

faster rate of convergence in comparison to both Baryshnikovet al.’s estimators ĤS

and Îα,S (MSE = Θ(T−2/(1+d))) and Leonenkoet al.’s and Goria et al.’s estimators H̃S

34



and Ĩα,S (MSE = Θ(T−2/d)). Experimental MSE comparison of Leonenko’s estimator

against this estimator in Section V shows the MSE of this estimator to be significantly

lower. Finally, note that such bias correction cannot be applied for general entropy

functionals, and the bias correction factors cannot in general be incorporated. In the

next section, the application of bias correction factors for estimation of Shannon and

Rényi entropies is illustrated.

2.6.2 Shannon and Rényi entropy estimation

For the case of Shannon entropy (g(u) = − log(u)), it can be verified that g1(k,M) =

1, g2(k,M) = ψ(k)− log(k− 1) satisfy (2.4). Similarly, for the case of Rényi entropy

(g(u) = uα−1), g1(k,M) = (Γ(k)/Γ(k + 1 − α))(1/(k − 1)α−1), g2(k,M) = 0 satisfy

(2.4).

Let Ĥk be the Shannon entropy estimate Ĝk(f) with the choice of functional

g(x) = − log(x). Let Î
(α)
k be the estimate of the Rényi α-integral estimate Ĝk(f) with

the choice of functional g(x) = xα−1. Define Ȟk = Ĥk + [log(k − 1)−Ψ(k − 1)] and

Ǐ
(α)
k = [(Γ(k+(1−α))/Γ(k))(k−1)α−1]−1Î

(α)
k . Also define the Rényi entropy estimator

to be Ȟ
(α)
k = (1−α)−1 log(Ǐ

(α)
k ). We note that the estimators Ȟk and Ȟ

(α)
k correspond

to data-split versions of the Shannon and Rényi entropy estimators of Goria et al. [32]

and Leonenko et al. [49] respectively.

Because [(Γ(k + (1− α))/Γ(k))(k − 1)α−1] → 1 and Ψ(k − 1)− log(k − 1) → 0 as

k → ∞, the estimators Ȟk and Ȟ
(α)
k will have identical variance up to leading terms

as Ĥk and Ĥ
(α)
k respectively. Likewise, Ȟk and Ȟ

(α)
k , when suitably normalized, will

converge to the same distribution as the estimators Ĥk and Ĥ
(α)
k respectively.

From Theorem 2.1, it immediately follows that the bias of the estimators Ĥk and

Ĥ
(α)
k is O((k/M)1/d + (1/k)). On the other hand, from Theorem II.10, it is clear that
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the bias of the estimators Ȟk and Ȟ
(α)
k is given by

B(Ȟk) = c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
,

and

B(Ȟ
(α)
k ) = c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
,

In this case, the optimal choice of k needs to only grow logarithmically with M

(necessary condition for the result on variance to go through). The minimum bias for

optimal choice of k therefore reduces from O(M−1/(1+d)) to O(M−1/d). The optimal

choice of N in this case is given by Nopt = Θ(M(log(M)/M)(1/2−1/d)).

2.6.3 Estimation of K-L and Rényi divergence

We note that K-L and Rényi divergence are special cases of f -divergence with the

choice of functionals g2(x) = − log(x) and g2(x) = xα−1 respectively. Let D̂k be the K-

L divergence estimate Ĝk(f1, f2) with the choice of functional g2(x) = − log(x). Sim-

ilarly, let ÎD
(α)

k be the estimate of the Rényi α divergence integral estimate Ĝk(f1, f2)

with the choice of functional g2(x) = xα−1.

As in the case of Shannon and Rényi entropy estimation, it is possible to define

corrected estimators which reduce bias from O(M−2/(2+d)) to O(M−2/d). We describe

these corrections next. Define Ďk = D̂k + [log(k − 1) − Ψ(k − 1)] and ǏD
(α)

k =

[(Γ(k+(1−α))/Γ(k))(k−1)α−1]−1ÎD
(α)

k . Also define the Rényi divergence estimator to

be Ď
(α)
k = (1−α)−1 log(ǏD

(α)

k ). We note that the estimators Ďk and Ď
(α)
k correspond

to data-split versions of the Shannon and Rényi divergence estimators of Wang et

al. [87] and Poczos et al. [12] respectively.

Because [(Γ(k + (1− α))/Γ(k))(k − 1)α−1] → 1 and Ψ(k − 1)− log(k − 1) → 0 as

k → ∞, the estimators Ďk and Ď
(α)
k will have identical variance up to leading terms
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as D̂k and D̂
(α)
k respectively. Likewise, Ďk and Ď

(α)
k , when suitably normalized, will

converge to the same distribution as the estimators D̂k and D̂
(α)
k respectively.

From Theorem 2.3, it immediately follows that the bias of the estimators D̂k and

D̂
(α)
k is O((k/M)1/d + (1/k)). On the other hand, from Theorem II.10 it is clear that

the bias of the estimators Ď and Ďα is O((k/M)1/d). The minimum bias for optimal

choice of k therefore reduces from O(M−2/(1+d)) to O(M−2/d).

2.6.4 Estimation of Shannon mutual information

As in the case of Shannon and Rényi entropy and divergence estimation, it is

straightforward to define corrected MI estimators in an identical manner by using

correction factors described above to reduce estimator bias from O(M−1/(1+d)) to

O(M−1/d) .

2.7 Comparison with existing results

Recently, Baryshnikov et al. [6] have developed asymptotic convergence results for

estimators of f -divergence G(f0, f) =
∫
f(x)φ(f0(x)/f(x))dx for the case where f0 is

known. Their estimators are based on sums of functionals of k-NN distances. They

assume that they have T i.i.d realizations from the unknown density f , and that f

and f0 are bounded away from 0 and ∞ on their support. The general form of the

estimator of Baryshnikov et al. is given by

Ĝb(f) =
1

T

T∑
i=1

g(f̂kS(Xi)),

where f̂kS(Xi) is the standard k-NN density estimator [55] estimated using the T − 1

samples {X1, ..,XT} − {Xi}.

We note that the standard k-NN density estimates f̂kS(.) at {X1, . . . ,XT} can

be determined by constructing a k-nearest neighbor graph with the k-the nearest
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neighbor edge from each Xi ∈ {X1, . . . ,XT} linking the vertices.

Baryshnikov et al. do not analyze the bias of their estimator. They show that

the leading term in the variance is given by ck/T for some constant ck which is a

function of the number of nearest neighbors k. Finally they show that their estimator

is asymptotically normal.

Wang et al. [87] propose k-NN based estimators to estimate f -divergence for the

case when we have i.i.d samples from the unknown densities f0, f . The general form

of the estimator of Wang et al. is given by

Ĝw(f) =
1

T

T∑
i=1

g(f̂1kS(Xi)/f̂2kS(Xi)),

where f̂ikS(Xi), i = 1, 2 are the standard k-NN density estimators estimated using

the T1 − 1 and T2 samples from f0 and f respectively.

Wang et al. do not require the assumption that f and f0 are bounded away from

0 and ∞ on their support. However, they only show that their estimator is asymp-

totically consistent and do not provide rates of convergence or results on asymptotic

normality.

In contrast, we assume higher order conditions on continuity of the density f

and the functional g (see Section 3) as compared to Baryshnikov et al. and provide

results on bias, variance and asymptotic distribution of data-split k-NN functional

estimators of entropies of the form G(f) =
∫
1x∈S′g(f(x))f(x)dx. In addition, we

have been able to extend our estimator and corresponding results on bias, variance

and asymptotic distribution to estimate f -divergence for both cases (i) f0 is known

and we have i.i.d. samples from the unknown density f , or (ii) we have i.i.d samples

from the unknown densities f0, f . Note that we also require the assumption that f

and f0 are bounded away from 0 and ∞ on their support. Because we are able to

establish both the bias and variance of our estimator, in turn, we are able to specify
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Figure 2.4: Comparison of average runtime of BP-kNN and Baryshnikov’s estimator
to estimate entropy as a function of dimension d. The runtime of BP-
kNN, due to its bipartite nature, is superior to Baryshnikov’s estimator.

optimal choice of free parameters k,N,M for minimum MSE. Finally, we are able to

establish bias, variance and asymptotic distribution of MI estimators.

For estimating the functional G(f) =
∫
g(f(x))f(x)dx, we can use the estimator

of Baryshnikov by restricting f0 to be uniform. From our analysis in this chapter,

under the assumption that f is two times continuously differentiable, we can establish

the bias of Ĝb(f) to be Θ((k/T )1/d + 1/k). It is clear from our expression for the

bias that the estimator of Baryshnikov will be unbiased iff k → ∞ as T → ∞.

Furthermore, the optimal rate of growth of k is given by k = T 1/(1+d). Furthermore,

we can show that ck = Θ(1) and therefore the overall optimal bias and variance of

Ĝb(f) is given by Θ(T−1/(1+d)) and Θ(T−1) respectively.

We also note that our estimator requires construction of bipartite k-NN graphs on

the data split samples whereas the methods of Baryshnikov et al. require construction

of directed k-NN graphs on all the T samples. Computationally, our method requires
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Θ(dNM) time as compared to Θ(dT 2) for the estimators of Baryshnikov et al..

We have shown that for optimal MSE, Nopt = O(T (3+d)/(2(1+d))) which in turn

implies that Mopt = Θ(T ). Therefore the overall computation time in our case is

Θ(dT (5+3d)/2(1+d)), which is o(dT 2). To illustrate this, we plot the average runtime of

Baryshnikov’s estimator and our estimator as a function of sample size d in Fig. 2.4.

The simulations were run using Matlab 7.6 on a Intel Pentium II processor. We also

plot the percentage ratio of the optimal N = Nopt over the number of samples T .

Because of the decreasing ratio of Nopt/T with increasing dimension, the run-time

of our estimator decreases relative to the run-time of Baryshnikov’s estimator. We

also exploit the bipartite nature of our k-NN graph MV estimators (see Chapter 6)

to increase computational efficiency by an order of magnitude in the training sample

size as compared to standard k-NN graphs.

Additionally, the bipartite nature of our estimators enables us to employ boundary

correction to reduce MSE. To our knowledge, it is not straight forward to propose

boundary corrected estimators to improve bias on standard k-NN graphs defined over

all samples. For details, please see Chapter 3. The estimators of Baryshnikov et al.,

the entropic graph estimator of Hero et al. [38] and the k-nearest neighbor estimator of

Leonenko et al. [32] are examples which fall under the category of estimators defined

on standard k-NN graphs. For comparison of MSE performance of these estimators,

please see section 3.5.4.

Finally, we note that methods of proof of Baryshnikov et al. use stabilization

methods for establishing asymptotic distributions of sums of weakly dependent terms

in geometric probability. On the other hand, our methods of proof for determining

MSE and CLT are based on statistical properties of k-NN neighborhoods and ex-

changeability respectively. The generality of our method of proof (lemma B.1-B.6)

makes it possible to extend results on MSE and asymptotic normality for kernel

density plug-in estimators by using the results established in Appendix A for kernel
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density estimators.

2.7.1 Experimental validation of theory for Shannon entropy

We validate the theory of section 2.6 using using the 2 dimensional mixture density

fm = pfβ+(1−p)fu; fβ: Beta density with parameters a=4,b=4; fu: Uniform density;

Mixing ratio p = 0.8. First we estimate Shannon entropy using the estimator Ȟk.

Constants ci; i = 0, 1..5 are estimated using Monte-Carlo methods [69].

In Fig. 2.7.1 we, we plot experimentally obtained and theoretically computed bias

for finite N ,M with N+M = 20, 000. In the next experiment, we plot experimentally

obtained and theoretically computed variance for fixed T , as N is varied. The results

are shown in Fig. 2.7.1.

Finally, we show the Q-Q plot of the normalized MI estimate and the standard

normal distribution in Fig. 2.7.1. The linear Q-Q plot validates our theorem on

asymptotic normality of the plug-in estimator. Finally, using the CLT, we plot the

95% confidence intervals for the entropy functional as a function of sample size in

Fig. 2.7.1.

2.8 Anomaly detection in networks

We apply our theory to the problem of anomaly detection in wireless sensor net-

works. Our objective is not an extensive comparison with competing anomaly de-

tection methods, but rather to demonstrate the applicability of our theory to a real

world application. The experiment was set up on a Mica2 platform, which consists of

14 sensor nodes randomly deployed inside and outside a lab room. Wireless sensors

communicate with each other by broadcasting and the received signal strength (RSS),

defined as the voltage measured by a receiver’s received signal strength indicator cir-

cuit (RSSI), was recorded for each pair of transmitting and receiving nodes. There

were 14 × 13 = 182 pairs of RSSI measurements over a 30 minute period, and each
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Figure 2.5: Comparison of theoretically predicted bias with experimentally observed
bias for varying k. The experimentally observed bias agrees well with the
theoretically predicted bias in Theorem II.10, which states that the bias
is a monotonically increasing function of k.
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Figure 2.6: Comparison of theoretically predicted variance with experimentally ob-
served variance for varying N . The experimentally observed variance
agrees well with the theoretically predicted variance in Theorem II.11.

sample was acquired every 0.5 sec. During the measuring period, students walked

into and out of lab at random times, which caused anomaly patterns in the RSSI

measurements. Finally, a web camera was employed to record activity for ground

truth.
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points validates the Central limit theorem.
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Figure 2.8: Predicted confidence intervals on Shannon entropy for varying sample size
T using the Central limit theorem II.12. The confidence intervals decrease
with sample size as expected.

The mission of this experiment is to use the 182 RSS sequences to detect any

intruders (anomalies). To remove the temperature drifts of receivers we pre-process

the data by removing their local mean values. Let yi[n] be the pre-processed n-th

sample of the i-th signal and denote y[n] = (y1[n], . . . , y182[n])
′.
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We now estimate the Shannon entropy for each 1-dimensional, 182 sample se-

quence y[n] using the BP-kNN estimator Ȟk. Denote the BP-kNN entropy estimate

at each time instant n by H̃[n]. We detect anomalies by thresholding the entropy

estimate H̃[n]. A time sample n is regarded to be anomalous if the entropy estimate

Ȟk[n] exceeds a specified threshold. We seek to choose the threshold appropriately

for achieving a desired false alarm rate.

To this end, we estimate the entropies Ȟk[n] for the time instants n = 1, . . . , 50

when no anomalies were known to have occurred and subsequently estimate the mean

μ and variance σ2 of the entropy estimates for this nominal time interval n ∈ [1, 50].

Using these estimates of the mean and variance, we use the central limit theorem II.3

to set the threshold tα for a given false alarm rate α as tα = μ+ zα/2σ where zα/2 is

the z-score corresponding to coverage 1−α. This threshold tα is then used to detect

anomalies at time instants n > 50.

We note that the data in this experiment is not i.i.d. due to dependence between

successive time samples, and therefore does not conform to assumptions of our the-

ory. This dependence results in marginally higher entropy estimates at non-anomalous

time instants immediately preceding and succeeding anomalous time intervals as com-

pared to entropy estimates at nominal time instants farther away from anomalous

activity. This is corroborated by Fig. 2.9, which shows the ground truth and the

normalized entropy estimator response (Ȟk[n]− tα with false alarm rate α = 0.05) as

a function of time.

Desired and observed false alarm rates
Desired .20 .10 .05 .02 .01 .005
Observed .269 .111 .062 .026 .015 .009

The desired and corresponding observed false alarm rates in this experiment are

shown in the table above. Despite the non i.i.d. nature of the data due to dependence

between time samples, the observed false alarm rates is only marginally higher than
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Figure 2.9: Entropy estimate H̃ [n] evaluated using BP-kNN estimator Ȟk, imple-
mented as a scan statistic over time n for anomaly detection in wireless
ad hoc sensor network experiment. Ground truth indicator function (in
blue) indicates when anomalous activity occurred. The entropy estimator
detects these anomalies whenever the entropy estimate crosses the level
α = 0.05 threshold t0.05 analytically determined by the CLT in Theo-
rem II.3.

the desired false alarm rate. This result suggests that our theory can be applied to

problems where there is dependence in the data.

ROC curves corresponding to the BP-kNN entropy estimator are shown in Fig. 2.10

in addition to the ROC curves using the subspace method of Lakhina et al. [45] and

the covariance based estimator of Chen et al. [17]. It is clear that the detection

performance using the entropy estimator is marginally better than the subspace and

covariance based methods of Lakhina et al. and Chen et al. respectively. The Area

under the ROC curves were found to be 0.9784, 0.9722 and 0.9645 for the entropy,

covariance and subspace based anomaly detection methods respectively.
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Figure 2.10: ROC curves for BP-kNN entropy estimate, covariance and subspace
based anomaly detection. The performance of the BP-kNN entropy
based method is the best as measured by area under the curve (0.9784
and compared to 0.9722 and 0.9645).

2.9 Discussion

We proposed a class of data-split k-NN density plug-in estimators for smooth

non-linear functionals of densities. We derived the bias, variance and mean square

error of the estimator in terms of the sample size, the dimension of the samples

and the underlying probability distribution. In addition, we developed a central

limit theorem for these estimators. We verified the validity of our theorems through

simulations and established that the theory can be used to specify optimal estimator

tuning parameters such as bandwidth and optimal partitioning of data samples.

Using the theory presented in this chapter one can tune the parameters of the

plug-in estimator to achieve minimum asymptotic estimation MSE. Furthermore, it

can be used to specify the minimum necessary sample size required to obtain req-

uisite accuracy. This in turn can be used to predict and optimize performance in
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applications like structure discovery in graphical models and dimension estimation

for support sets of low intrinsic dimension. These applications are described in detail

in future chapters.
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CHAPTER III

Boundary compensation

3.1 Introduction

In chapter 2, we analyzed data-split bipartite k-NN graph estimators of entropy

and divergence functionals of densities. The generic expression for the bias of these

estimators was given by c0(k/M)1/d + c1(k/M)2/d. We showed that the source of

the leading term c0(k/M)1/d is due to the fact that if a probability density function

has bounded support, the k-NN balls centered at points close to the boundary are

often truncated at the the boundary. As a consequence of this truncation, the k-NN

density estimates near the boundaries of the support suffer from significant bias. In

this chapter, we will explore the source of this bias term due to truncation in further

detail and present an modification of bipartite k-NN graphs which will reduce the

leading term in the bias to c1(k/M)2/d.

Consider a large random sample from a continuous multivariate density that is

zero outside a bounded region, which is the support of the density. When one con-

structs the k-NN graph on such a sample the local neighborhoods of the graph behave

differently near the boundary of the support. For points well inside the boundary,

the k-NN neighbors will be spread almost uniformly around the point. On the other

hand, for points close to the boundary of the support, the k-NN neighbors are dispro-

portionately distributed away from the boundary. This phenomenon becomes more
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striking as the dimension of the multivariate density increases. As a result, the radius

of the k-NN neighborhoods tend to be disproportionately larger near the boundary as

compared to neighborhoods in the interior. These ideas will be formalized in Section

2 using analysis of the bias of k-NN density estimates.

The bias of finite supported density estimator performance has been previously

studied in [42, 44] for kernel density estimates. Corrections have been suggested,

primarily for the univariate case. These corrections also assume that the support is

known apriori. In this chapter, we propose a method for compensating for the bias of

k-NN density estimates for general multivariate data without any prior knowledge of

the support of the density. Motivated by our analysis of k-NN density estimators, we

suggest a corrected version of data-split k-NN plug-in estimators which compensates

for k-NN graph behavior near the boundary of the support.

Throughout this chapter, we focus on the regime where the radius of the k-NN

ball (which is O((k/M)1/d) [55]) is small. This regime is equivalent to having a

large number of samples relative to the dimension d. We note that k-NN methods

will work poorly in high-dimensional spaces under small sample sizes and the above

operating regime is necessary for k-NN methods to be effective. The consistency of

k-NN estimation depends on the assumption that the size of the k-NN neighborhood

becomes small relative to the modulus of continuity of the underlying probability

density that generates the points. Thus one generally requires a large number of

samples before the small estimation error behavior of a consistent estimator kicks-in.

Specifically, as compared to low dimension sample space, for high dimensional samples

one needs an exponentially greater number of samples to achieve equivalent bias. This

follows from the fact that k-NN methods [55] require that (k/M)1/d → 0 and k → ∞

for consistency and that the optimal rate is obtained by equalizing (k/M)2/d and 1/k.
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3.2 k-NN density estimators

In this section, we briefly review properties which have been established in the

appendices of k-NN density estimators in the interior of the support. We then contrast

this behavior to k-NN density estimators near the boundary of the support.

3.2.1 Concentration inequality for coverage probability

Define the coverage function as P(X) =
∫
Sk(X)

f(Z)dZ. Define spherical regions

Sr(X) = {Y ∈ S : d(X, Y ) ≤ r}. It has been previously established that P(X) has

a beta distribution with parameters k, M − k + 1. [55]. Using Chernoff inequalities,

we can then establish the following concentration inequality. For 0 < p < 1/2,

Pr(|P(X)− k/M | < pk/M) = O(e−p2k/2). (3.1)

Let 	(X) denote the event (1− pk)k/M < P(X) < (pk + 1)k/M where pk = 1/(kδ/2)

with δ ∈ (2/3, 1). Then, 1−Pr(	(X)) = O(e−p2kk/2) = o(1/ka) for arbitrarily large val-

ues of a. Using the logarithmic growth condition on k which specifies k = O(logM),

we have 1− Pr(	(X)) = E[1�c(X)] = o(1/Ma) for arbitrarily large values of a.

3.2.2 Interior points

Let S ′′ = SI and observe that Pr(X /∈ S ′) = o(1), where X is random variable

with density f . This implies that given the event 	(X), the k-NN neighborhoods

of points X ∈ S ′′ will lie completely inside the domain S. Therefore the density f

has continuous partial derivatives of order 2r in the k-NN ball neighborhood for each

X ∈ S ′′ where r satisfies the condition 2r(1− α)/d > 1.
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3.2.3 Taylor series expansion of coverage probability

Let X ∈ S ′′. Conditioned on the event 	(X), the k-NN region Sk(X) is a subset

of S. The coverage function P(X) can then be represented in terms of the volume of

the k-NN ball Vk(X) by expanding the density f in a Taylor series about X [55].

P(X) =

∫
Sk(X)

f(z)dz

= f(X)Vk(X) + c(X)V
1+2/d
k (X)

+

r−1∑
i=2

ci(X)V
1+2i/d
k (X) + cr(X̃)V

1+2r/d
k (X),

where c(X) = Γ(2/d)(n+2
2
)tr[∇2(f(X))] and cr(X̃) is the coefficient of the reminder

term. Also define h(X) = c(X)f−2/d(X). Note that r satisfies the condition 2r(1 −

α)/d > 1. Rearrange terms to obtain the following representation of 1/Vk(X) [55]

1

Vk(X)
=
f(X)

P(X)
+

h(X)

P1−2/d(X)

+
∑
t∈T

ht(X)

P1−t(X)
+ hr(X), (3.2)

where T is some countable set with inf{T } = 4/d and hr(X) = o(1/P1−2r/d(X)).

3.2.4 Bias of k-NN density estimates in interior

Finally, we analyze the bias of the k-NN density estimate which, unlike other

central moments, cannot be obtained using (B.26). Let X ∈ S ′′. Using the Taylor

series expansion (B.13), it is shown in [55] that the bias of the k-NN density estimate

is given by

E[f̂k(X)]− f(X) = h(X)

(
k

M

) 2
d

+ o

(
k

M

) 2
d

. (3.3)

Using these properties, we had showed that for any set S ′′ ⊂ SI , which is in the
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interior of the support, the following properties hold:

E[1{X∈S′′}f̂k(X)]− f(X) = E[1{X∈S′}h(X)]

(
k

M

)2/d

+ o

(
k

M

)2/d

. (3.4)

3.2.5 Bias of k-NN density estimator near boundary

If a probability density function has bounded support, the k-NN balls centered

at points close to the boundary are often truncated at the the boundary as shown in

Fig. 3.1. Let

αk(X) =

∫
Sk(X)∩S dZ∫
Sk(X)

dZ

be the fraction of the volume of the k-NN ball inside the boundary of the support.

Also define Vk,M(X) to be the k-NN ball volume in a sample of size M . For interior

points X ∈ S ′′, with high probability, αk(X) = 1, while for boundary points αk(X)

can range between 0 and 1, with αk(X) closer to 0 when the points are closer to the

boundary. For boundary points we then have

E[f̂k(X)]− f(X) = (1− αk(X))f(X) + o(1). (3.5)

Therefore the bias is much higher at the boundary of the support (O(1)) as compared

to its interior (O((k/M)2/d)) (B.32). Furthermore, the bias at the support boundary

does not decay to 0 as k/M → 0.

As a result, if the set S ′ has non-empty intersection with the boundary of the

support, we have

E[1{X∈S′}(f̂k(X)− f(X))] = h0

(
k

M

)1/d

+ E[1{X∈S′∩SI}h(X)]

(
k

M

)2/d

+ o

(
k

M

)1/d

,

for some constant h0 which depends on the density f and the support S.

52



Figure 3.1: k-NN balls centered around a subsample of 2D uniformly distributed points.
Note that the k-NN balls centered at points close to boundary are truncated
by the boundary.

3.3 Boundary corrected k-NN density estimates

We have shown that the bias of k-NN density estimates f̂k(.) in the interior of the

density is of order O((k/M)2/d) while the bias near the boundary is of order O(1).

We now describe a boundary corrected density estimator f̃k(.) which has bias of order

O((k/M)2/d) everywhere.

As a first step, we will identify interior points IN among the set of points among

XN = {X1, . . . ,XN} which are guaranteed to lie within the set S ′′ with high prob-

ability. Define the set by BN = XN − IN . Note that the bias of the standard k-NN

density estimate is of order O((k/M)2/d) for points X ∈ IN .

Next, to compensate for the bias due to truncation, we modify the density estima-

tor at the boundary points BN by using boundary corrected k-NN density estimates.

We describe these steps in detail.
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3.3.1 Boundary point detection

In this section, we will identify interior points IN while exclusively using the set

XN = {X1, . . . ,XN}, with high probability. The fact that the detection of these

points is independent of XM = {XN+1, . . . ,XN+M} is crucial for proving consistency

of the proposed method.

Define Vk,M(X) := k
Mαk(X)f(X)

. Let p(k,M) be any positive function satisfying

p(k,M) = Θ((k/M)2/d)+1/kδ/2. From the concentration inequality (B.1) and Taylor

series expansion of the coverage function (B.13), for small values of k/M , we have

1− Pr

(∣∣∣∣Vk,M(X)

Vk,M(X)
− 1

∣∣∣∣ ≤ p(k,M)

)
≤ o(M−a).

To detect the interior points IN , we construct a standard K-NN graph on XN where

K = 
k×(N/M)�. By the concentration inequality (B.1), this choice of K guarantees

that the size of the 2k-NN ball in the partitioned sample is approximately the same

as the the size of the K-NN ball in the N sample with high probability 1− o(1/Na).

Using the K-NN graph, for each sample X ∈ XN , we compute the number of

points in XN that have X as a l-th nearest neighbor (l-NN), l = {1, . . . , K}. Denote

this count as count(X). Then, for any X ∈ XN ,

1− Pr

(∣∣∣∣VK,N(X)

VK,N(X)
− 1

∣∣∣∣ ≤ p(K,N)

)
≤ o(N−a). (3.6)

This implies that, with high probability, the radius of the K-NN ball at X concen-

trates around (VK,N(X)/cd)
1/d. Let Y be the l-nearest neighbor of X, l = {1, . . . , K}.

Then Y can be represented as Y = X +RK(X)u where u is an arbitrary vector with

||u|| ≤ 1.

For X to be one of the K-NN of Y it is necessary that RK(Y ) ≥ ||Y − X|| or

equivalently, RK(Y )/RK(X) ≥ ||u||. Using the concentration inequality (3.6) for
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RK(X) and RK(Y ), a sufficient condition for this is

αK(X)f(X)

αK(Y )f(Y )
(1− 2p(K,N)) ≥ ||u||. (3.7)

For X ∈ BT , αK(X) < 1 with probability 1 − o(1/Ma). On the other hand, for a

majority of the interior points X ∈ IN (of fraction (K/N)1/d) αK(X) = 1 with high

probability 1− o(1/Ma). This implies that X will be one of the K-NN of Y provided

||u|| ≤ 1− 2p(K,N). This implies that count(X) ≥ K(1− 2p(K,N)).

It is therefore clear that the measure count(X) is higher for points in the interior

X ∈ S ′′ as compared to points close to the boundary B. For the specific choice

S ′′ = SI , IN and BN can then be detected as follows. Sort the array {count(X);X ∈

XN} in ascending order and assign the top κN points in this sorted array to be

the set BN , where κ is the fraction κ = ε2∞(k/M)1/d. Algorithm 1, shown below,

codifies this sketch into a precise procedure. Having detected the boundary points,

Algorithm 1 Detect boundary points BN
1. Construct K = k ×N/M-NN tree on XN
2. Compute count(X) for each X ∈ XN
3. Sort array {count(X);X ∈ XN} in ascending order
4. Detect boundary points BN : Assign top κN points in sorted array to the set BN

we suggest replacing the standard k-NN density estimates at these points which suffer

from bias of O(1), with k-NN density estimates in the interior. Fig. 3.3.1 illustrates

an instantiation of Algorithm 1 applied to detection of boundary points and pairing

of boundary points with interior points in a uniform sample over a square support

region.

3.3.2 Boundary corrected density estimator

Here the boundary corrected k-NN density estimator is defined and its asymptotic

rates are computed. The proposed density estimator corrects the k-NN ball volumes
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Figure 3.2: Detection of boundary points, and their closest interior neighbors, for
realizations drawn from and 2d beta distribution. Clearly, the algorithm 1
identifies the boundary points in this example.

for points that are close to the boundary. To estimate the density at a boundary

point X ∈ BN , we find a point Y ∈ IN that is close to X. Because of the proximity

of X and Y, f(X) ≈ f(Y). We can then estimate the density at Y instead and use

this as an estimate of f(Y). This informal argument is made more precise in what

follows.

Consider the corrected density estimator f̃k defined in (3.8). For each boundary

point Xi ∈ BN , let Xn(i) ∈ IN be the interior sample point that is closest to Xi. The

corrected density estimator f̃k is defined as follows.

f̃k(Xi) =

⎧⎪⎨
⎪⎩

f̂k(Xi) {Xi ∈ IN}

f̂k(Xn(i)) {Xi ∈ BN}
(3.8)

This estimator has bias of order O((k/M)1/d), which can be shown as follows. Let X

denote Xi for some fixed i ∈ {1, .., N}. Also, let X−1 = argminx∈S′ d(x,X).
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Given XN , if X ∈ IN , then by (B.32),

E[f̃k(X)] = E[f̂k(X)] = f(X) +O((k/M)2/d) +O(C(k)).

Next consider the alternative case X ∈ BN . Let Xn ∈ IN be the closest interior

point toX. Define h = X−Xn. h can be rewritten as h = h1+h2, where h1 = X−X−1

and h2 = X−1 − Xn. Since X ∈ BN implies that X ∈ S − S ′ with probability 1 −

o(1/M), consequently ||h1|| = ||X−X−1|| = O((k/M)1/d) with probability 1−o(1/M).

Again with probability 1−o(1/M), Xn ∈ S ′ and consequently ||h2|| = ||X−1−Xn|| =

o((k/M)1/d). This implies that ||h|| = O((k/M)1/d). Now,

f(X) = f(Xn) +O(||h||).

If Xn is located in the interior S ′, by (B.32),

E[f̂k(Xn)] = f(Xn) +O((k/M)2/d) + o(1/M), (3.9)

and therefore

E[f̃k(X)] = E[f̂k(Xn)] + o(1/M)

= f(Xn) +O((k/M)2/d) + o(1/M)

= f(X) +O(||h||) +O((k/M)2/d) + o(1/M)

= f(X) +O((k/M)1/d) + o(1/M), (3.10)

where the o(1/M) accounts for error in the case of the event that Xn(i) /∈ S ′. This

implies that the corrected density estimate has lower bias as compared to the stan-

dard k-NN density estimate (compare to (B.32) and (C.1)). In particular, boundary

compensation has reduced the bias of the estimator at points near the boundary from

57



O(1) to O((k/M)1/d) + o(1/M).

3.3.3 Properties of boundary corrected density estimator

By section 3.3.1, IN ∈ S ′ with probability 1 − o(1/M). The results on bias,

variance and cross-moments of the standard k-NN density estimator f̂k derived in the

previous Appendix for points X ∈ S ′ therefore carry over to the corrected density

estimator f̃k for points IN with error of order o(1/M).

In the definition of the corrected estimator f̃k in (3.8), f̂k(Xn(i)) is the standard

k-NN density estimates and Xn(i) ∈ S ′ . It therefore follows that the variance and

other central and cross moments of the corrected density estimator f̃k will continue

to decay at the same rate as the standard k-NN density estimator in the interior, as

given by (B.36) and (B.37).

Given these identical rates and that the probability of a point being in the bound-

ary region S − S ′ is O((k/M)1/d) = o(1), the contribution of the boundary region

to the overall variance and other cross moments of the boundary corrected density

estimator f̃k are asymptotically negligible compared to the contribution from the in-

terior. As a result we can now generalize the results from Appendix A on the central

moments and cross moments to include the boundary regions as follows. Denote

f̃k(X)− EX [f̃k(X) | X] by e(X).

3.3.3.1 Central and cross moments

For positive integers q, r < k

E[γ(X)eq(X)] = 1{q=2}E
[
γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
, (3.11)
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Cov[γ1(X)eq(X), γ2(Y)er(Y)]

= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M
+ o(1/M)

)

+ 1{q+r>2}

(
O

(
1

k((q+r)δ/2−1)M

)
+O(k

2/d
M /M) +O(1/M2)

)
. (3.12)

Next, we derive the following result on the bias of boundary corrected estimators.

3.3.3.2 Bias

For k > 2,

E[γ(E[f̃k(X) | X])− γ(f(X)))] = E

[
E

[
(γ(f̃k(X))− γ(f(X))) | XN

]]
= E

[
E

[
1{X∈IN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
+E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]
= I + II. (3.13)

From (B.32), and Pr(X ∈ BN ) = O((k/M)1/d), we have

I = E [γ′(f(X))h(X)]

(
k

M

)2/d

+ o

(
k

M

)2/d

. (3.14)

Next, we will now derive II.

II = E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]

= E

[
E

[
1{X∈BN }(γ(f(Xn))− γ(f(X))) +O

(
k

M

)2/d

| XN

]]
, (3.15)

where the last step follows by (3.9). Let us concentrate on the inner expectation

now. By section 3.3.1, we know that with probability 1 − o(1/M), if X ∈ BN , then

X ∈ S − S ′ and if Xn ∈ IN , then Xn ∈ S ′. Furthermore, ||X −X−1|| = O(k/M)1/d
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and ||X−1 −Xn|| = o(k/M)1/d with probability 1− o(1/M). This implies that

E

[
1{X∈BN}(γ(f(Xn))− γ(f(X))) +O

(
k

M

)2/d

| XN

]

= E
[
1{X∈S−S′}(γ(f(X−1))− γ(f(X))) | XN

]
+ o

(
k

M

)1/d

+ o(1/M).

Since Pr(X ∈ S − S ′) = O((k/M)1/d), this in turn implies that

II = E

[
E

[
1{X∈BN}(γ(E[f̃k(X)])− γ(f(X))) | XN

]]

= E[1{X∈S−S′}(γ(f(X−1))− γ(f(X)))] + o

(
k

M

)2/d

+ o(1/M). (3.16)

We therefore finally get,

E[γ(E[f̃k(X) | X])− γ(f(X)))] = I + II

= E [γ′(f(X))h(X)]

(
k

M

)2/d

+ E[1{X∈S−S′}(γ(f(X−1))− γ(f(X)))]

+o

(
k

M

)2/d

+ o(1/M). (3.17)

Note that ||X −X−1|| = O((k/M)1/d) with probability 1 − o(1/M). This therefore

implies that

c3 = E[1{X∈S−S′}(γ(f(X−1))− γ(f(X)))]

= O((k/M)1/d)×O((k/M)1/d) + o(1/M) = O((k/M)2/d) + o(1/M).(3.18)
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3.4 Functional estimation using boundary corrected density

estimates

In this section, we use the boundary compensated k-NN density estimates to

estimate functionals of the density. We are interested in estimating

G(f) =

∫
1{x∈S′}g(f(x), x)f(x)dμ(x) = E[1{x∈S′}g(f(x), x)],

for some smooth function g(f(x), x) and any subset S ′ ⊂ S of the support S. Define

the plug-in estimators using boundary corrected k-NN density estimates as

G̃k(f) =
1

N

N∑
i=1

1{Xi∈S′}g(f̃k(Xi),Xi). (3.19)

Let Z denote an independent realization drawn from f . Also, define Z−1 ∈ SI to

be Z−1 = argminx∈SI
d(x,Z). Under the assumptions stated in Section 2.1, with the

additional assumption that M , N and T are linearly related through the proportion-

ality constant αfrac with: 0 < αfrac < 1, M = αfracT and N = (1 − αfrac)T , the

following theorems hold.

Theorem III.1. The bias of the plug-in estimator G̃k(f) is given by

B(G̃k(f)) = c1

(
k

M

)2/d

+ c2

(
1

k

)

+c3(k,M,N) + o

(
1

k
+

k

M

)
,

where c3(k,M,N) = E[1{Z∈S−SI}(g(f(Z−1),Z−1) − g(f(Z),Z))] = O(k/M)2/d, c1 =

E[1{Y∈S′}g
′(f(Y),Y)c(Y)] and c2 = E[1{Y∈S′}f

2(Y)g′′(f(Y),Y)/2].

Proof. We have shown in section 3.3.3 that the boundary corrected k-NN density

estimate satisfies assumptions A .1 and A .2 listed in Appendix D, which in turn
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implies that lemma D.1 holds. This gives:

E[G̃k(f)]−G(f) = E[1{Z∈S′}(g(EZ[f̃k(Z)],Z)− g(f(Z),Z))]

+c2

(
1

k

)
+ o(1/k).

Using the properties of boundary corrected k-NN density estimates (section 3.3.3),

we can then show

E[1{Z∈S′}(g(EZ[f̃k(Z)],Z)− g(f(Z),Z))]

= c1

(
k

M

)2/d

+ c3(k,M,N) + o

((
k

M

)2/d
)
.

This concludes the proof.

The leading terms c1(k/M)2/d + c2/k arise due to the bias and variance of k-NN

density estimates respectively (see Appendix A), while the term c3(k,M,N) arises

due to boundary correction (see Appendix B). Henceforth, we will refer to c3(k,M,N)

by c3. Observe that c3 = O((k/M)2/d) (3.16).

In comparison to Ĝk(f), we note that the bias reduces fromO(k/M)1/d toO(k/M)2/d

by using boundary correction. Because Ĝk(f) and G̃k(f) differ only near the bound-

aries of the support, the expressions for the variance and asymptotic distribution of

G̃k(f) are identical to the results of Ĝk(f).

3.4.1 Optimized parameter tuning

From Theorem II.1 we see that it is required that k → ∞ and k/M → 0 for the

estimator to be asymptotically unbiased. Likewise from Theorem II.2 we see that it is

required that N → ∞ andM → ∞ for the variance of the estimator to converge to 0.

We can now optimize the choice of density estimator tuning parameters to minimize
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MSE. These tuning parameters are the number of nearest neighbors k, and the data

splitting proportions N/(N +M), M/(N +M).

Throughout this section, we assume that the constant c0 = 0. This is true if S ′ ∩

B = φ when using bipartite k-NN estimators proposed in Chapter 2 and for arbitrary

subsets S ′ when using boundary corrected estimators proposed in this chapter.

3.4.1.1 Optimal choice of k

Minimizing the MSE over k is equivalent to minimizing the square of the bias

over k. We observe that the constants c1 and c2 can possibly have opposite signs. We

consider two separate cases: c1c2 > 0 and c1c2 < 0. In either case the optimal choice

of k is given by

kopt = argmin
k

|B(f)| = 
k0M
2

2+d �, (3.20)

where 
x� is the closest integer to x and the constant k0 = (|c2|d/2|c1|)
d

d+2 when

c1c2 > 0 and k0 = (|c2|/|c1|)
d

d+2 when c1c2 < 0.

When c1c2 > 0, the bias evaluated at kopt is b
+
0 M

−2
2+d (1+ o(1)) where the constant

b+0 = c1k
2/d
0 + c2/k0. Let kfrac = k0M

2
2+d − kopt. When c1c2 < 0, we see that

c1((kfrac+kopt)/M)2/d+c2/(kfrac+kopt) is equal to zero. When this happens a higher

order asymptotic analysis is required to specify the bias at the optimal value of k (see

Page 10, [80]). The bias evaluated at kopt in this case is given by b−0 M
−4
2+d (1 + o(1))

where b−0 is a constant which depends on the underlying density f . In practice, the

constants c1 and c2 have to be estimated with error of at least order o(1/k+(k/M)2/d)

for the leading terms to cancel using the optimal choice kopt = 
k0M
2

2+d �, where k0

depends on the estimated values of c1 and c2.

63



3.4.1.2 Choice of αfrac =M/T

Observe that the MSE of ĜN (̃fk) is dominated by the squared bias (O(M−4/(2+d)))

as contrasted to the variance (O(1/N+1/M)). This implies that the MSE rate of con-

vergence is invariant to the choice of αfrac. This is corroborated by the experimental

results shown in Fig. 6.6.

3.4.1.3 Discussion on optimal parameter choices

The optimal choice of k grows at a smaller rate as compared to the total number of

samples M used in the first stage, which is the density estimation step. Furthermore,

the rate at which k/M grows decreases as the dimension d increases. This can be

explained by observing that the choice of k primarily controls the bias of the entropy

estimator. For a fixed choice of k and M (k < M), we expect the bias in the density

estimates (and correspondingly in the estimates of the functional G(f)) to increase

as the dimension increases. For increasing dimension an increasing number of the M

points will be near the boundary of the support set. This in turn requires choosing a

smaller k relative to M as the dimension d grows.

3.4.1.4 Optimal rate of convergence

We note that for high dimensions (d > 6), Nopt = o(Mopt), which implies that

Mopt = Θ(T ). This then implies that the optimal bias decays as b+0 (T
−2
2+d )(1 + o(1))

when c1c2 > 0 and b−o (T
−4
2+d )(1 + o(1)) when c1c2 < 0. In addition, the optimal

variance decays as c5(1/T )(1 + o(1)).

3.4.2 Extension to divergence and MI estimation

Finally, we note that boundary corrected plug-in estimators can be used in an

identical manner for divergence and mutual information estimation as well. The bias

again is reduced from O(k/M)1/d to O(k/M)2/d. The variance and CLT are identical

64



to Theorems 2.5, 2.6, 2.8 and 2.9 because they differ on a set of probability o(1). We

do not repeat the results here.

3.4.3 Bias correction factors

In addition to using boundary corrected BP-kNN estimators, we can once again

apply bias correction factors when estimating entropy, divergence and MI. Denote the

BP-kNN plug-in estimator with bias correction as

G̃k,BC(f) =
G̃k(f)− g2(k,M)

g1(k,M)
. (3.21)

In addition to the assumptions listed in section 2.3.1, assume the growth condi-

tion that k = Θ((log(M))2/(1−δ)) instead of the condition that k = Θ(Mβ). Below

the asymptotic bias and variance of the BP-kNN estimator with boundary and bias

correction are specified.

Theorem III.2. The bias of the BPI estimator G̃k,BC(f) is given by

B[G̃k,BC(f)] = c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
. (3.22)

Proof. The proof trivially follows by combining the proofs of Theorems 2.1 and 3.1.

Denote the boundary corrected Shannon and Rényi entropy estimators with cor-

rection factors by H̆k and H̆
(α)
k . Let H̃k be the boundary corrected Shannon entropy

estimate G̃k(f) with the choice of functional g(x) = − log(x). Let Ĩ
(α)
k be the bound-

ary corrected estimate of the Rényi α-integral estimate G̃k(f) with the choice of

functional g(x) = xα−1.

Define H̆k = H̃k + [log(k − 1)−Ψ(k − 1)] and Ĭ
(α)
k = [(Γ(k + (1− α))/Γ(k))(k −

1)α−1]−1Ĩ
(α)
k . Also define the Rényi entropy estimator to be H̆

(α)
k = (1−α)−1 log(Ĭ

(α)
k ).
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We note that the estimators Ȟk and Ȟ
(α)
k correspond to data-split boundary corrected

versions of the Shannon and Rényi entropy estimators of Goria et al. [32] and Leo-

nenko et al. [49] respectively.

Because [(Γ(k + (1− α))/Γ(k))(k − 1)α−1] → 1 and Ψ(k − 1)− log(k − 1) → 0 as

k → ∞, the estimators H̆k and H̆
(α)
k will have identical variance up to leading terms

as H̃k and H̃
(α)
k respectively. Likewise, H̆k and H̆

(α)
k , when suitably normalized, will

converge to the same distribution as the estimators H̃k and H̃
(α)
k respectively.

From Theorem 3.1, it immediately follows that the bias of the estimators H̃k and

H̃
(α)
k is O((k/M)2/d+(1/k)). On the other hand, from the results we have established

in Chapter 3 in conjunction with the results of Liitiäinen et al. (Theorem 2.1, [51]),

it is clear that the bias of the estimators H̆k and H̆
(α)
k is given by

B(H̆k) = c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
,

and

B(H̆
(α)
k ) = c1

(
k

M

)2/d

+ o

((
k

M

)1/d
)
,

In this case, the optimal choice of k needs to only grow logarithmically with M

(necessary condition for the result on variance to go through). The minimum bias for

optimal choice of k therefore reduces from O(M−2/(2+d)) to O(M−2/d). The optimal

choice of N in this case is given by Nopt = Θ(M(log(M)/M)(1−1/d)).

As in the case of Shannon and Rényi entropy estimation, it is straightforward to

define boundary corrected divergence and MI estimators with correction factors in an

identical manner to reduce estimator bias from O(M−2/(2+d)) to O(M−2/d) .
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3.5 Experiments

We consider three sets of experiments. The first set verifies our boundary cor-

rection algorithm. The second set of experiments verifies the theoretical results on

the bias, variance and central limit theorem for Shannon entropy and MI estimation.

The final set compares the performance of the proposed boundary corrected estimator

with other estimators in literature.

3.5.1 Boundary correction

We consider the problem of Shannon entropy estimation (with the choice of func-

tional g(u, v) = − log u) for a 2-dimensional distribution. To estimate the Shannon

entropy, we use the standard BP-kNN estimator Ĝk(f) (2.1) and the boundary cor-

rected BP-kNN estimator G̃k(f) (3.19). We consider two different types of densities:

(i) Uniform distribution and (ii) a 2 dimensional mixture density fm = pfβ+(1−p)fu;

fβ: Beta density with parameters a=4,b=4; fu: Uniform density; Mixing ratio p =

0.8. For a fixed partition of N = 1000 and M = 9000, we vary the bandwidth

parameter k and plot the variation of bias of the entropy estimator for these two

distributions for both the uncorrected and the boundary corrected plug-in estimator.

This is shown in Fig. 3.3.

From the figure, it is clear that the bias corrected entropy estimator G̃k(f)(3.19)

has significantly lower bias in the case of the uniform distribution, while for the

mixture density, both the uncorrected and corrected estimators agree well with the

theoretical prediction. This can be attributed to the fact that for this mixture density,

the fraction of boundary points is very small, thereby minimizing the influence of the

boundary regions on the entropy estimate.
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Figure 3.3: Variation of bias of estimated entropy vs bandwidth k using standard
BP-kNN estimator Ĝk(f) (2.1) and the boundary corrected BP-kNN es-
timator G̃k(f) (3.19), denoted as ’BP-kNN’ and ’BP-kNN with BC’ re-
spectively. The boundary corrected BP-kNN estimator clearly reduces
bias in the entropy estimate in comparison to the uncorrected estimator
for the uniform density. The boundary effects are negligible for the mix-
ture density because of the small fraction of points at the boundary for
the mixture density.

3.5.2 Experimental validation of theory for Shannon entropy

Here the theory established in Section 3 and Section 4 is validated. A three

dimensional vector X = [X1, X2, X3]
T was generated on the unit cube according to

the i.i.d. Beta plus i.i.d. uniform mixture model:

f(x1, x2, x3) = (1− ε)
3∏

i=1

fa,b(xi) + ε, (3.23)

where fa,b(x) is a univariate Beta density with shape parameters a and b. For the ex-

periments the parameters were set to a = 4, b = 4, and ε = 0.2. The Shannon entropy

(g(u) = − log(u)) is estimated using the BP-kNN estimator with boundary correc-
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Figure 3.4: Comparison of theoretically predicted bias of plug-in estimator G̃k(f)
(3.19) against experimentally observed bias as a function of k. The Shan-
non entropy (g(u) = − log(u)) is estimated using the BP-kNN estimator
G̃k(f) on T = 104 i. i. d. samples drawn from the d = 3 dimensional
uniform-beta mixture density (3.23). N,M were fixed as N = 3000,
M = 7000 respectively. The theoretically predicted bias agrees well
with experimental observations. The predictions of our asymptotic theory
therefore extend to the finite sample regime. The theoretically predicted
optimal choice of kopt = 52 also minimizes the empirical bias.

tion: G̃k(f) and BP-kNN estimator with boundary correction and bias correction:

G̃k,BC(f).

In Fig. 3.4, the bias approximations of Theorem III. 1 are compared to the em-

pirically determined estimator bias of G̃k(f). N and M are fixed as N = 3000,

M = 7000. Note that the theoretically predicted optimal choice of kopt = 52 min-

imizes the experimentally obtained bias curve. Thus, even though our theory is

asymptotic it provides useful predictions for the case of finite sample size, specifying

bandwidth parameters that achieve minimum bias. Further note that by matching

rates, i.e. choosing k = k̄ = M2/(2+d) = 83 also results in significantly lower MSE

when compared to choosing k arbitrarily (k < 10 or k > 150). In Fig. 3.5, the bias

approximations of Theorem IV. 1 are compared to the empirically determined esti-

mator bias of G̃k,BC(f). Observe that the empirical bias, in agreement with the bias
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Figure 3.5: Comparison of theoretically predicted bias of the bias corrected estima-
tor G̃k,BC(f) (3.21) against experimentally observed bias as a function
of k. The Shannon entropy (g(u) = − log(u)) is estimated using the
proposed BP-kNN estimator with Bias correction G̃k,BC(f) on T = 104

i. i. d. samples drawn from the d = 3 dimensional uniform-beta mixture
density (3.23). N,M were fixed asN = 3000,M = 7000 respectively. The
empirical bias is in agreement with the bias approximations of Theorem
3.2 and monotonically increases with k.

approximations of Theorem IV. 1, monotonically increases with k.

In Fig. 3.6, the empirically determined variance of G̃k(f) is compared with the

variance expressed by Theorem III. 2 for varying choices of N and M , with fixed

N +M = 10, 000. The theoretically predicted variance agrees well with experimental

observations. A Q-Q plot of the normalized BP-kNN estimate G̃k(f) and the standard

normal distribution is shown in Fig. 3.7. The linear Q-Q plot validates the Central

Limit Theorem 3.3. For Shannon entropy (g(u) = − log(u)), the uncompensated and

compensated BP-kNN estimators are related by

G̃k,BC(f) = G̃k(f) + log(k − 1)− ψ(k).

The variance and normalized distribution of these estimators are therefore identical.

Finally, using the CLT, the 95% coverage intervals of the BP-kNN estimator
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Figure 3.6: Comparison of theoretically predicted variance of BP-kNN estimator
G̃k(f) against experimentally observed variance as a function of M . The
Shannon entropy (g(u) = − log(u)) is estimated using the proposed BP-
kNN estimator G̃k(f) on T = 104 i. i. d. samples drawn from the
d = 3 dimensional uniform-beta mixture density (3.23). k is chosen to be
kopt = k0M

2/(2+d). The theoretically predicted variance agrees well with
experimental observations.

G̃k,BC(f) are shown as a function of sample size T in Fig. 3.8. The lengths of the

predicted confidence intervals are accurate to within 12% of the true confidence in-

tervals (determined by simulation over the range of 80% to 100% coverage - data not

shown). These coverage intervals can be interpreted as confidence intervals on the

true entropy, provided that the constants c1, .., c5 can be accurately estimated.

3.5.3 Experimental validation of theory for Shannon MI

We estimated the Shannon MI of a 2 dimensional beta distribution f12 with pa-

rameters α = 2, β = 2 using the BP-kNN estimator G̃k(f12) and compared our

theoretical predictions with the observed bias and variance. In the first experiment,

we fixed N to be 1000 and varied M . For each value of M , we optimized the kernel

width k according to Eq.3.20. The variation of the bias of the estimator with chang-

ing M is shown in Fig. 3.9. In the next experiment, we fixed M to be 10000, chose
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Figure 3.7: Q-Q plot comparing the quantiles of the BP-kNN estimator G̃k(f) (with
g(u) = − log(u)) on the vertical axis to a standard normal population on
the horizontal axis. The Shannon entropy (g(u) = − log(u)) is estimated
using the proposed BP-kNN estimator G̃k(f) on T = 104 i. i. d. samples
drawn from the d = 3 dimensional uniform-beta mixture density (3.23).
k,N,M are fixed as k = kopt = 52, N = 3000 and M = 7000 respec-
tively. The approximate linearity of the points validates our central limit
theorem II.3.

the corresponding optimal value of k and varied N . The variation of the variance of

the estimator against N is shown in Fig. 3.10. The proximity of the theoretical and

empirical curves in these experiments validates our theory.

We performed the Kolmogorov-Smirnov test on the estimated MI, which resulted

in the null hypothesis that the MI estimate could have the normal distribution. We

generated a Q-Q plot of the MI estimate against the normal distribution. The result-

ing plot shown in Fig. 3.11 is linear, validating our theory on the asymptotic normal

distribution of the plug-in estimates.

In the final experiment, we consider a mixture density fm = pfβ+(1−p)fu, where

fβ is a beta distribution with parameters α = 2, β = 2, fu is a uniform density and

p is the mixing ratio. We vary the mixing ratio p and evaluate the MI. The variation

of the true MI and estimated MI with p is shown in Fig. 3.12 along with the 95%
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Figure 3.8: 95% coverage intervals of BP-kNN estimator G̃k(f), predicted using the
Central limit theorem II.3, as a function of sample size T . The Shan-
non entropy (g(u) = − log(u)) is estimated using the proposed BP-kNN
estimator G̃k,BC(f) on T i. i. d. samples drawn from the d = 3 dimen-
sional uniform-beta mixture density (3.23). The lengths of the coverage
intervals are accurate to within 12% of the empirical confidence intervals
obtained from the empirical distribution of the BP-kNN estimator.

confidence intervals using Theorem II.9. We find the estimated MI to lie within the

confidence interval predicted by our theory.

3.5.4 Comparison to existing results

By using boundary correction, we are able to reduce the optimal bias of our

estimator G̃(f) from Θ(T−1/(1+d)) to Θ(T−2/(2+d)). The overall optimal bias and

variance of G̃(f) is therefore given by Θ(T−2/(2+d)) and Θ(T−1) respectively. Our

estimator therefore has a faster rate of convergence in MSE Θ(T−4/(2+d)) as compared

to the estimator of Baryshnikov et al. (Θ(T−2/(1+d))).

Furthermore, when estimating Shannon and Rényi entropy, we can use correc-

tion factors to define estimators H̆k and H̆
(α)
k (see section 3.4.3) with bias given by

Θ(T−2/(d)) instead of Θ(T−2/(2+d)). It is clear that the estimators H̃k and H̃
(α)
k have

a faster rate of convergence as compared to Shannon and Rényi entropy estimators
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Figure 3.9: Variation of bias of BP-kNN estimator G̃k(f12) vs M for fixed N = 1000
with ±95% confidence envelopes. The theoretically predicted bias agrees
well with experimental observations.

of Goria et al. [32] and Leonenko et al. [49], which have bias of order Θ(T−1/(d)) due

to bias from the boundary [51].

This is illustrated by the following experiment. We estimate the Rényi α-entropy

for the choice α = 0.5 for the 5-dimensional density fm = pfβ + (1 − p)fu; fβ: Beta

density with parameters a=4,b=4; fu: Uniform density; Mixing ratio p = 0.8 using

Baryshnikov’s estimator Ĝb(f) with the choice of functional g(u) = uα−1, our data-

split boundary-corrected estimator with correction factor H̆
(α)
k , the entropic graph

estimator of Hero et al. [38] and the k-nearest neighbor estimator of Leonenko et

al. [32] with correction factors.

The results are shown in Fig. 3.13. It is clear from the figure that our data-split

boundary-corrected estimator G̃(f) has a faster rate of convergence as predicted by

our theory.

In the next section, we apply our thinned k-NN graphs to the problem of classifi-

cation and compare the resulting performance with the standard k-NN classification

algorithm.
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Figure 3.10: Variation of variance of BP-kNN estimator G̃k(f12) vs N for fixed M =
10000 and bandwidth k = 411 with ±95% confidence envelopes. The
theoretically predicted variance again agrees well with experimental ob-
servations.

3.6 Boundary compensated graphs

Our compensated k-NN density estimates can be extended to modify bipartite

k-NN graphs as follows. This general k-NN graph compensation method is then

illustrated for k-NN classification.

3.6.1 Relation between k-NN density estimate and k-NN graphs

Let X1, ..,XM denote M i.i.d realizations of the density f . Consider a k-NN

graph constructed on these M samples. We therefore have an equivalence relation

between a k-NN graph, and the k-NN density estimates constructed using the graph.

To correct for boundary effects in the graph, we first analyze boundary effects in the

k-NN density estimates and then use this equivalence to specify corrections to the

graph.

3.6.2 Thinning k-NN graphs

Using the corrected k-NN density estimates and the equivalence relation between

density estimates and graphs, we propose corrected k-NN graphs as follows. The
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Figure 3.11: Q-Q plot of normalized BP-kNN estimate G̃k(f12) and standard nor-
mal distribution. The approximate linearity of the points validates our
central limit theorem.

corrected k-NN ball radius d̃k(X) is defined to be the radius corresponding to f̃k(X).

For each boundary point Xi in the graph, we now remove the edges from the graph

whose length exceeds the corrected k-NN ball radii. We call this process thinning the

k-NN graph. After thinning the number of nearest neighbors in the thinned graph will

be less than k. For instance, the pure boundary points should have around k/2-NN

in the corrected graph.

3.6.3 k-NN classification

We describe the basic k-NN classification algorithm. An unlabelled vector (a query

or test point) is classified by assigning the label which is most frequent among the

k training samples nearest to that query point. To account for boundary effects, we

determine the modified k-NN neighborhood, remove the neighbors which exceed the

modified neighborhood size, and assign the label most frequent among the surviving

training samples. We will call this the boundary compensated classifier.
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Figure 3.12: Variation of BP-kNN MI estimator G̃k(f12) with mixing ratio p with
±95% confidence envelopes. Observe that the the estimated MI lies
within the confidence interval predicted by our theory.

A simple example

We consider a simple example where 4 concentric 2D rings constitute 4 different

classes of data. Each class consists of 400 samples. The confusion matrix (using the

leave-one-out criteria) for the uncompensated and the compensated classifier (k =

100) is shown in Table 3.1.

We note that for the original classifier, while the inner rings (classes 1, 2 and 3)

were well classified, the classification performance for the outermost ring (class 4) was

relatively worse. This can be attributed to the fact that the boundary points in this

data set belong to the outermost ring. From the confusion matrix, we can see that

the boundary compensated classifier performs significantly better w.r.t. class 4.

Optical digit recognition

The ’Optical Recognition of Handwritten Digits Data Set’ [3] consists of normal-

ized bitmaps of handwritten digits from a preprinted form. This data set has 562

instances of each digit from 0− 9. Each instance is characterized by 64 dimensional

pixel intensity values. As a first step, we use standard PCA embedding to reduce

the dimension to 10. We then normalize these 10 dimensional vectors to unit length.
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Figure 3.13: Variation of MSE of entropic graph estimator of Hero et al. [38], the
k-nearest neighbor estimator of Leonenko et al. [32] and the k-nearest
neighbor estimator of Baryshnikov et al. [6] and boundary-corrected BP-

kNN estimator with correction factor H̆
(α)
k as a function of sample size

T . From the figure we see that our estimator, in agreement with theory,
has the fastest rate of convergence.

We treat the first 9 dimensions of each normalized vector as our feature vectors fi.

We note that the feature vectors fi live in a unit hypercube in R9. A significant

fraction of the feature vectors fi will lie close to the surface of the hypercube, thereby

behaving as boundary points. We apply the standard and boundary compensated

k-NN classifiers (k = 25) to this data. The confusion matrix for the uncompensated

and the compensated classifier is shown in Table 3.2. The leave-one-out classification

error for the uncompensated classifier was found to be 4.59% and improved to 3.59%

for the compensated classifier. Using a paired t-test, the p-value for this result was

found to be well within a siginificance level of 1%, implying that the improvement in

performance is indeed statistically significant.
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Figure 3.14: Data with four different classes, which lie on concentric circular discs.

1 2 3 4
1 400/400 0/0 0/0 0/0
2 88/88 312/312 0/0 0/0
3 0/0 55/55 341/341 4/4
4 0/0 0/0 148/82 252/318

Table 3.1: Confusion matrix for concentric circle data (Black: Standard k-NN graph;
Blue: Boundary compensated k-NN graph).

0 1 2 3 4 5 6 7 8 9
0 551/551 0/0 0/0 0/0 2/2 0/0 0/0 0/0 0/0 1/1
1 0/0 558/563 5/4 0/0 1/0 0/0 2/1 1/1 1/0 3/2
2 0/0 3/1 537/549 0/0 0/0 0/0 0/0 4/1 12/5 1/1
3 0/0 3/3 9/6 537/546 0/0 3/3 1/1 4/3 7/4 8/6
4 1/1 1/0 1/1 0/0 555/558 0/0 2/2 1/1 0/0 7/5
5 13/8 2/2 0/0 7/7 0/0 508/519 7/7 0/0 0/0 21/15
6 2/2 2/2 0/0 0/0 1/1 0/0 552/552 0/0 1/1 0/0
7 0/0 0/0 1/0 1/2 1/1 0/0 0/0 549/555 7/3 7/5
8 5/2 18/15 17/18 2/1 3/1 1/1 5/6 1/1 497/505 5/4
9 2/2 6/5 5/5 7/5 1/1 5/7 1/1 11/9 6/7 518/520

Table 3.2: Confusion matrix for ’Handwritten Digits’ dataset (Black: Standard k-NN
graph; Blue: Boundary compensated k-NN graph).
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3.7 Discussion

We showed that for samples on a finite support, the behavior of the k-NN neigh-

borhoods is different in the interior of the support and the boundary. To resolve this

issue, we analyzed and compensated the bias of k-NN density estimates close to the

boundary. This in turn helped us define a modified k-NN graph with smaller k-NN

neighborhoods for points close to the boundary.

Given the large body of work on boundary compensated kernel density estimates,

a particularly important outcome of our work is bias compensated k-NN density

estimates. The basic idea for boundary correction introduced in this paper can be

extended to kernel density estimates.

Our boundary corrected k-NN graphs can be used in place of standard k-NN

graphs whenever the data is suspected to lie on a bounded region. We applied our

boundary compensated k-NN graphs to the problem of entropy estimation and clas-

sification and showed that the modified k-NN graph can significantly outperform the

standard k-NN graph in both contexts.

Finally, we note that in Section 6.5, another variant of boundary compensation

based on spherical sector k-NN neighborhoods is proposed. Estimators with this

angular variant of boundary compensation, in contrast to the extrapolation based

compensation proposed in this Chapter, have a slower MSE rate of convergence

((O(T−1/(1+d))) vs (O(T−2/(2+d)))). However, under higher order smoothness con-

ditions on the density, we show in Chapter 6 that these angular estimators can be

aggregated to produce ensemble estimators with much faster MSE rates of conver-

gence (O(1/T )).
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CHAPTER IV

Functional estimation on Manifolds

4.1 Introduction

In this chapter, we extend the results of Chapter 2 on entropy and divergence

estimation from data which lies in R
d to data which lies on a possible non-linear

manifold embedded in R
d having with smaller intrinsic dimension d < D. We first

motivate the necessity of analyzing data on manifolds. Next, we extend the estimators

defined in Chapter 2 for entropy and divergence estimation to the manifold setting

and again analyze the MSE and obtain an asymptotic distribution. Finally, we extend

our results on entropy estimation to propose a MSE optimized intrinsic dimension

estimator.

Recent technological advancements in sensing and data storage have facilitated

acquisition of large datasets which are very high dimensional in nature. High di-

mensional data by default is difficult to model and analyze because of the curse of

dimensionality. However, often, there is underlying structure in this high dimensional

data. This structure corresponds to redundancy. For example, consider the abilene

network data where the extrinsic dimension = #(Routers). However, the data itself

lies on a lower dimensional manifold. Practically, the complexity of capturing an high

dimensional manifold is not possible. Often, all that is available are a finite number

of representative samples of the manifold. We therefore analyze the manifolds via a
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Figure 4.1: Illustration of the Abilene router network. The extrinsic dimension of
this system at each time point is equal to the number of routers.

finite number of (possibly random) samples drawn from the manifold.

Specifically, we are interested in determining characteristics of the manifold such

as its intrinsic dimension and entropy of the densities defined on manifolds.

4.2 Definition of a manifold

In this chapter, we are interested in manifolds M embedded in R
D, which are

topological spaces locally homeomorphic to the Euclidean space. A manifold is locally

homeomorphic to Euclidean space if every point on the manifold has a neighborhood

homeomorphic to an open Euclidean n-ball. We will assume throughout this chapter

that the manifold does not have boundaries, i.e., for every for point x ∈ M there

exists an open ball U(x) centered at x and U(x) ⊂ M.

Given a smooth compact manifold M, a Riemann metric m is a mapping which

associates to each point x ∈ M, an inner product m(., .) between vectors tangent to

M at x. A Riemann manifold (M, m) is the ordered pair of the manifold M with

the metric m. When the underlying space in which the manifold M is embedded is

R
D, the naturally induced Riemann metric is just the usual dot product. A Riemann

metric m endows the manifold M with a distance dm(., .) via geodesics and a mea-

sure μm via the volume element. Throughout this chapter, we will assume that the

manifold is embedded in R
D with the Riemann metric m being the dot product. For
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a comprehensive explanation of the theory of Riemann manifolds, we refer the reader

to [48].

We can now define k-nearest neighbors in a given sample in the following usual

way via the geodesic distance dm(., .): Given a sample {X1, .., XM} ∈ M, the k-th

nearest neighbor of a point X ∈ M to the sample {X1, .., XM} is defined to be the

point Xk(i) which satisfies the following condition #{dm(X,Xi) < dm(X,Xk(i)), i =

1, ..,M} = k − 1. Note that in the case where the manifold M is the extrinsic

space R
D, Xk(i) is the standard k-th nearest neighbor with respect to the Euclidean

distance.

We can now extend results established in Chapter 2 on entropy and divergence

estimation to the case of manifolds. In order to extend our results, we use the fact

that a Riemann manifold M with associated distance dm and measure μm, looks

locally like R
d with euclidean distance ||.|| and Lebesgue measure λ. This fact is

formalized by the following lemma:

Lemma IV.1. ([62], Lemma 5.1) Let (M, m) be a smooth Riemann d-dimensional

manifold. For any x ∈ M and ε > 0, there exists a chart (U , φ) for M, with x ∈ U ,

such that

(1 + ε)−1|φ(y)− φ(z)| ≤ dm(y, z) ≤ (1 + ε)|φ(y)− φ(z)|∀y, z ∈ U

and for any measurable subset B ∈ U

(1− ε)λ(φ(B)) < μm(B) < (1 + ε)λ(φ(B)).

Recall that a chart (U , φ) consists of a neighborhood U in M and a mapping

φ : M ∩ U → R
d that represents points in M ∩ U as points in the Euclidean d-

dimensional space, i.e., for y ∈ M∩U , φ(y) represents y in an Euclidean d-dimensional
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coordinate system. For a chart (U , φ), define the radial distance function r by

r(x, y) :=

(
n∑

i=1

(xi − y(i))2

)1/2

where x, y ∈ M ∩ U are two points in the neighborhood U and {x(i)} (respectively

{y(i)}) represent the d-dimensional coordinates of x (receptively y) in the mapped

space φ(U).

4.2.1 Normal coordinate chart

We now further restrict our attention to normal coordinate charts, which we de-

scribe next. For any neighborhood U of a point p ∈ M, it is possible to obtain a

normal coordinate chart φ : U → R
d which is a local coordinate system in a neighbor-

hood of p obtained by applying the exponential map to the tangent space at p. The

normal coordinate chart φ(.) satisfies the following properties : (i) (Proposition 5.11,

[48]) the coordinates of the point p in the chart are (0, . . . , 0), i.e., φ(p) = (0, . . . , 0)

and (ii) (Corollary 6.11 [48]) for any other point x ∈ U , the radial distance r(p, x)

equals the Riemannian distance from p to x.

We will exploit the fact that the radial distance on the mapped space is equal to

the Riemannian distance on the manifold in order to extend the convergence results

established in Chapter 2 to manifolds.

4.3 Functional estimation on manifolds

Let f(X) be a density on the manifold, i.e. f(X) is a non-negative function

defined on M which satisfies
∫
M f(x)dx = 1. As in Chapter 2, we are interested

in estimating entropy functionals of the form G(f) =
∫
M g(f(x))f(x)dx and diver-

gence functionals of the form G(f1, f2) =
∫
M g(f1(x)/f2(x))f2(x)dx, for some smooth

functions g(f(x), x).
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In this chapter, we restrict our attention to entropy estimation of functionals

G(f) =
∫
M g(f(x))f(x)dx. We require that the density f be uniformly bounded

away from 0 and finite on the set S ′ ∈ S where S is the support of the density, i.e.,

there exist constants ε0, ε∞ such that 0 < ε0 < ε∞ <∞, with ε0 ≤ f(x) ≤ ε∞ ∀x ∈ S.

We assume that i.i.d realizations {X1, . . . ,XN ,XN+1, . . . ,XN+M} are available from

the density f . Let X = {X1, . . . ,XT} be T independent and identically distributed

sample realizations in R
D distributed according to density f . Any realization Xi is

constrained to lie on the d-dimensional Riemannian submanifold M of RD (d < D).

4.3.1 k-NN density estimation on manifolds

Let dm(X, Y ) denote the Riemannian geodesic distance between points X and Y

and dk,g(X) denote the geodesic distance between a point X and its k-th nearest

neighbor Nk(X) amongst XN+1, ..,XN+M . The standard k-NN density estimator [53]

on the manifold using the geodesic distance is defined as

f̂k,g(X) =
k − 1

Mcdd
d
k,g(X)

,

where cd is the unit Euclidean ball volume in d-dimensions.

4.3.2 Properties of k-NN density estimates on manifolds

Let φ : U → φ(U) be the normal chart map at X and note that φ(X) = 0.

Let us map all random variables that fall in U via the normal chart φ(.), and map

the rest of the points to some arbitrary points outside φ(U). Then the probability

density function induced in V := φU is given by p(v) = φ(f(u)) =
√

|g(u)|f(φ−1(u)),

where g(u) is the local representation of the Riemannian metric at u, and |g(u)| is its

determinant. Let p̂k(0) be the k-NN density estimator in V at the point X , in terms

of Euclidean distance.
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In this normal coordinate system, the Euclidean distance from 0 to u, ||u||, is

equal to the Riemannian distance from p to φ−1(u). Therefore as long as we have at

least k random points in U , the two estimators are equal, i.e.,

f̂k,g,M(X) = p̂k(0).

In section 3.3.1, we showed that for any positive function q(k,M) satisfying

q(k,M) = Θ((k/M)2/d) + 1/k(1−log log k/ log k)/2, the following concentration inequal-

ity holds

1− Pr

(∣∣∣∣Vk,M(0)

Vk,M(0)
− 1

∣∣∣∣ ≤ q(k,M)

)
≤ o(M−a),

where Vk,M(0) is the k-NN ball centered at φ(X) = 0 in the mapped space V.

This implies that for sufficiently small values of k/M and 1/k, the probability that

f̂k,g,M(X) �= p̂k(0) decays exponentially fast in M .

Using this result, we can now extend results on the moments of k-NN density esti-

mates on the manifolds by determining the corresponding moments of the Euclidean

k-NN density estimates on the mapped space V. We will assume throughout this

chapter that the manifold does not have boundaries.

4.3.3 Moments of k-NN density estimate

By the concentration inequality, we know that with with high probability, the

density estimates are equal. This in turn implies that the bias and variance of the

k-NN density estimates on the manifold are ’close’ to equal.
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4.3.3.1 Bias

B[f̂k,g,M(X)] =

∫
MM

(f̂k,g,M(X)− f(X))
M∏
i=1

(f(xi)dxi)

=

∫
UM

(p̂k(0)− p(0))

M∏
i=1

(p(φ−1(xi))dyi) + o(1/Ma)

= B[p̂k(0)] + o(1/Ma)

= h(X)(k/M)2/d + o((k/M)2/d).

where h(X) is given by

h(X) = |g(0)|−1/dp−2/d(0)
∑
i

∂2

∂u2i
|u=0

(
f(φ−1(u)))

)
.

The second step in the derivation follows from the concentration inequality (4.1) and

the last step follows from the properties of standard k-NN density estimates (see

section B.3.3).

The determinant |g(u)| = 1 −
∑

i,j(Rij/3)uiuj + O(|u|3) where Rij is the Ricci

curvature. We also have,

∂

∂ui
|g(u)| |u=0= 0

for all i and

∂2

∂u2i
|g(u)| |u=0= −2

3
Rii

which gives c1 to be

h(X) = |g(0)|−1/dp−2/d(0)
∑
i

∂2

∂u2i
|u=0

√
|g(u)|

(
f(φ−1(u)))

)

= f−2/d(p)

(
∂2

∂u2i
|u=0

(
f(φ−1(u)))

)
− 1

3
Rii

)
= f−2/d(p)(∇(f(p)− S(p)/3)
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where the last line follows from the fact that (i)
∑

i ∂
2(fφ−1)(0)is∇f(p) where ∇(.)

is the Laplace-Beltrami operator since φ(.) is the normal chart map of p and (ii) since

the standard basis of U maps back to an orthonormal basis at p, the sum
∑

iRii is

the scalar curvature S(p).

4.3.3.2 Variance

In an identical manner, we have

V[f̂k,g,M(X)] =

∫
MM

(f̂k,g,M(X)− f(X))2
M∏
i=1

(f(xi)dxi)

=

∫
UM

(p̂k(0)− p(0))2
M∏
i=1

(p(φ−1(xi))dyi) + o(1/Ma)

= V[p̂k(0)] + o(1/Ma)

= p2(0)(1/k) + o(1/k)

= f 2(X)(1/k) + o(1/k),

where the last but one step follows from the properties of Euclidean k-NN density

estimates (see appendix B.3.1).

4.3.3.3 Covariance

We now analyze covariance properties of k-NN density estimates on manifolds.

Let X and Y be two fixed points on the support S of f . We first seek to answer the

following question: for which set of pair of points {X, Y } are the k-NN balls disjoint?

Define ek,g,M(X) = f̂k,g,M(X)− E[f̂k,g,M(X)].

4.3.3.4 Intersecting and disjoint balls

Define spherical regions Sk,M(X) = {Y ∈ M : dm(X, Y ) ≤ r}. Let Rk,M(X)

correspond to the coverage value 2k/M , i.e. Rk,M(X) = inf{r :
∫
Sk,M(X)

f(Z)dZ =
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2k/M}. Let PM(X) be the coverage function at X, i.e. PM(X) = Pr(Z ∈ {Y ∈ M :

dm(X, Y ) ≤ dm(X,Nk(X))}). Using the same arguments as in [55], it follows that

PM(X) has a beta distribution with parameters k, M − k + 1.

Define Ψk := {X, Y } ∈ S : dm(X, Y ) ≥ Rk,M(X) + Rk,M(Y ). Let Υ denote the

event that the k-NN balls on the manifold intersect.

For {X, Y } ∈ Ψk,

Pr(Υ) = Pr(dm(X,Nk(X)) + dm(Y,Nk(Y )) ≥ ||X − Y ||)

≤ Pr(dm(X,Nk(X)) + dm(Y,Nk(Y )) ≥ Rk(X) +Rk(Y )).

≤ Pr(dm(X,Nk(X)) ≥ Rk(X)) + Pr(dm(Y,Nk(Y )) ≥ Rk(Y ))

= Pr(PM(X) ≥ 2k/M) + Pr(PM(Y ) ≥ 2k/M)

= Pr(PV(X) ≥ 2k/M) + Pr(PV(Y ) ≥ 2k/M) + o(1/Ma)

= o(1/Ma).

where the last step follows from the chernoff concentration inequality for the coverage

function established in section B.1.1.1. We conclude that for {X, Y } ∈ Ψk, the

probability of intersection of k-NN balls centered at X and Y decays exponentially

in M .

Disjoint balls For the case where {X, Y } ∈ Ψk, we then know that with probability

1 − o(1/Ma), the k-NN balls are dis-joint. Let UX be a geodesic ball around X and

UY be a geodesic ball around Y . When the k-NN balls are dis-joint, we can then use

two normal chart maps centered at X and Y as φX : UX → φ(U)X be the normal

chart map at X (similarly for Y ) with the distinction that φX(X) = 0 and φY (Y ) = p

with p chosen to be large enough so that the maps φ(U)X and φ(U)Y are disjoint. Let

us map all random variables that fall in UX via the normal chart φX(.) (likewise for

Y ), and map the rest of the points to some arbitrary points outside φ(U)X ∪ φ(U)Y .
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Denote this mapping by a function φ : M → V.

Then the probability density function induced in V := φM is given by p(v) =

φ(f(u)) =
√

|g(u)|f(φ−1(u)), where g(u) is the local representation of the Riemannian

metric at u, and |g(u)| is its determinant. Let p̂k(0) be the k-NN density estimator

in V at 0, and p̂k(p) be the k-NN density estimator in V at p in terms of Euclidean

distance. As before, we have that these euclidean k-NN density estimates are identical

to the k-NN density estimates on the manifold with probability 1− o(1/Ma). Define

ok(p) = p̂k(p) − E[p̂k(p)]. Then for {X, Y } ∈ Ψk, the cross-correlation between the

coverage density estimates is given by

I := E[1Δk
c(X,Y)γ1(X)γ2(Y)eqk(X)erk(Y )]

= E[1Δε
c(X,Y)γ1(X)γ2(Y)oq

k(0)o
r
k(p)] + o(1/Ma)

= −1{q=1,r=1}E[γ1(X)f(X)]E[γ2(Y)f(Y)]
1

M
+ o(1/M). (4.1)

where the last step follows from section on the analysis of cross moments for standard

Euclidean k-NN density estimates.

Intersecting balls For the case where {X, Y } ∈ Ψc
k, we then know that w.h.p, the

k-NN balls intersect. When the k-NN balls intersect, we can then let φ : U → φ(U)

be the normal chart map at X and note that φ(X) = 0. Let us map all random

variables that fall in U via the normal chart φ(.), and map the rest of the points to

some arbitrary points outside φ(U). Then the probability density function induced

in V := φU is given by p(v) = φ(f(u)) =
√

|g(u)|f(φ−1(u)), where g(u) is the local

representation of the Riemannian metric at u, and |g(u)| is its determinant. Let p̂k(0)

be the k-NN density estimator in V at 0, in terms of Euclidean distance.

We note that in this case where with high probability the k-NN balls intersect,

the k-NN ball around Y is a subset of the normal neighborhood U at X. Thus the

Euclidean k-NN density estimates are identical to the k-NN density estimates on the
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manifold with probability 1− o(1/Ma). This implies that

II := E[1Δε(X,Y)γ1(X)γ2(Y)eqk,g,M(X)erk,g,M(Y)]

= E[1Δε(X,Y)γ1(X)γ2(Y)[oq
k(0)o

r
k(p)]] + o(1/M)

= E[γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

where the last step follows from section on the analysis of cross moments for strandard

Euclidean k-NN density estimates. This implies that

Cov
[
γ1(X)eqk,g,M(X), γ2(Y)erk,g,M(Y)

]
= I + II = 1{q=1,r=1}Cov[γ1(X)f(X), γ2(Y)f(Y)]

(
1

M
+ o

(
1

M

))
.

4.3.4 Error between geodesic and euclidean k-NN distances

In the preceding sections, we assumed that we had access to the k-nearest neighbor

geodesic lengths on a manifold. From a practical standpoint, one can only compute

the Euclidean k-NN points in the extrinsic space.

In this section, we relate and characterize the error between the Euclidean k-NN

lengths and geodesic lengths as follows. To this end, we use the following Lemma 4

in [54].

Define the minimum radius of curvature of a manifold r0 = r0(M) to be r−1
0 =

maxγ,t ||γ(t)|| where γ varies over all unit-speed geodesics in M and t is in the domain

D of the geodesic arc γ. Also define the minimum branch separation s0 = s0(M)

as the largest positive number for which ||x − y|| < s0 implies dm(x, y) ≤ πr0, for

x, y ∈ M. The existence of r0 and s0 is guaranteed by the compactness of M.

Lemma IV.2. ([54], Lemma 4) Let λ > 0 be given. Suppose the points x, y in M

satisfy the conditions: (i)||x − y|| < s0 and (ii) ||x − y|| ≤ (2/π)r0
√
24λ. Suppose
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that there is a geodesic arc of length dm(x, y) connecting to x, y. Then

(1− λ)dm(x, y) ≤ ||x− y|| ≤ dm(x, y).

We will use the above lemma along with the characterization of k-NN geodesic

lengths to obtain the following lemma.

Lemma IV.3. For any fixed point x ∈ M, let Nk(x) be the k-NN of x among the

M samples {XN+1, . . . , XN+M}. Let dk,g(X) and dk,e(X) be the geodesic distance

between x and Nk(x) and the Euclidean distance respectively. Then, there exists

a approximating function Ax : R → R which depends on x, such that dk,e(X) =

Ax(dk,g(X)). This function is characterized by the following condition

Ax(s) = s+

d∑
i=3

ax(i)s
i + o(sd).

Proof. For any pair of points x, y on the manifold M, let γ be the unit speed geodesic

from x to y. Furthermore, let γ(t) = x and γ(t + s) = y. We then have the geodesic

length dm(x, y) = s. We will now compute the Euclidean length as follows.

By Taylor series expansion, we have,

y − x = γ(t+ s)− γ(t)

=

d∑
i=1

γ(i)(t)si/i! + o(sd). (4.2)

Also, note that ||γ(1)(t)|| = 1 because γ(.) is unit speed. This then gives us that

||x− y|| = Ax(dm(x, y)) = Ax(s) = s+

d∑
i=2

ax(i)s
i + o(sd).

Finally, we know from 4.1 that with high probability 1− o(1/Ma), the maximum

geodesic separation dm(x, xk) between k-NN distances is O((k/M)1/d). For small

92



values of k/M , dm(x, xk) satisfies condition (i). Setting λ in condition (ii) to be

O((k/M)2/d) gives us

Ax(d) = 1 + axd
2 + o(d2).

These two results give us the required result.

Let us now define standard k-NN density estimates using the Euclidean lengths

on the manifold as

f̂k,e,M(X) =
k − 1

Mcddd
k,e(X)

. (4.3)

Note that we can then write the following relation between the Euclidean and geodesic

k-NN density estimates.

f̂k,e,M(X) = A‖X(f̂k,g,M(X)), (4.4)

where the new approximating function A‖ is given by

A‖x(f) = f +
d∑

i=2

ãx(i)(k/M)i/df 1−i/d + o(k/M).

This relates the approximate k-NN density estimate using Euclidean distance with

the ’exact’ k-NN density estimates defined using geodesic distances on the manifold.

4.3.5 Moment properties of Euclidean approximate k-NN density esti-

mates

The moment properties of the k-NN density estimate defined using Euclidean

distances f̂k,e,M(X) have the same central and cross moment properties, up to the

leading terms as the ’exact’ k-NN density estimates f̂k,g,M(X) defined using geodesic

distances on the manifold, while the bias has an additional term. Let h̃(X) = h(X)+

93



ãXf
−2/d(X). Define ek,e,M(X) = f̂k,e,M(X) − E[f̂k,e,M(X)]. We can summarize the

results on moment properties of the Euclidean approximate k-NN density estimate

as follows:

E[f̂k,e,M(X)]− f(X) = h̃(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

, (4.5)

E
[
γ(X)eqk,e,M(X)

]
= 1{q=2}E

[
γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
, (4.6)

Cov
[
γ1(X)eqk,e,M(X), γ2(Y)erk,e,M(Y)

]
= 1{q,r=1}Cov[γ1(X)f(X), γ2(Y)f(Y)]

(
1

M

)

+ o

(
1

M

)
. (4.7)

4.3.6 Main results

Once again, we are interested in estimating functionals of the form

G(f) =

∫
1{x∈S′}g(f(x), x)f(x)dμ(x) = E[1{x∈S′}g(f(x), x)],

for some smooth function g(f(x), x) and some subset S ′ ⊂ S of the support S. Define

the plug-in estimators as

Ĝk,e,M(f) =

(
1

N

N∑
i=1

1{Xi∈S′}g(f̂k,e,M(Xi),Xi)

)
. (4.8)
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4.3.6.1 Bias and variance

Theorem IV.4. The bias of the plug-in estimator Ĝk,e,M(f) is given by

B(Ĝk,e,M(f)) = c0

(
k

M

)1/d

+ c1

(
k

M

)2/d

+ c2

(
1

k

)

+o

(
1

k
+

(
k

M

)1/d
)
,

where c1 = E[1{Y∈S′}g
′(f(Y),Y)h̃(Y)] and c2 = E[1{Y∈S′}f

2(Y)g′′(f(Y),Y)/2].

Proof. The Euclidean k-NN density estimator on the manifold f̂k,e,M(.) satisfies as-

sumptions A .1 and A .2 (see section 4.3.5) listed in Appendix D. This implies that

lemma D.1 holds. The rest of the proof is identical to the proof of Theorem 2.1 for

bias of entropy functionals for Euclidean data.

Theorem IV.5. The variance of the plug-in estimator Ĝk,e,M(f) is given by

V(Ĝk,e,M(f)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 = V[1{Y∈S′}g(f(Y),Y)] and c5 = V[1{Y∈S′}f(Y)g′(f(Y),Y)].

Proof. The Euclidean k-NN density estimator on the manifold f̂k,e,M(.) satisfies as-

sumptions A .1 and A .3 (see section 4.3.5) listed in Appendix D. This implies that

lemma D.2 holds. The rest of the proof is identical to the proof of Theorem 2.2 for

variance for entropy functionals of Euclidean data.

4.3.6.2 Central limit theorem

In addition to the results on bias and variance shown in the previous section,

we show that our plug-in estimator, appropriately normalized, weakly converges to

the normal distribution. We study the asymptotic behavior of the plug-in estimates
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under the following limiting conditions: (a) k/M → 0, (b) k → ∞, and (c) N → ∞.

As shorthand, we will collectively denote the above limiting assumptions by Δ → 0.

Theorem IV.6. The asymptotic distribution of the normalized plug-in estimator

Ĝ(f) is given by

lim
Δ→0

Pr

(
Ĝk,e,M(f)− E[Ĝk,e,M(f)]√
V[1{Y∈S′}g(f(Y),Y)]/N

≤ α

)
= Pr(Z ≤ α),

where Z is a standard normal random variable.

Proof. Proof is identical to the proof of Theorem 2.3 which establishes CLT for en-

tropy functionals on Euclidean data.

We note that divergence functionals can be estimated in an identical manner to

Section 2.4 by using k-NN density estimates on the manifold instead of the standard

k-NN density estimates on Euclidean space. The bias, variance and CLT for these

estimators can be similarly analyzed.

4.3.7 Discussion

We observe that the functional forms of Theorems 4.4, 4.5 and 4.6 on bias, variance

and asymptotic distribution respectively for entropy estimation of data on manifolds

are identical to Theorems 2.1, 2.2 and 2.3 on bias, variance and asymptotic distribu-

tion respectively for entropy estimation of Euclidean data. In addition, the constants

ci, i = 2, 4, 5 are identical in both cases. This can be attributed to the fact that the

radial distance on the mapped Euclidean range of the coordinate chart is equal to

the Riemannian distance on the manifold. The constant c1 differs in the two cases

only because of the additional bias term due to the approximation of the geodesic

distance on the manifold by the Euclidean distance as discussed in section 4.3.4.
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4.4 Dimension estimation

Intrinsic dimensionality is an important concept in high dimensional datasets

whose principal modes of variation lie on a subspace of substantially lower dimension,

the intrinsic dimension d. In such cases dimensionality reduction can be accomplished

without loss of information. An accurate estimator of intrinsic dimension is a pre-

requisite for setting the embedding dimension of DR algorithms such as principal

components analysis (PCA), ISOMAP, and Laplacian eigenmaps. Until recently the

most common method for selecting an embedding dimension for these algorithms was

to detect a knee in a residual error curve, e.g., scree plots of sorted eigenvalues. In this

section, we introduce a new dimensionality estimator that is based on fluctuations

of the sizes of nearest neighbor balls centered at a subset of the data points. In this

respect it is similar to Costa’s k-nearest neighbor (kNN) graph dimension estimator

[20] and to Farahmand’s dimension estimator based on nearest neighbor distances

[28]. The estimator can also be related to the Leonenko’s Rényi entropy estimator

[49]. However, unlike these estimators, our new dimension estimator is derived di-

rectly from a mean squared error (MSE) optimality condition for partitioned kNN

estimators of multivariate density functionals. This guarantees that our estimator has

the best possible M.S.E. convergence rate among estimators in its class. Empirical

experiments are presented that show that this asymptotic optimality translates into

improved performance in the finite sample regime.

The section is organized as follows. We first introduce the the general form of

the new dimension estimator. We then show that the estimator is related to a gen-

eral class of k-NN density estimators. We review results on the statistical properties

of functionals of kNN density estimators and use this theory to obtain expressions

for the asymptotic bias and variance of the new dimension estimator, in addition to

establishing that it satisfies a central limit theorem. The analytical expressions for

bias and variance allow us to optimize over the tuning parameters of the dimension
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estimator. Next, motivated by this analysis, we propose a modified dimension esti-

mator with reduced variance. Finally, we report empirical comparisons that illustrate

the improved performance of the new dimensionality estimator relative to previous

approaches.

4.4.1 k-NN dimension estimator

Let X = {X1, . . . ,XM} be M independent and identically distributed sample

realizations in R
D distributed according to density f . Assume the random vectors

in M are constrained to lie on a d-dimensional Riemannian submanifold M of RD

(d < D). We are interested in estimating the intrinsic dimension d.

4.4.1.1 Log-length statistic

Define the k-log-length statistic to be

Lk(X ) =
1

N

N∑
i=1

log (dk,e(Xi)) ,

where dk,e(Xi) is the Euclidean k-nearest neighbor (k-NN) distance from target sam-

ple Xi to the M reference samples {X1, . . . ,XM}.

4.4.1.2 Relation to Shannon entropy

Let H̆k denote the negative of the Shannon entropy plug-in estimator (with func-

tional g(u) = − log(u)) with bias correction,

H̆k = −
(
G̃k,M + log(k − 1)− ψ(k − 1)

)
.
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We can write the following relation

H̆k =
1

N

N∑
i=1

ψ(k)− log(cdM)− d log(dk,e(Xi))

= ψ(k)− log(cdM)− dLk(X ).

From the theory established in Chapter 4(Theorem 4.1 and 4.2), we know H̆k =

−H + op(1), where H is the Shannon entropy. Using this relation, one can estimate

the dimension consistently using the following idea of slope based estimation.

4.4.1.3 Intrinsic dimension estimate based on varying bandwidth k

Let k1 and k2 be two different choices of bandwidth parameters. Let Lk1(X )

and Lk2(X ) be the length statistics evaluated at bandwidths k1 and k2 respectively.

Define the slope based inverse dimension estimator to be

d̂−1
s =

Lk2(X )− Lk1(X )

ψ(k2 − 1)− ψ(k1 − 1)
.

The dimension can then be consistently estimated using the estimate d̂s = 1/d̂−1
s .

Theorem IV.7. The bias of the slope based inverse dimension estimator d̂−1
s is given

by

E[d̂−1
s ]− d−1 =

c0
d

(k2/M)1/d − (k1/M)1/d

ψ(k2)− ψ(k1)
+ o(M−1/d),

and the variance is given by

V[d̂−1
s ] = o(1/N + 1/M).

Proof. From Theorem 2.3, [51], we have

E[H̆k] = −H + c0(k/M)1/d + o((k/M)1/d).
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This implies that

E[d̂−1
s ]− d−1 =

1

d

(
H̆k2 − H̆k1

ψ(k2)− ψ(k1)

)

=
c0
d

(k2/M)1/d − (k1/M)1/d

ψ(k2)− ψ(k1)
+ o(M−1/d). (4.9)

From Theorem 4.5, we have V[H̆k] = O(1/N + 1/M). This implies that,

V[d̂−1
s ] = (d(ψ(k2)− ψ(k1)))

−2
V[H̆k2 − H̆k1] = o(1/N + 1/M), (4.10)

where the last step follows from Cauchy-Schwarz.

From this analysis, we note that the bias and variance of the dimension estimator

d̂s = 1/d̂−1
s are also of order O((1/M)1/d) and o(1/N + 1/M) respectively.

4.4.2 Mixture of manifolds

The notion of intrinsic dimension has been extended to data that lies on a mixture

of manifolds of varying intrinsic dimensions, that are embedded in R
D. In this case,

Carter et. al. proposed a local dimension estimate for each point in the sample. They

define the local dimension estimate of each point to be the intrinsic dimension of a

small sample centered at the point.

The k-NN neighborhoods in the above illustration are depicted by the blue lines.

It is clear from the illustration that the k-NN neighborhoods ’hug’ the respective

manifolds in each case. Carter et al. proposed that the local dimension of each sample

be estimated by estimating the intrinsic dimension of a small subset of samples close

to the sample of interest.

In the simulations that follow, we will illustrate the superior performance of the

proposed weighted dimension estimator in estimating the local dimension of a sample.
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Figure 4.2: Illustration of data in a sample belonging to a mixture of manifolds. The
black points on the plane have intrinsic dimension 2 while the red points
on the circle have intrinsic dimension 1. The blue lines depict the k-NN
edges.

4.4.3 Experimental results

4.4.3.1 Comparison of dimension estimation methods

We generate T = 500 samples B drawn from a d = 3 mixture density fm = .8fβ +

.2fu, where fβ is the product of three 1 dimensional marginal beta distributions with

parameters α = 2, β = 2 and fu is a uniform density in 2 dimensions. These samples

are then projected to a 5-dimensional hyperplane inR
5 by applying the transformation

Y = UB where U is a 5×3 random matrix whose columns are orthonormal. We apply

our intrinsic dimension estimates on the samples Y , and repeat the experiment a total

of 100 times. The estimated dimension over these 100 trials is shown in Fig. 4.3.

We compare the performance of our proposed dimension estimator d̂s to the es-

timated proposed by Frahmand et al. [28] (denote as d̂f), Levina and Bickel [50]

(denote as d̂l) and Costa et al. [20] (denote as d̂j). We note that the performance

of estimators d̂s and d̂l is perfect and outperform the other estimators.
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Figure 4.3: Comparison of dimension estimators. The proposed slope estimator d̂s,
and Levina and Bickel’s estimator d̂l, outperform the other estimators.
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Figure 4.4: Comparison of local dimension estimation performance. The proposed
slope estimator d̂s outperforms the other estimators.

4.4.3.2 Local dimension estimation: Toy example

In this experiment, we project data of intrinsic dimension 2 and 4 onto R
6 (total

of 1000 points), and then perform local dimension estimation using the dimension es-

timator. We compare our results to the dimension estimator of Frahmand et al. (d̂f ),

Levina and Bickel (d̂l) and Costa et al. (d̂j). The results are shown in Fig. 4.4. From

the histogram, it is clear that the slope estimator outperforms the other estimators.

4.5 Discussion

From our analysis, we note that the bias and variance of the slope dimension

estimator d̂s are of order (1/T )1/d and (1/T ) respectively. The bias and therefore

MSE can be large depending for large values of d is. In Chapter 6, we propose a
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weighted dimension estimator which has a much lower MSE of order O(1/T ).
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CHAPTER V

Minimum volume set testing

5.1 Introduction

In the previous chapters, we were concerned with the estimation of entropy, diver-

gence, mutual information and intrinsic dimension. In this chapter, we consider the

related problem of p-value estimation to test membership of individual samples in a

level sets. We use the proposed p-value estimator to detect anomalies in data sets.

Minimum volume (MV) sets or equivalently level sets provide useful summaries

of multi-dimensional functions for many applications including clustering [35, 82],

anomaly detection [75, 81, 86], functional neuroimaging [64], bioinformatics [88] and

digital elevation mapping [78].

Estimation of minimum volume sets is a difficult problem, especially for high

dimensional data. There are two types of approaches to this problem: (1) transform

the MV estimation problem to an equivalent density level set estimation problem,

which requires estimation of the nominal density; and (2) directly identify the minimal

set using function approximation and non-parametric estimation [75, 61, 73]. Both

types of approaches involve explicit approximation of high dimensional quantities -

the multivariate density function in the first case and the boundary of the minimum

volume set in the second and are therefore not easily applied to high dimensional

problems.
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The GEM principle developed by Hero [36] for determining MV sets circumvents

the above difficulties by using the asymptotic theory of random Euclidean graphs

instead of function approximation. However, the GEM based K-kNNG anomaly

detection scheme proposed in [36] is computationally difficult. To address this issue,

a surrogate L1O-kNNG anomaly detection scheme was proposed in [36]. L1O-kNNG

is computationally simpler than K-kNNG, but loses some desirable properties of the

K-kNNG, including asymptotic consistency, as shown below.

In this chapter, we use the GEM principle to develop a bipartite k-nearest neighbor

(k-NN) graph-based anomaly detection algorithm. BP-kNNG retains the desirable

properties of the GEM principle and as a result inherits the following features: (i)

it is not restricted to linear or even convex decision regions, (ii) it is completely

non-parametric, (iii) it is optimal in that it converges to the uniformly most powerful

(UMP) test when the anomalies are drawn from a mixture of the nominal density and

the uniform density, (iv) it does not require knowledge of anomalies in the training

sample, (v) it is asymptotically consistent in recovering the p-value of the test point

and (vi) it produces estimated p-values, allowing for false positive rate control.

K-LPE [89] and RRS [66] are anomaly detection methods which are also based on

k-NN graphs. BP-kNNG differs from L1O-kNNG, K-LPE and RRS in the following

respects. L1O-kNNG, K-LPE and RRS do not use bipartite graphs. We will show

that the bipartite nature of BP-kNNG results in significant computational savings.

In addition, the K-LPE and RRS test statistics involve only the k-th nearest neighbor

distance, while the statistic in BP-kNNG, like the L1O-kNNG, involves summation

of the power weighted distance of all the edges in the k-NN graph. This will result

in increased robustness to outliers in the training sample. Finally, we will show that

the mean square rate of convergence of p-values in BP-kNNG (O(T−2/(2+d))) is faster

as compared to the convergence rate of K-LPE (O(T−2/5 + T−6/5d)), where T is the

size of the nominal training sample and d is the dimension of the data.
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The rest of this chapter is organized as follows. In Section 2, we outline the

statistical framework for minimum volume set detection. In Section 3, we describe

the GEM principle and the K-kNNG and L1O-kNNG detection schemes proposed in

[36]. Next, in Section 4, we develop our bipartite k-NN graph (BP-kNNG) method.

We show consistency of the method and compare its computational complexity with

that of the K-kNNG, L1O-kNNG and K-LPE algorithms. In Section 5, we show

simulation results that illustrate the superior performance of BP-kNNG over L1O-

kNNG in the context of anomaly detection. We also show that our method compares

favorably to other state of the art anomaly detection schemes when applied to real

world data from the UCI repository [3]. We conclude with a short discussion in

Section 6.

5.2 Statistical novelty detection

Given a training set of normal events, the anomaly detection problem aims to

identify unknown, anomalous events that deviate from the normal set. This novelty

detection problem arises in applications where failure to detect anomalous activity

could lead to catastrophic outcomes, for example, detection of faults in mission-critical

systems, quality control in manufacturing and medical diagnosis.

Several approaches have been proposed for anomaly detection. One class of algo-

rithms assumes a family of parametrically defined nominal distributions. Examples

include Hotelling’s T test and the Fisher F-test, which are both based on a Gaus-

sian distribution assumption. The drawback of these algorithms is model mismatch:

the supposed distribution need not be a correct representation of the nominal data,

which can then lead to poor false alarm rates. More recently, several non-parametric

methods based on minimum volume (MV) set estimation have been proposed. These

methods aim to find the minimum volume set that recovers a certain probability mass

α with respect to the unknown probability density of the nominal events. If a new
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event falls within the MV set, it is classified as normal and otherwise as anomalous.

The problem setup is as follows. We assume that a training sample X T =

{X1, . . . , XT} of d-dimensional vectors is available. Given a new sample X , the

objective is to declare X to either be a ’nominal’ event consistent with XT or an

’anomalous’ event which deviates from XT . Fig. 5.1 shows a collection of training

samples and two test samples - one of which is nominal and the other anomalous. We

seek to find a functional D and corresponding detection rule D(x) > 0 so that X is

declared to be nominal if D(x) > 0 holds and anomalous otherwise. The acceptance

region is given by A = {x : D(x) > 0}. We seek to further constrain the choice of D

to allow as few false negatives as possible for a fixed allowance of false positives.

To formulate this problem, we adopt the standard statistical framework for testing

composite hypotheses. We assume that the training sample XT is an i.i.d sample draw

from an unknown d-dimensional probability distribution f0(x) on [0, 1]d. Let X have

density f on [0, 1]d. The anomaly detection problem can be formulated as testing the

hypotheses H0 : f = f0 versus H1 : f �= f0.

5.2.1 Minimum volume set detection

For a given α ∈ (0, 1), we seek an acceptance region A that satisfies Pr(X ∈

A|H0) ≥ 1 − α. This requirement maintains the false positive rate at a level no

greater than α. Let A = {A :
∫
A
f0(x)dx ≥ 1−α} denote the collection of acceptance

regions of level α. The most suitable acceptance region from the collection A would

be the set which minimizes the false negative rate. Assume that the density f is

bounded above by some constant C. In this case the false negative rate is bounded

by Cλ(A) where λ(.) is the Lebesgue measure in R
d. Consider the relaxed problem

of minimizing the upper bound Cλ(A) or equivalently the volume λ(A) of A. The

optimal acceptance region with a maximum false alarm rate α is therefore given by

the minimum volume set of level α: Λα = min{λ(A) :
∫
A
f0(x)dx ≥ α}.

108



Figure 5.1: Illustration of a collection of training samples and two test samples - one
of which is nominal and the other anomalous.

Define the minimum entropy set of level α to be Ωα = min{Hν(A) :
∫
A
f0(x)dx ≥

1 − α} where Hν(A) = (1 − ν)−1
∫
A
f ν
0 (x)dx is the Rényi ν-entropy of the density

f0 over the set A. It can be shown that when f0 is a Lebesgue density in R
d, the

minimum volume set and the minimum entropy set are equivalent, i.e. Λα and Ωα are

identical. Therefore, the optimal decision rule for a given level of false alarm α is to

declare an anomaly if X /∈ Ωα.

This decision rule has a strong optimality property [36]: when f0 is Lebesgue

continuous and has no ’flat’ regions over its support, this decision rule is a uniformly

most powerful (UMP) test at level 1 − α for the null hypothesis that the test point

has density f(x) equal to the nominal f0(x) versus the alternative hypothesis that

f(x) = (1 − ε)f0(x) + εU(x), where U(x) is the uniform density over [0, 1]d and

ε ∈ [0, 1]. Furthermore, the power function is given by β = Pr(X /∈ Ωα|H1) =

(1− ε)α + ε(1− λ(Ωα)).
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5.3 GEM principle

In this section, we briefly review the geometric entropy minimization (GEM) prin-

ciple method [36] for determining minimum entropy sets Ωα of level α. The GEM

method directly estimates the critical region Ωα for detecting anomalies using mini-

mum coverings of subsets of points in a nominal training sample. These coverings are

obtained by constructing minimal graphs, e.g., the k-minimal spanning tree or the

k-nearest neighbor graph, covering a K-point subset that is a given proportion of the

training sample. Points in the training sample that are not covered by the K-point

minimal graphs are identified as tail events.

In particular, let XK,T denote one of the
(
T
K

)
K point subsets of XT . The k-nearest

neighbors (k-NN) of a pointXi ∈ XK,T are the k closest points to Xi among XK,T−Xi.

Denote the corresponding set of edges between Xi and its k-NN by {ei(1), . . . , ei(k)}.

For any subset XK,T , define the total power weighted edge length of the k-NN graph

on XK,T with power weighting γ (0 < γ < d), as

LkNN(XK,T ) =

K∑
i=1

k∑
l=1

|eti(l)|γ,

where {t1, . . . , tK} are the indices of Xi ∈ XK,T . Define the K-kNNG graph to be

the K-point k-NN graph having minimal length minXT,K∈XT
LkNN (XT,K) over all

(
T
K

)
subsets XK,T . Denote the corresponding length minimizing subset of K points by

X ∗
T,K = argmin

XT,K∈X
LkNN(XK,T ).

The K-kNNG thus specifies a minimal graph covering X ∗
K,T of size K. This graph

can be viewed as capturing the densest regions of XT . If XT is an i.i.d. sample from

a multivariate density f0(x) and if limK,T→∞K/T = ρ, then the set X ∗
K,T converges

a.s. to the minimum ν-entropy set containing a proportion of at least ρ of the mass

of f0(x), where ν = 1− γ/d [36]. This set can be used to perform anomaly detection.
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5.3.1 K-kNNG anomaly detection

Given a test sample X, denote the pooled sample XT+1 = XT ∪{X} and determine

the K-kNNG graph over XT+1. Declare X to be an anomaly if X /∈ X ∗
K,T+1 and

nominal otherwise. When the density f0 is Lebesgue continuous, it follows from

[36] that as K, T → ∞, this anomaly detection algorithm has false alarm rate that

converges to α = 1−K/T and power that converges to that of the minimum volume

set test of level α. An identical detection scheme based on the K-minimal spanning

tree has also been developed in [36].

The K-kNNG anomaly detection scheme therefore offers a direct approach to de-

tecting outliers while bypassing the more difficult problems of density estimation and

level set estimation in high dimensions. However, this algorithm requires construction

of k-nearest neighbor graphs (or k-minimal spanning trees) over
(
T
K

)
different subsets.

For each input test point, the runtime of this algorithm is therefore O(dK2
(
T
K

)
). As a

result, the K-kNNG method is not well suited for anomaly detection for large sample

sizes. The output of K-kNNG algorithm is illustrated in Fig. 5.2.

5.3.2 L1O-kNNG

To address the computational problems of K-kNNG, Hero [36] proposed imple-

menting the K-kNNG for the simplest case K = T −1. The runtime of this algorithm

for each input test point is O(dT 2). Clearly, the L1O-kNNG is of much lower complex-

ity that the K-kNNG scheme. However, the L1O-kNNG detects anomalies at a fixed

false alarm rate 1/(T + 1), where T is the training sample size. To detect anomalies

at a higher false alarm rate α∗, one would have to subsample the training set and

only use T ∗ = 1/α∗ − 1 training samples. This destroys any hope for asymptotic

consistency of the L1O-kNNG.

In the next section, we propose a different GEM based algorithm that uses bi-

partite graphs. The algorithm has algorithm has a much faster runtime than the
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Figure 5.2: Output of K-kNNG algorithm

L1O-kNNG, and unlike the L1O-kNNG, is asymptotically consistent and can operate

at any specified alarm rate α. We describe our algorithm below.

5.4 BP-kNNG

Let {XN ,XM} be a partition of XT with card{XN} = N and card{XM} = M =

T −N respectively. This partitioning is illustrated in Fig. 5.3.

As above, let XK,N denote one of the
(
N
K

)
subsets of K distinct points from XN .

Define the bipartite k-NN graph on {XK,N ,XM} to be the set of edges linking each

Xi ∈ XK,N to its k nearest neighbors in XM . Define the total power weighted edge

length of this bipartite k-NN graph with power weighting γ (0 < γ < d) and a fixed
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Figure 5.3: Illustration of the first step in the BP-kNNG anomaly detection algorithm:
partitioning of data points into disjoint sets which are subsequently used
for entropy and MV set estimation respectively.

number of edges s (1 ≤ s ≤ k) corresponding to each vertex Xi ∈ XK,N to be

Ls,k(XK,N ,XM) =

K∑
i=1

k∑
l=k−s+1

|eti(l)|γ,

where {t1, . . . , tK} are the indices of Xi ∈ XK,N and {eti(1), . . . , eti(k)} are the k-NN

edges in the bipartite graph originating from Xti ∈ XK,N . Define the bipartite K-

kNNG graph to be the one having minimal weighted length minXN,K∈XN
Ls,k(XN,K ,XM)

over all
(
N
K

)
subsets XK,N . Define the corresponding minimizing subset of K points

of XK,N by X ∗
K,N = argmin

XK,N∈X
Ls,k(XK,N ,XM).

Using the theory of partitioned k-NN graph entropy estimators, we now show

that as k/M → 0, k,N → ∞ and for fixed s, the set X ∗
K,N converges a.s. to the

minimum ν-entropy set Ω1−ρ containing a proportion of at least ρ of the mass of
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f0(x), where ρ = limK,N→∞K/N and ν = 1−γ/d. Assume without loss of generality

that {X1, . . . , XN} ∈ XN and {XN+1, . . . , XT} ∈ XM .

Denote the support of the density f0 to be S. Let S ′ ⊂ S be any arbitrary subset

of S. Denote the collective behavior k/M → 0, k,N → ∞ by Δ → 0. Note that

the distance ei(l) of a point Xi ∈ XN to its l-th nearest neighbor in XM is related

to the bipartite l-nearest neighbor density estimate f̂l(Xi) =
l−1

Mcde
d
i (l)

where cd is the

unit ball volume in d dimensions. From Theorem 2.1 and 2.2 it therefore immediately

follows that for some fixed s

lim
Δ→0

E

⎡
⎣ 1

sN

N∑
i=1

1{Xi∈S′}(k/cdM)ν−1ds,k(Xi)−
∫

z∈S′

f ν
0 (z)

⎤
⎦

2

= 0.

Because

X ∗
K,N = argmin

XK,N∈X
Ls,k(XK,N ,XM),

it follows that the set X ∗
K,N converges to the minimum entropy set Ω1−ρ containing a

proportion of at least ρ of the mass of f0(x) where ρ = limK,N→∞K/N .

This suggests using the bipartite k-NN graph to detect anomalies in the following

way. Given a test pointX, denote the pooled sample XN+1 = XN∪{X} and determine

the optimal bipartite K-kNNG graph X ∗
K,N+1 over {XK,N+1,XM}. Now declare X to

be an anomaly if X /∈ X ∗
K,N+1 and nominal otherwise. It is clear that by the GEM

principle, this algorithm detects false alarms at a rate that converges to α = 1−K/T

and power that converges to that of the minimum volume set test of level α. The

bipartite k-NN graph is shown in Fig. 5.4.

We can equivalently determine X ∗
K,N+1 as follows. For each Xi ∈ XN , construct

ds,k(Xi) =
∑k

l=k−s+1 |ei(l)|γ . For each test point X, define ds,k(X) =
∑k

l=s−k+1 |eX(l)|γ,

where {eX(1), . . . , eX(k)} are the k-NN edges from X to XM . Now, choose theK points

among XN ∪X with the K smallest of the N + 1 edge lengths {ds,k(Xi), Xi ∈ XN} ∪

{ds,k(X)}. Because of the bipartite nature of the construction, this is equivalent to
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Figure 5.4: Bipartite k-NN graph on training and test data (red = N training samples
for MV set estimation, blue =M training samples for MV set estimation,
green = test samples)

choosing X ∗
K,N+1. This leads to the proposed BP-kNNG anomaly detection algorithm

described by Algorithm 2. The output of Algorithm 2 is illustrated in Fig. 5.5.

5.4.1 BP-kNNG p-value estimates

The p-value is a score between 0 and 1 that is associated with the likelihood that a

given point X0 comes from a specified nominal distribution. The BP-kNNG generates

an estimate of the p-value that is asymptotically consistent, guaranteeing that the

BP-kNNG detector is a consistent novelty detector.

Specifically, for a given test point X0, the true p-value associated with a point X0

in a minimum volume set test is given by ptrue(X0) =
∫
S(X0)

f0(z)dz where S(X0) =

{z : f0(z) ≤ f0(X0)} and E(X0) = {z : f0(z) = f0(X0)}. ptrue(X0) is the minimal

level α at which X0 would be rejected. The empirical p-value associated with the
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Algorithm 2 Anomaly detection scheme using bipartite k-NN graphs

1. Input: Training samples XT , test samples X, false alarm rate α
2. Training phase
a. Create partition {XN ,XM}
b. Construct k-NN bipartite graph on partition
c. Compute k-NN lengths ds,k(Xi) for each Xi ∈ XN : ds,k(Xi) =

∑k
l=k−s+1 |ei(l)|γ

3. Test phase: detect anomalous points
for each input test sample X do
Compute k-NN length ds,k(X) =

∑k
l=k−s+1 |eX(l)|γ

if
(1/N)

∑
Xi∈XN

1(ds,k(Xi) < ds,k(X)) ≥ 1− α

then
Declare X to be anomalous

else
Declare X to be non-anomalous

end if
end for

BP-kNNG is defined as

pbp(X0) =

∑
Xi∈XN

1(ds,k(Xi) ≥ ds,k(X0))

N
. (5.1)

5.4.2 Asymptotic consistency and optimal convergence rates

Here we prove that the BP-kNNG detector is asymptotically consistent by showing

that for a fixed number of edges s, E[(pbp(X0) − ptrue(X0))
2] → 0 as k/M → 0,

k,N → ∞. In the process, we also obtain rates of convergence of this mean-squared

error. These rates depend on k,N andM and result in the specification of an optimal

number of neighbors k and an optimal partition ratio N/M that achieve the best

trade-off between bias and variance of the p-value estimates pbp(X0). We assume that

the density f0 (i) is bounded away from 0 and ∞ and is continuous on its support

S, (ii) has no flat spots over its support set and (iii) has a finite number of modes.

Let E denote the expectation w.r.t. the density f0, and B, V denote the bias and

variance operators. Throughout this section, assume without loss of generality that
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Figure 5.5: Output of BP-kNNG algorithm

{X1, . . . , XN} ∈ XN and {XN+1, . . . , XT} ∈ XM .

Bias We first introduce the oracle p-value

porac(X0) = (1/N)
∑

Xi∈XN

1(f0(Xi) ≤ f0(X0))

and note that E[porac(X0)] = ptrue(X0). Let

e(X) =

(
k∑

l=k−s+1

(
k − 1

l − 1
f̂l(X)

)ν−1
)

− s(f(X))ν−1

and

δ(Xi, X0) = δi = (f(Xi))
ν−1 − (f(X0))

ν−1.
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We then have

B[pbp(X0)] = E[pbp(X0)]− ptrue(X0) = E[pbp(X0)− porac(X0)]

= E[1(ds,k(X1) ≥ ds,k(X0))]− E[1(f(X1) ≤ f(X0))]

= E[1(e(X1)− e(X0) + δ1 ≤ 0)− 1(δ1 ≤ 0)].

This bias will be non-zero when 1(e(X1)− e(X0) + δ1 ≤ 0) �= 1(δ1 ≤ 0). First we

investigate this condition when δ1 > 0. In this case, for 1(e(X1)− e(X0) + δ1 ≤ 0) �=

1(δ1 ≤ 0), we need−e(X1)+e(X0) ≥ δ1. Likewise, when δ1 ≤ 0, 1(e(X1)−e(X0)+δ1 ≤

0) �= 1(δ1 ≤ 0) occurs when e(X1)− e(X0) > |δ1|.

From the theory developed in Appendix C in [80], for any fixed s, |e(X)| =

O(k/M)1/d +O(1/
√
k) with probability greater than 1− o(1/M). This implies that

B[pbp(X0)] = E[1(e(X1)− e(X0) + δ1 ≤ 0)− 1(δ1 ≤ 0)]

= Pr{|δ1| = O(k/M)1/d +O(1/
√
k)}+ o(1/M).

We first analyze the case where f0 is monotonic. By the continuity of f0, we then

have ||X1 − X0||d = O(δ1). Because we assume the density f0 is bounded above by

some constant C on its support, we have

Pr{|δ1| = O(k/M)1/d +O(1/
√
k)} = Pr(||X1 −X0||d = O(k/M)1/d +O(1/

√
k))

= O(k/M)1/d +O(1/
√
k).

We now extend this analysis to the general case where f0 is assumed to have a finite

number of modes. Let SX0(δ) = {X ∈ S : |(f0(X))ν−1 − (f0(X0))
ν−1| < δ}. By the
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continuity of f0, the volume VX0(δ) =
∫
SX0

(δ)
dx = O(δ). We then have

B[pbp(X0)] = E[1(e(X1)− e(X0) + δ1 ≤ 0)− 1(δ1 ≤ 0)]

= Pr{|δ1| = O(k/M)1/d +O(1/
√
k)}+ o(1/M)

= Pr{X1 ∈ SX0(O(k/M)1/d +O(1/
√
k))}+ o(1/M)

= O(VX0(O(k/M)1/d +O(1/
√
k))

= O((k/M)1/d + 1/
√
k).

Variance Define bi = 1(e(Xi) − e(X0) + δi ≤ 0)− 1(δi ≤ 0). We can compute the

variance in a similar manner to the bias as follows

V[pbp(X0)]

=
1

N
V[1(ds,k(X1) ≥ ds,k(X0))]

+
N − 1

N
Cov[1(ds,k(X1) ≥ ds,k(X0)), 1(ds,k(X2) ≥ ds,k(X0))]

=
1

N
V[1(e(X1)− e(X0) + δ1 ≤ 0)] +

N − 1

N
Cov[b1, b2]

= O(1/N) + E[b1b2]− (E[b1]E[b2])

= O(1/N)

+Pr{{|δ1| = O(k/M)1/d +O(1/
√
k)} ∩ {|δ2| = O(k/M)1/d +O(1/

√
k)}}

−Pr{|δ1| = O(k/M)1/d +O(1/
√
k)}Pr{|δ2| = O(k/M)1/d +O(1/

√
k)}

= O(1/N + (k/M)2/d + 1/k).

Consistency of p-values: From (5.2) and (5.2), we obtain an asymptotic represen-

tation of the estimated p-value E[(pbp(X0)− ptrue(X0))
2] = O((k/M)2/d) +O(1/k) +

O(1/N). This implies that pbp converges in mean square to ptrue, for a fixed number

of edges s, as k/M → 0, k,N → ∞.
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Optimal choice of parameters: The optimal choice of k to minimize the MSE is

given by k = Θ(M2/(2+d)). For fixed M +N = T , to minimize MSE, N should then

be chosen to be of the order O(M (4+d)/(4+2d)), which implies that M = Θ(T ). The

mean square convergence rate for this optimal choice of k and partition ratio N/M

is given by O(T−2/(2+d)). In comparison, the K-LPE method requires that k grows

with the sample size at rate k = Θ(T 2/5). The mean square rate of convergence of

the p-values in K-LPE is then given by O(T−2/5 + T−6/5d). The rate of convergence

of the p-values is therefore faster in the case of BP-kNNG as compared to K-LPE.

5.4.3 Comparison of run time complexity

Here we compare complexity of BP-kNNG with that of K-kNNG, L1O-kNNG and

K-LPE. For a single query point X, the runtime of K-kNNG is O(dK2
(
T
K

)
), while

the complexity of the surrogate L1O-kNN algorithm and the K-LPE is O(dT 2). On

the other hand, the complexity of the proposed BP-kNNG algorithm is dominated

by the computation of dk(Xi) for each Xi ∈ XN and dk(X), which is O(dNM) =

O(dT (8+3d)/(4+2d)) = o(dT 2).

For the K-kNNG, L1O-kNNG and K-LPE, a new k-NN graph has to be con-

structed on {XN ∪ {X}} for every new query point X. On the other hand, because

of the bipartite construction of our k-NN graph, dk(Xi) for each Xi ∈ XN needs to

be computed and stored only once. For every new query X that comes in, the cost

to compute dk(X) is only O(dM) = O(dT ). For a total of L query points, the overall

runtime complexity of our algorithm is therefore much smaller than the L1O-kNNG,

K-LPE and K-kNNG anomaly detection schemes (O(dT (T (4+d)/(4+2d)+L)) compared

to O(dLT 2), O(dLT 2) and O(dLK2
(
T
K

)
) respectively).
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5.5 Simulation comparisons

We compare the L1O-kNNG and the bipartite K-kNNG schemes on a simulated

data set. The training set contains 1000 realizations drawn from a 2-dimensional

Gaussian density f0 with mean 0 and diagonal covariance with identical component

variances of σ = 0.1. The test set contains 500 realizations drawn from 0.8f0 + 0.2U ,

where U is the uniform density on [0, 1]2. Samples from the uniform distribution are

classified to be anomalies. The percentage of anomalies in the test set is therefore

20%.

The distribution f0 has essential support on the unit square. For this sim-

ple case the minimum volume set of level α is a disk centered at the origin with

radius
√
2σ2 log(1/α). The power of the uniformly most powerful (UMP) test is

1− 2πσ2 log(1/α).

L1O-kNNG and BP-kNNG were implemented in Matlab 7.6 on an 2 GHz Intel

processor with 3 GB of RAM. The value of k was set to 5. For the BP-kNNG, we set

s = 1, N = 100 and M = 900. In Fig. 5.6, we compare the detection performance

of L1O-kNNG and BP-kNNG against the ’clairvoyant’ UMP detector in terms of the

ROC. We note that the proposed BP-kNNG is closer to the optimal UMP test as

compared to the L1O-kNNG. In Fig. 5.7 we note the close agreement between desired

and observed false alarm rates for BP-kNNG. Note that the L1O-kNNG significantly

underestimates its false alarm rate for higher levels of true false alarm.

In the case of the L1O-kNNG, it took an average of 60ms to test each instance

for possible anomaly. The total run-time was therefore 60x500 = 3000ms. For the

BP-kNNG, for a single instance, it took an average of 57ms. When all the instances

were processed together, the total run time was only 97ms. This significant savings

in runtime is due to the fact that the bipartite graph does not have to be constructed

separately for each new test instance; it suffices to construct it once on the entire

data set.
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Figure 5.6: ROC curves for L1O-kNNG and BP-kNNG. The labeled ’clairvoyant’
curve is the ROC of the UMP anomaly detector. The ROC curve for
the BP-kNNG estimator is closer to the performance of the ’clairvoyant’
UMP detector.

5.5.1 Experimental comparisons

In this section, we compare our algorithm to several other state of the art anomaly

detection algorithms, namely: MassAD [83], isolation forest (or iForest) [52], two

distance-based methods ORCA [7] and K-LPE [89], a density-based method LOF [13],

and the one-class support vector machine (or 1-SVM) [73]. All the methods are tested

on the five largest data sets used in [52]. The data characteristics are summarized in

Table 5.1. One of the anomaly data generators is Mulcross [71] and the other four

Data set Sample size Dimension Anomaly class

HTTP (KDD’99) 567497 3 attack (0.4%)
Forest 286048 10 class 4 vs class 2 (0.9%)
Mulcross 262144 4 2 clusters (10%)
SMTP (KDD’99) 95156 3 attack (0.03%)
Shuttle 49097 9 class 2,3,5,6,7 vs class 1 (7%)

Table 5.1: Description of data used in anomaly detection experiments.
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Figure 5.7: Comparison of observed false alarm rates for L1O-kNNG and BP-kNNG
with the desired false alarm rates. The observed false alarm rates agree
well with the desired false alarm rates.

are from the UCI repository [3]. Full details about the data can be found in [52].

The comparison performance is evaluated in terms of averaged AUC (area under

ROC curve) in Table 5.3 and processing time (a total of training and test time) in

Table 5.2. Results for BP-kNNG are compared with results for L1O-kNNG, K-LPE,

MassAD, iForest and ORCA in Table 5.3 and Table 5.2. The results for MassAD,

iForest and ORCA are reproduced from [83]. MassAD and iForest were implemented

in Matlab and tested on an AMD Opteron machine with a 1.8 GHz processor and 4

GB memory. The results for ORCA, LOF and 1-SVM were conducted using the same

experimental setting but on a faster 2.3 GHz machine. We exclude the results for

LOF and 1-SVM because MassAD, iForest and ORCA have been shown to outperform

LOF and 1-SVM in [83].

We implemented BP-kNNG, L1O-kNNG and K-LPE in Matlab on an Intel 2 GHz

processor with 3 GB RAM. We note that this machine is comparable to the AMD

Opteron machine with a 1.8 GHz processor. We choose T = 104 training samples
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Data sets BP L10 K-LPE 1-SVM Kernel Mass iF ORCA

HTTP 3.81 .10/i .19/i 35872 33 34 147 9487
Forest 7.54 .18/i .18/i 9738 18 18 79 6995

Mulcross 4.68 .26/i .17/i 7343 17 17 75 2512
SMTP 0.74 .11/i .17/i 987 7 7 26 267
Shuttle 1.54 .45/i .16/i 333 4 4 15 157

Table 5.2: Comparison of anomaly detection schemes in terms of run-time for BP-
kNNG (BP) against other state-of-the-art anomaly detection methods.
When reporting results for L1O-kNNG and K-LPE, we report the pro-
cessing time per test instance (/i). We note that BP-kNNG algorithm
requires the least run-time.

and fix k = 50 in all three cases. For BP-kNNG, we fix s = 5 and N = 103. When

reporting results for L1O-kNNG and K-LPE, we report the processing time per test

instance (/i). We are unable to report the AUC for K-LPE because of the large

processing time and for L1O-kNNG because it cannot operate at high false alarm

rates.

From the results in Table 5.3 and Table 5.2, we see that BP-kNNG performs

comparably in terms of AUC to the other algorithms, while having the least processing

time across all algorithms (implemented on different, but comparable machines). In

addition, BP-kNNG allows the specification of a threshold for anomaly detection at

a desired false alarm rate. This is corroborated by the results in Table 5.4, where we

see that the observed false alarm rates across the different data sets are close to the

desired false alarm rate.

5.6 Discussion

The geometric entropy minimization (GEM) principle was introduced in [36] to

extract minimal set coverings that can be used to detect anomalies from a set of

training samples. In this paper we propose a bipartite k-nearest neighbor graph (BP-

kNNG) algorithm based on the GEM principle. BP-kNNG inherits the theoretical
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Data sets BP L10 K-LPE 1-SVM Kernel Mass iF ORCA

HTTP 0.994 NA NA 0.90 0.99 1.00 1.00 0.36
Forest 0.862 NA NA 0.90 0.69 0.91 0.87 0.83

Mulcross 1.00 NA NA 0.58 1.00 0.99 0.96 0.33
SMTP 0.924 NA NA 0.78 0.60 0.86 0.88 0.87
Shuttle 0.992 NA NA 0.79 0.92 0.99 1.00 0.60

Table 5.3: Comparison of anomaly detection schemes in terms of AUC against other
state-of the-art anomaly detection methods. We are unable to report the
AUC for K-LPE and L1O-kNNG because of the large processing time. We
note that BP-kNNG compares favorably in terms of AUC.

Data sets
Desired false alarm

0.01 0.02 0.05 0.1 0.2

HTTP (KDD’99) 0.007 0.015 0.063 0.136 0.216
Forest 0.009 0.015 0.035 0.071 0.150

Mulcross 0.008 0.014 0.040 0.096 0.186
SMTP (KDD’99) 0.006 0.017 0.046 0.099 0.204

Shuttle 0.026 0.030 0.045 0.079 0.179

Table 5.4: Comparison of desired and observed false alarm rates for BP-kNNG. There
is good agreement between the desired and observed rates.
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optimality properties of GEM methods including consistency, while being an order of

magnitude faster than the methods proposed in [36].

We compared BP-kNNG against state of the art anomaly detection algorithms and

showed that BP-kNNG compares favorably in terms of both ROC performance and

computation time. In addition, BP-kNNG enjoys several other advantages including

the ability to detect anomalies at a desired false alarm rate. In BP-kNNG, the p-

values of each test point can also be easily computed (5.1), making BP-kNNG easily

extendable to incorporating false discovery rate constraints.
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CHAPTER VI

Ensemble methods

6.1 Introduction

We showed in the previous chapters that for d-dimensional data, the variance of

the proposed k-NN estimators decay as O(T−1), where T is the sample size, while

the bias, because of the curse of dimensionality, decays as O(T−1/(1+d)). One can use

the boundary compensated k-NN graphs described in Chapter 3 to reduce the bias to

O(T−2/(2+d)). However, the bias O(T−2/(2+d)) still dominates the mean square error

(MSE) in high dimensions.

To accelerate the slow rate of convergence of the bias in high dimensions, we pro-

pose a weighted ensemble estimator for ensembles of estimators that satisfy conditions

C .1(6.1) and C .2(6.2) defined below. Optimal weights, which serve to lower the bias

of the ensemble estimator to O(T−1/2), can be determined by solving a sparsity-

inducing convex optimization problem. Remarkably, this optimization problem does

not involve any density-dependent parameters and can therefore be performed off-

line. This then ensures MSE convergence of the weighted estimator at the parametric

rate of O(T−1).

We will first explain the proposed ensmeble method in a general setting, and

then apply the method to specific examples including entropy estimation for anomaly

detection, intrinsic dimension estimation and minimum volume set estimation.
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6.1.1 Previous work

For Shannon and Rényi entropy estimators proposed by Leonenko et al., Li-

itiäinen et al. [51] showed that the bias is of order O(T−1/d) while the variance is

of order O(T−1). For moderate to large dimensions d, the contribution of the bias

therefore dominates the MSE. To partially address this problem, Liitiäinen et al.

considered a weighted k-NN estimator with reduced bias of o(T−1/d) and variance

of O(T−1). In this paper, we extend Liitiäinen et al.’s work by determining weights

which will reduce the bias of the weighted estimator to O(T−1/2). Furthermore, we

will extend the application of weighted estimators to general entropy, divergence and

MI estimation and intrinsic dimension estimation.

Birge and Massart show that for density f in a Holder smoothness class with s

derivatives, the minimax MSE rate for estimation of a smooth functional is T−2γ,

where γ = min{1/2, 4s/(4s+ d)}. This means that for s > 4/d, parametric rates are

achievable. When the density f is s > d/4 times differentiable, certain estimators

of functionals of the form of the form
∫
g(f(x), x)f(x)dx, proposed by Birge and

Massart [10], Laurent [47] and Giné and Mason [31], achieve the parametric MSE

convergence rate of O(T−1). The key ideas in [10, 47, 31] are: (i) estimation of

quadratic functionals
∫
f 2(x)dx with MSE convergence rate O(T−1); (ii) use of kernel

density estimators with kernels that satisfy the following symmetry constraints:

∫
K(x)dx = 1,

∫
xrK(x)dx = 0

for r = 1, .., s; and finally (iii) truncating the kernel density estimate so that it is

bounded away from 0. By using these ideas, the estimators proposed by [10, 47, 31]

are able to avoid the curse of dimensionality.

In contrast, the ensemble estimators proposed in this chapter require higher or-

der smoothness conditions on the density, i. e. the density must be s > 2d times
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differentiable. However, our estimators are much simpler to implement in contrast to

the estimators proposed in [10, 47, 31]. In particular, the estimators in [10, 47, 31]

require separately estimating quadratic functionals of the form
∫
f 2(x)dx, and using

truncated kernel density estimators with symmetric kernels, conditions that are not

required in this paper. Our estimator is a simple convex combination of an ensemble

of estimators, where the ensemble satisfies conditions C .1 and C .2, and is therefore

trivial to implement. Observe that Birge and Massart showed that for s > 2d (which

is effectively the assumption that the density f has 2d derivatives), it is indeed possi-

ble to achieve parametric sqrt MSE rate of 1/
√
T . The proposed ensemble estimators

therefore do not violate the minimax rate results of Birge and Massart.

Ensemble based methods have been previously proposed in the context of clas-

sification. For example, in both boosting [72] and multiple kernel learning [46] al-

gorithms, lower complexity weak learners are combined to produce classifiers with

higher accuracy. Our work differs from these methods in several ways. First and

foremost, our proposed method performs estimation rather than classification. An

important consequence of this is that the weights we use are data independent , while

the weights in boosting and multiple kernel learning must be estimated from training

data since they depend on the unknown distribution.

6.2 General methodology

Let l̄ = {l1, .., lL} denote a vector of indices. For an ensemble of estimators

{Êl}l∈l̄ of E, define the weighted ensemble estimator with respect to weights w =

{w(l1), . . . , w(lL)} as

Êw =
∑
l∈l̄

w(l)Êl

where the weights satisfy
∑

l∈l̄ w(l) = 1. Assume that this ensemble of estimators

{Êl}l∈l̄ satisfy the following two conditions:
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• C .1 The bias is given by

B(Êl) =
∑
i∈I

ciψi(l)T
−i/2d +O(1/

√
T ), (6.1)

where ci are constants that depend on the underlying density, I is a finite index

set with cardinality I < L, min(I) = i0 > 0 and max(I) = id <= d, and ψi(l)

are basis functions that depend only on l.

• C .2 The variance is given by

V(Êl) = cv

(
1

T

)
+ o

(
1

T

)
. (6.2)

Theorem VI.1. For an ensemble of estimators {Êk}k∈k̄, assume that the conditions

C.1 and C.2 hold. Then, it is possible to choose a weight vector w such that

E[(Êw −E)2] = Θ(1/T ).

Furthermore, the optimal weight w

(i) is independent of the underlying density, the T sample realizations and the func-

tional E of interest, and

(ii) can be determined as the solution to an off-line convex optimization problem.

Proof. For each i ∈ I, define γw(i) =
∑

l∈l̄ w(l)ψi(l). The bias of the ensemble

estimator is given by

B(Êw) =
∑
i∈I

ciγw(i)T
−i/2d +O

(
1√
T

)
. (6.3)

Denote the covariance matrix of {Êl; l ∈ l̄} by ΣL. Let Σ̄L = ΣL/T . Observe

that by (6.2) and Cauchy-Schwarz, the entries of Σ̄L are O(1). The variance of the
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weighted estimator Êw can then be bound as follows:

V(Êw) = V(

d∑
l=1

wlÊl) = w′ΣLw =
w′Σ̄Lw

T

≤ λmax(Σ̄L)||w||22
T

. (6.4)

We seek a weight vector w that (i) ensures that the bias of the weighted estimator

is O(T−1/2) and (ii) has low �2 norm ||w||2 in order to limit the contribution of the

variance of the weighted estimator. To this end, let wo be the solution to the convex

optimization problem

minimize
w

||w||2

subject to
∑
l∈l̄

w(l) = 1,

γw(i) = 0, i ∈ I.

This problem can be equivalently expressed as

minimize
w

||w||2

subject to A0w = b,

where A0 and b are defined below. Let fIN : I → {1, .., I} be a bijective mapping.

Let a0 be the vector of ones: [1, 1..., 1]1×L; and let afIN (i), for i ∈ I be given by

afIN (i) = [ψi(l1), .., ψi(lL)]. Define A0 = [a′0, a
′
1, ..., a

′
I ]

′, A1 = [a′1, ..., a
′
I ] and b =

[1; 0; 0; ..; 0](I+1)×1. Then, the optimal minimum η(d) := ||wo||2 is given by

η(d) =

√
det(A1A′

1)

det(A0A
′
0)
.

Consequently, by (6.3), the bias B[Êwo ] = O(1/
√
T ). By (6.4), the estimator

variance V[Êw0 ] is of order O(1/T ). This concludes the proof.
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In practice, for stability reasons, we solve for wo using the alternative optimization

problem defined below:

minimize
w

ε

subject to γw(0) = 1,

|γw(i)T−i/d| ≤ ε, i ∈ I,

||w||2 ≤ η(d).

(6.5)

By design, for this choice of η(d), the solution ε to (II.5) will be of order O(1/
√
T ) for

every T and insure that the weighted estimator bias behaves as B[Êwo ] = O(1/
√
T )

while the estimator variance V[Êwo ], by (6.4), is of order O(1/T ). The optimization

problem (6.5) is convex.

Also observe that if we choose to minimizing the �1 norm of w, for moderately

large values of the length of the weight vector w, the solution to the optimization

problem would have been sparse [23]. The relative pros and cons of using �1 norm in

place of the �2 norm is a topic of future work.

Next, we will verify conditions C .1(6.1) and C .2(6.2) for (i) density estimation,

(ii) entropy, divergence and MI estimation and finally, (iii) we will extend the idea of

ensemble estimators to dimension estimation.

6.3 Ensemble estimators for density estimation

In this section, we apply the theory of ensemble estimation to density estimation

problems. Let X be any arbitrary point such that that the density f is d-times

differentiable in a neighborhood of X. We estimate the density at X using the k-

NN density estimator f̂k(X), which is evaluated using the T independent realizations

{X1, . . . ,XT} drawn from f . Then,
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6.3.1 Analysis of MSE

Theorem VI.2. The bias of the bipartite k-NN density estimator is given by

E[f̂k(X)]− f(X) =
∑
i∈I

hi(X)

(
k

T

)i/d

+O

(
1

k
+
k

T

)
, (6.6)

where hi are constants and I = {2, . . . , d}.

Theorem VI.3. The variance of the bipartite k-NN density estimator is given by

V[f̂k(X)] = f 2(X)

(
1

k

)
+ o

(
1

k

)
. (6.7)

Proof. These results are derived in Appendix B. In particular, please refer to sec-

tion B.3.3.

6.3.2 Optimal MSE rate

From Theorem VI.2, k/T → 0 for the estimator to be unbiased. Likewise from

Theorem VI.3 k → ∞ for the variance of the estimator to converge to 0. We optimize

the choice of number of nearest neighbors k for minimum M.S.E. Minimizing the

M.S.E. over k is equivalent to minimizing the square of the bias over k. The optimal

choice of k is given by

kopt = Θ(T
4

4+d ), (6.8)

and the MSE evaluated at kopt is Θ(T
−4
4+d ).
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6.3.2.1 Discussion

The optimal MSE for the estimator f̂k(X) is achieved for the choice of k =

Θ(T 4/(4+d)), and is given by Θ(T−4/(4+d)). Our goal is to reduce the MSE to O(T−1/2).

We do so by applying the method of weighted ensembles.

6.3.3 Weighted ensemble entropy estimator

For a positive integer L > d, choose l̄ = {l1, . . . , lL} to be positive real numbers.

Define the mapping k(l) = 
l
√
T � and let k̄ = {k(l); l ∈ l̄}. Define the weighted

ensemble estimator

f̂w(X) =
∑
l∈l̄

w(l)f̂k(X).

From theorems II.1 and II.2, we see that the bias of the ensemble of estimators

{f̂k(X); l ∈ l̄} satisfy a modified form of C .1 [79], with T replaced by
√
T , when we

set ψi(l) = li/d and I = {2, .., d}. Furthermore, the general form of the variance

of f̂k(X) follows a modified version of C .2 [79] with T again replaced by
√
T . This

implies that we can use the weighted ensemble estimator f̂w(X) to estimate entropy

at O(T−1/2) convergence rate by setting w equal to the optimal weight wo given by

(II.5). In other words, the MSE reduces from O(T−4/(4+d)) [30] to O(1/
√
T ) using

ensemble estimation. This result is stated as the following theorem.

Theorem VI.4. The MSE of the density estimator f̂w(X) is given by

MSE(f̂w(X)) = Θ(1/
√
M).

6.3.4 Experiments

In our simulations we consider density estimation using four different choices

of density estimators: (i) the k-NN density estimator defined in Chapter 2, (ii) a

weighted density estimator proposed by Biau et al. [8], (iii) an ensemble estimator
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Standard k−NN density estimator
Biau’s k−NN density estimator
Uniformly weighted k−NN density estimator
Optimally weighted k−NN density estimator

Figure 6.1: Variation of integrated mean square error of density estimates as a func-
tion of sample size T using samples drawn from 5-d standard normal
distribution. From the figure, we see that our weighted estimator has the
fastest rate of convergence.

with uniform weights and (iv) the optimal weighted ensemble estimator f̂w(X). We

estimate density for the following class of densities: (i) 5 dimensional standard normal

density, and (ii) 5 dimensional beta density with parameters 1.5, 2. The MSE results

of these different estimators for the two different densities f are shown in Fig. 6.1 and

Fig. 6.2 as a function of sample size T . It is clear from the figures that the proposed

ensemble estimator f̂w has significantly faster rate of convergence as predicted by our

theory.
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Figure 6.2: Variation of integrated mean square error of density estimates as a func-
tion of sample size T using samples drawn from 5-d beta distribution.
From the figure, we see that our weighted estimator has the fastest rate
of convergence.

6.4 Ensemble estimators for entropy and divergence estima-

tion

We first deal with the case where S ′ ∩ SI = φ. If we assume that the density f is

d-times differentiable, we show in section B.3.3 that,

E[f̂k(X)]− f(X) =
d∑

i=2

hi(X)

(
k

M

)i/d

+O

(
1

k
+

k

M

)
, (6.9)

for any X ∈ S ′ (see Appendix B.1).

Let Ĝk denote any one of any one of the following: the entropy estimator with

Ĝk := Ĝk(f), the divergence estimator with Ĝk := Ĝk(f1, f2) and the MI estimator

with Ĝk = Ĝk(f12). Assume that the density f is 2d-times differentiable and the

functional g(x, y) is d-times differentiable wrt x. Using the results from Chapter 2 in
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combination with Eq. 6.9, we then have the following general form for the bias of Ĝk:

Theorem VI.5. The bias of the plug-in estimator Ĝk is given by

B(Ĝk) =
∑
i∈I

c1,i

(
k

M

)i/d

+ c2

(
1

k

)
+ o

(
1

k
+

k

M

)
,

where c1,i and c2 are constants and I = {1, . . . , d}.

Proof. The proof follows exactly along the lines of the proof of Theorem 2.1, 2.4 and

2.7 and subsequently observing that

E[1{Z∈S′}(g(EZ[f̂k(Z)],Z)− g(f(Z),Z))]

=

d∑
i=1

E

[
g(i)(f(Z),Z)

(
EZ[f̂k(Z)]− f(Z)

)i
]

=

d∑
i=1

c1,i(k/M)i/d + o((k/M)). (6.10)

6.4.1 Weighted ensemble entropy estimator

For a positive integer L > d, choose l̄ = {l1, . . . , lL} to be positive real numbers.

Define the mapping k(l) = 
l
√
M� and let k̄ = {k(l); l ∈ l̄}. Define the weighted

ensemble estimator

Ĝw =
∑
l∈l̄

w(l)Ĝk(l).

From theorems VI.5 and Theorem 2.2, 2.5 and 2.8, we see that the bias of the ensemble

of estimators {Ĝk(l); l ∈ l̄} satisfy C .1 (Section 6.2) when we set ψi(l) = li/d and

I = {1, .., d}. Furthermore, the general form of the variance of Ĝk(l) follows C .2

(Section 6.2) because N = M = T/2. This implies that we can use the weighted

ensemble estimator Ĝw to estimate entropy, divergence or MI at O(T−1) convergence

rate by setting w equal to the optimal weight wo (shown in Fig. 6.3) given by (II.5).
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Figure 6.3: Variation of optimal weight w as a function of k (blue dots represent each
entry k ∈ k̄).

This result is stated as the theorem below.

Theorem VI.6. The MSE of the ensemble estimator Ĝw is given by

MSE(Ĝw) = Θ(1/T ).

In the next section, we illustrate the performance of weighted ensemble estimators

for estimation of Rényi entropy. Observe that in the case of estimation of Rényi

entropy, the set S ′ = S and therefore, the assumption S ′ ⊂ SI is violated. Even so,

we observe that the weighted ensemble estimator works well.

6.4.2 Simulations

We will compare the MSE of the ensemble estimator Ĝw for estimating Rényi

entropy with α = 0.95. The ensemble is given by {Ȟ(α)
l }, l = {1, .., 50} with α = 0.95.

We consider four different choices of weight vectors: The nearest neighbor estimator
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of Leonenko etal with weight ws = [1, 0, . . . , 0], the uniform weighted estimator with

weight wu = (1/k)[1, . . . , 1], the first-order correction estimator of Liitiäinen etal with

weight wf , and finally the optimized weighted estimator with weight wo.

We estimate entropy for the following class of densities: 6 dimensional mixture

density fm(p, a, b) = pfβ(a, b) + (1 − p)fu; fβ : Beta density with parameters a,b;

fu: Uniform density; Mixing ratio p. We show representative results obtained by

simulating samples from fm(0.8, 1.5, 1.5). The MSE error performances for these

densities are shown in Fig. 6.4(a) and Fig. 6.4(b) respectively.
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(a) MSE comparison for density fm(.8, 2, 2). A lower order bias correction suffices for

this density. The weighted BP-kNN estimator outperforms other estimators for small

sample sizes, while the first-order correction estimator of Liitiäinen etal works better

for larger sample sizes.
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(b) MSE comparison for density fm(.8, 1.5, 1.5). This density requires higher order bias

correction. The weighted BP-kNN estimator therefore has superior MSE performance

for all sample size regimes.

Figure 6.4: Comparison of MSE of weighted estimators for different choices of weight

vectors. The proposed optimal weight (6.5) outperforms the rest of the
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The observed MSE performance can be explained as follows. For the density

fm(.8, 2, 2), we note that the higher order co-efficients in the bias expansion ci, i > 2

are identically 0. The MSE performance for the optimized weighted entropy estimator

is better than Liitiäinen etal’s first-order correction estimator for small sample sizes

because the first-order correction estimator does not account for second order terms

in the bias. With increasing sample size, the contribution of the second order bias

terms become negligible. Because the first order bias term is explicitly set to 0 in

the first-order correction estimator, it performs better with increasing sample size as

compared to the optimized weighted estimator. On the other hand, for the density

fm(.8, 1.5, 1.5), higher order co-efficients are non-zero and therefore contribute to bias.

The optimized weighted estimator with higher order bias correction and lower norm

therefore works better in this case.

6.4.2.1 Anomaly detection revisited

We apply our theory to the problem of anomaly detection in wireless sensor net-

works. The experiment was set up on a Mica2 platform, which consists of 14 sensor

nodes randomly deployed inside and outside a lab room. Wireless sensors commu-

nicate with each other by broadcasting and the received signal strength (RSS), de-

fined as the voltage measured by a receiver’s received signal strength indicator circuit

(RSSI), was recorded for each pair of transmitting and receiving nodes. There were 14

× 13 = 182 pairs of RSSI measurements over a 30 minute period, and each sample was

acquired every 0.5 sec. During the measuring period, students walked into and out

of lab at random times, which caused anomaly patterns in the RSSI measurements.

Finally, a web camera was employed to record activity for ground truth.

The mission of this experiment is to use the 182 RSS sequences to detect any

intruders (anomalies). To capture the temporal dependency between successive mea-

surements, for each time point we form a temporal dependency discriminant by con-
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sidering vectors of d = 3 successive time samples at each sensor and estimating the

entropy by averaging over M = 182 spatial samples. We note that the ground truth

indicator is only for evaluating the detecting performance and the detection scheme

presented here is conducted in a completely unsupervised manner.

In order to detect anomalies, we form a running estimate of the Rényi α-entropy

with α = 0.95, of the 3-dimensional time sequence using weighted k-NN estimators

with first order correction weight wf and optimized correction weight wo. We perform

anomaly detection by thresholding the entropy estimate. A time sample is regarded

to be anomalous if the entropy estimate exceeds a specified threshold. ROC curves

corresponding to first-order correction weight wf and optimized correction weight

wo are shown in Fig. 2. The Area under the ROC curve (AUC) was found to be

0.9538 and 0.9821 for the first-order correction estimator and the optimized weighted

estimator respectively. It is clear that the detection performance using the optimized

weight wo is superior to the performance using Liitiäinen etal’s first-order correction

weight wf .
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Figure 6.5: Comparison of ROC curves for anomaly detection. The weighted BP-kNN

estimator outperforms Liitiäinen etal’s first-order correction estimator.

6.5 Angular plug-in estimators for entropy

We will now extend these ideas to the case where S ′ ∩ SI �= φ. We do so by

modifying the k-NN estimators as follows. We propose a modification of k-NN densi-

ties, called angular k-NN densities, with the property that the k-NN neighborhoods

of these densities are sectors of hyper-spheres, as opposed to the complete spherical

regions Sk(X) in the case of standard k-NN. These sectors are directed such that they

always lie in the interior of the support S with high probability.

Observe that, because the sectors are directed to lie in the interior of the sup-

port S, angular k-NN plug-in estimators also compensate for the bias due to the

boundary. However, in contrast to the extrapolation based compensation proposed

in Chapter 3, angular k-NN plug-in estimators have a slower MSE rate of convergence
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((O(T−1/(1+d))) vs (O(T−2/(2+d)))). This is because the sectors of hyper-spheres are

asymmetric regions about the center of the sphere. However, under higher order

smoothness conditions on the density, we show that these angular estimators satisfy

the regularity conditions C .1 and C .2, and can therefore be aggregated to produce

ensemble estimators with much faster MSE rates of convergence O(1/T ). The regu-

larity conditions C .1 and C .2 are in general not satisfied by the extrapolation based

estimators of Chapter 3, thereby necessitating the use of angular k-NN plug-in esti-

mators.

6.5.1 Entropy estimation problem

Without loss of generality, set S ′ = S. We are therefore interested in estimating

non-linear functionals G(f) of d-dimensional multi-variate densities f with compact

support S, where G(f) has the form

G(f) =

∫
g(f(x), x)f(x)dμ(x),

for some smooth function g(f(x), x). Let B denote the boundary of S. Assume that

the support S is a union of a finite set of convex regions. Let 2θ be a known upper

bound on the curvature of the boundary of these regions.

6.5.2 Plug-in estimators of entropy

The plug-in estimator is constructed using a data splitting approach as follows.

The data is randomly subdivided into two parts XN = {X1, . . . ,XN} and XM =

{XN+1, . . . ,XN+M} of N and M points respectively. Consider plug-in estimators of

the form

Ĝk,θ(f) =
1

N

N∑
i=1

g(f̂k,θ(Xi),Xi). (6.11)
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where f̂k,θ(.) is the angular k-NN density estimator defined below.

6.5.3 Angular k-NN density estimates

Let {Xi1, ..,XiK} be theK = 
k×N/M�-nearest neighbors of the point Xi among

{X1, ..,Xi−1,Xi+1, ..,XN}. For each Xi ∈ XN , Define N(Xi) to be the normalized

average direction of the K-NN of Xi with respect to XN , i. e. ,

N(Xi) = Xi +

K∑
j=1

Xij −X

||Xij −X|| .

Conditioned on XN , for each X ∈ XN , let dk,θ(X) = infτ>0{τ : #{i : i ∈ {N +

1, .., N+M}; |X−Xi| < τ ; 〈X −Xi, X −N(X)〉 < θ} ≥ k}. Define the corresponding

k-NN region to be the arc Sk,θ(X) = {Z : d(X,Z) ≤ dk,θ(X); 〈X − Z,X −N(X)〉 <

θ}. Let the volume of this region be Vk,θ(X). Define the angular k-NN density

estimate at X as

f̂k,θ(X) =
k − 1

MVk,θ(X)
. (6.12)

The moment properties of angular k-NN densities are discussed in detail in Ap-

pendix B.6.5.

6.5.4 Analysis of MSE

Under the assumptions stated in Section 2.3.1, in addition to the assumption

that the density f has 2d continuous partial derivatives, we show that the following

theorems hold:

Theorem VI.7. The bias of the plug-in estimator Ĝk,θ(f) is given by

B(Ĝk,θ(f)) =
∑
i∈I

c1,i

(
k

M

)i/d

+ c2

(
1

k

)
+ o

(
1

k
+

k

M

)
,

where c1,i and c2 are constants and I = {1, . . . , d}.
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Proof. The proof of the theorem is identical to the proof of Theorem II.1 and follows

by the use of Lemma B.6 and Lemma B.7.

Theorem VI.8. The variance of the plug-in estimator Ĝk,θ(f) is given by

V(Ĝk,θ(f)) = c4

(
1

N

)
+ c5

(
1

M

)
+ o

(
1

M
+

1

N

)
,

where c4 and c5 are constants.

Proof. The proof of the theorem is identical to the proof of Theorem II.2 and follows

by the use of Lemma B.7 and Lemma B.8.

6.5.5 Optimal MSE rate

From Theorem VI.7, k → ∞ and k/M → 0 for the estimator Ĝk to be unbiased.

Likewise from Theorem VI.8 N → ∞ and M → ∞ for the variance of the estimator

to converge to 0. We can optimize the choice of number of nearest neighbors k, and

the data splitting proportions N/(N +M), M/(N +M) for minimum M.S.E.

6.5.5.1 Optimal choice of k

Minimizing the M.S.E. over k is equivalent to minimizing the square of the bias

over k. The optimal choice of k is given by

kopt = Θ(M
1

1+d ), (6.13)

and the bias evaluated at kopt is Θ(M
−1
1+d ).

6.5.5.2 Optimal choice of αfrac

Observe that the MSE of Ĝk,θ is dominated by the squared bias (Θ(M−2/(1+d))) as

contrasted to the variance (Θ(1/N + 1/M)). This implies that the asymptotic MSE

rate of convergence is invariant to the choice of αfrac.
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6.5.5.3 Discussion

The optimal MSE for the estimator Ĝk,θ is therefore achieved for the choice of

k = Θ(M1/(1+d)), and is given by Θ(T−2/(1+d)). Our goal is to reduce the MSE to

O(T−1). We do so by applying the method of weighted ensembles described in Section

6.2.

6.5.6 Weighted ensemble entropy estimator

For a positive integer L > d, choose l̄ = {l1, . . . , lL} to be positive real numbers.

Define the mapping k(l) = 
l
√
M� and let k̄ = {k(l); l ∈ l̄}. Define the weighted

ensemble estimator

Ĝw,θ =
∑
l∈l̄

w(l)Ĝk(l),θ.

From theorems II.1 and II.2, we see that the bias of the ensemble of estimators

{Ĝk(l),θ; l ∈ l̄} satisfy C .1 (Section 6.2) when we set ψi(l) = li/d and I = {1, .., d}.

Furthermore, the general form of the variance of Ĝk(l),θ follows C .2 (Section 6.2)

because N =M = T/2. This implies that we can use the weighted ensemble estimator

Ĝw,θ to estimate entropy at O(T−1) convergence rate by setting w equal to the optimal

weight wo given by (II.5). This result is stated as the theorem below.

Theorem VI.9. The MSE of the plug-in estimator Ĝw,θ is given by

MSE(Ĝw,θ) = Θ(1/T ).

6.5.7 Experiments

In our simulations we consider the estimation of Shannon entropy using five dif-

ferent choices of functional estimators: (i) the k-NN plug-in estimator defined in

Chapter 2, (ii) the bias corrected k-NN estimator [32], (iii) the angular plug-in esti-

mator Ĝk,θ, (iv) a weighted ensemble of the bias corrected k-NN estimator [32], and
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(v) the weighted ensemble estimator Ĝw,θ. We estimate entropy for the following

class of densities: 6 dimensional mixture density fm(p, a, b) = pfβ(a, b) + (1 − p)fu;

fβ: Beta density with parameters a,b; fu: Uniform density; Mixing ratio p.

6.5.7.1 Variation with sample size T

The MSE results of these different estimators are shown in Fig. 6.6 as a function

of sample size T . In this experiment, we fixed a = 3, b = 3, p = 0.75 and set d = 8. It

is clear from the figure that the proposed ensemble estimator Ĝw,θ has significantly

faster rate of convergence as predicted by our theory.
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Figure 6.6: Variation of MSE of Shannon entropy estimates as a function of sample

size T . From the figure, we see that our proposed angular weighted BP-

kNN estimator has the fastest rate of convergence.
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6.5.7.2 Variation with dimension d

The MSE results of these different estimators are shown in Fig. 6.7 as a function

of dimension d, for fixed sample size T = 103. In this experiment, we once again

fixed a = 3, b = 3, p = 0.75. Observe that the MSE of the weighted estimator Ĝw,θ

is significantly smaller than the MSE of the other estimators, and furthermore, the

MSE of the weighted estimator Ĝw,θ increases at a much slower rate as a function

of d. This is in agreement with our theory that the MSE of the weighted angular

estimator is O(η(d)/T ), where the function η(d) is a parameter in the optimization

problem (II.5)(Section 6.2) which increases as a function of d.
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Figure 6.7: Variation of MSE of Shannon entropy estimates as a function of dimension

d. From the figure, we see that our proposed angular weighted BP-kNN

estimator has the fastest rate of convergence for all dimensions d > 2.
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6.6 Extension of ensemble estimators to manifolds

In this section, we extend the use of weighted ensemble estimators to data on

manifolds.

6.6.1 Bias expansion for density estimation on manifolds

The bias of the k-NN density estimate on the manifold f̂k,g,M(X) has the following

expansion:

B[f̂k,g,M(X)] =

∫
MM

(f̂k,g,M(X)− f(X))

M∏
i=1

(f(xi)dxi)

=

∫
UM

(p̂k(0)− p(0))
M∏
i=1

(p(φ−1(xi))dyi) + o(1/Ma)

= B[p̂k(0)] + o(1/Ma)

=
∑
i∈I

hi(X)(k/M)i/d + o((k/M).

Using lemma IV.3, we have shown in section 4.3.4 that we can write the following

relation between the Euclidean and geodesic k-NN density estimators on the manifold:

f̂k,e,M(X) = A‖X(f̂k,g,M(X)), (6.14)

where the new approximating function A‖ is given by

A‖x(f) = f +
d∑

i=2

ãx(i)(k/M)i/df 1−i/d + o(k/M).

This implies that the bias of the Euclidean k-NN density estimate f̂k,e,M(X) is
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given by

B[f̂k,g,M(X)] = E[f̂k,e,M(X)]− f(X)

= E[A‖X(f̂k,g,M(X))]− f(X)

=
∑
i∈I

h̃i(X)(k/M)i/d + o((k/M).

6.6.2 Bias expansion for entropy estimation on manifolds

The bias of the entropy estimator Ĝk,e,M has the following expansion.

Theorem VI.10. The bias of the plug-in estimator Êk is given by

B[Ĝk,e,M] =
∑
i∈I

c1,i

(
k

M

)i/d

+ c2

(
1

k

)
+ o

(
1

k
+

k

M

)
,

where c1,i and c2 = E[1{Y∈S′}f
2(Y)g′′(f(Y),Y)/2] are constants and I = {1, . . . , d}.

Proof. The proof follows exactly along the lines of the proof of Theorem 2.1 by plug-

ging in (6.15) in the proofs of Lemma D.1.

Theorem VI.10 verifies condition C .1(6.1) for the ensemble Ĝl,e,M. Theorem IV.5

and therefore verifies condition C .2(6.2). This implies that we can use ensemble

weighted estimators to estimate entropy on the manifold at MSE rate of O(1/T ).

Next, we will extend these ensemble entropy estimators on the manifold to estimate

dimension.

6.7 Ensemble weighted dimension estimator

Recall that we had previously defined the log-length statistic to be

Lk(X ) =
1

N

N∑
i=1

log (dk,e(Xi)) ,
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in section 4.4.1.1 and showed that

H̆k =
1

N

N∑
i=1

ψ(k)− log(cdM)− d log(dk,e(Xi))

= ψ(k)− log(cdM)− dLk(X ).

where

H̆k = −
(
G̃k,M + log(k − 1)− ψ(k − 1)

)
,

denotes the negative of the Shannon entropy estimator with bias correction.

In this section, we improve on the previous slope based estimator (see section 4.4.1.3)

by proposing the following inverse weighted slope estimator

d̂−1
w =

Lw(X )∑
k∈k̄ wkψ(k)

where

Lw(X ) =
∑
k∈k̄

wkLk(X ).

with the weights wk satisfying the condition
∑
wk = 0 and

∑
wkψ(k) = 1. Now,

when we rewrite the dimension estimator, we get the following relation:

d̂−1
w = Lw(X ) = (1/d)

∑
k∈k̄

wk(1− H̆k)

For the ensemble H̆l, l ∈ k̄, we have previously established in section 6.6.2 that

C .1(6.1) and C .2(6.2) are satisfied. In order to reduce the MSE of the inverse dimen-

sion estimator d̂−1
w to O(1/T ), we can therefore use the concept of weighted estimators

and solve the convex optimization problem (6.5), but with the constraints
∑
wk = 0

and
∑
wkψ(k) = 1 in place of the constraint

∑
wk = 1.
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The modified optimization problem is therefore given by

minimize
w

||w||2

subject to
∑
k∈k̄

wk = 0,

∑
k∈k̄

wkψ(k) = 1,

∑
k∈k̄

w(k)ki/d = 0, i ∈ 1, .., d.

(6.15)

Observe that the constraints

∑
k∈k̄

w(k)ki/d = 0, i ∈ 1, .., d

depend on the unknown dimension intrinsic d. We therefore adopt the following

iterative matching solution to determine the inverse optimally weighted dimension

estimate d̂−1
o :

Algorithm 3 Iterative matching algorithm for weighted dimension estimation

1. Determine initial dimension estimate d0 = 
d̂s�
2. Initialize diff = ∞
3. Initialize weighted inverse dimension estimate d̂−1

o = 1/d0
4. Do:
for Each din in [1, D] do
a. Determine weight w(din) using (6.15) with d = din
b. Determine inverse intrinsic dimension d̂−1

out = d̂−1
w(din)

c. Check:
if | d̂−1

out − 1/din |< diff then
(i) diff =| d̂−1

out − 1/din |
(ii) d̂−1

o = d̂−1
w(din)

end if
end for
5. Output d̂−1

o

With very high probability 1 − O(1/T ), the difference | d̂−1
w(din)

− 1/din | will be

minimized for the case when din is equal to the true intrinsic dimension d. Subse-
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quently, when using these optimized weights w evaluated at d, by lemma VI.1, the

bias of d̂−1
o is given by

B(d̂−1
o ) =

∑
i∈I

c1,i

(
k

M

)i/d

+ c2

(
1

k

)
+ o

(
1

k
+

k

M

)
,

= O(1/
√
M),

and the variance is given by V[d̂−1
o ] = O(1/M + 1/N). Because N = M = T/2,

the overall MSE is order O(1/T ). This in turn implies that the weighted dimension

estimator given by

d̂w = 1/d̂−1
o

also converges at the MSE rate of O(1/T ) and is therefore an significant improvement

over the estimators of Farahmand et al. (d̂f), Levina and Bickel (d̂l), Costa and Hero

(d̂j) and the uniform slope estimator (d̂s), which converge at the rate of (1/T )1/d.

6.7.1 Simulations

First, we repeat the experiments in section 4.4.3, but with higher dimensional data

and lower sample sizes, using the proposed dimension estimator d̂w in addition to the

estimators proposed by Farahmand et al.etal (d̂f ), Levina and Bickel (d̂l), Costa

and Hero etal (d̂j) and the uniform slope estimator (d̂s) proposed in Chapter 4..

Next, we apply the weighted dimension estimator to detect anomalies in the Abilene

router data and to fuse AVIRIS hyperspectral images. Note that in practice, we vary

din in the smaller range [min(1, d0 − 2),max(d0 + 2, D)] to speed up run-time with

the assumption that the true intrinsic dimension d will be contained in the interval

[min(1, d0 − 2),max(d0 + 2, D)].
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6.7.1.1 Comparison of dimension estimation methods

We generate T = 300 samples B drawn from a d = 6 mixture density fm =

.8fβ + .2fu, where fβ is the product of six 1 dimensional marginal beta distributions

with parameters α = 2, β = 2 and fu is a uniform density in 2 dimensions. These

samples are then projected to a 10-dimensional hyperplane in R
10 by applying the

transformation Y = UB where U is a 10 × 6 random matrix whose columns are

orthonormal. We apply our intrinsic dimension estimates on the samples Y , and

repeat the experiment a total of 100 times. The estimated dimension over these 100

trials is shown in Fig. 6.8.

We compare the performance of our proposed dimension estimator d̂w to the

estimators proposed by Farahmand et al.etal (d̂f ), Levina and Bickel (d̂l), Costa and

Hero etal (d̂j) and the uniform slope estimator (d̂s) proposed in Chapter 4. We note

that the estimator d̂w outperforms the other estimators.
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Figure 6.8: Comparison of dimension estimators. The proposed weighted estimator

d̂w outperforms the other estimators.

6.7.1.2 Local dimension estimation: Toy example

In this experiment, we project data of intrinsic dimension 3 and 5 onto R
7 (total

of 600 points), and then perform local dimension estimation using the dimension

estimator. We compare our results to the dimension estimator of Farahmand et al.

(d̂f ), Levina and Bickel (d̂l), Costa and Hero (d̂j) and the uniform slope estimator

(d̂s). The results are shown in Fig. 6.9. From the histogram, it is clear that the

weighted estimator outperforms the other estimators.
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Figure 6.9: Comparison of local dimension estimation performance. The proposed

weighted estimator d̂w outperforms the other estimators.

6.7.1.3 Anomaly detection in Abilene network data

Anomalies can be detected in router networks by estimating the local dimension

at each time point and by monitoring change in dimension. The data used is the

number of packets sent by each of the 11 routers on the Abilene network between

January 1-2, 2005. A sample is taken every 5 minutes, leading to 576 samples with

an extrinsic dimension of 11. We treat each time point as a single sample realization.

We seek to estimate the local dimension of the support set of the distribution at each

time point.
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Figure 6.10: Illustration of the Abilene router network. The extrinsic dimension of

this system at each time point is equal to the number of routers.

We can use the local dimension estimate as a statistic for doing network anomaly

detection. Simultaneous peaks in router traffic imply strong correlation between

router traffic and should correspond to lower dimension. This is reflected better by

the weighted estimator relative to the other estimators in comparison in Fig. 6.11.

In particular, the weighted estimator produces a smoother estimate, and is able to

pick-up less obvious correlated time instants - for eg, see time instant 480. This is

easier to see in the zoomed in Fig. 6.12.
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Figure 6.11: Comparison of performance of dimension estimates on Abilene network

traffic data. The weighted estimator performs better relative to the other

estimators in comparison. In particular, the weighted estimator produces

a smoother estimate, and is able to pick-up less obvious correlated time

instants - for eg, see time instant 480.
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Figure 6.12: Comparison of performance of dimension estimates on Abilene network

traffic data (Zoomed into time instants between 400 and 500). The

weighted estimator performs better relative to the other estimators in

comparison. In particular, the weighted estimator produces a smoother

estimate, and is able to pick-up less obvious correlated time instants -

for eg, see time instant 480.

6.7.1.4 Dimension based image fusion

In our final experiment, we use the local dimension estimate to perform dimension

based image fusion. The data consists of hyperspectral radiance images of Moffett

Field [4]. A significant portion - including the entire left portion - of the Moffett Field

image (shown in the visible band in Fig. 6.13) is comprised of water bodies, while the
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rest corresponds to vegetation and urban areas.

Figure 6.13: Picture of Moffett field in the visible band. A significant portion - in-

cluding the entire left portion - is comprised of water bodies, while the

rest corresponds to vegetation and urban areas.

The AVIRIS hyperspectral response of each image is in the visible to near-infrared

range (400 to 2500 nm), of 224 contiguous channels which are approximately 10 nm

wide. The scanner type is nadir-viewing, whiskbroom. The hyperspectral images at

channels 10, 50, 100, 160 of Moffett field are shown in Fig. 6.14.
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Figure 6.14: AVIRIS hyperspectral radiance images at channels 10, 50, 100, 160 of

Moffett field.

Hyperspectral characteristics of different surfaces including water, vegetation and

soil has been previously studied. The reflectance (1-radiance) characteristics of water,

vegetation and soil are shown in Fig. 6.15. From Fig. 6.15, we can infer that the

bandwidth of radiance response of water is much smaller in comparison to the radiance

response of soil and vegetation.
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Figure 6.15: Hyperspectral reflectance response as a function of wavelength for dif-

ferent materials - water, vegetation and soil.

The data matrix is therefore of dimension 128x128 (pixels) x 224 wavelengths.

We estimate the local dimension at each pixel location and then perform image seg-

mentation using the local dimension estimates. The local dimension estimate, and

for the sake of comparison, the standard deviation of the hyperspectral response at

each pixel location, are shown in Fig. 6.16.

Observe that the local dimension bandwidth at each pixel location is in complete

contrast to the standard deviation at each pixel location - when the local dimension is

high at a pixel location, the standard deviation is low and vice versa. However, from

Fig. 6.15, we know that the bandwidth of the hyperspectral response of water is low in

contrast to the bandwidth of the hyperspectral response of vegetation and soil. The

local dimension estimate image (Fig. 6.16) is in complete agreement with Fig. 6.15

in that the dimension estimate of the regions of Moffett field corresponding to water

bodies have a much lower estimated dimension value. The standard deviation image,

in contrast, is unable to capture this behavior.
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Figure 6.16: Local dimension estimate image (top) and standard deviation image

(bottom) of AVIRIS data of Moffett field. The local dimension estimate

image is in complete agreement with Fig. 6.15 in that the dimension

estimate of the regions of Moffett field corresponding to water bodies

have a much lower estimated dimension value. The standard deviation
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The local dimension estimate therefore accurately captures the variability in hy-

perspectral response at each pixel location, and can be used to characterize the hy-

perspectral response properties of the material at each location. Equivalently, the

local dimension estimate accurately summarizes the hyperspectral response charac-

teristics of each pixel, and can in turn be used to differentiate between regions with

different hyperspectral response characteristics. This can be achieved, for example,

by segmenting by the local dimension estimate image. This is shown in Fig. 6.17.
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Figure 6.17: Segmented image of Moffett field. The local dimension estimate image

accurately summarizes the hyperspectral response characteristics of each

pixel, and can in turn be used to differentiate between regions with

different hyperspectral response characteristics. This can be achieved,

for example, by segmenting by the local dimension estimate image.
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Data set Sample size Dimension Anomaly class

HTTP (KDD’99) 567497 3 attack (0.4%)

Forest 286048 10 class 4 vs class 2 (0.9%)

Mulcross 262144 4 2 clusters (10%)

SMTP (KDD’99) 95156 3 attack (0.03%)

Shuttle 49097 9 class 2,3,5,6,7 vs class 1 (7%)

Table 6.1: Description of data used in anomaly detection experiments.

6.7.2 Discussion

Estimating intrinsic dimension is fundamental to analyzing high dimensional data.

Estimators defined in literature suffer from high bias due to curse of dimensional-

ity. We have proposed a new intrinsic dimension estimator based on weighted k-NN

graphs. Optimal weights are derived from higher order analysis of bias. The resulting

estimator has parametric convergence rate of O(1/T ).

6.8 Extension of ensemble estimators to anomaly detection

In this section, we apply the weighted ensembles method to the anomaly detection

algorithm described in Chapter 5. In particular, define the weighted statistic

dw,s,k(X) =
k∑

l=k−s+1

wo(l)|eX(l)|γ, (6.16)

where wo is the optimal weight defined in Section 6.3.3. Define the anomaly detec-

tion algorithm WBP-kNNG identically to the BP-kNNG algorithm 2, but using the

weighted statistic dw,s,k(X) in place of ds,k(X).

6.8.1 Experimental comparisons

We apply the WBP-kNNG algorithm to the data sets described in Table 6.1.

Observe that the run-time of the WBP-kNNG algorithm is equal to the run-time of

BP-kNNG plus the additional off-line time required to solve for the optimal weight
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Data sets BP WBP L10 K-LPE 1-SVM Kernel Mass iF ORCA

HTTP 0.994 0.995 NA NA 0.90 0.99 1.00 1.00 0.36
Forest 0.862 0.941 NA NA 0.90 0.69 0.91 0.87 0.83

Mulcross 1.00 1.00 NA NA 0.58 1.00 0.99 0.96 0.33
SMTP 0.924 0.935 NA NA 0.78 0.60 0.86 0.88 0.87
Shuttle 0.992 0.992 NA NA 0.79 0.92 0.99 1.00 0.60

Table 6.2: Comparison of anomaly detection schemes in terms of AUC for WBP-
kNNG (WBP) against BP-kNNG (BP), L1O-kNNG (L10), K-LPE, Mas-
sAD (Mass), iForest (iF) and ORCA. We are unable to report the AUC
for K-LPE and L1O-kNNG because of the large processing time. We note
that WBP-kNNG outperforms the other algorithm in terms of AUC.

wo.

We compare the performance of the WBP-kNNG algorithm in terms of the AUC

in Table 6.2. The WBP-kNNG algorithm outperforms all other algorithms in com-

parison, and in particular works better than the BP-kNNG algorithm (which corre-

sponds to uniform weights). The superior performance of WBP-kNNG can simply be

explained by observing that the statistics ds,k(X) and dw,s,k(X) correspond to uni-

formly weighted and optimally weighted estimators of a quantity directly proportional

to the Rényi-(1 − γ/d) entropy.

In particular, observe that the improvement in performance of WBP-kNNG rel-

ative to BP-kNNG, is most significant in the case of the high dimensional (d = 10)

Forest data set. On the other hand, the performance of the two algorithms are com-

parable wrt the lower dimensional SMTP data set. This is in agreement with our

theory that the performance of weighted ensemble estimators is significantly better

in comparison to the individual or uniformly weighted estimators for higher values of

dimension d.
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Figure 6.18: ROC performance curves for the BP-kNNG and WBP-kNNG algorithm

on the Forest data set. The WBP-kNNG algorithm uniformly outper-

forms the BP-kNNG algorithm.

The ROC performance curves for the BP-kNNG and WBP-kNNG algorithm on

the Forest data set are compared in Fig. 6.18. Observe that the WBP-kNNG algo-

rithm uniformly outperforms the BP-kNNG algorithm.
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CHAPTER VII

Conclusion and Future Work

7.1 Summary

This thesis was motivated by the need for analysis of finite sample performance

of k-NN estimators of functionals of densities. This thesis (Chapter 2 and 4) filled

this void by (i) introducing a a new class of bipartite k-NN estimators of density

functionals and subsequently (ii) providing finite sample analysis of the mean square

error and establishing a central limit theorem for these estimators. These results

characterize the finite sample performance of these k-NN estimators in terms of sample

size T , the number of nearest neighbors k, the dimension of the data d, and the

underlying density f . A direct consequence of these results is that the estimator

performance can be optimized over free parameters (for eg, the number of neighbors

k).

Of greater consequence of this analysis of k-NN estimators was the fact that the

analysis lent significant insight in to how bipartite k-NN estimators can be modified to

significantly improve rate of convergence of the estimators. In particular, a first order

bias compensation was proposed in Chapter 3 and Section 6.2 to reduce MSE from

O(T−2/(1+d)) to O(T−4/(2+d)). Under higher order smoothness conditions, a general

ensemble estimation method was later proposed in Chapter 6 to further reduce the

MSE to O(T−1).

169



This statistical analysis of bipartite k-NN estimators contributed to the develop-

ment of several performance driven applications in this thesis. In particular, entropy

estimates were used as test statistics for anomaly detection in wireless sensor net-

works at desired false alarm rates (Chapter 2). Analysis of bipartite k-NN functional

estimators for data lying on manifolds led to a new class of MSE optimal estimators

of intrinsic dimension. Estimates of intrinsic dimension were used as measures of

signal complexity to drive applications including image segmentation and data fu-

sion (Chapter 4). Finally, the bipartite nature of the proposed k-NN estimators was

used to develop an extremely quick procedure to determine membership in minimum

volume sets (Chapter 5).

7.2 Future work

There are several promising directions in which the research presented in this

thesis can be extended. These are highlighted below.

Extension to kernel density estimators The results in this thesis concern MSE

analysis and asymptotic distributions of estimators defined on bipartite k-NN graphs.

Our method of analysis for determining MSE and asymptotic distribution are based

on statistical properties of k-NN neighborhoods and exchangeability respectively. The

generality of our method of proof (lemma B.1-B.6) makes it possible to extend results

on MSE and asymptotic normality to kernel density plug-in estimators. We have made

preliminary progress in this direction by developing such results for kernel density

estimators with uniform kernels (see Appendix A for details).

Applications of k-NN graphs k-NN graphs enjoy ubiquitous presence in several

applications. The theory presented in this thesis can be applied to improve the

performance of k-NN graph driven applications. In particular, weighted k-NN graphs
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can be potentially used for improving regression and classification tasks.

Applications of divergence functionals Divergence functionals are widely used

as similarity measures in signal processing and machine learning applications. The

estimators introduced in this thesis can be used to estimate divergence measures

more accurately in these applications, potentially leading to improved end results.

For example, factor graph structure discovery and image registration performance

could be significantly improved by using weighted ensemble estimators.

Comparison with minimax rates Birge and Massart [10] have shown that for

density f in a Holder smoothness class with s derivatives, the minimax MSE rate for

estimation of a smooth functional is T−2γ, where γ = min{1/2, 4s/(4s+ d)}. In this

thesis, several bipartite k-NN estimators of functionals have been proposed and the

MSE performance of these estimators has been studied. A comparison study of the

MSE performance of these estimators with the minimax MSE rates derived by Birge

and Massart would be very useful in determining how close the performance of the

various proposed estimators are to the minimax bounds.

Extension to family of densities In this thesis, we introduced a theory for en-

tropy and divergence estimation of fixed densities with confidence. To predict per-

formance in applications like image registration, this theory has to be extended to

characterize divergence estimation for a parameterized family of densities {fθ, θ ∈ Θ}.

Specifically, the goal to estimate the divergence function I(θ) between a fixed

density f and a parameterized density fθ, θ ∈ Θ. If the divergence is estimated

using i.i.d. realizations from f and f0, the goal of this theory is to characterize the

joint covariance matrix for the estimator ÎΘ and to determine a joint asymptotic

distribution. This theory can then subsequently be extended to the estimator of

Is = infθ∈Θ ÎΘ and subsequently to characterize the estimator θs = argminθ∈Θ ÎΘ.
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This theory will facilitate the development of performance driven algorithms for tasks

such as image registration which involve optimization of divergence measures over

parameterized densities fθ, θ ∈ Θ.
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APPENDIX A

Uniform kernels

A.1 Uniform kernel density estimation

Throughout this section, we will derive results on moments of the uniform kernel

density estimates for points in the set S ′ = {X : Su(X) ⊂ S}. This definition implies

that the density f has continuous partial derivatives of order 2r in the uniform ball

neighborhood for each X ∈ S ′ where r satisfies the condition 2r(1 − t)/d > 1. This

excludes the set of points close to the boundary of the support, where the continuity

assumption of the density is not satisfied. We will deal with these points in Appendix

C.

Let X1, ..,XM denote M i.i.d realizations of the density f. We will assume that

f is continuously differentiable evrywhere in the interior of the sWe seek to estimate

the density at X from theM i.i.d realizations X1, ..,XM . Let cd denote the volume of

a unit hyper-sphere in d dimensions. The uniform kernel density estimator is defined

as follows:
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A.2 Uniform kernel density estimator

The uniform kernel density estimator is defined below. The volume of the uniform

kernel is given by

Vu(X) =
k

M
, (A.1)

and the kernel region is given by

Su(X) = {Y : cd||X − Y ||d ≤ Vu}. (A.2)

lu(X) denotes the number of points falling in Su(X)

lu(X) = ΣM
i=11Xi∈Su(X), (A.3)

and the uniform kernel density estimator is defined by

f̂u(X) =
lu(X)

MVu(X)
. (A.4)

The coverage of the uniform kernel is defined as

U(X) =

∫
Su(X)

f(z)dz = E[1Z∈Su(X)]. (A.5)

We observe that lu(X) is a binomial random variable with parameters M and

U(X).

A.2.1 Taylor series expansion of coverage

We assume that the density f has continuous partial derivatives of third

order in a neighborhood of X. For small volumes Vu(X) (which is equivalent to the
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condition that k/M is small), we can represent the coverage function U(X) by using

a third order Taylor series expansion of f about about X [55].

U(X) =

∫
Su(X)

f(Z)dZ

= f(X)Vu(X) + c(X)V 1+2/d
u (X) + o(V 1+2/d

u (X))

= f(X)
k

M
+ c(X)

(
k

M

)1+2/d

+ o

((
k

M

)1+2/d
)
, (A.6)

where c(X) = Γ(2/d)(n+2
2
)tr[∇2(f(X))].

A.2.2 Concentration inequalities for uniform kernel density

Because lu(X) is a binomial random variable, we can apply standard Chernoff in-

equalities to obtain concentration bounds on the density estimate. lu(X) is a binomial

random variable with parameters M and U(X).

A.2.3 Concentration around true density

For 0 < p < 1/2,

Pr(lu(X) > (1 + p)MU(X)) ≤ e−MU(X)p2/4, (A.7)

and

Pr(lu(X) < (1− p)MU(X)) ≤ e−MU(X)p2/4. (A.8)

Using the Taylor expansion of coverage, we then have

Pr(f̂u(X) > (1 + p)(f(X) +O((k/M)2/d))) ≤∼ e−p2kf(X)/4, (A.9)
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and

Pr(f̂u(X) < (1− p)(f(X) +O((k/M)2/d))) ≤∼ e−p2kf(X)/4. (A.10)

This then implies that

Pr(f̂u(X) > (1 + p)f(X)) ≤∼ e−p2kf(X)/4, (A.11)

and

Pr(f̂u(X) < (1− p)f(X)) ≤∼ e−p2kf(X)/4. (A.12)

Let X be a random variable with density f independent of theM i.i.d realizations

X1, ..,XM . Then,

Pr(f̂u(X) > (1 + p)f(X)) = EX[Pr(f̂u(X) > (1 + p)f(X))]

≤ E[∼ (e−p2kf(X)/4)]

= ∼ e−p2k/4, (A.13)

and

Pr(f̂u(X) < (1− p)f(X)) = EX[Pr(f̂u(X) < (1− p)f(X))]

≤ E[∼ (e−p2kf(X)/4)]

= ∼ e−p2k/4. (A.14)

A.3 Central Moments

Define the error function of the uniform kernel density,

eu(X) = f̂u(X)− E[f̂u(X)]. (A.15)
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The probability mass function of the binomial random variable lu(X) is given by

Pr(lu(X) = lx) =

(
M

lx

)
(U(X))lx(1− U(X))M−lx .

Since lu(X) is a binomial random variable, we can easily obtain moments of the

uniform kernel density estimate. These are listed below.

First Moment:

E[f̂u(X)]− f(X) =
M

k
U(X)− f(X)

= c(X)

(
k

M

)2/d

+ o

((
k

M

)2/d
)
. (A.16)

Second Moment:

V[f̂u(X)] = E[e2u(X)]

=
M

k2
U(X)(1− U(X))

= f(X)
1

k
+ o

(
1

k

)
. (A.17)

Higher Moments: For any integer r ≥ 3,

E[eru(X)] = O

(
1

kr/2

)
. (A.18)

A.4 Covariance

Let X and Y be two distinct points. Clearly the density estimates at X and Y

are not independent. We expect the density estimates to have positive covariance if

X and Y are close and have negative covariance if X and Y are far.

Observe that the uniform kernels are disjoint for the set of points given by Ψu :=

{X, Y } : ||X − Y || ≥ 2(k/cdM)1/d, and have finite intersection on the complement
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of Ψu. Indeed we will show that when the uniform balls intersect (and therefore X

and Y are close), the density estimates have positive covariance and that they have

negative covariance when the uniform kernels are disjoint. Intersecting and disjoint

balls are illustrated in Figure A.1.
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Figure A.1: Intersecting and disjoint uniform kernel neighborhoods centered at the two
points X and Y .

Define,

U(X, Y ) := E[1Z∈Su(X)1Z∈Su(Y )]. (A.19)

Intersecting balls

Lemma A.1. For a fixed pair of points {X, Y } ∈ Ψu,

Cov[eu(X), eu(Y )] =
−f(X)f(Y )

M
+ o

(
1

M

)
.

Proof. For {X, Y } ∈ Ψu, we have that 1Z∈Su(X)1Z∈Su(Y ) = 0 and therefore U(X, Y ) =

0.

We then have,
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Cov[eu(X), eu(Y )] = E[(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])]

=
M

k2
E[(1Z∈Su(X) − U(X))(1Z∈Su(Y ) − U(Y ))]

=
M

k2
E[1Z∈Su(X)1Z∈Su(Y ) − U(X)U(Y )]

=
M

k2
(U(X, Y )− U(X)U(Y ))

= −M
k2

[U(X)U(Y )] =
−f(X)f(Y )

M
+ o

(
1

M

)
.

Disjoint balls For {X, Y } ∈ Ψc
u, there is no closed form expression for the covari-

ance. However we have the following lemmas:

Let Ru(X) and Ru(Y ) denote the (constant and equal) radii of the uniform

balls respectively. Define ℵ(||X − Y ||/Ru(X)) = V (Su(X) ∩ Su(Y ))/Vu(X) where

V (Su(X) ∩ Su(Y )) is the volume of the intersection of the two balls.

We observe that,

ℵ(||X − Y ||/Ru(X)) = V (Su(X) ∩ Su(Y ))/Vu(X)

=
V [1Z∈B(0,Ru(X))1Z∈B(||Y−X||,Ru(Y ))]

Vu(X)

=
V [1Z∈B(0,1)1Z∈B(||Y−X||/Ru(X),1)]

V [1Z∈B(0,1)]

= O(1). (A.20)

Because f is assumed to be continuous, we have

U(X, Y ) = E[1Z∈Su(X)1Z∈Su(Y )] = [f(X) + o(1)]V (Su(X) ∩ Su(Y )). (A.21)
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Lemma A.2. For a fixed pair of points {X, Y } ∈ Ψu
c,

Cov[eu(X), eu(Y )] = O(1/k).

Proof.

M

k2
U(X, Y ) =

M

k2
[f(X) + o(1)]V (Su(X) ∩ Su(Y ))

=
f(X) + o(1)

k

V (BX ∩BY )

Vu(X)

=
f(X) + o(1)

k
ℵ(||X − Y ||/Ru(X))

=
f(X)

k
ℵ(||X − Y ||/Ru(X)) + o(1/k)

= O(1/k).

Therefore,

Cov[eu(X), eu(Y )] = E[(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])]

=
M

k2
(U(X, Y )− U(X)U(Y ))

=
M

k2
U(X, Y )− M

k2
U(X)U(Y )

= O(1/k)−Θ(1/M)

= O(1/k).

Lemma A.3. ∫
y

U(X, y)dy = [f(X) + o(1)]Vu(X)2.

Proof. We note that for U(X, y) �= 0, we need {X, y} ∈ Ψc
u. We therefore have,

f(y) = f(X) + o(1).
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∫
y

U(X, y)dy =

∫
[f(X) + o(1)]V (Su(X) ∩ Su(Y ))dy

= Vu(X)[f(X) + o(1)]

∫
ℵ(||X − y||/Ru(X))dy

= Vu(X)[f(X) + o(1)]Ru(X)d
∫

ℵ(||y||/Ru(X))d(y/Ru(X))

= Vu(X)[f(X) + o(1)]
Vu(X)

cd

∫
ℵ(||y||/Ru(X))d(y/Ru(X))

= [f(X) + o(1)]
V 2
u (X)

cd

∫
ℵ(δ)d(δ).

The integral
∫
ℵ(δ)d(δ) can be shown to be equal to cd for all dimensions d.

We then have,

∫
y

U(X, y)dy = [f(X) + o(1)]V 2
u (X)

= [f(X) + o(1)]

(
k

M

)2

.

Lemma A.4. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f .

Let γ1(X), γ2(X) be arbitrary continuous functions. Then,

Cov[γ1(X)eu(X), γ2(Y)eu(Y)] =
Cov[γ1(X)f(X), γ2(X)f(X)]

M
+ o(1/M).
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Proof.

Cov[γ1(X)eu(X), γ2(Y)eu(Y)]

= E

[
γ1(X)γ2(Y)(f̂u(X)− E[f̂u(X)])(f̂u(Y )− E[f̂u(Y )])

]
=

1

MVu(X)Vu(Y )
E[γ1(X)γ2(Y)(U(X,Y)− U(X)U(Y))]

=
1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X,Y)]

− 1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X)U(Y)]

= I − II.

II =
1

M
(E[γ1(X)f(X)]E[γ2(Y)f(Y)]) .

I =
1

MV 2
u (X)

E[γ1(X)γ2(Y)U(X,Y)]

=
1

MV 2
u (X)

∫ ∫
γ1(x)γ2(y)f(x)f(y)U(x, y)dxdy.

Now for U(x, y) �= 0, we need {x, y} ∈ Ψc
u. We therefore have, γ2(y)f(y) =

γ2(x)f(x) + o(1).
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We then have,

I =
1

MV 2
u (X)

∫ ∫
[γ1(x)γ2(x)f

2(x) + o(1)]U(x, y)dxdy

=
1

MV 2
u (X)

∫
[γ1(x)γ2(x)f

2(x) + o(1)]

(∫
U(x, y)dy

)
dx

=
1

MV 2
u (X)

∫
[γ1(x)γ2(x)f

2(x) + o(1)]
(
(f(x) + o(1))Vu(x)

2
)
dx

=
1

M

∫
[γ1(x)γ2(x)f

2(x) + o(1)](f(x) + o(1))dx

=
1

M

(
E[γ1(X)γ2(X)f 2(X)] + o(1)

)
=

1

M
E[γ1(X)γ2(X)f 2(X)] + o(1/M).

A.5 Higher cross moments

Disjoint balls We have the following results concerning higher cross moments for

disjoint balls:

Lemma A.5. Let q,r be positive integers satisfying q + r > 2. For a fixed pair of

points {X, Y } ∈ Ψu
c,

Cov(equ(X), eru(Y )) = o(1/M).

Proof. For a fixed pair of points {X, Y } ∈ Ψu
c, the joint probability mass function of

the functions lu(X),lu(Y ) is given by
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Pr(lu(X) = lx, lu(Y ) = ly) =

1{lx+ly≤M}

(
M

lx, ly

)
U lx(X)U ly(Y )(1− U(X)− U(Y ))M−lx−ly .

We also have from chernoff inequalities for binomial random variables that

Pr((1− p)k < lu(X) < (1 + p)k) = 1− e−p2k,

P r((1− p)k < lu(Y ) < (1 + p)k) = 1− e−p2k.

Denote the high probability event χ by (1− p)k < lu(X), lu(Y ) < (1 + p)k. Define

l̂u(X), l̂u(Y ) to be binomial random variables with parameters {U(X),M − q} and

{U(Y ),M − r} respectively. The covariance between powers of density estimates is
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then given by

Cov(f̂ qu(X), f̂ ru(Y )) =
1

kq+r
Cov(lqu(X), lru(Y ))

=
1

kq+r

∑
lqxl

r
yPr(lu(X) = lx, lu(Y ) = ly)

− 1

kq+r

∑
lqxl

r
yPr(lu(X) = lx)Pr(lu(Y ) = ly)

=
∑
χ

lqxl
r
y

kq+r
[Pr(lu(X) = lx, lu(Y ) = ly)− Pr(lu(X) = lx)Pr(lu(Y ) = ly)]

+o(1/M)

=
∑
χ

f q(X)f r(Y )lqxl
r
yU

q(X)U r(Y )

kq+r(lx × . . .× lx − q + 1)(ly × . . .× ly − r + 1)
×

[

q+r−1∏
l=0

(M − l)Pr(̂lu(X) = lx, l̂u(Y ) = ly)

−
q−1∏
l=0

(M − l)

r−1∏
l=0

(M − l)Pr(̂lu(X) = lx)Pr(̂lu(Y ) = ly)]

+o(1/M)

=

(
f q(X)f r(Y )

M q+r
+O

(
1

kM q+r

))
×

∑
χ

[

q+r−1∏
l=0

(M − l)Pr(̂lu(X) = lx, l̂u(Y ) = ly)

−
q−1∏
l=0

(M − l)

r−1∏
l=0

(M − l)Pr(̂lu(X) = lx)Pr(̂lu(Y ) = ly)]

+o(1/M)

=

(
f q(X)f r(Y )

M q+r
+O

(
1

kM q+r

))
×

[

q+r−1∏
l=0

(M − l)−
q−1∏
l=0

(M − l)
r−1∏
l=0

(M − l)]

+ o(1/M)

=
−qrf q(X)f r(Y )

M
+ o

(
1

M

)
.
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Then, the covariance between the powers of the error function is given by

Cov(equ(X), eru(Y ))

= Cov((f̂u(X)− E[f̂u(X)])q, (f̂u(Y )− E[f̂u(Y )])
r)

=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
(−E[f̂u(X)])a(−E[f̂u(Y )])

bCov(f̂au(X), f̂ bu(Y ))

=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
[(−f(X))a(−f(Y ))b + o(1)]Cov(f̂au(X), f̂ bu(Y ))

= −f q(X)f r(Y )

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
(−1)aa(−1)bb

M
+ o

(
1

M

)

= 1{q=1,r=1}

(
−f(X)f(Y )

M

)
+ o(1/M)

= o(1/M).

where the last step follows from the condition that q + r > 2.

Intersecting balls For {X, Y } ∈ Ψu
c, we have the following bounds

Lemma A.6. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f .

Let γ1(X), γ2(X) be arbitrary continuous functions. Also let the indicator function

1Δu(X, Y ) denote the event Δu : {X, Y } ∈ Ψu
c. For q,r positive integers satisfying

q + r > 1,

E[1Δu(X,Y)γ1(X)γ2(Y)equ(X)eru(Y)] = o

(
1

M

)
,

(A.22)
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Proof. For 1Δu(X, Y ) �= 0, we have {X, Y } ∈ Ψc
u. Then,

E[1Δu(X,Y)γ1(X)γ2(Y)equ(X)eru(Y)]

= E[1Δu(X,Y)γ1(X)γ2(Y)EX,Y[e
q
u(X)eru(Y )]]

≤ E

[
1Δu(X,Y)γ1(X)γ2(Y)

√
EX[e

2q
u (X)]EY[e2ru (Y )]

]

= E

[
1Δu(X,Y)γ1(X)γ2(Y)O

(
1

kq+r/2

)]

=

∫ [
O

(
1

kq+r/2

)
(γ1(x)γ2(x) + o(1))

](∫
Δu(x, y)dy

)
dx

=

∫ [
O

(
1

kq+r/2

)
(γ1(x)γ2(x) + o(1))

](
2d
k

M

)
dx

= o

(
1

M

)
.

where the bound is obtained using the Cauchy-Schwarz inequality and using Eq.A.18.

We can succinctly state the results derived in the last two lemmas in the form of

the following lemma:

Lemma A.7. Let X1, ..,XM ,X,Y denoteM+2 i.i.d realizations of the density f . Let

γ1(X), γ2(X) be arbitrary continuous functions. If q,r are positive integers satisfying

q + r > 2

Cov[γ1(X)equ(X), γ2(Y)eru(Y)] = o(1/M).

Proof. The result for the case q = 1, r = 1 was established earlier in Lemma A.4.

Cov[γ1(X)equ(X), γ2(Y)eru(Y)] = I +D,

where ’I’ stands for the contribution form the intersecting balls and ’D’ for the
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contribution from the dis-joint balls. I and D are given by

I = E[1Δu(X,Y)Cov [γ1(X)equ(X), γ2(Y )e
r
u(Y )]],

D = E[(1− 1Δu(X,Y))Cov [γ1(X)equ(X), γ2(Y )eru(Y )]].

We have already established in the previous lemma that

I = o

(
1

M

)
.

Now,

D = E[(1− 1Δu(X,Y))γ1(X)γ2(Y)EX,Y[Cov(e
q
u(X), eru(Y ))]] (A.23)

= E[(1− 1Δu(X,Y))γ1(X)γ2(Y)o(1/M)]

= o

(
1

M

)
.

This concludes the proof.
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APPENDIX B

k-NN density estimates

B.1 Introduction

In this appendix, moment properties of the standard k-NN density estimate f̂k(X)

are derived conditioned on X1, . . . , XN . As the samples X1, . . . , XN , XN+1, . . . , XT ,

T = M +N are i.i.d., these conditional moments are independent of the N samples

X1, ..,XN .

B.1.1 Preliminaries

Let d(X, Y ) denote the Euclidean distance between points X and Y and d
(k)
X de-

note the Euclidean distance between a point X and its k-th nearest neighbor amongst

XN+1, ..,XN+M . Let cd denote the unit ball volume in d dimensions. The k-NN

region is

Sk(X) = {Y : d(X, Y ) ≤ d
(k)
X }

and the volume of the k-NN region is

Vk(X) =

∫
Sk(X)

dZ.
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The standard k-NN density estimator [53] is defined as

f̂k(X) =
k − 1

MVk(X)
.

Define the coverage function as

P(X) =

∫
Sk(X)

f(Z)dZ.

Define spherical regions

Sr(X) = {Y ∈ R
d : d(X, Y ) ≤ r}.

B.1.1.1 Concentration inequality for coverage probability

It has been previously established that P(X) has a beta distribution with pa-

rameters k, M − k + 1 [30]. Using Chernoff inequalities, we can then establish the

following concentration inequality (Section B.1, [80]). For some 0 < p < 1/2,

Pr(P(X) > (1 + p)(k − 1)/M) = O(e−p2k/2(1+p))

Pr(P(X) < (1− p)(k − 1)/M) = O(e−p2k/2(1−p)). (B.1)

Define

kM = (k − 1)/M.

Let 	(X) denote the event

P(X) < (pk + 1)kM , (B.2)

where pk =
√
6/(kδ/2). Then, 1−Pr(	(X)) = O(e−p2kk/2) = O(e−3k(1−δ)

). Equivalently,

1− Pr(	(X)) = O(C(k)), (B.3)
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where C(k) is a function which satisfies the rate of decay condition C(k) = O(e−3k(1−δ)
).

Similarly, let 	−1(X) denote the event

P(X) > (1− pk)kM , (B.4)

Then

1− Pr(	−1(X)) = O(C(k)), (B.5)

Also let 		(X) = 	(X) ∩ 	−1(X). Then

1− Pr(		(X)) = O(C(k)), (B.6)

Finally, we note that Γ(x + a)/Γ(x) = xa + o(xa). Then for any a < k, E[P−a(X)]

exists and is given by

E[P−a(X)] =
Γ(k − a)Γ(M + 1)

Γ(k)Γ(M + 1− a)
= Θ((kM)−a). (B.7)

B.1.1.2 Interior points

Let S ′ to be any arbitrary subset of SI (Section 2.3.1) satisfying the condition

Pr(Y /∈ S ′) = o(1) where Y is random variable with density f . This implies that

given the event 	(X), the k-NN neighborhoods Sk(X) of points X ∈ S ′ will lie com-

pletely inside the domain S. Therefore the density f has continuous partial derivatives

of order 2ν in the k-NN ball neighborhood Sk(X) for each X ∈ S ′ (assumption (A.2)).

We will now derive moments for the interior set of points X ∈ S ′. This excludes the

set of points X close to the boundary of the support whose k-NN neighborhoods

Sk(X) intersect with the boundary of the support. We will deal with these points in

Appendix B.
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B.1.1.3 Taylor series expansion of coverage probability

Let X ∈ S ′. Given the event 	(X), the coverage function P(X) can be represented

in terms of the volume of the k-NN ball Vk(X) by expanding the density f in a Taylor

series about X as follows. In particular, for some fixed x ∈ S ′, let

p(u) =

∫
Su(x)

f(z)dz.

Using (A.2), we can write, by a Taylor series expansion of f around x using multi-

index notation [70]

f(z) =
∑

0≤|α|≤2ν

(z − x)α

α!
(∂αf)(x) + o(||z − x||2ν) (B.8)

Assuming Su(x) ⊂ S, we can then write

p(u) =

∫
Su(x)

f(z)dz

=

∫
Su(x)

⎛
⎝ ∑

|0≤α≤2ν|

(z − x)α

α!
(∂αf)(x)

⎞
⎠ dz + o(ud+2ν)

= f(x)cdu
d +

ν−1∑
i=1

ci(x)c
1+2i/d
d ud+2i + o(ud+2ν). (B.9)

where ci(x) are functionals of the derivatives of f . Now, denote v(u) =
∫
Su(x)

dz to

be the volume of Su(x). Let uinv(v) be the inverse function of v(u). Note that this

inverse is well-defined since v(u) is monotonic in u. Since Su(x) ⊂ S, v(u) = cdu
d.

This gives uinv(v) = (v/cd)
1/d. Define

P (v) =

∫
Suinv(v)(x)

f(z)dz.
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Using (B.9),

P (v) = f(X)v +

ν−1∑
i=1

ci(X)v1+2i/d + o(v1+2ν/d). (B.10)

Now denote V (p) = P inv(p) to be the inverse of P (.). Note that this inverse is well-

defined since P (v) is monotonic in v. Dividing (B.10) by vP (v) on both sides, we

get

1

v
=

f(X)

P (v)
+

ν−1∑
i=1

ci(X)

P (v)
v2i/d + o(v2ν/dP−1(v)) (B.11)

By repeatedly substituting the LHS of (B.11) in the RHS of (B.11), we can obtain

(B.12):

1

V (p)
=

f(X)

p
+

ν−1∑
i=1

hi(X)

p1−2i/d
+ o(p2ν/d−1), (B.12)

From our derivation of (B.12) using (B.10), it is clear that hi(X) are of the form

hi(X) =
∑

{ai}=A;A∈A

∏ν−1
i=1 c

ai
i

fa0(X)

where A is a ν-tuple of positive real numbers a0, .., aν−1 and the cardinality of A is

finite. By assumptions (A.1) and (A.2), this implies that the constants hi(X) are

bounded . Also, we note that h(X) = h1(X) = c(X)f−2/d(X) [30], where c(X) :=

c1(X) = Γ(2/d)(d+2
2
)tr[∇2(f(X))]. This then implies that under the event 	(X)

1

Vk(X)
=
f(X)

P(X)
+
∑
t∈T

ht(X)

P1−t(X)
+ hr(X), (B.13)

where T = {2/d, 4/d, 6/d.., 2ν/d} and hr(X) = o(P2ν/d−1(X)). Now, by (A.2), we

have (k/M)2ν/d = o(1/M). This implies that 2ν/d > 1. Under the event 	(X), we
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have P(X) ≤ (pk+1)k/M , which, in conjunction with the condition 2ν/d > 1 implies

that

hr(X) = o(P2ν/d−1(X)) = o((k/M)2ν/d−1) = o(1/kMM). (B.14)

On the other hand, under the event, 	c(X), (pk + 1)k/M ≤ P(X) ≤ 1, which gives

hr(X) = O(1). (B.15)

B.1.1.4 Approximation to the k-NN density estimator

Define the coverage density estimate to be,

f̂c(X) = f(X)
k − 1

M

1

P(X)
.

The estimate f̂c(X) is clearly not implementable. Note also that the two estimates -

f̂c(X) and f̂k(X) - are identical in the case of the uniform density.

1

Vk(X)
=
f(X)

P(X)
+

h(X)

P1−2/d(X)
+ hs(X), (B.16)

where hs(X) = o(1/P1−2/d(X)). This gives,

f̂k(X) = f̂c(X) +

(
k − 1

M

)
h(X)

P1−2/d(X)
+
k − 1

M
hs(X). (B.17)

whenever 	(X) is true.
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B.1.2 Bounds on k-NN density estimates

Let X be a Lebesgue point of f , i.e., an X for which

lim
r→0

∫
Sr(X)

f(y)dy∫
Sr(x)

dy
= f(X).

Because f is an density, we know that almost all X ∈ S satisfy the above property.

Now, fix ε ∈ (0, 1) and find δ > 0 such that

sup
0<r≤δ

∫
Sr(X)

f(y)dy∫
Sr(x)

dy
− f(X) ≤ εf(X).

This in turn implies that, for P(X) ≤ P (δ),

P(X)

(1 + ε)f(X)
≤ Vk(X) ≤ P(X)

(1− ε)f(X)
(B.18)

and in turn implies

(1− ε)f̂c(X) ≤ f̂k(X) ≤ (1 + ε)f̂c(X). (B.19)

Also, because δ > 0 is fixed, we note that the event P(X) ≤ P (δ) is a subset of 	(X)

and therefore (B.18) holds under 	(X).

Under the event 	c(X), we can bound Vk(X) from above by cdDd. Also, since

Vk(X) is monotone in P(X), under the event 	c(X), we can boundVk(X) from below

by (1 + pk)(k − 1)/M(1− ε)f(X) and therefore by (k − 1)/M(1− ε)f(X). Written

explicitly,

(k − 1)

M(1 − ε)f(X)
≤ Vk(X) ≤ cdDd (B.20)
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and in turn implies

(k − 1)/(McdDd) ≤ f̂k(X) ≤ (1− ε)f(X). (B.21)

Finally, note that kM/P(X) is bounded above by O(1) under the event 	(X). This

implies that for any a < k,

E[	c(X)]kaMP−a(X) ≤ O(1)Pr(	c(X)) = O(C(k)). (B.22)

B.2 Approximation to the kNN density estimator

Define the coverage density estimate to be,

f̂c(X) = f(X)
k − 1

M

1

P(X)
.

The estimate f̂c(X) is clearly not implementable. Note also that the two estimates

- f̂c(X) and f̂k(X) - are identical in the case of the uniform density. Define the

error functions ec(X) = f̂c(X)− E[f̂c(X)] and ek(X) = f̂k(X)− E[f̂k(X)]. Note that

the coverage density estimate corresponds to the leading term in the Taylor series

expansion of the volume. Therefore

f̂k(X) = f̂c(X) +
∑
t

(
k − 1

M

)
ht(X)(1/P1−t(X))

+
k − 1

M
hr(X).

B.2.1 Key idea

We note that the coverage random variable is independent of the underlying density

and therefore the representation is a sufficient statistic to determine properties of kNN

density estimates.
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B.2.2 Similarity between k-NN and coverage density estimates

We first establish the following two lemmas which relate the moments of the k-NN

density estimate to the moments of the coverage density estimate. Let γ1(X), γ2(X)

be arbitrary continuous functions satisfying the condition: E[γ2i (X)] is finite, i = 1, 2.

Also let γ(X) = γ1(X). Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the

density f . Let q, r be arbitrary positive integers.

Lemma B.1.

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1{X∈S′}γ(X)eqc(X)

]
(1 + o(1)) + o(1/M).

Lemma B.2.

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= Cov

[
1{X∈S′}γ1(X)eqc(X), 1{Y∈S′}γ2(Y)erc(Y)

]
(1 + o(1))

+o(1/M).

As a consequence of these lemma, for X ∈ S ′, we can compute all central and

cross moments of the k-NN density f̂k(X) up to o(1/M) by equivalently computing

the corresponding moments for the coverage density estimate. We will first prove the

above lemmas and subsequently work on obtaining the exact rates for the coverage

density estimate.

Define the operator M(Z) = Z − E[Z] and the terms et(X) = M(
∑

t((k −

1)/M)ht(X)(1/P1−t(X))) and er(X) = M(((k − 1)/M)hr(X)). Define the event

{X ∈ S ′} ∩ {	(X)} by †(X). Note that under the event †(X), ek(X) = ec(X) +

et(X) + er(X) =: eo(X). Finally, let β be any real number and define Eβ(X) =

((k − 1)/M)β(M(P−β(X))).
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Proof. of Lemma B.1.

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1†(X)γ(X)eqk(X)

]
+ o(1/M)

= E
[
1†(X)γ(X)eqo(X)

]
+ o(1/M)

= E
[
1{X∈S′}γ(X)eqo(X)

]
+ o(1/M)

= E
[
1{X∈S′}γ(X)EX(ec(X) + et(X) + er(X))q

]
+o(1/M).

Let us focus on the inner expectation first. Since P(X) is a beta random variable,

the probability density function of P(X) is given by

f(pX) =
M !

(k − 1)!(M − k)!
pk−1
X (1− pX)

M−k.

We have E[1�(X)P
−β(X)] = Θ((k/M)−β). For large enough k, M , E[P−2β(X)] is

bounded between 0 and 1, which implies that E[1�c(X)P
−β(X)] = o(1/Ma/2) using

Cauchy-Schwarz and the concentration inequality (B.1). This then gives E[P−β(X)] =

Θ((k/M)−β). This yields E[1�(X)E
q
β(X)] = O

(
k−(δkq/2)

)
. We can again bound

E[1�c(X)E
q
β(X)] by o(1/Ma/2) using Cauchy-Schwarz inequality and the concentra-

tion bound obtaining E[Eq
β(X)] = O

(
k−(δkq/2)

)
. Noting that δk → 1 as k → ∞

gives

E[Eq
β(X)] = O(k−q/2). (B.23)

From this analysis on Eβ(X), it follows E[elr(X)] = O((k/M)2rl/d) = o(1/M) for

any l > 1. Similarly, E[elc(X)] = O(k−l/2). Now, elt(X) can be expressed as a sum

of terms of the form
∏

t((k/M)tht(X)Elt
t (X)) where

∑
t lt = l. The coefficients in

the product form (k/M)t = o(1), while each Elt
t (X) term contributes O(k−lt/2). By

repeated application of Cauchy-Schwarz, the expectation of each of these terms, and
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therefore E[elt(X)], is o(k−l/2).

Note that eqk(X) will contain terms of the form (ec(X) + et(X))l(er(X))q−l. If

l �= q, the expectation of this term can be bounded as follows

|E[(ec(X) + et(X))l(er(X))q−l]|

≤
√

E[(ec(X) + et(X))2l]E[(er(X))2(q−l)]

= O(1)× o(1/M) = o(1/M).

Let us concentrate on the case l = q. In this case, eqk(X) will contain terms of the

form (ec(X))m(et(X))q−m. For q �= m,

|E[(ec(X))m(et(X))q−m]|

≤
√

E[(ec(X))2l]E[(et(X))2(q−l)]

= O(k−m/2)× o(k−(q−m)/2) = o(k−q/2).

Noting that E[eqc(X)] = O(k−q/2) gives

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1{X∈S′}γ(X)eqc(X)

]
(1 + o(1)) + o(1/M).

Before proving Lemma B.2, we seek to answer the following question: for which

set of pair of points {X, Y } are the k-NN balls disjoint?

B.2.3 Intersecting and disjoint balls

Define Ψε := {X, Y } ∈ S ′ : ||X − Y || ≥ Rε(X) + Rε(Y ) where Rε(X) and Rε(Y )

are the ball radii of the spherical regions Su(X) and Su(Y ). We will now show that
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for {X, Y } ∈ Ψε, the k-NN balls will be disjoint with exponentially high probability.

Let d
(k)
X and d

(k)
Y denote the k-NN distances from X and Y and let Υ denote the

event that the k-NN balls intersect. For {X, Y } ∈ Ψε,

Pr(Υ) = Pr(d
(k)
X + d

(k)
Y ≥ ||X − Y ||)

≤ Pr(d
(k)
X + d

(k)
Y ≥ Rε(X) +Rε(Y )).

≤ Pr(d
(k)
X ≥ Rε(X)) + Pr(d

(k)
Y ≥ Rε(Y ))

= Pr(P(X) ≥ (pk + 1)((k − 1)/M))

+Pr(P(Y ) ≥ (pk + 1)((k − 1)/M))

= o(1/Ma),

where the last inequality follows from the concentration inequality (B.1). We conclude

that for {X, Y } ∈ Ψε, the probability of intersection of k-NN balls centered at X and

Y decays exponentially in p2kk. Stated in a different way, we have shown that for a

given pair of points {X, Y }, if the ε balls around these points are disjoint, then the

k-NN balls will be disjoint with exponentially high probability. Let Δε(X, Y ) denote

the event {X, Y } ∈ Ψc
ε. From the definition of the region Ψε, we have Pr({X,Y} ∈

Ψc
ε) = O(k/M).

Let {X, Y } ∈ Ψε and let q, r be non-negative integers satisfying q + r > 1. The

event that the k-NN balls intersect is given by Υ := {d(k)
X + d

(k)
Y > ||X − Y ||}. The

joint probability distribution of P(X) and P(Y ) when the k-NN balls do not intersect

=: Υc is given by

fΥc(pX , pY ) =M !
(pXpY )

k−1

(k − 1)!2
(1− pX − pY )

M−2k

(M − 2k)!
.

Define

i(pX , pY ) =
Γ(t)Γ(u)Γ(v)

Γ(t+ u+ v)
pt−1
X pu−1

Y (1− pX − pY )
v−1,
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and note that
1∫

pX=0

1∫
pY =0

1{pX+pY ≤1}i(pX , pY )dpXdpY = 1.

Figure B.1 shows the distribution of the M samples when the k-NN balls are

disjoint.
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Figure B.1: Distribution of random samples when k-NN balls centered at X and Y
are disjoint.

Now note that i(pX , pY ) corresponds to the density function fΥc(pX , pY ) for the

choices t = k, u = k and v = M − 2k + 1. Furthermore, for {X, Y } ∈ Ψε, the set

C := {pX , pY } : (1 − pk)(k − 1)/M ≤ pX , pY ≤ (1 + pk)(k − 1)/M is a subset of the

region T := {pX , pY } : 0 ≤ pX , pY ≤ 1; pX + pY ≤ 1. Note that E[1C] = 1− o(1/Ma).

This implies that expectations over the regionR := {pX , pY } : 0 ≤ pX , pY ≤ 1; should

be of the same order as the expectations over T with differences of order o(1/Ma).

In particular,

E[1/Pt(X)Pu(Y )] = E[1T /P
t(X)Pu(Y )] + o(1/Ma).

From the joint distribution representation, it follows that

E[1T /P
t(X)Pu(Y )]

E[1/Pt(X)]E[1/Pu(Y )]
= − tu

M
+ o(1/M).
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Now observe that

(
k − 1

M

)t+u

Cov(1/Pt(X), 1/Pu(Y ))

=

(
k − 1

M

)t+u

[E[1/Pt(X)Pu(Y )]− E[1/Pt(X)]E[1/Pu(Y )]]

=

(
k − 1

M

)t+u

E[1/Pt(X)]E[1/Pu(Y )]

[
E[1/Pt(X)Pu(Y )]

E[1/Pt(X)]E[1/Pu(Y )]
− 1

]

= (1 + o(1/k))

[
1− tu

M
+ o(1/M)− 1

]

= −
(
tu

M

)
+ o(1/M). (B.24)

Then, the covariance between the powers of the error function et is given by

Cov(eqt (X), erβ(Y ))

= ktq+βr
M Cov

([
1

Pt(X)
− E

[
1

Pt(X)

]]q
,

[
1

Pβ(Y )
− E

[
1

Pβ(Y )

]]r)

=

q∑
a=1

r∑
b=1

(
q

a

)(
r

b

)
[(−1)a+b + o(1)]kta+βb

M Cov(1/Pta(X), 1/Pβb(Y ))

= −tβ
q∑

a=1

r∑
b=1

(
q

a

)(
r

b

)
(−1)aa(−1)bb

M
+ o

(
1

M

)

= 1{q=1,r=1}

(
−tβ
M

)
+ o(1/M)

= 1{q=1,r=1}Θ(1/M) + o(1/M). (B.25)

Proof. of Lemma B.2. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the

density f . Then

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= Cov

[
1{X∈S′}γ1(X)eqo(X), 1{Y∈S′}γ2(Y)ero(Y)

]
+o(1/M).
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Using the same arguments as in proof of Lemma A.1, we can show that the contri-

bution of terms er(X),er(Y) to the R.H.S. of the above equation is o(1/M). Define

�(X,Y) := γ1(X)γ2(Y)Cov{X,Y}[(ec(X) + et(X))q, (ec(Y ) + et(Y ))r]. We can then

reduce,

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= E[1{X,Y∈S′}�(X,Y)] + o(1/M)

= E[1Δε
c(X,Y)�(X,Y)]

+E[1Δε(X,Y)�(X,Y)] + o(1/M)

= I + II + o(1/M).

Now note that (ec(X) + et(X))q will contain terms of the form (ec(X))m(et(X))q−m.

For q �= m, the term (ec(X))m(et(X))q−m will be a sum of terms of the form

(k/M)q−m−βh̃(X)× (k/M)m+βP−(m+β)(X) for arbitrary β < q −m.

For {X, Y } ∈ Ψε, the term Cov[(ec(X))m(et(X))q−m, (ec(Y ))n(et(Y ))
r−m] will be

o(1/M) if either m < q or n < r by (B.24), which follows after recalling that the

coefficients (k/M)q−m−β = o(1) for m < q. On the other hand, if m = q and n = r,

Cov[(ec(X))q, (ec(Y ))
r] = 1{q=1,r=1}O(1/M) + o(1/M) by (B.24) and noting that the

error ec(X)/f(X) is a special instance of Eβ(X) and subsequently invoking (B.25).

For {X, Y } ∈ Ψc
ε, the term Cov[(ec(X))m(et(X))q−m, (ec(Y ))

n(et(Y ))
r−m] using

(B.23) and Cauchy-Schwarz can be shown to be o(k−(q+r)/2). On the other hand, if

m = q and n = r, Cov[(ec(X))q, (ec(Y ))
r] = O(k−(q+r)/2).

This yields expressions for terms I and II that are expressed as double sums

over m, q and n, r of the aforementioned covariance terms. Asymptotically in k,M

these sums are dominated by the components m = q and n = r. This completes the

proof.
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B.3 Moments of coverage function

We have therefore established that moments of the k-NN and covergae density

estimates are identical up to leading terms. Next the central and cross moments of

the coverage density estimate are derived.

B.3.1 Central moments for the Coverage density estimate

P(X) has a beta distribution with parameters k,M − k + 1. This implies

E
[
1{X∈S′}γ(X)eqc(X)

]
= 1{q=2}E

[
1{X∈S′}γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
. (B.26)

B.3.2 Cross Moments for the Coverage density estimate

We will first show

Cov
[
1{X∈S′}γ1(X)eqc(X), 1{Y∈S′}γ2(Y)erc(Y)

]
=
(
1{q=1,r=1}O(1/M) + o(1/M)

)
. (B.27)

From Lemma B.2, it is clear that the contributions of the term et(X) are of a smaller

asymptotic order than the contributions of the term ec(X). Redefine �(X,Y) :=

γ1(X)γ2(Y)Cov{X,Y}[(ec(X))q, (ec(Y ))
r]. By Lemma B.2, we can then write

Cov
[
1{X∈S′}γ1(X)eqc(X), 1{Y∈S′}γ2(Y)erc(Y)

]
= E[1Δc

ε (X,Y)�(X,Y)]

+E[1Δε(X,Y)�(X,Y)] + o(1/M)

= I + II + o(1/M).
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From the results in the proof of Lemma B.2

I = E[1Δc
ε (X,Y)�(X,Y)]

= E
[
1Δc

ε(X,Y)

(
1{q=1,r=1}O(1/M) + o(1/M)

)]
= 1{q=1,r=1}O(1/M) + o(1/M).

where the last step follows from the fact that probability Pr({X,Y} ∈ Ψε) = 1 −

O(k/M) = O(1). Similarly,

II = E[1Δε(X,Y)�(X,Y)]

= E
[
1Δε(X,Y)1{q=1,r=1}O(1/k) + o(1/k)

]
= 1{q=1,r=1}O(1/M) + o(1/M).

where the last but one step follows since the probability Pr({X,Y} ∈ Ψc
ε) = O(k/M).

We focus on the case {q = 1, r = 1} and seperately analyze disjoint balls and inter-

secting balls:

Cov
[
1{X∈S′}γ1(X)ec(X), 1{Y∈S′}γ2(Y)ec(Y)

]
= E[

[
1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)ec(X)ec(Y)

]
]

= E[1Δε
c(X,Y)γ1(X)γ2(Y)E{X,Y}[ec(X), ec(Y )]]

+E[1Δε(X,Y)γ1(X)γ2(Y)E{X,Y}[ec(X), ec(Y )]]

= I + II.
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Disjoint balls For {X, Y } ∈ Ψε, the cross-correlation between the coverage density

estimates is expressed using (B.24)

I = E[1Δε
c(X,Y)γ1(X)γ2(Y)Cov[ec(X), ec(Y )]]

= E[1Δε
c(X,Y)γ1(X)γ2(Y)] (−1/M + o(1/M))

= E[1{X∈S′}1{Y∈S′}γ1(X)γ2(Y)] (−1/M + o(1/M))

= −E[1{X∈S′}γ1(X)]E[1{Y∈S′}γ2(Y)]
1

M
+ o(1/M). (B.28)

where the second to last equality follows by applying the Cauchy-Schwarz inequality

and subsequently using the fact that E[1Δc
ε (X,Y)] = (1−O(k/M))E[1{X∈S′}1{Y∈S′}].

Intersecting balls For {X, Y } ∈ Ψc
ε, we will show that the cross-correlations of the

coverage density estimator and an oracle uniform kernel density estimator (defined

below) are identical up to leading terms (without explicitly evaluating the cross-

correlation between the coverage density estimates) and then derive the correlation of

the oracle density estimator to obtain corresponding results for the coverage estimate.

Oracle ε ball density estimate In order to estimate cross moments for the cover-

age (and thereby k-NN density estimates), we introduce the ε ball density estimator.

The ε-ball density estimator is a kernel density estimator that uses a uniform kernel

with bandwidth which depends on the unknown density f . Let the volume of the ker-

nel be Vε(X) and the corresponding kernel region be Sε(X) = {Y ∈ S : cd||X−Y ||d ≤

Vε(X)}. The volume is chosen such that the coverage Qε(X) =
∫
Sε(X)

f(z)dz is set to

(1 + pk)k/M . Let lε(X) denote the number of points among {X1, ..,XM} falling in

Sε(X): lε(X) = ΣM
i=11Xi∈Sε(X). The ε ball density estimator is defined as

f̂ε(X) =
lε(X)

MVε(X)
. (B.29)
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Also define the error eε(X) as eε(X) = f̂ε(X)− E[f̂ε(X)]. It is then possible to prove

the following lemma using results on the volumes of intersections of hyper spheres

(refer Appendix A for details).

Lemma B.3. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f .

Let γ1(X), γ2(X) be two arbitrary continuous functions. Then,

E
[
1Δε(X,Y)γ1(X)eε(X)γ2(Y)eε(Y)

]
= E[1{X∈S′}γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

Next, the cross-correlations of the coverage density estimator and the ε ball density

estimator are shown to be asymptotically equal.

Lemma B.4.

E[ec(X)ec(Y )] = E[eε(X)eε(Y )] + o(1/k).

Proof. We begin by establishing the conditional density and expectation of f̂ε(X)

given f̂c(X). We drop the dependence onX and denote lε = ΣM
i=11{Xi∈Sε(X)}, the k-NN

coverage by P and the ε ball coverage by Q. Let q = Q/P and r = (Q−P)/(1−P).

The following expressions for conditional densities and expectations are derived in

[57]

Pr{lε = l|P;P > Q}

=

⎧⎪⎨
⎪⎩
(
k−1
l

)
ql(1− q)k−1−l l = 0, 1, . . . , k − 1

0 l = k, k + 1, . . . ,M

Pr{lε = l|P;P ≤ Q}

=

⎧⎪⎨
⎪⎩

0 l = 0, 1, . . . , k − 1(
M−k
l−k

)
rl−k(1− r)M−l l = k, k + 1, . . . ,M
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which implies

E[lε = l|P;P > Q] = (k − 1)Q/P

E[lε = l|P;P ≤ Q] =

(
1−Q

1 −P

)
(k −M) +M

Using the above expressions for conditional expectations, the following marginal ex-

pectation are obtained. Denote the density of the coverage P by fk,M(p). Also let P̂

be the coverage corresponding to the k− 2 nearest neighbor in a total field of M − 3

points. We can show that

E[ec(X)eε(X)] = E[f̂ε(X)f̂c(X)]− E[f̂c(X)]E[f̂ε(X)]

= E

[((
1−Q

P(1−P)

)
(k −M) +M/P

)
1P≤Q

]

+
f 2(X)(k − 1)

kM
E
[(
(k − 1)Q/P2

)
1P>Q

]
− f 2(X)

k
MQ

=
f 2(X)

k

(M − 1)(M − 2)

(k − 2)(M − k)
×

E[((k − 1)Q(1− P̂)− (1−QP̂)(k −M) +MP̂(1− P̂))(1P̂>Q)]

−f
2(X)

k
MQ + E[(1−QP̂)(k −M) +MP̂(1− P̂)]

= C × (III − II + I).

We can show that C × (I − II) = f2(X)
k

(1 − Q) using the fact that P̂ has a

beta distribution. Note that from the definition of Q = ((1 + pk)(k − 1)/M), from

the concentration inequality we have that E[1P̂>Q] = O(e−p2kk/6). The remainder

(C × III) can be simplified and bounded using the Cauchy-Schwarz inequality and

the concentration inequality to show C × III = o(1/M).

209



Therefore, we have

E[ec(X)eε(X)] =
f 2(X)

k
(1−Q) +O(e−p2kk/6).

=
f 2(X)

k
− f 2(X)

M
+ o

(
1

M

)

= f 2(X)

(
1

k
+ o

(
1

k

))
. (B.30)

Now denote E(X) = (ec(X)− eε(X)). Note that E[E2(X)] = E[ec(X)2] −

2E[ec(X)eε(X)] + E[eε(X)2]. Since E[ec(X)2] = f 2(X) 1
k
+ o(1/k) and E[eε(X)2] =

f 2(X)(1/k+o(1/k)) it follows from (B.30) that E[E(X)] = o(1/k). This result means

ec(X) and eε(X) are almost perfectly correlated. We can now express the covariance

between the coverage density estimates in terms of the covariance between the ε ball

estimates as follows:

E[ec(X)ec(Y )]

= E[(eε(X) + E(X))(eε(Y ) + E(Y ))]

= E[eε(X)eε(Y )] + E[eε(X)(E(Y ))]

+E[eε(Y )(E(X))] + E[(E(X))(E(Y ))]

= I + II + III + IV.

Using Cauchy-Schwarz, a bound on each of the terms II, III and IV in terms

of E[E(X)] as |II| ≤
√

E[E(Y )]E[eε2(X)], |III| ≤
√
E[E(X)]E[eε2(Y )] and |IV | ≤√

E[E(X)]E[E(Y )] can be obtained. Note that the above application of Cauchy-

Schwarz helps decouple the problem of joint expectation of density estimates located

at two different points Xand Y to a problem of estimating the error E between two

different density estimates at the same point(s). Therefore all the three terms II,

III and IV are o(1/k). This concludes the proof of Lemma B.4.
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For Lemma B.4 to be useful, we would want E[eε(X)eε(Y )] must be orders of

magnitude larger than the error o(1/k), which is indeed the case for {X, Y } ∈ Ψε
c

since E[eε(X)eε(Y )] = O(1/k) (Lemma A.2, Appendix .1) for such X and Y . We can

then use this lemma and the previously established results on co-variance of ε-ball

density estimates (lemma B.3) to obtain the corresponding result for coverage density

estimates:

Lemma B.5. Let X1, ..,XM ,X,Y denote M + 2 i.i.d realizations of the density f .

Let γ1(X), γ2(X) be arbitrary continuous functions. Then,

Cov
[
1{X∈S′}γ1(X)ec(X), 1{Y∈S′}γ2(Y)ec(Y)

]
= Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M
+ o

(
1

M

))
.

Proof.

E[1Δε(X,Y)γ1(X)γ2(Y)ec(X)ec(Y)]

= E[1Δε(X,Y)γ1(X)γ2(Y)EX,Y[ec(X)ec(Y )]]

= E[1Δε(X,Y)γ1(X)γ2(Y)eε(X)eε(Y)]

+o(1/M)

= E[1{X∈S′}γ1(X)γ2(X)f 2(X)]

(
1

M
+ o

(
1

M

))
.

In the second to last step, we obtain o(1/M) for the second term by recognizing that

Pr({X,Y} ∈ Ψc
ε) = O(k/M) and O(k/M)× o(1/k) = o(1/M). The above result in

conjunction with (B.28) gives the required result.

B.3.3 Bias of the kNN density estimates

Finally, we analyze the bias of the k-NN density estimate which, unlike other

central moments, cannot be obtained using (B.26). Let X ∈ S ′. We can analyze the
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bias of k-NN density estimates as follows by using (B.17)

E[1�(X) f̂k(X)] = E[1�(X) f̂c(X)] + E

[
1�(X)kM

h(X)

P1−2/d(X)

]
+ E

[
1�(X)kMhs(X)

]
= E[1�(X) f̂c(X)] + E

[
1�(X)kM

h(X)

P1−2/d(X)

]
+ o

(
(k/M)2/d

)

= E[f̂c(X)] + E

[
kM

h(X)

P1−2/d(X)

]
+ o

(
k

M

)2/d

+ o(1/M)

= f(X) + h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

, (B.31)

where we used the fact that under the event 	c(X), ((k−1)/M)P1−t(X) = O(1) for any

t >= 0, which in turn gives E[1�c(X)((k−1)/M)P1−t(X)] = O(Pr(	c(X))) = o(1/M).

This implies that

E[f̂k(X)]− f(X) = E[1�(X) f̂k(X)] + E[1�c(X)f̂k(X)]− f(X)

= h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

+ o(1/M) + E[1�c(X)f̂k(X)]

= h(X)

(
k

M

)2/d

+ o

(
k

M

)2/d

+ o(1/M), (B.32)

where the last step follows because , by (B.21), 1�c(X)f̂k(X) = O(1). This expression

is true for k >= 3 by (B.7).

If we assume that the density f is d+ 2-times differentiable, we have

E[f̂k(X)]− f(X) = E

[
kM

f(X)

P(X)

]
+ kM

∑
i∈I

E

[
hi(X)

P1−i/d(X)

]
+ o(kM)

=
∑
i∈I

hi(X)

(
k

M

)i/d

+O

(
1

k
+

k

M

)
,

(B.33)

with I = {2, . . . , d} and h2(X) = h(X). The first step follows using the Taylor series
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expansion (B.13) and the second step follows from that

Γ(k + a)

Γ(k)
= ka(1 +O(1/k)),

which implies that E[1/P1−i/d(X)] = Θ((k/M)i/d−1) +O(1/k).

Next, assuming that (2.4) holds, we evaluate E[g(f̂k(X), X)] in an identical fashion

to the derivation of (B.32). For X ∈ SI ,

E[1�(X)g(f̂k(X), X)]

= E

[
1�(X)g

(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMhs(X), X

)]
= E

[
1�(X)g

(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMo((P(X))2/d−1), X

)]
= E

[
g
(
f̂c(X) + kMh(X)(P(X))2/d−1 + kMo((P(X))2/d−1), X

)]
= E

[
g(f̂c(X), X) + g′(f̂c(X), X)kMh(X)(P(X))2/d−1 + o(kMP(X))2/d−1)

]
= g(f(X), X)g1(k,M) + g2(k,M) + g′(f(X), X)h(X)(k/M)2/d + o((k/M)2/d).

This gives,

E[g(f̂k(X), X)]

= E[1�(X)g(f̂k(X), X)] + E[1�c(X)g(f̂k(X), X)]

= g(f(X), X)g1(k,M) + g2(k,M)

+g′(f(X), X)h(X)(k/M)2/d + o((k/M)2/d). (B.34)

B.4 Summary

We summarize the results derived in this appendix here. We then have,

E[1{X∈S′}f̂k(X)]− f(X) = E[1{X∈S′}h(X)]

(
k

M

)2/d

+ o

(
k

M

)2/d

, (B.35)
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E
[
1{X∈S′}γ(X)eqk(X)

]
= 1{q=2}E

[
1{X∈S′}γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
, (B.36)

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M

)

+ o

(
1

M

)
. (B.37)

B.5 k-NN moments for MI estimation

Define eik(Z) = f̂ik(Z) − E[f̂ik(Z)], i = 1, 2 or 12. Also, let eiε define the error

in the corresponding oracle kernel estimates (refer lemma B.3). Define S ′ to be the

intersection of the individual S ′. Rather than rederive the properties afresh, we will

borrow from the theory previously established.

B.5.1 Central and Intra-Cross Moments

We note that since these are standard k-NN density estimates, all the central and

intra-cross moments carry over from the previous appendix:

E[1{Z∈S′}f̂ik(Z)]− fi(Z) = E[1{Z∈S′}hi(Z)]

(
k

M

)2/d

+ o

(
k

M

)2/d

, (B.38)

E
[
1{Z∈S′}γ(Z)e

q
ik(Z)

]
= 1{q=2}E

[
1{Z∈S′}γ(Z)f

2
i (Z)

] (1

k

)
+ o

(
1

k

)
, (B.39)
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Cov
[
1{Z∈S′}γ1(Z)e

q
ik(Z), 1{Z∈S′}γ2(Z)e

r
ik(Z)

]
= 1{q,r=1}Cov[1{Z∈S′}γ1(Z)fi(Z), 1{Z∈S′}γ2(Z)f(Z)]

(
1

M

)

+ o

(
1

M

)
. (B.40)

B.5.2 Inter-cross moments

In this section, we are interested in evaluating inter-cross moments of the form

Cov[eq1k(Z1), e
r
2k(Z2)], Cov[e

q
12k(Z1), e

r
2k(Z2)] and Cov[e

q
12k(Z1), e

r
1k(Z2)] .

B.5.2.1 Marginal - marginal moments

Because X and Y represent dis-joint sets of variables, it is clear that

Cov[er1k(Z1), e
q
2k(Z2)] = 0. (B.41)

This in turn implies that for two random variables Z1 and Z2 which are (i) equal and

drawn from f12 or (ii) drawn i.i.d. from f12.

Cov
[
1{Z1∈S′}γ1(Z1)e

q
1k(Z1), 1{Z2∈S′}γ2(Z2)e

r
2k(Z2)

]
= 0. (B.42)

B.5.2.2 Joint - marginal moments

First consider the case where Z1 and Z2 which are equal and drawn from f12. In

this case, when conditioned on Z = (X, Y ) = Z1 = Z2,

Cov[er12k(X, Y ), eq2k(Y )] = Cov[er12ε(X, Y ), e
q
2ε(Y )] + o(1/k)

= o(1/k),

where the first step follows from the similarity between oracle kernel and k-NN density

estimates established in lemma B.4. The last step follows by recognizing that the

215



ratio of intersection of the uniform kernel region of the joint density estimate f̂12u

and the marginal estimate f̂1u to either ball volume k/M is o(1). This is because

the intersecting volume is given by the intersection between a sphere and a cylinder

whose axis collide and whose volumes are k/M each, which implies that the volume

of the intersection is o(k/M). This gives,

Cov
[
1{Z∈S′}γ1(Z)e

q
12k(Z), 1{Z∈S′}γ2(Z)e

r
1k(Z)

]
= o(1/k). (B.43)

To analyze the case where Z1 and Z2 which are drawn i.i.d. from f12, we once

again consider two cases: the k-NN balls at Z1 and Z2 corresponding to f̂12k and

f̂1k (i) are disjoint and (ii) intersect. Denote these regions by Ψ12ε1 and Ψc
12ε1 respec-

tively. Let Δ12ε1(X, Y ) denote the event {Z1, Z2} ∈ Ψc
12ε1. Also define �12,1(Z1,Z2) :=

γ1(Z1)γ2(Z2)Cov{Z1,Z2}[(e12k(Z1))
q, (e1k(Z2))

r]. We can then write

Cov
[
1{Z1∈S′}γ1(Z!)e12k(Z1), 1{Z2∈S′}γ2(Z2)e1k(Z2)

]
= E[1{Z1,Z2∈S′}�(X,Y)]

= E[1Δ12ε1
c(X,Y)�(X,Y)]

+E[1Δ12ε1(X,Y)�(X,Y)]

= I + II. (B.44)

For the disjoint case, using the exact methods shown in Appendix B, we show

that

I = 1q,r=1E[1Δ12ε1
c(Z1,Z2)γ1(Z1)γ2(Z2)Cov[e12k(Z1), e1k(Z2)]] + o(1/M)

= E[1Δ12ε1
c(X,Y)γ1(Z1)γ2(Z2)] (−1/M + o(1/M))

= E[1{Z1∈S′}1{Z2∈S′}γ1(Z2)γ2(Z2)] (−1/M + o(1/M))

= −E[1{Z1∈S′}γ1(Z2)]E[1{Z1∈S′}γ2(Z2)]
1

M
+ o(1/M). (B.45)
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For the intersecting balls case, we can first derive that

E
[
1Δ12ε1(Z1,Z2)γ1(Z1)e12ε(Z2)γ2(Z2)e1ε(Z12)

]
= E[1{Z1∈S′}γ1(Z1)γ2(Z1)f

2(Z1)]

(
1

M
+ o

(
1

M

))
.

Next, in conjunction with lemma B.4, we can show

I = Cov
[
1{Z1∈S′}γ1(Z1)e

q
12k(Z1), 1{Z2∈S′}γ2(Z2)e

r
1k(Z2)

]
= 1q,r=1Cov[1{Z1∈S′}γ1(Z1)f(Z1), 1{Z2∈S′}γ2(Z2)f(Z2)]

(
1

M
+ o

(
1

M

))
.(B.46)

Plugging (B.45) and (B.46) in to (B.44), we get

Cov
[
1{Z1∈S′}γ1(Z1)e

q
12k(Z1), 1{Z2∈S′}γ2(Z2)e

r
1k(Z2)

]
= 1{q,r=1}Cov[1{Z1∈S′}γ1(Z1)f12(Z1), 1{Z2∈S′}γ2(Z2)f1(Z2)]

(
1

M

)
+ o

(
1

M

)
.

(B.47)

B.6 Moment properties of angular k-NN density estimates

Throughout this Appendix, let X, Y be distinct points in XN . We will now analyze

properties of f̂k,θ(X), conditioned on {X1, ..,XN}. First, it is show that the region

Sk,θ(X) is contained in the support region S with high probability. This in turn

guarantees the consistency of the angular k-NN density estimates. Define

f̌k,θ(X) = E[f̂k,θ(X) | X ]

and denote

êk,θ(X) = f̂k,θ(X)− E[f̂k,θ(X) | X].
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Define the angular coverage function to be Pk,θ(X) =
∫
Sk,θ(X)

f(Z)dZ. It is clear that

the random variable Pk,θ(X) is beta distributed with parameters k,M − k + 1 [30].

B.6.1 Support subset guarantee

Let P(X) be the normal vector of X w.r.t the boundary B. By the definition of

P(X), it is clear that for any Y ∈ S, the angle between X −P(X) and X − Y lies in

the interval {−θ, θ}. To show that Sk,θ(X) is contained in S, it therefore suffices to

show that (i) the angle θ(X) between the vector N(X)−X and P(X)−X is between

{−θ/2, θ/2}, and (ii) the distance dk,θ(X) is small. Next, it is shown that (i) and (ii)

hold with high probability.

B.6.1.1 Concentration inequality for angle θ(X)

Let θj be the angle between X −P(X) and X −Xj , where Xj is the j-th nearest

neighbor of X among XN . Consider the K-NN graph constructed on XN , and let

dK(Xi) be the K+1-th nearest neighbor distance from Xi ∈ XN . From the results in

Section 2 [55], it directly follows that conditioned on the K +1-NN distance dK(Xi),

the K nearest neighbors of Xi are uniformly distributed. Using this result, it follows

that the angles {θj ; j = 1, .., K}, conditioned on dK(Xi), are uniformly distributed

with mean 0. Using the Chernoff inequality for uniform distribution, and using the

fact that k = k0M
β and K = k ×N/M ,

Pr{|θ(X)| > a} = E[Pr{|θ(X)| > a | dK(Xi)}] ≤ exp(−a2K) = o(1/T ),

for any a > 0. Setting a = θ/2, it immediately follows that θ(X) lies between

{−θ/2, θ/2} with high probability 1− o(1/T ). Denote the event θ(X) ∈ {−θ/2, θ/2}

by �(X).
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B.6.1.2 Concentration inequality for coverage probability

Define

kM = (k − 1)/M.

Let �(X) denote the event

Pk,θ(X) < (pk + 1)kM , (B.48)

where pk =
√
6/(kδ/2). Using Chernoff inequalities, 1 − Pr(�(X)) = O(e−p2kk/2) =

O(e−3k(1−δ)
). Equivalently,

1− Pr(�(X)) = O(C(k)), (B.49)

where C(k) is a function which satisfies the rate of decay condition C(k) = O(e−3k(1−δ)
).

Observe that for k/M sufficiently small, the event �(X) translates to the event that

dk,θ(X) is correspondingly small.

B.6.1.3 Support subset condition

Under the event 	(X) = �(X) ∩ �(X), it is clear that Vk,θ(X) is a subset of S.

Also observe that

1− Pr(	(X)) = O(C(k)). (B.50)

B.6.2 Taylor series expansion of coverage probability

Identical to the derivation of (70) in [80], when 	(X) is true, or equivalently when

Vk,θ(X) is a subset of S, we can write

Pk,θ(X) =

∫
Sk,θ(X)

f(z)dz

= f(X)Vk,θ(X) +

ν−1∑
i=1

ct(X)V
1+2i/d
k,θ (X) + o(V

1+2i/d
k,θ (X)),
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where ci(X) depend only on the derivatives of the underlying density f and N(X),

and therefore only on XN , which in turn implies that these terms are statistically

independent of XM . This then implies that under the event 	(X)

1

Vk,θ(X)
=

f(X)

Pk,θ(X)
+
∑
t∈T

hi(X)

P1−t(X)
+ hr(X), (B.51)

where T = {1/d, 2/d, .., 2ν/d} and hr(X) = o(P
2ν/d−1
k,θ (X)). Again, the terms hi(X)

and the reminder term hr(X̃) depend only on XN , and are statistically independent

of XM . Now, by (A.2), we have (k/M)2ν/d = o(1/M). This implies that 2ν/d > 1.

Under the event 	(X), we have P(X) ≤ (pk +1)k/M , which, in conjunction with the

condition 2ν/d > 1 implies that

hr(X) = o(P
2ν/d−1
k,θ (X)) = o((k/M)2ν/d−1) = o(1/kMM). (B.52)

B.6.3 Bounds on k-NN density estimates

We have the following bounds under the events 	(X) and 	c(X). Under the event

	(X),

(1− ε)ε0
kM

Pk,θ(X)
≤ f̂k(X) ≤ (1 + ε)ε∞

kM
Pk,θ(X)

. (B.53)

Under the event 	c(X), we can boundVk,θ(X) from above by cdDd. Also, sinceVk(X)

is monotone in Pk,θ(X), under the event 	c(X), we can bound Vk,θ(X) from below

by (1 + pk)kM/(1− ε). Written explicitly,

(k − 1)/(McdDd) ≤ f̂k(X) ≤ (1− ε)ε∞. (B.54)
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B.6.4 Bias of angular boundary corrected density estimates

We can analyze the bias of k-NN density estimates as follows. Define

f̂c,θ(X) =
kMf(X)

Pk,θ(X)
.

When 	(X) holds, by using (B.13) and the applying the fact that 2ν/d > 1,

1

Vk(X)
=

f(X)

Pk,θ(X)
+
∑
i∈I

hi(X)

P
1−i/d
k,θ (X)

+ hs(X), (B.55)

where I = {1, .., d} and hs(X) = o(1). This gives,

f̂k,θ(X) = f̂c,θ(X) +
∑
i∈I

kM
h(X)

P
1−i/d
k,θ (X)

+ kMhs(X), (B.56)

whenever 	(X) is true. Then,

E[1�(X) f̂k,θ(X)] = E[1�(X) f̂c,θ(X)]

+
∑
i∈I

E

[
1�(X)kM

hi(X)

P
1−i/d
k,θ (X)

]
+ E

[
1�(X)kMhs(X)

]

= E[1�(X) f̂c,θ(X)] +
∑
i∈I

E

[
1�(X)kM

h(X)

P
1−i/d
k,θ (X)

]
+ o

(
E
[
1�(X)kM

])

= E[f̂c,θ(X)] + E

[
kM

h(X)

P
1−i/d
k,θ (X)

]
+ o

(
k

M

)

= f(X) +
∑
i∈I

hi(X)

(
k

M

)i/d

+ o

(
k

M

)
, (B.57)

where we used the fact that under the event 	c(X), ((k−1)/M)P1−t
k,θ (X) = O(1) for any

t >= 0, which in turn gives E[1�c(X)((k−1)/M)P1−t
k,θ (X)] = O(Pr(	c(X))) = O(C(k)).
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This implies that

E[f̂k,θ(X)]− f(X) = E[1�(X) f̂k,θ(X)] + E[1�c(X) f̂k,θ(X)]− f(X)

=
∑
i∈I

hi(X)

(
k

M

)i/d

+ o

(
k

M

)
+ E[1�c(X) f̂k(X)]

=
∑
i∈I

hi(X)

(
k

M

)i/d

+ o

(
k

M

)
, (B.58)

where the last step follows because, by (B.21), 1�c(X)f̂k(X) = O(1) and O(C(k)) =

o(1/M). This gives the following lemma:

Lemma B.6. Let γ(x, y) be an arbitrary function with d partial derivatives wrt x

and supx,y |γ(x, y)| <∞. Then,

E[γ(f̌k,θ(Z),Z)]− E[γ(f(Z),Z)] =

d∑
i=1

c1,i(γ(x, y))(k/M)i/d + o((k/M)), (B.59)

where c1,i(γ(x, y)) are functionals of γ and f .

Proof.

E[γ(f̌k,θ(Z),Z)]− E[γ(f(Z),Z)] = E[γ(f̌k,θ(Z),Z)− γ(f(Z),Z)]

=
d∑

i=1

E

[
γ(i)(f(Z),Z)

(
f̌k,θ(Z)− f(Z)

)i]

=
d∑

i=1

c1,i(γ(x, y))(k/M)i/d + o((k/M)),(B.60)

where c1,i(γ(x, y)) are functionals of γ(x, y) and its derivatives.

B.6.5 Central and cross moments for angular k-NN density estimates

Lemma B.7. Let γ(x) be an arbitrary function satisfying supx |γ(x)| <∞. Then,

E
[
γ(X)êqk,θ(X)

]
= 1{q=2}c2(γ(x))

(
1

k

)
+ o

(
1

k

)
, (B.61)
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where c2(γ(x)) is a functional of γ and f .

Lemma B.8. Let γ1(x), γ2(x) be arbitrary functions with 1 partial derivative wrt x

and supx |γ1(x)| <∞, supx |γ2(x)| <∞. Then,

Cov
[
γ1(X)êqk,θ(X), γ2(Y)êrk,θ(Y)

]
= 1{q=1,r=1}c5(γ1(x), γ2(x))

(
1

M

)
+ o

(
1

M

)
,(B.62)

where c5(γ1(x), γ2(x)) is a functional of γ1(x), γ2(x) and f .

Proof. The derivation of these results are identical to the derivation of (116) and

(117) in [80]. (116) and (117) are derived using (70). Observing that P(X) (section

B.1 [80]) and Pk,Y,θ(X) and both beta random variables with parameters k, M −

k + 1, it follows that (70) and (B.13) are identical up to leading constants. This in

turn implies that (C.3) and (C.4) follow from (B.13), in an identical manner to the

derivation of (116) and (117) from (70) and finally using the fact that O(C(k)) =

o(1/M) under the assumption k = koM
β .

223



APPENDIX C

Boundary extension

C.1 k-NN density estimator moments for entropy estimation

In the previous section, we established results for points in any set S ′ satisfying

the condition S ′ is a subset of SI . In this section, we extend these results to the case

when S ′ is not a subset of SI .

We begin by observing that the volume of the set S − SI = O(k/M)1/d by virtue

of the fact that the volume of the k-NN balls in d-dimensions is O(k/M).

C.1.1 Bias

When X ∈ S − SI , the k-NN balls centered at X are often truncated at the the

boundary. Let

αk(X) =

∫
Sk(X)∩S dZ∫
Sk(X)

dZ

be the fraction of the volume of the k-NN ball inside the boundary of the support.

Also define Vk,M(X) to be the k-NN ball volume in a sample of size M . For interior

points X ∈ S′′, with high probability, αk(X) = 1, while for boundary points αk(X)

can range between 0 and 1, with αk(X) closer to 0 when the points are closer to the
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boundary. For boundary points we then have

E[f̂k(X)]− f(X) = (1− αk(X))f(X) + o(1). (C.1)

Therefore the bias is much higher at the boundary of the support (O(1)) as compared

to its interior (O((k/M)2/d)) (B.32). Furthermore, the bias at the support boundary

does not decay to 0 as k/M → 0.

This implies that the overall bias is given by

E[1{X∈S′}(f̂k(X)− f(X))]

= E[1{X∈S′∩SIc}(f̂k(X)− f(X))] + E[1{X∈S′∩SI}(f̂k(X)− f(X))]

= h0

(
k

M

)1/d

+ E[1{X∈S′∩SI}h(X)]

(
k

M

)2/d

+ o

(
k

M

)1/d

. (C.2)

for some constant h0 which depends on the density f and the support S.

C.1.2 Central moments

Observe that Pr(Y ∈ SI
c) = O((k/M)1/d). Also, from the concentration inequal-

ity, we have E[eqk(X)] = O(1/kq/2) for any X ∈ S. From this, it follows that

E
[
1{X∈S′}γ(X)eqk(X)

]
= E

[
1{X∈S′∩SIc}γ(X)eqk(X)

]
+ E

[
1{X∈S′∩SI}γ(X)eqk(X)

]
= E

[
1{X∈S′∩SIc}γ(X)O(1/kq/2)

]
+ 1{q=2}E

[
1{X∈S′∩SI}γ(X)f 2(X)

]
= 1{q=2}E

[
1{X∈S′}γ(X)f 2(X)

](1

k

)
+ o

(
1

k

)
. (C.3)
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C.1.3 Cross moments

From the work done by Evans etal [26], Cov[eqk(X), erk(Y )] = O(k5/M) for any

X, Y ∈ S. We can then write

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M

)
+ o

(
1

M

)
. (C.4)

C.2 k-NN density estimator moments for MI estimation

Given that the probability of a point being in the boundary region S − S ′′ is

O((k/M)1/d) = o(1), the contribution of the boundary region to the overall bias,

variance and other cross moments of the boundary corrected density estimator f̂ are

asymptotically negligible compared to the contribution from the interior. As a result

we can now generalize the results from section B.5 on the cross moments for arbitrary

subsets S ′ as follows.

Cov
[
1{Z∈S′}γ1(Z)e

q
12k(Z), 1{Z∈S′}γ2(Z)e

r
1k(Z)

]
= o(1/k). (C.5)

Cov
[
1{Z1∈S′}γ1(Z1)e

q
12k(Z1), 1{Z2∈S′}γ2(Z2)e

r
1k(Z2)

]
= 1{q,r=1}Cov[1{Z1∈S′}γ1(Z1)f12(Z1), 1{Z2∈S′}γ2(Z2)f1(Z2)]

(
1

M

)
+ o

(
1

M

)
. (C.6)
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APPENDIX D

General results for Bias and Variance of plug-in

estimators

D.1 General properties of k-NN density estimators

Let Z be a random variable with density f . Denote the conditional expected value

E[f̂(Z)|Z] by EZ [f̂(Z)] and define f̂(Z)− EZ[f̂(Z)] by e(Z).

In this section, we will assume that the density estimate f̂(Z) satisfies the following

properties:

• A .1 Bounds: Assume that the following bounds hold under the event 	(X) and

	c(X) respectively:

(1− ε)kMf(X)/P(X) ≤ f̂(X) ≤ (1 + ε)kMf(X)/P(X). (D.1)

and

(k − 1)/(McdDd) ≤ f̂(X) ≤ (1− ε)f(X). (D.2)
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• A .2 Higher order central moments: E[er(Z)] = O(1/kr) for any integer r >= 2.

Also, for r = 2, assume that E[e2(Z)] = f 2(Z)(1/k + o(1/k)).

• A .3 Higher order cross moments: Assume that the following condition holds:

Cov
[
1{X∈S′}γ1(X)eqk(X), 1{Y∈S′}γ2(Y)erk(Y)

]
= 1{q,r=1}Cov[1{X∈S′}γ1(X)f(X), 1{Y∈S′}γ2(Y)f(Y)]

(
1

M

)

+ o

(
1

M

)
. (D.3)

Observe that these properties are satisfied by any one of (i) standard k-NN den-

sity estimates f̂k(.), (ii) boundary corrected density estimates f̃k(.) or (iii) angular

weighted boundary corrected density estimates f̂k,K(.) (please refer to Appendix B

for details).

Lemma D.0. Assume that U(x, y) is any arbitrary functional which satisfies

(i) sup
x∈(ε0,ε1)

|U(x, y)| = G0 <∞,

(ii) sup
x∈(ql,qu)

|U(x, y)|C(k) = G1 <∞,

(iii)E[ sup
x∈(pl ,pu)

|U(x/p, y)|] = G2 <∞.

Let Z denote Xi for some fixed i ∈ {1, .., N}. Let ζZ be any random variable which

almost surely lies in the range (f(Z), f̂(Z)). If assumption A .1 holds, then

E[|U(ζZ,Z)|] <∞.

Proof. We will show that the conditional expectation E[|U(ζZ , Z)| | XN ] < ∞. Be-
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cause 0 < ε0 < f(X) < ε∞ <∞ by (A.1), it immediately follows that

E[|U(ζZ,Z)|] = E[E[|U(ζZ , Z)| | XN ]] <∞.

By (D.1) and (A.1), we know that if 	(Z) holds, pl/P(Z) < f̂(Z) < pu/P(Z). On

the other hand, if 	c(Z) holds, by (D.2) and (A.1), ql < f̂(Z) < qu. This therefore

implies that if 	(Z) holds, min{ε0, pl/P(Z)} < ζZ < max{ε∞, pu/P(Z)} and if 	c(Z)

holds, min{ε0, ql} < ζZ < max{ε∞, qu}. Then,

E[|U(ζZ , Z)| | XN ] = E[1�(Z)|U(ζZ , Z)| | XN ] + E[1�c(Z)|U(ζZ , Z)| | XN ]

≤ G0 + E[1�(Z) sup
x∈(pl,pu)

|U(x/P(Z), Z)|] + max{G0, G1/C(k)}Pr(	c(Z))

≤ G0 + E[ sup
x∈(pl,pu)

|U(x/P(Z), Z)|] + max{G0, G1/C(k)}Pr(	c(Z))

= G0 +G2 +max{G1/C(M), G0}C(k)

= G0 +G2 +max{G1, G0C(k)} <∞ (D.4)

where the final step follows from the fact that C(k) = o(1). This concludes the

proof.

D.2 Entropy estimators

The entropy estimators we have defined are of the general form

Ĝ(f) =

(
1

N

N∑
i=1

1{Xi∈S′}g(f̂(Xi),Xi)

)
. (D.5)

where the set S ′ is arbitrary and f̂(.) can be any one of (i) standard k-NN density esti-

mates f̂k(.), (ii) boundary corrected density estimates f̃k(.) or (iii) angular boundary

corrected density estimates f̂k,θ(.). Under these assumptions, we prove the following

lemmas:
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D.2.1 Bias

Lemma D.1. If assumptions A .1 and A .2 are satisfied, the bias of the entropy

estimator is given by

E[Ĝ(f)]−G(f) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))]

+
1

2
E
[
1{Z∈S′}g

′′(f(Z),Z)f 2(Z)
] (1

k

)
+ o(1/k).

Proof. Using the continuity of g′′′(x, y), construct the following third order Taylor

series of g(f̂(Z),Z) around the conditional expected value EZ [f̂(Z)].

g(f̂(Z),Z) = g(EZ[f̂(Z)],Z) + g′(EZ[f̂(Z)],Z)e(Z)

+
1

2
g′′(EZ[f̂(Z)],Z)e

2(Z) +
1

6
g(3)(ζZ,Z)e

3(Z),

where ζZ ∈ (g(EZ[f̂(Z)],Z), g(f̂(Z),Z) is defined by the mean value theorem. This

gives

E[1{Z∈S′}(g(f̂(Z),Z)− g(EZ[f̂(Z)],Z))]

= E

[
1

2
1{Z∈S′}g

′′(EZ[f̂(Z)],Z)e
2(Z)

]
+ E

[
1

6
1{Z∈S′}g

(3)(ζZ,Z)e
3(Z)

]

where the last but one step follows from (C.3), joint continuity of g(3)(x, y) (in

the interval x ∈ (ε0, ε∞)) and the fact EZ[f̂(Z)] = f(Z) + o(1). Let Δ(Z) =

1
6
1{Z∈S′}g

(3)(ζZ,Z). From Lemma D.0, it follows that Δ(Z) converges in probabil-

ity to 1
6
1{Z∈S′}g

(3)(f(Z),Z). This combined with the fact that Δ(Z) is uniformly

bounded implies that E[Δ2(Z)] = O(1). By Cauchy-Schwarz,

∣∣∣∣E
[
1

6
Δ(Z)(f̂(Z)− f(Z))3

]∣∣∣∣
≤

√
E

[
1

36
Δ2(Z)

]
E

[
(f̂(Z)− f(Z))6

]
= o

(
1

k

)
.
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By observing that the samples {Xi}, i = 1, . . . , N are identical, we therefore have

E[Ĝ(f)]−G(f) = E[1{Z∈S′}(g(f̂(Z),Z)− g(f(Z),Z))]

= E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + E

[
1

2
1{Z∈S′}g

′′(EZ[f̂(Z)],Z)e
2(Z)

]
+o(1/k).

As a final step, we note that EZ[f̂(Z)] = f(Z) + o(1). This implies that

E[Ĝ(f)]−G(f) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))]

+
1

2
E
[
1{Z∈S′}g

′′(f(Z),Z)e2(Z)
]
+ o(1/k)

= E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))]

+
1

2
E
[
1{Z∈S′}g

′′(f(Z),Z)f 2(Z)
] (1

k

)
+ o(1/k).

D.2.2 Variance

Lemma D.2. Under assumptions A .2 and A .3 listed above, the variance of the

entropy estimator is given by

V(Ĝ(f)) = V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)

+V[1{Z∈S′}g
′(f̂(Z),Z)f̂(Z)]

(
1

M

)

+o

(
1

M
+

1

N

)
.

Proof. By the continuity of g(λ)(x, y), we can construct the following Taylor series of
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g(f̂(Z),Z) around the conditional expected value EZ [f̂(Z)].

g(f̂(Z),Z) = g(EZ[f̂(Z)],Z) + g′(EZ[f̂(Z)],Z)e(Z)

+

(
λ−1∑
i=2

g(i)(EZ[f̂(Z)],Z)

i!
ei(Z)

)

+
g(λ)(ξZ,Z)

λ!
(f̂k(Z)− EZ[f̂(Z)])

λ,

where ξZ ∈ (g(f(Z)), g(f̂(Z))). Denote (g′(ξZ,Z))/λ! by Ψ(Z). Further define the

operator M(Z) = Z− E[Z] and

pi = M(1{Xi∈S′}g(EXi
[f̂(Xi)],Xi)),

qi = M(1{Xi∈S′}g
′(EXi

[f̂(Xi)],Xi)e(Xi)),

ri = M
(

λ∑
i=2

1{Xi∈S′}g
(i)(EXi

[f̂(Xi)],Xi)

i!
ei(Xi)

)

si = M
(
1{Xi∈S′}Ψ(Xi)e

λ(Xi)
)

The variance of the estimator Ĝ(f) is given by

V(Ĝ(f)) = E[(Ĝ(f)− E[Ĝ(f)])2]

=
1

N
E
[
(p1 + q1 + r1 + s1)

2
]

+
N − 1

N
E[(p1 + q1 + r1 + s1)(p2 + q2 + r2 + s2)].

Because X1, X2 are independent, we have E[(p1)(p2 + q2 + r2 + s2)] = 0. Further-

more,

E
[
(p1 + q1 + r1 + s1)

2
]

= E[p1
2] + o(1)

= V[1{Z∈S′}g(EZ[f̂(Z)],Z)] + o(1)

From assumption 3, it follows that
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• E[p1
2] = V[1{Z∈S′}g(f̂(Z),Z)] + o(1)

• E[q1q2] = V[1{Z∈S′}g
′(f̂(Z),Z)f̂(Z)]

(
1
M

)
+ o

(
1
M

)
• E[q1r2] = o

(
1
M

)
• E[r1r2] = o

(
1
M

)
Since q1 and s2 are 0 mean random variables

E[q1s2] = E

[
q1Ψ(X2)(f̂(X2)− EX2 [f̂(X2)])

λ
]

= E

[
q1Ψ(X2)(f̂(X2)− EX2 [f̂(X2)])

λ
]

≤
√

E [Ψ2(X2)]E
[
q21(f̂(X2)− EX2 [f̂(X2)])2λ

]
=
√
E [Ψ2(Z)]o

(
1

kλ

)

The relation E [Ψ2(Z)] = O(1) can be shown in an identical manner to showing

E [Δ2(Z)] = O(1) in the previous proof of the bias expression. Note that from the

polynomial growth condition on k, o
(

1
kλ

)
= o(1/M) . In a similar manner, it can be

shown that E[r1s2] = o
(

1
M

)
and E[s1s2] = o

(
1
M

)
. This implies that

V(Ĝ(f)) =
1

N
E
[
p1

2
]
+

(N − 1)

N
E[q1q2] + o

(
1

M
+

1

N

)
.

= V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)

+V[1{Z∈S′}g
′(f̂(Z),Z)f̂(Z)]

(
1

M

)

+o

(
1

M
+

1

N

)
.
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D.3 Divergence estimators

The divergence estimators to estimate G(f1, f2) that we have defined are of the

general form

Ĝ(f1, f2) =

(
1

N

N∑
i=1

1{Xi∈S′}g2(f̂1(Xi)/f̂2(Xi),Xi)

)
. (D.6)

where the set S ′ is arbitrary and f̂a(.) (a = 1, 2) can be any one of (i) standard k-NN

density estimates f̂k(.), (ii) boundary corrected density estimates f̃k(.) or (iii) angular

weighted boundary corrected density estimates f̂k,K(.).

Let Z be a random variable with density f2. Denote the conditional expected

value E[f̂a(Z)|Z] by EZ [f̂a(Z)] and define f̂a(Z) − EZ[f̂a(Z)] by e(Z). Also define

f̂ := f̂1/f̂2, f = f1/f2 and EZ[f̂(Z)] = EZ[f̂1(Z)/f̂2(Z)] = EZ[f̂1(Z)]/EZ[f̂2(Z)]. Also

define f̂1(Z)− EZ[f̂1(Z)] by e1(Z) and f̂2(Z)− EZ[f̂2(Z)] by e2(Z). Finally, define

e1,2(Z) =
e1(Z)

EZ[f̂1(Z)]
− e2(Z)

EZ[f̂2(Z)]
.

Because e1(Z) and e2(Z) are conditionally independent on Z, the variance V[e12(Z)|Z] =

V[ e1(Z)

EZ[f̂1(Z)]
|Z] + V[ e2(Z)

EZ[f̂2(Z)]
|Z].

Uisng Taylor series expansion, we can write

f̂1(x)

f̂2(x)
=

f1(x)

f2(x)

(
1 +

f̂1(x)− f1(x)

f1(x)
− f̂2(x)− f2(x)

f2(x)
+

(f̂2(x)− f2(x))
2

f 2
2 (x)

)

+O((f̂2(x)− f2(x))
3).
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D.3.1 Bias

Lemma D.3. If assumptions A .1 and A .2 are satisfied, the bias of the divergence

estimator is given by

E[Ĝ(f1, f2)]−G(f1, f2) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + o(1/k)

+E
[
1{Z∈S′}

(
g′2(f(Z),Z)f(Z) + g′′2(f(Z),Z)f(Z)

2
)](1

k

)
.

Proof. Using the continuity of g′′′2 (x, y), construct the following third order Taylor

series of g2(f̂(Z),Z) around the conditional expected value EZ [f̂(Z)].

g2(f̂1(Z)/f̂2(Z),Z) = g2(EZ[f̂(Z)],Z)

+g′2(EZ[f̂(Z)],Z)EZ[f̂(Z)]

(
e1(Z)

EZ[f̂1(Z)]
− e2(Z)

EZ[f̂2(Z)]
+

e22(Z)

(EZ[f̂2(Z)])2

)

+g′′2(EZ[f̂(Z)],Z)
EZ[f̂(Z)]

2

2

(
e21(Z)

(EZ[f̂1(Z)])2
+

e22(Z)

(EZ[f̂2(Z)])2

)

+o(e21(Z) + e22(Z)).

This gives

E[1{Z∈S′}(g2(f̂(Z),Z)− g2(EZ[f̂(Z)],Z))]

= E

[
1{Z∈S′}

(
g′2(EZ[f̂(Z)],Z)EZ[f̂(Z)] + (1/2)g′′2(EZ[f̂(Z)],Z)EZ[f̂(Z)]

2
)](1

k

)

+ E
[
o(e21(Z) + e22(Z))

]

Using Cauchy-Schwarz inequality as in the proof of Lemma D.1, we can show that

E[o(e21(Z) + e22(Z))] = o(1/k). Once again, by observing that the samples {Xi}, i =
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1, . . . , N are identical, we therefore have

E[Ĝ(f1, f2)]−G(f1, f2) = E[1{Z∈S′}(g(f̂(Z),Z)− g(f(Z),Z))]

= E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + o(1/k)

+E

[
1{Z∈S′}

(
g′2(EZ[f̂(Z)],Z)EZ[f̂(Z)] + g′′2(EZ[f̂(Z)],Z)EZ[f̂(Z)]

2/2
)](1

k

)
.

As a final step, we note that EZ[f̂(Z)] = f(Z) + o(1). This implies that

E[Ĝ(f1, f2)]−G(f1, f2) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))]

+E
[
1{Z∈S′}

(
g′2(f(Z),Z)f(Z) + g′′2(f(Z),Z)f(Z)

2
)](1

k

)
+ o(1/k).

D.3.2 Variance

Lemma D.4. Under assumptions A .2 and A .3 listed above, the variance of the

divergence estimator is given by

V(Ĝ(f1, f2)) = V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)

+V[1{Z∈S′}g
′(f̂(Z),Z)f̂(Z)]

(
1

M

)

+o

(
1

M
+

1

N

)
.

Proof. Using Taylor series identically to the proof of lemma D.2, we can show that it

suffices to consider the following leading terms

g2(f̂1(Z)/f̂2(Z),Z) = g2(EZ[f̂(Z)],Z)

+g′2(EZ[f̂(Z)],Z)EZ[f̂(Z)] (e1,2(Z))

+H.O.T (D.7)
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and show that the H.O.T terms will contribute order o(1/M) to the variance. Then,

V[Ĝ(f1, f2)] = V

[(
1

N

N∑
i=1

1{Xi∈S′}g2(f̂1(Xi)/f̂2(Xi),Xi)

)]

= V

[(
N∑
i=1

1{Xi∈S′}

N

(
g2(EXi

[f̂(Xi)],Xi) + g′2(EXi
[f̂(Xi)],Xi)EXi

[f̂(Xi)]e1,2(Xi)
))]

+o(1/M)

= V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)
+ V[1{Z∈S′}g

′(f̂(Z),Z)f̂(Z)]

(
1

M

)
+ o

(
1

M
+

1

N

)
.

D.4 MI estimators

The MI estimators we have defined are of the general form

Ĝ(f12) =

(
1

N

N∑
i=1

1{Xi∈S′}g(f̂1(Xi)f̂2(Yi)/f̂12(Zi),Zi)

)
. (D.8)

where the set S ′ is arbitrary and f̂a(.) (a = 1, 2, 12) can be any one of (i) standard

k-NN density estimates f̂k(.), (ii) boundary corrected density estimates f̃k(.) or (iii)

angular weighted boundary corrected density estimates f̂k,K(.).

Let Z be a random variable with density f12. Denote the conditional expected

value E[f̂a(Z)|Z] by EZ [f̂a(Z)] and define f̂a(Z) − EZ[f̂a(Z)] by e(Z). Also define

f̂ := f̂1f̂2/f̂12, f = f1f2/f12 and EZ[f̂(Z)] = EZ[f̂1(X)]EZ[f̂2(Y)]/EZ[f̂12(Z)]. Also

define f̂1(X)−EZ[f̂1(X)] by e1(X), f̂2(Y)−EZ[f̂2(Y)] by e2(Y) and f̂2(Z)−EZ[f̂12(Z)]

by e12(Z). Finally, define

e1,2,12(Z) =
e1(Z)

EZ[f̂1(X)]
+

e2(Z)

EZ[f̂2(Y)]
− e12(Z)

EZ[f̂12(Z)]
.
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Using Taylor series expansion, we can write

f̂1(x)f̂2(y)

ˆf12(z)
=
f1(x)f2(y)

f12(z)
×(

1 +
f̂1(x)− f1(x)

f1(x)
+

f̂2(y)− f2(y)

f2(y)
−

ˆf12(z)− f12(z)

f12(z)
+

( ˆf12(z)− f12(z))
2

f 2
12(z)

)

+O((f̂2(x)− f2(x))
3).

In this section, we will assume that the density estimate satisfies assumptions

1,2 and 3. In addition, we assume that the following marginal-joint cross moment

conditions hold:

A .4 Cross marginal-joint moments:

(a)Cov
[
1{Z∈S′}γ1(Z)e

q
12k(Z), 1{Z∈S′}γ2(Z)e

r
1k(Z)

]
= o(1/k).

(b)Cov
[
1{Z1∈S′}γ1(Z1)e

q
12k(Z1), 1{Z2∈S′}γ2(Z2)e

r
1k(Z2)

]
= 1{q,r=1}Cov[1{Z1∈S′}γ1(Z1)f12(Z1), 1{Z2∈S′}γ2(Z2)f1(Z2)]

(
1

M

)
+ o

(
1

M

)
.

D.4.1 Bias

Lemma D.5. If assumptions A .1, A .2 and A .4(a) are satisfied, the bias of the MI

estimator is given by

E[Ĝ(f12)]−G(f12) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + o(1/k)

+E
[
1{Z∈S′}

(
g′(f(Z),Z)f(Z) + g′′(f(Z),Z)f(Z)2

)](1

k

)
.

Proof. Using the continuity of g′′′(x, y), construct the following third order Taylor
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series of g(f̂(Z),Z) around the conditional expected value EZ [f̂(Z)].

g(f̂(Z),Z) = g(EZ[f̂(Z)],Z)

+g′(EZ[f̂(Z)],Z)EZ[f̂(Z)]

(
e1(Z)

EZ[f̂1(X)]
+

e2(Z)

EZ[f̂2(Y)]
− e12(Z)

EZ[f̂12(Z)]
+

e212(Z)

(EZ[f̂12(Z)])2

)

+g′′(EZ[f̂(Z)],Z)
EZ[f̂(Z)]

2

2

(
e21(Z)

(EZ[f̂1(X)])2
+

e22(Z)

(EZ[f̂2(Y)])2
+

e212(Z)

(EZ[f̂12(Z)])2

)

+o(e21(Z) + e22(Z) + e212(Z)).

This gives

E[1{Z∈S′}(g(f̂(Z),Z)− g(EZ[f̂(Z)],Z))]

= E
[
1{Z∈S′}

(
g′(f(Z),Z)f(Z) + g′′(f(Z),Z)f(Z)2

)](1

k

)

+ E
[
o(e21(Z) + e22(Z) + e212(Z))

]

Using Cauchy-Schwarz inequality as in the proof of Lemma D.1, we can show that

E[o(e21(Z) + e22(Z) + e212(Z))] = o(1/k). Once again, by observing that the samples

{Xi}, i = 1, . . . , N are identical, we therefore have

E[Ĝ(f1, f2)]−G(f) = E[1{Z∈S′}(g(f̂(Z),Z)− g(f(Z),Z))]

= E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + o(1/k)

+E

[
1{Z∈S′}

(
g′2(EZ[f̂(Z)],Z)EZ[f̂(Z)]

EZ[f̂2(Y)]2
+
g′′2(EZ[f̂(Z)],Z)EZ[f̂(Z)]

2

2EZ[f̂2(Y)]2

)
e2(Z)

]
.

As a final step, we note that EZ[f̂(Z)] = f(Z) + o(1). This implies that

E[Ĝ(f12)]−G(f12) = E[1{Z∈S′}(g(EZ[f̂(Z)],Z)− g(f(Z),Z))] + o(1/k)

+E
[
1{Z∈S′}

(
g′(f(Z),Z)f(Z) + g′′(f(Z),Z)f(Z)2

)](1

k

)
.
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D.4.2 Variance

Lemma D.6. If assumptions A .1, A .2 and A .4(a) are satisfied, the variance of the

MI estimator is given by

V(Ĝ(f12)) = V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)

+V[1{Z∈S′}g
′(f̂(Z),Z)f̂(Z)]

(
1

M

)

+o

(
1

M
+

1

N

)
.

Proof. Using Taylor series identically to the proof of lemma D.2, we can show that it

suffices to consider the following leading terms

g(f̂1(Z)f̂2(Z)/f̂12(Z),Z) = g(EZ[f̂(Z)],Z)

+g′(EZ[f̂(Z)],Z)EZ[f̂(Z)] (e1,2,12(Z))

+H.O.T (D.9)

and show that the H.O.T terms will contribute order o(1/M) to the variance. Then,

V[Ĝ(f12)] = V

[(
1

N

N∑
i=1

1{Xi∈S′}g(f̂1(Xi)/f̂2(Xi),Xi)

)]

= V

[(
N∑
i=1

1{Xi∈S′}

N

(
g(EXi

[f̂(Xi)],Xi) + g′(EXi
[f̂(Xi)],Xi)EXi

[f̂(Xi)]e1,2,12(Xi)
))]

+o(1/M)

= V[1{Z∈S′}g(f̂(Z),Z)]

(
1

N

)
+ V[1{Z∈S′}g

′(f̂(Z),Z)f̂(Z)]

(
1

M

)
+ o

(
1

M
+

1

N

)
.
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APPENDIX E

General result on CLT for interchangeable

processes

E.1 CLT for Interchangeable Processes

Let {Zi; i = 1, 2, . . .} be an interchangeable stochastic process with 0 mean and

variance 1. Blum et.al.[11] showed that the random variable SN = 1√
N

∑N
i=1 Zi con-

verges in distribution to N(0, 1) if and only if Cov(Z1,Z2) = 0 and Cov(Z2
1,Z

2
2) = 0.

E.1.1 De Finetti’s Theorem

Let F be the class of one dimensional distribution functions and for each pair of

real numbers x and y define F(x, y) = {F ∈ F|F (x) ≤ y}. Let B be the Borel field

of subsets of F generated by the class of sets F(x, y). Then De Finetti’s theorem

asserts that for any interchangeable process {Zi} there exists a probability measure

μ defined on B such that

Pr{B} =

∫
F

PrF{B}dμ(F ), (E.1)
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for any Borel measurable set defined on the sample space of the sequence {Zi}. Here

Pr{B} is the probability of the event B and PrF{B} is the probability of the event

B under the assumption that component random variables Xi of the interchangeable

process are independent and identically distributed with distribution F .

E.1.2 Necessary and Sufficient conditions for CLT

For each F ∈ F define m(F ) and σ2(F ) as m(F ) =
∫∞
−∞ xdF (x), σ(F ) =∫∞

−∞ x2dF (x) − 1 and for all real numbers m and non-negative real numbers σ2 let

Fm,σ2 be the set of F ∈ F for which m(F ) = m and σ2(F ) = σ2.

Blum et.al show that the process {Zi} will satisfy the CLT if and only if μ(F0,0) =

1. Furthermore, they show that the condition μ(F0,0) = 1 is equivalent to the condi-

tion that Cov(Z1,Z2) = 0 and Cov(Z2
1,Z

2
2) = 0.

E.2 CLT for Asymptotically Uncorrelated processes

In this section, we establish the CLT for this type of asymptotically uncorrelated

interchangeable processes. Define the sum SN,M

SN,M =

∑N
i=1YM,i√

V[
∑N

i=1YM,i]
,

where the indices N and M explicitly stress the dependence of the sum SN,M on the

number of random variables N +M .

Lemma E.1. Assume that the random variables {YM,i; i = 1, . . . , N} belong to an 0

mean, unit variance, interchangeable process [11] for all values of M . Further assume

that Cov(YM,1,YM,2) and Cov(Y
2
M,1,Y

2
M,2) are O(1/M).

Then, the random variables SN,M converges in distribution to N(0, 1).

Proof. Let δμ(M) and δσ(M) be a strictly positive functions parameterized by M
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such that δμ(M) = o(1); 1
Mδμ(M)

= o(1), δσ(M) = o(1); 1
Mδσ(M)

= o(1). Denote the

set of F ∈ F with Fm,δ,M := {m2(F ) ≥ δμ(M)}; Fσ,δ,M := {σ2(F ) ≥ δσ(M)};

F∗
m,δ,M := {m2(F ) ∈ (0, δμ(M))} and F∗

σ,δ,M := {σ2(F ) ∈ (0, δσ(M))}. Denote the

measures of these sets by μm,δ,M , μσ,δ,M , μ∗
m,δ,M and μ∗

σ,δ,M respectively. We have from

(E.1) that

∫
F

m2(F )dμ(F ) = Cov(YM,i,YM,j)

∫
F

σ2(F )dμ(F ) =

∫
F

[EF [Z
2 − 1]]2dμ(F ) = Cov(Y2

M,i,Y
2
M,j). (E.2)

Applying the Chebyshev inequality, we get

δμ(M)μm,δ,M ≤ Cov(YM,i,YM,j),

δσ(M)μσ,δ,M ≤ Cov(Y2
M,i,Y

2
M,j).

Because the covariances decay at O(1/M), μm,δ,M and μσ,δ,M → 0 as M → ∞. From

the definition of F∗
m,δ,M and F∗

σ,δ,M , we also have that μ∗
m,δ,M and μ∗

σ,δ,M → 0 as

M → ∞. We also have

1− (μm,δ,M + μσ,δ,M + μ∗
m,δ,M + μ∗

σ,δ,M) ≤ μ(F0,0) ≤ 1,

and therefore

lim
M→∞

μ(F0,0) = 1. (E.3)
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Observe that

lim
Δ→0

Pr{SN,M ≤ α} = lim
Δ→0

∫
F

PrF{SN,M ≤ α}dμ(F )

= lim
Δ→0

∫
F0,0

PrF{SN,M ≤ α}dμ(F ) + lim
Δ→0

∫
F

1{F∈F−F0,0}PrF{SN,M ≤ α}dμ(F )

= lim
Δ→0

∫
F0,0

PrF{SN,M ≤ α}dμ(F ) +
∫
F

lim
Δ→0

(
1{F∈F−F0,0}PrF{SN,M ≤ α}

)
dμ(F )(E.4)

= lim
Δ→0

∫
F0,0

PrF{SN,M ≤ α}dμ(F ) (E.5)

= lim
Δ→0

∫
F0,0

PrF

⎧⎨
⎩

N∑
i=1

⎛
⎝ YM,i√

V[
∑N

i=1YM,i]

⎞
⎠ ≤ α

⎫⎬
⎭ dμ(F )

= lim
Δ→0

∫
F0,0

PrF

{
N∑
i=1

(
YM,i√

NV[YM,i] +N(N − 1)Cov[YM,i,YM,j]

)
≤ α

} ∫
F0,0

dμ(F )

= lim
Δ→0

∫
F0,0

PrF

{
N∑
i=1

(
YM,i√
NV[YM,i]

)
≤ α

} ∫
F0,0

dμ(F ) (E.6)

= lim
Δ→0

∫
F0,0

PrF

{
1√
N

N∑
i=1

YM,i ≤ α

}
dμ(F )

=

∫
F

lim
Δ→0

(
1{F∈F0,0}PrF

{
1√
N

N∑
i=1

YM,i ≤ α

})
dμ(F )

=

∫
F

φ(α)dμ(F ) = φ(α), (E.7)

where φ(.) is the distribution function of a Gaussian random variable with mean 0 and

variance 1. Step (E.4) follows from the Dominated Convergence theorem. By (E.3),

limΔ→0 1{F∈F−F0,0} = 0 almost surely. This gives Step (E.5). Step (E.6) is obtained

by observing that, by (E.2), Cov[YM,i,YM,j] = 0 when F ∈ F0,0. The last step (E.7)

follows from the CLT for sums of 0 mean, unit variance, i.i.d random variables and

(E.3). This concludes the proof of Theorem E.1.
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ABSTRACT

Neighborhood graphs for estimation
of density functionals

by

Sricharan Kallur Palli Kumar

Chair: Alfred O. Hero III

Functionals of densities play a fundamental role in statistics, signal processing, ma-

chine learning, information theory and related fields. This class of functionals includes

divergence measures of densities, intrinsic dimension of the density support, and mini-

mum volume sets. k-nearest neighbor (k-NN) graph based estimators are widely used

for the estimation of these functionals. While several consistent k-NN estimators have

been previously proposed for estimating these functionals, general results on rates of

convergence of these estimators and confidence intervals on the estimated functional

are not available.

In this thesis, a new class of estimators based on bipartite k-NN graphs is pro-

posed for estimating functionals of probability density functions. This class includes

divergence estimators, intrinsic dimension estimators and minimum volume set es-

timators. For this class of estimators, large sample theory is used to characterize

performance of the estimators. Specifically, large sample expressions for estimator

bias and variance is derived and a central limit theorem for the distribution of the

estimators is established. This theory is applied to accurately estimate functionals

1



of interest by optimizing the mean squared error over free parameters, e.g. the num-

ber of neighbors k, and obtaining confidence intervals on the estimated functional

by invoking the central limit theorem. Furthermore, this theory provides significant

insight into the statistical behavior of these bipartite k-NN estimators, leading to the

development of modified k-NN estimators with faster rates of convergence. In par-

ticular, a weighted ensemble of bipartite k-NN estimators for functional estimation

is proposed, and it is shown using this theory, that the weighted ensemble estimator

outperforms the state-of-the-art.

Using this theory, the thesis develops performance-driven algorithms in several

applications. First, the theory is applied to determine entropy with confidence to

facilitate anomaly detection at desired false alarm rates in wireless sensor networks.

Second, the theory is applied to determine complexity of high-dimensional data lying

on a manifold, and subsequently applied to fusion and segmentation applications.

Finally, the thesis introduces an efficient anomaly detection algorithm based on es-

timation of p-values of membership in training-sample minimum volume sets using

bipartite k-NN graphs.
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