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Abstract— Detection of a finite state Markov signal in additive
white Gaussian noise (AWGN) can be done in an intuitive manner
by applying an appropriate filter and using an energy detector.
One might not expect this heuristic approach to signal detection
to be optimal. However, in this paper, we show that for a certain
type of finite state Markov signal, namely the discrete-time (DT)
random telegraph, this filtered energy detector is approximately
optimal under the following conditions of: symmetric transition
probabilities, low signal-to-noise ratio (SNR), long observation
time, and small probability of transition between two consecutive
time instances. When these last three conditions hold, but the
transition probabilities are not symmetric, we show that a variant
of the filtered energy detector is approximately optimal. It
is also shown, under low SNR conditions, that the likelihood
ratio test (LRT) for a finite state DT Markov signal in AWGN
reduces to the matched filter statistic with the minimum mean
squared error (MMSE) predictor signal values used in place
of the known signal values. Using this result, we propose a
general methodology for obtaining an approximation to the
LRT of a finite state DT Markov signal in AWGN. Specifically,
instead of the conditional mean (also MMSE) estimators, affine
estimators with lowest mean squared error (MSE) are used.
This work is relevant to magnetic resonance force microscopy,
an emerging technology that uses ultrasensitive force sensing to
detect magnetic resonance. Sensitivity down to the single spin
level was demonstrated in a recent experiment.

I. INTRODUCTION

Detection of a finite state DT Markov signal in AWGN is
widespread in many different fields. Detection of a random
telegraph signal is used in the study of particle tunnelling [1],
and in the study of low-frequency noise characteristics of
light-emitting diodes [2]. Markov chains are used in [3] for
the purpose of statistical network anomaly detection, and
in [4], for the purpose of land mine detection. The focus
application of this paper is magnetic resonance force mi-
croscopy (MRFM), which is a promising technique for three-
dimensional imaging on the nanometer scale. Recent experi-
ments at IBM have shown that MRFM is capable of detecting
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and localizing individual electron spins associated with sub-
surface atomic defects in silicon dioxide [5]. This single-spin
detection milestone represents a factor of 107 improvement
over conventional electron spin resonance detection and was
achieved using energy detection methods similar to those
described in this paper. Other recent MRFM experiments have
demonstrated the ability to detect and manipulate naturally
occurring statistical fluctuations in small spin ensembles [6].
With further development, single-spin MRFM may eventually
lead to atomic-resolution magnetic resonance imaging and find
application in quantum computing experiments [7].

The recursive structure of the LRT for a finite state DT
Markov signal is given in [8]. In this paper, we specialize
the noise to AWGN, and derive a new interpretation of the
optimal LRT for a finite state DT Markov signal under low
SNR conditions. It is shown that, under low SNR, the LRT
reduces to the matched filter statistic with the MMSE predictor
values used in place of the known signal values. Current single
spin experiments operate under conditions of very low SNR;
consequently, we are interested in the performance of detectors
in the regime of low SNR and long observation time. Our re-
sults are applicable to [1], [2], [3], [4] under conditions of low
SNR. When applied to the LRT of the DT random telegraph,
the result is an estimator-correlator detector. This estimator-
correlator structure appears in the LRT of problems whose
probability density functions have an exponential form [9].
In particular, it applies when detecting a Gaussian signal in
AWGN. This first result has a continuous-time (CT) analog: in
CT, the LRT for detecting a random signal in AWGN has the
form of the matched filter statistic with the MMSE predictor
used in place of the known signal values. It is, however, exact
under all SNR conditions [10], [11], [12]. There is another
difference: the square of the conditional expectation of the
random process is used instead of the conditional expectation
of the squared value of the random process.

Secondly, when used to detect the DT random telegraph
in AWGN, the filtered energy (FE) detector is approximately
optimal under the following four conditions: symmetric transi-
tion probabilities, low SNR, long observation time, and a small
probability of transition between two consecutive instances.
The FE detector is no longer approximately optimal when
the transition probabilities are asymmetric. We extend the FE
detector to a hybrid second-order detector which combines the
filtered energy, amplitude, and energy statistics. It is shown
that the hybrid detector is approximately optimal for the DT
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random telegraph model under only the last three conditions.
This is an intuitively pleasing result, as the idea of performing
detection of a finite state Markov signal by filtering the noisy
observations and applying an energy detector is one that comes
naturally.

Thirdly, the first result is used to obtain an approximation to
the LRT of a general finite state DT Markov signal in AWGN.
Suboptimal affine estimators of the random process and the
squared value of the random process are used instead of the
optimal conditional mean (also MMSE) estimators. When this
general methodology is applied to the LRT of the DT random
telegraph in AWGN, an approximation is obtained that closely
matches the result that was obtained using a straightforward
analysis. It has been noted in [13] that linear MMSE estimates
of the CT symmetric random telegraph process are as efficient
as the nonlinear MMSE estimates as the SNR → 0. We also
present simulations that suggest the optimality of a similar
approximation for the DT random walk process. It would be
interesting to investigate whether affine MMSE estimators are
as efficient as nonlinear MMSE estimators for a general finite
state DT Markov signal in AWGN as the SNR → 0.

The outline of this paper is as follows. In Section II,
we briefly review the basic principles of MRFM. This is
followed by a discussion in Section III of two finite state
DT Markov signal models: the random telegraph and random
walk models. In Section IV, we describe existing detectors
that are commonly used, namely the amplitude and filtered
energy detectors, and compare them to the optimal detectors.
We derive a new interpretation of the LRT under low SNR
conditions. As well, the FE detector is extended to a hybrid
version, and a general methodology to obtain an approximation
to the LRT of a finite state DT Markov process in AWGN is
presented. Simulation results are presented in Section V.

II. BASIC PRINCIPLES OF MRFM SPIN DETECTION

MRFM experiments, in general, involve the measurement
of magnetic force between a submicron-size magnetic tip
and spins in a sample. The details of spin manipulation
and signal detection depend on the exact MRFM protocol
used. One particularly successful protocol is called OSCAR,
which stands for OScillating Cantilever-driven Adiabatic Re-
versal [14], [15]. A variation of this protocol, “interrupted
OSCAR” (iOSCAR), was used in recent single spin experi-
ments [5].

A schematic diagram of an OSCAR-type MRFM experi-
ment is shown in Fig. 1. As shown in the figure, a submicron
ferromagnet is placed on the tip of a cantilever and positioned
close to an unpaired electron spin contained within the sample.
An applied radio-frequency (rf) field serves to induce magnetic
resonance of the spin when the condition B0 = ωrf/γ is met.
Here, B0 is the magnitude of the magnetic field from the tip,
plus any externally applied static field that may be present.
The constant γ = 5.6π × 1010 T−1s−1 is the gyromagnetic
ratio, and ωrf is the (single) frequency of the applied rf field.
Because the magnetic field emanating from the tip is highly
inhomogeneous, magnetic resonance is confined spatially to a
thin bowl-shaped region called the “resonant slice”.

Fig. 1. Schematic of an OSCAR-type MRFM experiment.

In an OSCAR experiment, a gain-controlled positive feed-
back loop is used to oscillate the cantilever with a preset
amplitude (typically 10-20 nm). The cantilever oscillation
frequency is determined by the cantilever itself (specifically,
by the fundamental flexural mode eigenfrequency), as well as
by tip-sample interactions. As the tip of the cantilever vibrates,
the resonant slice passes back and forth through the spin and,
as a result, the spin direction is cyclically inverted due to
an effect called adiabatic rapid passage [14], [16], [17]. The
cyclic inversion is synchronous with the cantilever motion
and affects the cantilever dynamics by slightly shifting the
cantilever resonant frequency. The frequency shift depends on
the angle θ of the spin with respect to a vector called the
“effective field in the rotating frame”. See [15], [16] for further
details. The frequency shift can be written as

∆ω = ∆ωmax cos θ, (1)

where ∆ωmax = 2ω0Gµ/πkxpk [15]. Here ω0 is the unper-
turbed cantilever frequency, G is the gradient of the magnetic
field from the tip as measured at the spin location, µ is
the magnetic moment of the spin, k is the cantilever spring
constant and xpk is the peak amplitude of the cantilever
vibration. The factor cos θ represents the normalized projection
of the spin in the direction of the effective field.

There are several impediments to single spin detection.
Firstly, because the force from a single spin is so tiny (a
few attonewtons), the maximum cantilever frequency shift
is only about one part per million for typical experimental
parameters. This small frequency shift must be detected in
the presence of the cantilever phase (or frequency) noise
that originates from cantilever thermal vibrations and sample-
induced force fluctuations. The resulting low SNR necessitates
long integration times for signal detection. Secondly, the
detection is complicated by environmental disturbance to the
spin (i.e., relaxation effects) that can randomly flip the spin
orientation and reverse the signal polarity during the signal
integration time. A low operating temperature, on the order of
1K, can help reduce both the cantilever thermal excitations and
the random spin flip rate. Nevertheless, the signal processing
methodology must take these effects into account.

We consider two models for the spin behaviour in the pres-
ence of environmental disturbances. In a quantum mechanical
measurement model, the spin is always found to be either
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aligned or anti-aligned with the effective field, so that cos θ =
±1. Thus the frequency shift signal has only two levels:
∆ω = ±∆ωmax, and the time sequence of the frequency
shift is a random telegraph signal with a transition rate that
depends on the spin relaxation rate. In a classical measurement
model (which we consider for the sake of completeness), cos θ
can take arbitrary values between +1 and -1. As a result of
environmental disturbance, ∆ω will be uniformly distributed
between −∆ωmax and +∆ωmax. For this case, a bounded
random walk model is appropriate. Recent results strongly
favour the random telegraph model [18]. Other publications
of interest include [19], [20].

III. MRFM SIGNAL MODELS

A. Model 1: Discrete-time Random Telegraph model
In the quantum measurement model, the frequency shift

is characterized by random transitions between two discrete
levels. The transition times are taken to be Poisson dis-
tributed [18]. Denote the DT random telegraph signal by
ζi, where ti = iTs are the sampling times, and Ts is the
sampling time interval. In this paper, a Markovian process
with a finite number of states will have a state space denoted
by Ψ = {ψ1, . . . , ψd}, where d is the number of states. Let the
state space of the DT random telegraph be Ψrt; it has d = 2
states and we shall take ψ1 = −A, ψ2 = A, where A is the
amplitude of the random telegraph (A corresponds to ∆ωmax

for the case of a MRFM signal). As an initial condition, ζ0 is
equally likely to be either ±A. Then, a probability transition
matrix Prt can be associated with ζi such that the (j, k)-th
value of Prt equals P (ζi = ψk|ζi−1 = ψj) for 1 ≤ j, k ≤ 2
and i ≥ 1. Assume that Prt has the form:

Prt =

(
q 1 − q

1 − p p

)
, (2)

where 0 < p, q < 1. If p = q, we say that the transition
probabilities are symmetric, whereas if p 6= q, we shall
say that they are asymmetric. Define the signal vector ζ =
[ζ0, . . . , ζN−1]

T , the noise vector w = [w0, . . . , wN−1]
T ,

and the observation vector y = [y0, . . . , yN−1]
T , where the

superscript (·)T denotes the transpose operator, and N is the
number of observations. The wi’s are modelled as independent
and identically distributed (i.i.d.) Gaussian random variables
(r.v.s) with zero mean and variance σ2. The detection problem
is then to decide between:

H0 (spin absent) : y = w

H1 (spin present) : y = ζ + w (3)

Before proceeding further, let us define the SNR of a finite
state DT Markov process ζi. Let fi be the density of y induced
under hypothesis Hi for i = 0, 1. Similarly, let Ei[·] denote the
expectation under hypothesis Hi for i = 0, 1. We shall use [21,
(3)], which is motivated by the error exponent of the optimum
detector in a binary hypothesis test, with α = 1/2. The
result [21, (3)] assumes that f0 and f1 are Gaussian distributed.
While f0 in this paper does have a Gaussian distribution,
the same is not true for density f1. Nevertheless, we shall
approximate f1 with a Gaussian density. Let pss ∈ R

d denote

the vector of steady-state probabilities of the random process
ζi, i.e. it satisfies pTss = pTssP. For a vector x ∈ R

d, diag(x)
is defined to be the d-by-d matrix with x along its main
diagonal. Another approximation that we shall make is that the
covariance matrix of y under hypothesis H1 is approximately
σ2

1I, where σ2
1 = σ2 + pTssD

2
ζ1, and Dζ , diag(ψ1, . . . , ψd).

Lastly, we shall make the approximation that E1[ζi] ≈ δζ ,
pTssDζ1 for 0 ≤ i < N . This is reasonable if N is large.
See [22] for more details. Then, the SNR can be expressed as

SNR = N

{
−1

2
log

2σσ1

σ2 + σ2
1

+
1

4(σ2 + σ2
1)

(δζ)2
}

(4)

The SNR in dB is defined in the usual way as SNRdB ,
10 log10 SNR.

The paper [5] uses another definition of SNR. Let ζ̄i ,
ζi − E1[ζi], i ≥ 0 be the mean-corrected version of ζi. The
-3dB bandwidth of the random process ζ̄i is

W = arccos

(
4r − 1 − r2

2r

)
(5)

where r , p+ q− 1. Note that |r| < 1. In the symmetric case
when p = q, and p ≈ 1, (5) is approximately 2π(1 − p). The
-3dB bandwidth is then proportional to the mean number of
transitions per second, which is (1− p)/Ts. The definition of
SNR used in [5] is

SNR′ =
Power of random process ζ̄i in [−W,W ]

Power of noise in [−W,W ]
(6)

Under definition (6), the SNR in the single electron spin
experiment was reported to be -6.7 dB [5]. In this paper, we
shall use the SNR definition of (4). The condition of low SNR
for the DT random telegraph will be taken to mean |A/σ| � 1.

Examples of noiseless and noisy random telegraph signals
are given in Fig. 2.

−5

0

5
x 10−3

(a)

−5

0

5
x 10−3

(b)

−5

0

5
x 10−3

(c)

0 50 100 150 200 250 300 350 400 450 500
−5

0

5
x 10−3

time index

(d)

Fig. 2. (a) Noiseless random telegraph signal with symmetric transition
probabilities p = q = 0.98. (b) Noisy version of (a) at SNR = 7.09 dB. (c)
Noiseless random telegraph signal with asymmetric transition probabilities
p = 0.98, q = 0.6. (d) Noisy version of (c) at SNR = 14.1 dB.
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B. Model 2: Discrete-time Random Walk model

In the classical spin detection model, the frequency shift
signal is well approximated by a one dimensional random walk
confined to the interval I = [−A,A], where A = ∆ωmax for
the case of a MRFM signal. We discretize I into (2M + 1)
states using a step size of s, where M ∈ N and s > 0 and
define ζi to be the random walk restricted to the discretized
I; we shall refer to this model as the DT random walk model.
The state space Ψrw of the DT random walk will then have
d = 2M + 1 states, where ψj = (j − M − 1)s for j =
1, . . . , (2M + 1). Associate with ζi the probability transition
matrix Prw, so that, as before, the (j, k)-th element of Prw is
P (ζi = ψk|ζi−1 = ψj) for 1 ≤ j, k ≤ (2M + 1) and i ≥ 1.
Prw is defined such that, at each time step, ζi changes by either
±s. This implies that Prw is a tridiagonal matrix. We assume
reflecting boundary conditions, and ζ0 is equally likely to be
either ±s. The initial condition on ζ0 was arbitrarily chosen.
The regime of interest that we will focus on is large N , and
so the effect of the initial condition will not be significant.

The detection problem is now to test (3) when ζ is modelled
by a random walk. Note that the DT random walk model
can almost be regarded as a multi-state generalization of the
DT random telegraph model. There are, however, important
differences. The DT random walk process cannot remain in
the same state for two consecutive time instances. In contrast,
it is possible for the DT random telegraph process to do
so. Additionally, the DT random walk process has reflecting
boundary conditions. The DT random telegraph process does
not have this. In the limit as s → 0,M → ∞, the random
walk converges to Brownian motion over the interval I [23].

Analogous to the DT random telegraph, the condition of
low SNR for the DT random walk will be taken to mean
|ψi/σ| � 1 for i = 1, . . . , d. Examples of noiseless and noisy
random walk signals are given in Figs. 3 and 4, where, at each
state, a change of ±s is equally likely.
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Fig. 3. (a) Noiseless random walk signal with 5 levels. (b) Noisy version of
(a) at SNR = -7.33 dB.
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Fig. 4. (a) Noiseless random walk signal with 21 levels. (b) Noisy version
of (a) at SNR = -8.23 dB.

IV. DETECTION STRATEGIES

The detectors considered here can be placed into three
categories: versions of existing detectors that are currently
in use for MRFM; LRTs; and approximations to the LRT.
The LRT is a most powerful test that satisfies the Neyman-
Pearson criterion: it maximizes the probability of detection
(PD) subject to a constraint on the probability of false alarm
(PF ) [24], which is set by the user. Consequently, it can be
used as a benchmark with which to compare the other detec-
tors. When the initial state value, the random transition times,
and all subsequent state values are known, the optimal LRT is
the matched filter, called the omniscient matched filter (MF)
in this paper. Although unimplementable, the MF detector
provides an absolute upper bound when comparing the various
detectors’ Receiver Operating Characteristic (ROC) curves.

A. Amplitude, energy, filtered energy detectors
The DT amplitude detector is

∣∣∣∣∣
1

N

N−1∑

i=0

yi

∣∣∣∣∣

H1

≷
H0

η (7)

where η is set to satisfy the constraint on PF . This is the
optimal test under the assumption that yi is the sum of an
unknown constant and AWGN. This assumption would be
true if there were no random spin flips. However, as the
number of random transitions in yi increases, the performance
of the amplitude detector degrades. An intuitive explanation
can be obtained by considering the detection of the DT random
telegraph process and omitting the absolute value bars in the
amplitude detector. Under H1,

∑
i yi =

∑
i ζi +

∑
i wi. If

ζi = A for i = 0, . . . , N − 1, E1[
∑
i yi] = NA. In contrast,

E0[
∑
i yi] = 0. However, if ζi is equally likely to be ±A,

then E1[
∑
i yi] = 0, which is the same value as E0[

∑
i yi]. In

this case, it would be harder to distinguish between the two
hypotheses, as the test statistic has the same expected value
under both hypotheses.
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An alternative test statistic is the DT signal energy, i.e.
the sum of the squares of the yi instead of the magnitude
of the sum in (7). As the signal and noise are assumed to
be independent, under hypothesis H1, one would expect y to
have a higher energy on average than under hypothesis H0.
This can be reliably detected under a sufficiently high SNR.
A natural improvement to the energy detector is to reject out-
of-band noise by prefiltering y over the signal passband. If the
signal ζi is baseband, which is the case for the DT random
telegraph and random walk process, a lowpass filter (LPF) is
appropriate. In particular, one might use a simple first-order,
single-pole filter given by

HLP(z) =
1 − αLP

2

1 + z−1

1 − αLPz−1
(8)

where we require |αLP| < 1 for stability [25]. The time
constant αLP dictates the bandwidth of the LPF. If ωc is the
desired -3dB bandwidth of the filter, one should set

αLP =
1 − sinωc

cosωc
(9)

The -3dB bandwidth used depends on the bandwidth of the
random process ζi. For example, the -3dB bandwidth of the
DT random telegraph is given by (5). Suppose we have
symmetric transition probabilities. The CT random telegraph
model is typically characterized by the rate parameter λ, which
corresponds to the mean number of transitions per second. One
can equate the mean number of transitions per second in both
DT and CT models to obtain

λ =
1 − p

Ts
(10)

Since p > 0, we require Ts < λ−1 in order to use (10). In
practice, p (or equivalently λ) is only approximately known to
the experimenter. As a result, a bank of LPFs with different
αLP’s are used to perform detection [5].

Let “∗” be the convolution operator, so that s = y ∗ h is
defined to be si ,

∑
k ykhi−k. The energy and filtered energy

detector can be expressed as
N−1∑

i=0

(y ∗ h)2i
H1

≷
H0

η (11)

where (y∗h)i is taken to be i-th value of y∗h. For the energy
detector, h is taken to be the unit impulse function δ[i], while
for the filtered energy detector, h = hLP, the impulse response
of HLP(z) in (8).

Note that the computational complexity for the amplitude,
filtered energy, and energy detectors is O(N).

B. Recursive equations for the optimal LRT detector of a
general finite state DT Markov signal in AWGN

In this section, we shall consider the detection of a general
finite state DT Markov process in AWGN and derive the LRT.
The formulas that provide an initial starting point are given
in [8]. We shall use the notation in [8]: while it is slightly
different, the differences are superficial.

The hypothesis test that we consider is (3). Let the state
space of ζi be denoted by Ψ = {ψ1, . . . , ψd}, where there are

d possible states. Let P
(i), i ≥ 1 be the probability transition

matrix associated with the process ζi at the i-th time step, so
that P

(i)
jk = P (Xi = ψk|Xi−1 = ψj). The noise is denoted

by wi, and are independent Gaussian r.v.s with mean zero and
variance Ri ∈ R, i = 0, . . . , N − 1.

Let yi , [y0, . . . , yi]
T for i ≥ 0. We shall define p

i
, ri ∈

R
d, i ≥ 0 and q

i
∈ R

d, i ≥ 1 as

p
i
, [P (ζi = ψ1), . . . , P (ζi = ψd)]

T

ri , [P (ζi = ψ1|yi), . . . , P (ζi = ψd|yi)]T

q
i
, [P (ζi = ψ1|yi−1), . . . , P (ζi = ψd|yi−1)]T (12)

Define Ω
(i) ∈ R

d×d, i ≥ 1 as

Ω
(i)
jk ,

{
f1(yi|ζi=ψk,y

i−1)
f1(yi|yi−1) j = k

0 otherwise
(13)

Proposition 1: pT
i

= pT
i−1

P
(i), i ≥ 1

Examine the j-th element of p
i
:

P (ζi = ψj) =

d∑

n=1

P (ζi = ψj |ζi−1 = ψn)P (ζi−1 = ψn)

= pT
i−1

(
j-th column of P

(i)
)

�

Proposition 2: qT
i

= rTi−1P
(i), i ≥ 1

Examine the j-th element of q
i
. By the Markov assumption,

P (ζi = ψj |yi−1) =

d∑

n=1

P (ζi = ψj |ζi−1 = ψn, y
i−1)·

P (ζi−1 = ψn|yi−1)

= rTi−1




P (ζi = ψj |ζi−1 = ψ1)
...

P (ζi = ψj |ζi−1 = ψd)




= rTi−1

(
j-th column of P

(i)
)

�

Proposition 3: rTi = qT
i
Ω

(i), i ≥ 0
Using [8, (39)]:

P (ζi = ψj |yi) =
f1(yi|ζi = ψj , y

i−1)P (ζi = ψj |yi−1)

f1(yi|yi−1)
�

Propositions 1 and 3 are derived in [8]. From Propositions 2
and 3,

qT
i

= qT
i−1

Ω
(i−1)

P
(i) (14)

This result is incorrectly given in [8, (38)].
Define ϕ(x;µ, σ2) , exp[−(x − µ)2/2σ2]/

√
2πσ, i.e., a

Gaussian r.v. with mean µ and variance σ2. Let πk, k =
1, . . . , d denote the initial probability density of ζ0, and π ,
[π1, . . . , πd]

T . Define

ni = [ϕ(yi;ψ1, Ri), . . . , ϕ(yi;ψd, Ri)]
T (15)

Since Ω
(i) = diag(ni)/(q

T

i
ni), (14) can be written as

qT
i

= qT
i−1

diag(ni−1)

qT
i−1

ni−1

P
(i) (16)
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If we define q
0

, π, the log LRT for (3) is given by

log Λ(y) =
N−1∑

i=0

log
qT
i
ni

ϕ(yi; 0, Ri)
(17)

Equations (16) and (17) are a recursive way to compute the
LRT for a general finite state DT Markov signal in AWGN.
See [22] for more details; note that this result does not appear
in [8]. We see that the running time of (16) and (17) is of
order O(Nd2) for general matrices P

(i). If each P
(i) were

tridiagonal, for example, the running time would be O(Nd).
The detection test would then be

Λ(y)
H1

≷
H0

η. (18)

One can also take the log of both sides of (18). As the log
function is strictly monotone increasing, the threshold would
be altered, but the performance of the detector would be
unaffected. The threshold η can be determined via simulation,
if all of the parameters of the signal and noise models
were known. The ROC curve could be generated, and the
value of η that corresponded to the desired PF could be
obtained. Alternatively, the ROC curve could be generated
via experimentation, and the threshold η selected in a similar
fashion.

Define the transition likelihood ratio l(yi|yi−1), i ≥ 1 as
l(yi|yi−1) , f1(yi|yi−1)/f0(yi|yi−1). Note that

log Λ(y) =

N−1∑

i=1

log l(yi|yi−1) + log

(
f1(y0)

f0(y0)

)
(19)

In [9], log l(yi|yi−1), i ≥ 1 is given when P (yi|yi−1, ζi)
belongs to a class of exponential functions of the form
K(ζi) exp[ζig(y

i) + B(yi)] for functions K(·), g(·), B(·)
which give rise to a valid density. The expression for
log l(yi|yi−1), involves the conditional mean estimate

ζ̂i(y
i) =

∫

Ψ

ζidP (ζi|yi) (20)

and the function

G(yi) =

∫
ζ̂i(ξ

i)dξi

∣∣∣∣
ξi=yi

(21)

For the hypothesis testing problem considered here

ζ̂i(y
i) = rTi Dζ1 (22)

Recall that Dζ = diag(ψ1, . . . , ψd). It is possible to apply
Propositions 2 and 3 to obtain a recursive equation for ri and
then solve for a closed-form expression. It would be difficult,
however, to evaluate (21).

C. Approximation of the LRT under low SNR
Let us consider the log LRT under low SNR. Each transition

likelihood ratio can be simplified as follows:

l(yi|yi−1) =

d∑

n=1

P (ζi = ψn|yi−1)·

exp

[
− 1

2Ri
(−2yiψn + ψ2

n)

]

≈
d∑

n=1

P (ζi = ψn|yi−1)

(
1 +

1

Ri
yiψn − 1

2Ri
ψ2
n

)

= 1 +
1

Ri
yiE1[ζi|yi−1] − 1

2Ri
E1[ζ

2
i |yi−1] (23)

where the approximation eδ ≈ 1 + δ for small δ was used.
Next, we shall use the approximation log(1+δ) ≈ δ for small
δ. This is justified if the SNR is low so that |ψn/

√
Ri| � 1

for all n = 1, . . . , d. So

log l(yi|yi−1) ≈ 1

Ri
yiE1[ζi|yi−1] − 1

2Ri
E1[ζ

2
i |yi−1] (24)

As well, the same approximation can be applied to
log[f1(y0)/f0(y0)], so that

log

(
f1(y0)

f0(y0)

)
≈ 1

R0
y0E1[ζ0] −

1

2R0
E1[ζ

2
0 ]. (25)

Define the conditional mean (also MMSE) estimator of ζi
under H1 as follows: ζ̂i = E1[ζi|yi−1] for i ≥ 1 and ζ̂0 =

E1[ζ0]. Use a similar notation for ζ2
i , so that ζ̂2

0 = E1[ζ
2
0 ] and

ζ̂2
i = E1[ζ

2
i |yi−1] for i ≥ 1. Using (19), (24), and (25), the

log LRT can be approximately written under low SNR as

log Λ(y) ≈
N−1∑

i=0

1

Ri
yiζ̂i −

1

2

N−1∑

i=0

1

Ri
ζ̂2
i (26)

The right hand side of (26) is similar to the matched filter
statistic, but with the MMSE estimates of ζi and ζ2

i used
instead of the known values. Note that the conditional mean
estimator of ζi used in (26) is different from that defined in
(20). Schwartz’s version in (20) includes the observation yi,
whereas ours does not.

In [8], it is shown that in detecting a finite-state DT Markov
signal, the LRT is in general not expressible as the known form
LRT with an estimator of ζi used, i.e., the RHS of (26) but
with (E1[ζi|yi−1])2 used instead of E1[ζ

2
i |yi−1] for i ≥ 1.

D. Comparison to the CT analog
Consider the CT analog of the hypothesis test problem (3)

when the noise variances Ri are all equal. One has to decide
between the following two hypotheses:

H0 : ẏ(t) = ẇ(t), t ∈ [0, T ]

H1 : ẏ(t) = ζ(t) + ẇ(t), t ∈ [0, T ]. (27)

Define I , [0, T ]. Here, ζ(t) is a random process (not
necessarily finite state) such that

∫
I
E[ζ2(t)]dt <∞ and ẇ(t)

is AWGN with

E[ẇ(t)] = 0, E[ẇ(t)ẇ(s)] = σ2δ(t− s) (28)



SUBMISSION TO IEEE TRANSACTIONS ON SIGNAL PROCESSING (EDICS CATEGORIES: 1-MRFM, 2-DETC, 2-NDIR) 7

The LRT is given by [10], [11], [12]:

exp

(
1

σ2

∫

I

ζ̂1(t)y(t)dt−
1

2σ2

∫

I

ζ̂2
1 (t)dt

)
(29)

where ζ̂1(t) = E1[ζ(t)|{y(ξ), ξ < t}] is the conditional mean
estimate under hypothesis H1 given the previous observations,
and the first integral in (29) is an Itô stochastic integral.

There are three noteworthy differences between (26) and
(29). Firstly, result (26) approximately holds only under low
SNR, whereas (29) is exact under all SNR conditions. Sec-
ondly, ζ(t) is not constrained to be a Markov process, whereas
its DT counterpart ζi is Markovian. Lastly, in the second term
of (26), the expected value of ζ2

i conditioned on the past
observations is used. On the other hand, the square of the
expected value of ζ(t) conditioned on the past observations is
used in the CT version. In general, for i ≥ 1, E1[ζ

2
i |yi−1] 6=

(E1[ζi|yi−1])2. Indeed, for a r.v. X ,

E[X2] = (E[X])2 iff var(X) = 0, (30)

By the Chebyshev inequality, for δ > 0, P [|X − E[X]| ≥
δ] ≤ var(X)/δ2 = 0. So (30) holds iff X is some value
c ∈ R w.p. 1. As a result E1[ζ

2
i |yi−1] = (E1[ζi|yi−1])2 iff ζi

is a function of yi−1 w.p. 1.

E. Application to the detection of the DT random telegraph
process

Under the regime of low SNR, long observation time (N �
1), and r = p+q−1 ≈ 1 (the probability of transition between
consecutive samples is small), the second-order expansion of
log Λrt(y) is approximately equal to the hybrid detector with
the test statistic

∑

i

(y ∗ hLP)
2
i +Ka

∑

i

yi +Ke

∑

i

y2
i , (31)

where the constants Ka = Ka(p, q, A, σ) and Ke = Ke(p, q)
are given in (63) of the appendix, and αLP = p + q − 1.
Therefore, in the aforementioned regime, one expects the
hybrid detector to have performance similar to the optimal
LRT. When p = q, the second-order expansion of the LRT
is approximately equal to the filtered energy detector, which
is given by (11) with h = hLP and αLP = 2p − 1. See the
appendix for more details.

The previous result did not make use of the approximation
under low SNR obtained in Subsection IV-C. Equation (26),
however, provides a general approach to deriving an approx-
imation to the LRT for a finite state DT Markov signal in
AWGN. We shall illustrate by deriving an approximation to the
LRT for the DT random telegraph using this general approach.

Let us specialize the result of Subsection IV-C to the DT
random telegraph processes, so that Ri = σ2, i = 0, . . . , N−1
and P

(i) = Prt, i = 1, . . . , N − 1. Since E1[ζ
2
0 ] = A2 and

E1[ζ
2
i |yi−1] = A2 for i ≥ 1, the second term of (26) will be

a constant and can be omitted. Then,

log Λrt(y) ≈
1

σ2

N−1∑

i=0

yiζ̂i (32)

under low SNR conditions. We see that the log LRT for
the random telegraph is an estimator-correlator detector. The
estimator-correlator structure is known to be optimal for
detecting Gaussian signals in AWGN [9].

Now, the conditional mean estimator ζ̂i = E1[ζi|yi−1], i ≥
1 is a function of y0, . . . , yi−1. Its exact form will be dic-
tated by the conditional probability mass function (p.m.f.)
P (ζi|yi−1), and will be nonlinear in general. Suppose that
we would like to find the estimator of ζi with smallest MSE
that lies in the linear span of {1, y0, . . . , yi−1}. Let ζ̂Ai =
c+

∑i−1
n=0 γnyn be this estimator. It is also known as the best

affine estimator of ζi given y0, . . . , yi−1. One can apply the
Projection Theorem [26] to obtain the well-known result that

ζ̂Ai = E[ζi] + cov1(y
i−1, ζi)Γ

−1
i−1(y

i−1 − E1[y
i−1]) (33)

where cov1(a, b) = E1[ab
T ] − E1[a]E1[b]

T is the covariance
of the random vectors a, b assuming hypothesis H1 and
Γi−1 , cov1(y

i−1, yi−1) is the covariance matrix of yi−1

under hypothesis H1. The MSE achieved with ζ̂Ai cannot be
smaller than the MSE achieved with ζ̂i = E1[ζi|yi−1], as the
conditional mean achieves the smallest MSE out of all possible
estimators.

For 0 ≤ n < i,

cov1(yn, ζi) = E[(ζn + wn)ζi] − E[ζn + wn]E[ζi]

= cov(ζn, ζi) (34)

since wn is independent of ζi. As well, E1[y
i−1] = E[ζi−1 +

wi−1] = E[ζi−1], and

Γi−1 = cov1(y
i−1, yi−1) = σ2

I + cov(ζi−1, ζi−1) (35)

Substituting these into (33) results in

ζ̂Ai = E[ζi] + cov(ζi−1, ζi)[σ
2
I + cov(ζi−1, ζi−1)]−1·

(yi−1 − E[ζi−1]) (36)

It remains to compute the various quantities in (36). Recall-
ing that r = p+ q− 1 and the definition of Cm in (56) of the
appendix,

E[ζi] = ACm(1 − ri) (37)

cov(ζi, ζj) = 4A2 (1 − p)(1 − q)

(1 − r)2
r|i−j|+

A2C2
m(2rmax(i,j) − ri+j) (38)

Using (37) and (38) in (36), and plugging the resulting
expression of ζ̂Ai into (32), one obtains

log Λrt(y) ≈
1

σ2

N−1∑

i=0

yiζ̂
A
i (39)

Unfortunately, (39) is not in a form that can be compared
to the approximation derived previously without the benefit of
(26). In order to do this, we have to explicitly evaluate (36).
As the inversion of a matrix without any special structure is
required, this will be difficult. Make the approximation that

cov(ζi, ζj) ≈ 4A2 (1 − p)(1 − q)

(1 − r)2
r|i−j| (40)
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This will be a good approximation when max(i, j) is large.
Moreover, since we are assuming a low SNR condition,
|A/σ| � 1, so

σ2
I + cov(ζi−1, ζi−1) ≈ σ2

I (41)

With (40) and (41),

ζ̂Ai ≈ ACm(1 − ri) + Cf (r
i, . . . , r1) · (yi−1 − E[ζi−1])

(42)

≈ ACm[1 − ri − Cf

i−1∑

n=0

(ri−n − ri)] + Cf

i−1∑

n=0

ri−nyn

(43)

≈ ACm

[
1 − ri − Cf

(
r(1 − ri+1)

1 − r
− iri

)]
+

Cf

i−1∑

n=0

ri−nyn (44)

where Cf , 4(1 − p)(1 − q)A2/[σ2(1 − r)2].
As i → ∞, iri → 0 as |r| < 1, and (1 − ri+1)/(1 − r) →

1/(1−r). Apply these to (44); then using the subsequent result
in (39),

log Λrt(y) ≈ L1 + L2 (45)

where L1 =
A

σ2
Cm

N−1∑

i=0

(
1 − ri − Cf

r

1 − r

)
yi (46)

L2 =
1

σ2
Cf

N−1∑

i=0

i−1∑

n=0

ri−nyiyn (47)

The expressions (45)-(47) are similar to those in (52)-(54).

F. General methodology for obtaining an approximation to the
LRT of a finite state DT Markov signal in AWGN under low
SNR

In the previous subsection, the affine estimator of ζi, i ≥ 1
with the smallest MSE was used in place of the conditional
mean E1[ζi|yi−1], i ≥ 1 in order to obtain an approximation
to the LRT of the DT random telegraph. This was obtained by
finding the estimator of ζi with smallest MSE that lied in the
linear span of {1, y0, . . . , yi−1}. The best affine estimator of
ζi is necessarily suboptimal, as the conditional mean achieves
the lowest MSE out of all estimators.

For the general case when the second term of (26) is present,
one could also find a suboptimal estimator of ζ2

i , i ≥ 1 in terms
of the previous observations y0, . . . , yi−1. Following the idea
with regard to ζ̂i, a suboptimal estimator can be obtained by
finding the estimator of ζ2

i with smallest MSE that lies in the
linear span of {1, y2

0 , . . . , y
2
i−1}.

The suboptimal estimators of ζi and ζ2
i can then be used in

(26).

V. SIMULATION RESULTS

The objective in this section is to compare the detection
methods discussed in the previous section. The class of LRT
detectors is optimal for their respective signal models, and

provides a good comparison benchmark. Comparison of the
various detectors is done using: (1) ROC curves, each of
which is a plot of PD vs. PF , and (2) power curves, each
of which is a plot of PD vs. SNR at a fixed PF . Recall that
PD is the probability of detection and PF is the probability
of false alarm. To generate each ROC curve, 20 simulations
were generated. Then, the average and the error bars of one
standard deviation were plotted. In a similar fashion, the data
that is plotted in each power curve is the average over the 20
simulations at each SNR value, along with error bars of one
standard deviation.

Some of the parameters used in the simulation of the DT
random telegraph and random walk models are as follows: k =
10−3 N m−1, ω0 = 2π × 104 rad s−1, G = 2 × 106 T m−1.
The sampling period was Ts = 1 ms, and signal durations
of T = 60 s and T = 150 s were used. The amplitude
of the rf field was B1 = 0.2 mT. The performance of the
detectors varies as a function of T ; in general, a larger T
results in better performance. Values of T used in iOSCAR
MRFM experiments are on the order of tens of hours [5].
Nevertheless, the comparative results obtained from using the
two values of T above are representative of larger values.
Indeed, our approximations to the optimal detectors improve
with increased T .

A. Discrete-time random telegraph model
First, consider the DT random telegraph. Fig. 5 depicts the

simulated ROC curves at SNR = -34.3 dB, λ = 0.5 s−1, and
with symmetric transition probabilities (p = q). With Ts =
1 ms, this results in p = q = 0.9995. We examine the matched
filter, DT random telegraph LRT (RT-LRT), filtered energy,
hybrid (given by (31)), amplitude, and unfiltered energy
detectors. The RT-LRT, filtered energy, and hybrid detector
curves are virtually identical, which is consistent with our
analysis. The unfiltered energy and amplitude detectors have
performance that is poorer than the RT-LRT, as it should be
since the RT-LRT is the optimal detector. The unfiltered energy
detector has the worst performance out of the five detector
methods considered. Lastly, the omniscient MF detector has
the best performance.

A power curve was generated over a range of SNRs under
the same conditions as before with a fixed PF = 0.1; it is
illustrated in Fig. 6. For spin detection, an acceptable range for
PF is on the order of 0.05 to 0.1. The RT-LRT, filtered energy,
and hybrid detector have similar performance from -25 dB to
-55 dB. With this particular value of PF and λ, the RT-LRT,
filtered energy, and hybrid detector perform from 10 dB to
20 dB worse than the MF detector. Although the amplitude
detector has worse performance than the RT-LRT and filtered
energy detector, all three have comparable performance at
-55 dB.

Fig. 7 shows the power curves generated using the bigger
value of T = 150 s. The RT-LRT, filtered energy, and hybrid
detectors have the same performance from -20 dB to -50 dB.
Note that the definition of SNR that we use scales with N =
T/Ts. As a result, a larger T increases the SNR. It is intuitively
pleasing that the same SNR results in the same PD values in
Figs. 6 and 7.
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Fig. 5. Simulated ROC curves (PD vs. PF ) for the DT random telegraph
model with symmetric transition probabilities at SNR = -34.3 dB, T = 60 s,
and λ = 0.5 s−1 for the omniscient matched filter, DT random telegraph LRT
(RT-LRT), filtered energy, hybrid, amplitude, and unfiltered energy detectors.
The RT-LRT is theoretically optimal.
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Fig. 6. Simulated power curves (PD vs. SNR) for the DT random telegraph
model with PF fixed at 0.1 and λ = 0.5 s−1, T = 60 s. The RT-LRT is
theoretically optimal.
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Fig. 7. Simulated power curves for the DT random telegraph model with
PF fixed at 0.1 and λ = 0.5 s−1, T = 150 s. The RT-LRT is theoretically
optimal.

The ROC and power curve simulations were repeated with
different values of λ, and the same relative performance was
observed. In the interest of space, however, they will not
be shown. Note that performance degrades as λTs increases.
From (10), the probability of transition between consecutive
time samples is 1−p = λTs. A higher value of λTs results in a
higher probability of transition, which decreases performance.

In the second set of simulations, we investigate the case in
which the transition probabilities are asymmetric, i.e. p 6= q.
Consider the scenario where p = 0.9998, q = 0.9992, and
all of the other parameters values are unchanged. The ROC
curves for these parameter values are presented in Fig. 8. There
are noticeable differences between the curves of the RT-LRT
and filtered energy detectors. The hybrid detector’s curve is
slightly below that of the LRT, and it is better than that of the
filtered energy detector. In fact, the filtered energy detector has
worse performance than the amplitude detector. An asymmetry
in p, q leads to a non-zero mean signal, which is why the
amplitude detector’s performance improves. Indeed, for the
DT random telegraph model, limi→∞E[ζi] = Ap−q

1−r = 0.6A
for the values of p and q used here. Asymmetric transition
probabilities can arise in some situations, e.g. the feedback-
cooling-of-spins MRFM protocol proposed by Budakian [6].
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Fig. 8. Simulated ROC curves for the DT random telegraph model with
asymmetric transition probabilities (p = 0.9998, q = 0.9992) at SNR =
-6.71 dB, T = 150 s. The RT-LRT is theoretically optimal.

Power curves from SNR = 3.3 dB to -16.7 dB were gener-
ated for the asymmetric case in Fig. 9. We used T = 150 s
for simulations of the asymmetric random telegraph model.
A larger value of T is required when p 6= q for the hybrid
detector to be a good approximation to the optimal LRT. It
is important to recall that the hybrid detector given by (61)
was derived for large N . An estimation of the error between
(61) and the LRT of the DT random telegraph has not been
conducted. It is likely, however, that when p 6= q, (61) is not as
accurate as approximation (57). The hybrid detector has better
performance than the amplitude and filtered energy detectors.
It has performance that is comparable to the RT-LRT for lower
SNR values.
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Fig. 9. Simulated power curves for the DT random telegraph model with
PF fixed at 0.1, p = 0.9998, q = 0.9992, and T = 150 s. The RT-LRT is
theoretically optimal.

B. Discrete-time random walk model
Recall that for the DT random walk model, Prw is tridi-

agonal. For the simulations, a particular subset of tridiagonal
matrices was studied. Suppose for the moment that M is even.
Recall that the random walk ζi is confined to the interval
[−Ms,Ms]. Define the lower-quartile transition probabilities
as pl,1, pl,2 and the upper-quartile transition probabilities as
pu,1, pu,2. Let P

(j,k)
rw be the (j, k)-th element of Prw. Here,

we examine the performance of the detectors assuming the
following reflecting boundary conditions: P

(1,2)
rw = 1,P

(1,i)
rw =

0 for i 6= 2 and P
(2M+1,2M)
rw = 1,P

(2M+1,i)
rw = 0 for i 6= 2M .

The rest of Prw is

P
(j,k)
rw =





pl,1 2 ≤ j < M/2 + 1, k = j − 1
pl,2 2 ≤ j < M/2 + 1, k = j + 1
0.5 M/2 + 1 ≤ j ≤ 3M/2 + 1, k = j ± 1
pu,1 3M/2 + 1 < j ≤ 2M,k = j − 1
pu,2 3M/2 + 1 < j ≤ 2M,k = j + 1

(48)
Let An(p1, p2) be a n× (n+ 2) matrix that looks like:

An(p1, p2) =




p1 0 p2

p1 0 p2

. . . . . . . . .
p1 0 p2




where the unspecified parts of the matrix are taken to be
all zeros. In this section, the following subset of transition
matrices for the DT random walk was studied:

Prw =




0 1
AM

2
−1(pl,1, pl,2)

F

AM

2
−1(pu,1, pu,2)

1 0



,

where F = AM+1(0.5, 0.5). Note that since each row of a
probability transition matrix must sum to 1, one has pl,1 +
pl,2 = 1 and pu,1 + pu,2 = 1.

In the case of M odd, the ranges for the indices j, k would
change in an obvious way. When pl,1 = pu,2 (or equivalently

pl,2 = pu,1), we say that the transition probabilities are
symmetric, and if not, that they are asymmetric. The matched
filter, DT random walk LRT (RW-LRT), RT-LRT, filtered en-
ergy, amplitude, and unfiltered energy detectors are compared.
In order to run the RT-LRT in the case of the symmetric
DT random walk, an average autocorrelation function of the
random walk was empirically generated; then p was selected
(and choosing q = p) so that the autocorrelation function of
the symmetric DT random telegraph matched the empirical
result. From this, the optimal αLP for the LPF of the filtered
energy detector was also obtained.

The ROC curves for two symmetric cases are illustrated
in Figs. 10 and 11. In the former, pl,1 = pl,2 = pu,1 =
pu,2 = 0.5, while in the latter, pl,1 = pu,2 = 0.52 and
pl,2 = pu,1 = 0.48. In both cases, the performance of
the RW-LRT, RT-LRT, and filtered energy detector are all
approximately the same, i.e. the latter two detectors are nearly
optimal. When the transition probabilities of the DT random
walk are asymmetric however, as in the case of Fig. 12, the
DT random walk LRT is noticeably better than the filtered
energy detector.
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Fig. 10. Simulated ROC curves for the DT symmetric random walk pl,1 =

pl,2 = pu,1 = pu,2 = 0.5 at SNR = -44.0 dB, T = 60 s for the matched filter,
RW-LRT, RT-LRT, filtered energy, amplitude, and unfiltered energy detector.
The RW-LRT is theoretically optimal.

VI. CONCLUSION AND DISCUSSION

We have developed and compared optimal and non-optimal
detectors under two single spin MRFM signal models. Recent
experiments using the approximately optimal filtered energy
detector have resulted in the successful detection of a single
electron spin. This is strong evidence that the random telegraph
signal model accurately describes the cantilever-single spin
interaction.

The results of this paper lend strong theoretical and practical
support to the use of the simple filtered energy detector for
the current MRFM single spin research community. It has been
shown that the existing baseband filtered energy detector that
is in current use is approximately optimal in the case of the
symmetric DT random telegraph model under the regime of
low SNR, long observation time, and p close to 1. The last
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Fig. 11. Simulated ROC curves for the DT symmetric random walk pl,1 =

pu,2 = 0.52, pl,2 = pu,1 = 0.48 at SNR = -39.1 dB, T = 60 s. The
RW-LRT is theoretically optimal.
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Fig. 12. Simulated ROC curves for the DT asymmetric random walk pl,1 =

pu,1 = 0.45, pl,2 = pu,2 = 0.55 at SNR = -2.50 dB, T = 60 s. The
RW-LRT is theoretically optimal.

condition can be achieved by sampling at a sufficiently fast
rate as compared to the rate of random transitions. This result
has been extended to the case of the asymmetric DT random
telegraph by using a hybrid filtered energy/amplitude/energy
detector. Simulations were presented showing that the near
optimality of the baseband filtered energy detector extends to
the case of the symmetric DT random walk model. In the
case of the asymmetric DT random walk, the filtered energy
detector does not perform as well as the optimal LRT. We
expect that a hybrid detector along the lines of that formulated
for the DT random telegraph will perform close to the optimal
for the asymmetric DT random walk. Mathematical analysis
of the DT random walk model will be presented in a future
paper.

A new interpretation of the LRT for a finite state DT
Markov signal in AWGN under low SNR conditions was
presented. Specifically, the LRT is approximately the matched
filter statistic with the MMSE predictor signal values used in
place of the known signal values.

The previous result can be used to obtain an approxi-

mation to the LRT for a general finite state DT Markov
signal in AWGN under low SNR conditions. For ease of
computation, we have proposed the use of affine estimators
as suboptimal versions of the conditional mean estimators in
(26). In particular, the suboptimal estimators of ζi and ζ2

i

for i ≥ 1 can be computed as the affine estimators with
lowest MSE that lie in the linear span of {1, y0, . . . , yi−1}
and {1, y2

0 , . . . , y
2
i−1} respectively. We apply this methodology

to compute an approximation to the LRT for the DT random
telegraph process in AWGN. The approximation matches the
result previously obtained using a straightforward analysis.
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APPENDIX

Define qi(u), u ∈ Ψrt to be the element of q
i

that corre-
sponds to the state u. From (16) and (17), one can obtain the
LRT for the DT random telegraph as

Λrt(y) =

N−1∏

i=0

[
qi(A)e

A

σ2
yi + qi(−A)e−

A

σ2
yi

]
(49)

Let f(y0, . . . , yN−1) denote the log LRT function of the DT
random telegraph, i.e. the log of (49). Let g(y0, . . . , yN−1) be
the filtered energy detector function in (11). Let us analyze the
two functions f and g under the regime of low SNR (|A/σ| �
1) and long observation time (N � 1).

We want to obtain the approximate Taylor series expansion
of f about y = 0 and compare that with g. Define:

θi ,
qi(A)e

A

σ2
yi

qi(A)e
A

σ2
yi + qi(−A)e−

A

σ2
yi

for i ≥ 0. A recursive equation for θi can be derived based
on (16). Its approximate solution is

θi ≈ βi +
qA

σ2

i∑

j=0

ξijyj , i ≥ 0

where βi =
1 − q

1 − r
+

(
1

2
− 1 − q

1 − r

)
ri, i ≥ 0

ξij =
2(1 − q)ri−j + (2q − r − 1)ri

1 − r
, 0 ≤ j ≤ i− 1

ξii =
2(1 − q)

1 − r
+
ri(2q − r − 1)

1 − r
= 2βi, i ≥ 0

(50)

and r = p + q − 1. Recall that p, q ∈ (0, 1) implies |r| < 1.
Define si , A

σ2 yi. Then,

f ≈
∑

i

{[
si(2qi(A) − 1) +

1

2
s2i

]

− 1

2

[
si(2qi(A) − 1) +

1

2
s2i

]2
}

(51)

By solving for qi(A) in terms of θi and using (50), one obtains

the approximate Taylor series expansion of f as

f ≈ L1 + L2a + L2b + h.o.t. (52)

with L1 =
A

σ2
Cm

∑

i

(1 − ri)yi (53)

L2a = 2q

(
A

σ2

)2 ∑

i

i−1∑

j=0

[
2(1 − q)

1 − r
ri−j − riCm

]
yiyj

(54)

L2b =

(
A

σ2

)2 ∑

i

{
4r

(
1 − q

1 − r

)2

+ 2
(q − r)(1 − q)

(1 − r)2

− Cm(2q + Cm)ri +
1

2
C2
mr

2i

}
y2
i (55)

Cm =
p− q

2 − p− q
(56)

In (52), “h.o.t.” denotes the higher-order terms; specifically,
terms of degree three of higher. The parameter Cm indicates
the mismatch between the transition probabilities p and q. In
the symmetric case when p = q, this results in Cm = 0,
and one obtains a simpler expression for f . Let fsym be the
function f under symmetric transition probabilities, i.e. p = q.
Then,

fsym ≈ 2p

(
A

σ2

)2 {N−1∑

i=1

i−1∑

j=0

(2p− 1)i−jyiyj

+
N−1∑

i=0

(
1 − 1

4p

)
y2
i

}
(57)

For sufficiently large N , it can be shown that

g ≈ D





N−1∑

i=1

i−1∑

j=0

αi−jLP yiyj +
αLP

1 + αLP

N−1∑

i=0

y2
i



 (58)

where D = (1 − α2
LP)/2αLP is a constant. Note that D plays

no role in the performance of the test statistic. Indeed, the
detection test

g
H1

≷
H0

η

has the same performance as

γg
H1

≷
H0

γη

for a constant γ ∈ R+ not dependent on the observations.
In order to compare the performance of fsym and g, we

consider their normalized versions 1
2p

(
A
σ2

)−2
fsym and 1

D
g.

Denote these statistics by f̃sym and g̃ respectively. Both f̃sym
and g̃ are a weighted sum of two terms: an energy term
of the form

∑
i y

2
i and a second-order term of the form∑

j<i γ
i−jyiyj , where γ = 2p − 1 for f̃sym and γ = αLP

for g̃. If αLP = 2p− 1, then

|f̃sym − g̃| ≈ 1

4p

∑

i

y2
i (59)
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Now, E1[
∑N−1
i=0 y2

i ] − E0[
∑N−1
i=0 y2

i ] = A2N . On the other
hand, for large N ,

E1

[N−1∑

i=1

i−1∑

j=0

αi−jLP yiyj

]
− E0

[N−1∑

i=1

i−1∑

j=0

αi−jLP yiyj

]

≈ GA2N (60)

where G = αLP(2p − 1)/[1 − αLP(2p − 1)]. When αLP =

2p− 1, G = (2p−1)2

1−(2p−1)2 = 1
4(1−p) + 1

4p − 1. For p close to 1,
G � 1

4p , and GA2N � 1
4pA

2N . So to the first moment, the
difference of 1

4p

∑
i y

2
i between f̃sym and g̃ does not represent

a significant difference when p ≈ 1. Under these conditions,
we expect that the performance of the filtered energy detector
and the DT random telegraph LRT to be similar.

It is possible to obtain an approximation to the DT random
telegraph LRT that holds when we make no assumption about
p being equal to q. When p 6= q, we have Cm 6= 0, and there
are terms of the form riCm and r2iC2

m in (53)-(55). Since
|r| < 1, ri → 0 in the limit as i → ∞. So drop these terms
to get:

f ≈ C

{
(p− q)σ2

4q(1 − r)A

∑

i

yi +
∑

i

∑

j<i

ri−jyiyj

+

[
1

2
+

r(1 − q)

2q(1 − r)

] ∑

i

y2
i

}
(61)

where C = 4q 1−q
1−r

(
A
σ2

)2 is a constant. Define Ca , (p−q)σ2

4q(1−r)A

and Ce , r(1−q)
2q(1−r) . In order to equate the coefficients of the

cross-terms yiyj between (61) and (58), we require αLP = r =
p+q−1. In g, the ratio of the energy terms to the cross-terms
is αLP/(1 + αLP). For r = αLP ≈ 1 ⇒ αLP/(1 + αLP) ≈ 1/2.
The idea is to add the energy and amplitude statistics to g so
that all three statistics are in the same ratio as in (61). Let ghyb
be the “extended” version of g, which we shall call the hybrid
filtered energy/amplitude/energy detector:

ghyb , g +
1 − α2

LP
2αLP

[
Ca

∑

i

yi + Ce
∑

i

y2
i

]

= g +
1 − α2

LP
2αLP

Ca
∑

i

yi +
1 − α2

LP
2αLP

Ce
∑

i

y2
i (62)

We expect ghyb to have performance that is similar to f
under the conditions of large N , low SNR, and r ≈ 1. The
constants in (62) can be further simplified. Let Ka , Ca(1−
α2

LP)/2αLP and Kb , Ce(1−α2
LP)/2αLP. As αLP = p+ q−1,

one obtains after some algebra

Ka =
p2 − q2

8q(p+ q − 1)

(
A

σ2

)−1

and Ke =
(p+ q)(1 − q)

4q
(63)


