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Abstract

This paper addresses a target detection problem in radar imaging for which the covariance matrix of

unknown Gaussian clutter has block diagonal structure. This block diagonal structure is the consequence

of a target lying along a boundary between two statistically independent clutter regions. Here we de-

sign adaptive detection algorithms using both the generalized likelihood ratio (GLR) and the invariance

principles. There has been considerable recent interest in applying invariant hypothesis testing as an

alternative to the GLR test. This interest has been motivated by several attractive properties of invariant

tests including: exact robustness to variation of nuisance parameters and possible �nite-sample min-max

optimality. However, in our deep-hide target detection problem, there are regimes for which neither the

GLR nor the invariant tests uniformly outperforms the other. We will discuss the relative advantages of

GLR and invariance procedures in the context of this radar imaging and target detection application.
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I. Introduction

In this paper adaptive detection algorithms are developed for imaging radar targets in struc-

tured clutter by exploiting both the generalized likelihood ratio (GLR) principle and the invari-

ance principle. In automatic target recognition, it is important to be able to reliably detect or

classify a target in a manner which is robust to target and clutter variability yet maintains the

highest possible discrimination capability. The GLR and invariance principles are worthwhile ap-

proaches since they often yield good constant false alarm rate (CFAR) tests. The GLR principle

implements the intuitive estimate-and-plug principle: replacing all unknowns in the likelihood

ratio (LR) test by their maximum likelihood estimates (MLEs). In contrast, application of the

invariance principle seeks to project away the clutter parameters by compressing the observa-

tions down to a lower-dimensional statistic while retaining the maximal amount of information

for discrimination of the target [1], [2], [3], [4]. This statistic is called the maximal invariant and,

if one is lucky, the form of the most powerful LR test based on the maximal invariant does not

depend on the nuisance parameters, resulting in a uniformly most powerful (UMP) invariant test

[5], [6]. Despite the diÆculty in �nding maximal invariants and their statistical distributions,

the payo� for the extra e�ort in signal processing applications can be high [5], [6], [7]. We will

demonstrate such a payo� for a radar detection problem.

A common assumption in homogeneous but uncertain clutter scenarios is that the target is

of known form but unknown amplitude in Gaussian noise whose covariance matrix is totally

unknown or unstructured. This assumption induces parameter uncertainty for which the gen-

eral multivariate analysis of variance (GMANOVA) model applies and optimal and suboptimal

detection algorithms can be easily derived using the GLR principle [8], [9], [10], [11]. Di�erent

adaptive detectors were derived in [12] and [13] for the case of optical images. However, when

some structure on the covariance matrix is known a priori, improvements over this GLR test are

possible, e.g. [14]. Bose and Steinhardt [7] proposed an invariant detector which outperforms

the GLR [9] for unstructured covariance when the noise covariance matrix is assumed to have

a priori known block diagonal structure. In [15], the diÆcult deep-hide scenario was considered

where the target parks along a known boundary separating two adjacent clutter regions, e.g. an

agricultural �eld and a forest canopy. It was shown there that under the reasonable assumption

that the two clutter types are statistically independent, the induced block diagonal covariance

structure can be used to derive an invariant test with performance advantage similar to Bose



KIM AND HERO: COMPARISON OF GLR AND INVARIANT DETECTORS 3

and Steinhardt's test.

In this paper we derive the form of the GLR for block structured covariance. Then the invariant

approach considered in [7] and [15] is developed in the context of imaging radar for deep-hide

targets and compared to the GLR. In this context the spatial component has clutter covariance

matrix R which decomposes into a block diagonal matrix under an independence assumption

between the two clutter regions. Several cases, denoted in decreasing order of uncertainty as

Cases 1, 2 and 3, of block diagonal covariance matrices are examined:

R =

2
4 RA O

O RB

3
5 (1)

� Case 1: RA > 0, RB > 0

� Case 2: RA > 0, RB = �2I where �2 > 0

� Case 3: RA > 0, RB = I

where the subscripts denote the two di�erent regions A and B. Case 1 corresponds to two com-

pletely unknown clutter covariance matrices RA and RB , and Case 2 corresponds to one clutter

covariance RA completely unknown and the other RB known up to a scale parameter. As shown

in [7] the known clutter covariance matrix in RB , represented by the matrix I, can be taken as

the identity matrix without loss of generality. Case 3 corresponds to RB known exactly. Cases

2 and 3 arise, for example, in application where one of the clutter regions is well characterized.

The maximal invariant statistics for Cases 1 and 2 were previously derived by Bose and Stein-

hardt in [7] and invariant tests were also proposed based on these statistics. We treat Cases 1-3

in a uni�ed framework and propose alternative maximal invariant (MI) tests which are better

adapted to the deep-hide target application. We show via simulation that there are regimes of

operation which separate the performance of the GLR and MI tests. When there are a large

number of independent snapshots of the clutter, the MLEs of the target amplitude and the block

diagonal clutter covariance are reliable and accurate, and the GLR test performs as well as the

MI test. Conversely, when a limited number of snapshots are available and SNR is low, the

MLEs are unreliable and the MI test outperforms the GLR test. This property is also con�rmed

by the real data example, i.e. the MI test can detect weaker targets than the other tests when

the number of snapshots is few.

In Section II the image model for the detection problem is introduced and a canonical form

is obtained by coordinate transformation. We then review the principles of GLR and invariance
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in Section III. Kelly's GLR test [9] for an unstructured covariance matrix is derived as an

illustration of these two principles. Section IV then reviews the application of these principles to

detect a target across a clutter boundary. We also extend the detection problem from a single

target to one of multiple targets in Section V. Finally, the relational performances between the

GLR and MI tests are explored by analysis and by simulation. Due to space limitations most of

the mathematical derivations have been omitted from this paper. These can be found in [16].

II. Image Model

Let fxigni=1 be n statistically independent m � 1 complex Gaussian vectors constructed by

raster scanning a set of n 2-D images (snapshots). We call each of these vectors subimages or

chips and assume that they each have identical m�m covariance matrices R but with possibly

di�erent mean vectors (targets). Then the measurement image matrix (m�n) X = [x1; : : : ; xn]

can be modeled as follows

X = S a bH +N (2)

where S =
�
s1; : : : ; sp

�
is an m � p matrix consisting of signature vectors of p possible targets,

a = [a1; : : : ; ap]
T is a p�1 unknown target amplitude vector for p targets, and bH = [b1; : : : ; bn] is

a 1�n target location vector which accounts for the presence of targets in each subimage. While

this model allows multiple target signatures to exist simultaneously in a chip, we concentrate

here on the case that a has only one non-zero element, i.e. at most one of a possible p signatures

can be present. This model (2) implies that the target components in di�erent subimages di�er

only by a scale factor. Also N is a complex multivariate Gaussian matrix with i.i.d. columns:

vec(N) � CN (0;R
N
In) where 0 is an mn�1 zero vector, In is an n�n identity matrix, and

N
is the Kronecker product. It is common to model a complex valued radar image as linear in the

target with additive Gaussian distributed clutter. Examples where a Gaussian model is justi�ed

for terrain clutter can be found in [17]. Even in cases when such a model is not applicable to the

raw data, a whitening and local averaging technique can be implemented to obtain a Gaussian

approximation [13].

The detection problem is to seek the presence of target(s) for S and b known, a unknown, and

the independent columns ofN having the unknown covariance matrixR. By applying coordinate

rotations to both of the column space and the row space of X we can put the image model into
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a convenient canonical form as in [18]. Let S and b have the QR decompositions

S = QS

2
4 TS

O

3
5 ; b = Qb

2
4 tb

0

3
5

where QS(m�m), Qb(n� n) are unitary matrices, TS is a p� p upper-triangular matrix, and

tb is a scalar. Multiplying X on the left and right by QH
S and Qb, respectively, we have the

canonical representation

~X =

2
4 TS

O

3
5 a

�
tHb 0H

�
+ ~N

where ~N is still n-variate normal with zero mean and cov[vec( ~N)] = QH
S RQS

N
In, and the

target detection problem is not altered since R is unknown. Now the transformed data has the

partition

~X =

2
4 x11 X12

x21 X22

3
5 (3)

where x11 is a p�1 vector, x21 is a (m�p)�1 vector, X12 is p�(n�1), andX22 is (m�p)�(n�1).
Note that QH

S and Qb have put all the target energy into the �rst p pixels of the �rst subimage,

x11. In the sequel, unless stated otherwise, we will assume that the model has been put into this

canonical form.

For the special case of p = 1 (single target), this model reduces to the one studied by Kelly [9]

X = a "1 e
T
1 +N (4)

where a is an unknown complex amplitude, e1 = [1; 0; : : : ; 0]T is the n� 1 unit vector, and the

known target signature is transformed into an m�1 unit vector "1. In this case, the �rst column

of X will be called primary data while the rest will be called secondary data. With the model (4)

we can denote the unknowns by the unknown parameter vector � = fa;Rg 2 � where � is the

prior parameter range of uncertainty. Let �0 and �1 partition the parameter space into target

absent (H0) and target present (H1) scenarios: �0 = fa;R : a = 0;R 2 Hermitian(m �m)g,
�1 = fa;R : a 6= 0;R 2 Hermitian(m�m)g. Then the general form for the detection problem

is expressed via the two mutually exclusive hypotheses:

H0 : X � f(X; �0); �0 = f0;Rg 2 �0

H1 : X � f(X; �1); �1 = fa;Rg 2 �1:
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Now, following [7], we extend (4) to the structured covariance case. Consider Case 1 in Section

I. Then the target signature s is partitioned as s = [sHA sHB ]
H where sA and sB are mA � 1 and

mB � 1 column vectors, respectively (mA +mB = m). The unitary matrices QSA and QSB can

be obtained from the QR decompositions of sA and sB, respectively. Then using

QS =

2
4 QSA O

O QSB

3
5

in the canonical transformation,the model is composed of two parts from regions A and B

X =

2
4 XA

XB

3
5 = a

2
4 ~sA

~sB

3
5 eT1 +

2
4 NA

NB

3
5 (5)

where ~sA = [sA; 0; : : : ; 0]
T and ~sB = [sB; 0; : : : ; 0]

T . NA (mA � n) and NB (mB � n) are

independent Gaussian matrices with unknown covariance matricesRA (mA�mA) andRB (mB�
mB), respectively. The target detection problem is now simply stated as testing a = 0 vs. a 6= 0

in (5).

III. Detection Theory

The aforementioned target detection problem is an example of testing composite hypotheses,

i.e. there exist unknown \nuisance parameters" (clutter covariance and target amplitude) under

both the null (target-absent) and alternative (target-present) hypotheses. This implies that the

false alarm (FA) and detection probabilities of any detector will generally vary as a function of

these unknowns. More importantly, only rarely is there a detector that is most powerful (MP)

irrespective of these parameters, i.e. there exists no uniformly most powerful (UMP) test of any

FA level.

UMP tests do not exist for the detection problem treated here. A popular alternative, but

sub-optimal, strategy is to use the generalized likelihood ratio (GLR) principle. The GLR test

is asymptotically UMP since, under broad conditions [19], MLEs are consistent estimators as

the number of observations goes to in�nity. Furthermore in many physical problems of interest,

a GLR test will give satisfactory results [20]. In some instances, however, the optimization

or maximization involved in deriving a GLR test may be intractable to obtain in closed form.

Moreover, similarly to small sample MLEs, the performance of a GLR test can be poor (not even

unbiased) in the �nite sample regime [21]. In this section we review the principle of invariance
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as an alternative strategy and apply to the case of unstructured clutter as an illustration. For a

more detailed discussion with examples, refer to [22].

A. Invariance Principle

The main idea behind the invariance principle is to �nd a statistic called the maximal invariant,

which maximally condenses the data while retaining the model discrimination capability of the

original data set. As contrasted with the minimax suÆcient statistic [21], which maximally

condenses the data while retaining the full parametric estimation capability of the original data,

the maximal invariant preserves only the information necessary to detect the target as opposed

to estimating its amplitude. More details on the relationship between suÆciency and maximal

invariance are provided in [22]. Maximal invariants can be found when the probability model

has functional invariance which can be characterized by group actions on the measurement space

X and induced group actions on the parameter space �. Let G be a group of transformations

g : � ! � acting on X. Assume that for each � 2 � there exists a unique �� = �g(�) such that

f�(g(X)) = f��(X). �g 2 �G is called the induced group action on �. The above relation implies

that the natural invariance which exists in the parameter space of � implies a natural invariance

in the space of measurement X. If we further assume that �g(�0) = �0; �g(�1) = �1, then the

model and the decision problem are said to be invariant to the group G. The orbits of X under

actions of G are de�ned by

X � Y if 9 g 2 G such that Y = g(X):

The orbits of � under actions of �G are similarly de�ned. Note that to capture natural invariance

of the model, the groups G and �G must have group actions with the largest possible degrees of

freedom among all groups leaving the decision problem invariant.

The principle of invariance stipulates that any optimal decision rule should only depend on X

through the maximal invariant Z = Z(X) which indexes the invariance orbits in the sense that

1. (invariant property) Z(g(X)) = Z(X);8g 2 G
2. (maximal property) Z(X) = Z(Y)) Y = g(X); g 2 G.
Clearly, the maximal invariant is not unique. Any other functions of X related to Z(X) in a

one-to-one manner can be maximal invariant. It can also be shown that the probability density

f(Z; Æ) of Z only depends on � through a reduced set of parameters Æ = Æ(�), which is the induced

maximal invariant under �G. Thus use of the reduced data Z gives us better chances of �nding
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a CFAR test whose false alarm rate is independent of �. In particular, when Æ(�0) is constant

over �0 2 �0, the distribution of Z under H0 is �xed and therefore any test based on Z will

automatically be CFAR.

B. Example: Unstructured Clutter Covariance

We will �rst consider the case where the clutter is totally unknown. We use the image model

in (4) and its partitioned form

X = [x1 X2] =

2
4 x11 x12

x21 X22

3
5 (6)

where x1 is the �rst subimage which may contain the target and all the target energy has been

put into the �rst pixel x11 of this subimage. This is the case studied by Kelly [9], and the results

are brie
y reviewed here to help illustrate the application of the GLR and invariance principles

discussed previously. This will help the reader understand more complicated structured models

of interest, covered later in this paper.

B.1 GLR Approach

The problem is to decide whether a is 0 or not when R is unknown, and the pdf of X is

f(X) =
1

�mnjRjn exp
��trfR�1Lg� (7)

where L = (x1�a"1)(x1�a"1)
H +

Pn
i=2 xix

H
i . We derive the GLR by maximizing the likelihood

ratio over a and R, i.e. by replacing them with their MLEs:

l1 =
max�2�1

f(X; �)

max�2�0
f(X; �)

=
maxa f(X; a; R̂1)

f(X; 0; R̂0)

where R̂0 and R̂1 are the sample covariance matrices under H0 and H1, respectively. To ensure

these matrices be nonsingular with probability one, we must impose the condition that n > m.

After some algebra, we obtain the following simple form of the GLR for this example by taking

the n-th root of l1:

n
p
l1 = max

a

�
1 + xH1 (X2X

H
2 )

�1x1
1 + (x1 � a"1)

H(X2X
H
2 )

�1(x1 � a"1)

�
: (8)

It remains to maximize this ratio over the unknown complex amplitude a. This can be done

by completing the square in the denominator of (8) and the GLR test is equivalent to 1�1= n
p
l1,
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denoted TKu:

TKu =
j"T1 (X2X

H
2 )

�1x1j2
"T1 (X2X

H
2 )

�1"1 � f1 + xH1 (X2X
H
2 )

�1x1g
: (9)

This test was obtained by Kelly [9] and will be called the unstructured Kelly's test.

B.2 Invariance Approach

We de�ne the following group of transformations acting on X as

g(X) = FXH =

2
4 �1 �H

2

0 M

3
5 X

2
4 1 0T

0 U

3
5 (10)

where �1 6= 0, �
2
(1� (m� 1)) andM((m� 1)� (m� 1)) are arbitrary, and U((n� 1)� (n� 1))

is a unitary matrix. Then with the model X in (4), we have g(X) = ~a"1e
T
1 + ~N where ~a = �1a

and ~N is still zero-mean Gaussian with cov[vec( ~N)] = FRFH
N
In. Thus the problem remains

unchanged under this group since only the unknown a and R are replaced by �1a and FRFH ,

respectively. This group is also the group whose actions have the largest possible number of free

parameters yet still ensuring that the decision problem and the model remain unchanged. Indeed

if the full linear group of row actions were used, i.e. the �rst column of F in (10) were to be

arbitrary, the signal spatial structure "1 would not be preserved. Likewise, if a larger group of

right-multiplying matrices than H in (10) were applied to the columns of X, the independence

of the columns of X or the temporal (chip) structure e1 of the signal would not be preserved.

Once the invariant group of transformations is obtained, we can now de�ne a set of statistics,

i.e. maximal invariants, which indexes the orbits of X under this group. With the model (6) and

the group of transformations (10), it was shown in [7] that the maximal invariant is 2-dimensional:

z10 = xH1 (X2X
H
2 )

�1x1;

z2 = xH21(X22X
H
22)

�1x21:
(11)

It is easily shown that that fz10 ; z2g is equivalent to fz1; z2g where

z1 =

��x11 � x12X
H
22(X22X

H
22)

�1x21
��2

x12
�
I�XH

22(X22X
H
22)

�1X22

�
xH12

since z10 = z1 + z2 [16, Proposition 1]. The representation of z1 gives it an interpretation as the

estimated s-prediction SNR, i.e. the ratio of the magnitude squared of the least-squares target

estimation error to that of the least-squares clutter prediction error, where x12X
H
22(X22X

H
22)

�1x21
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is the least-squares estimate of x11 given x21 andX2. z1 will be large when the clutter component

can be accurately predicted and subtracted from the target cell, thereby enhancing the presence

of the target. z2 is the normalized sample correlation between primary and secondary data whose

distribution is the same under H0 and H1. Thus it is an ancillary statistic [23].

Any invariant test will be functions of z1 and z2, and it is shown in [9] that the Kelly's test

(9) is one of them:

TKu =
z1

1 + z1 + z2
=

z1=(1 + z2)

1 + z1=(1 + z2)
: (12)

TKu is monotone increasing in z1=(1 + z2) and thus z2 plays the role of a data-dependent nor-

malization of the estimated s-prediction SNR, z1. This normalization has a distribution which

is independent of the parameters and converges in distribution to a Chi-square random variable

with (m� 1) degrees of freedom.

IV. Application to a Target Straddling Clutter Boundary

Now we consider the problem of detecting a known target straddling the boundary of two

independent clutter regions. From the model (5), the measurement matrix X can be partitioned

as

X =

2
4 xA1 XA2

xB1 XB2

3
5 =

2
6666664

xA11 xA12

xA21 XA22

xB11 xB12

xB21 XB22

3
7777775

(13)

where xA1 and xB1 are the primary vectors which may contain the separated canonical parts of a

known target, sA and sB , respectively, with the unknown common amplitude a. Here we remove

the tildes from ~sA and ~sB for notational convenience. Under H0, any of the i.i.d. columns of X

will be multivariate Gaussian with zero mean and a covariance matrix R having a block diagonal

structure as de�ned in (1).

A. GLR Tests

Let fxAigni=1 and fxBigni=1 represent the i.i.d. columns of the two uncorrelated matrices XA

andXB , respectively, then the pdf ofX factors as f(X) = f(XA)f(XB) where f(XA) and f(XB)

are de�ned similarly as (7) for each region. As in the unstructured case, the GLR maximization
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can be performed for the unknown covariance matrices RA and RB by replacing them with their

MLEs:

� = max
a

f(XA; a; R̂A1)f(XB ; a; R̂B1)

f(XA; 0; R̂A0)f(XB ; 0; R̂B0)
:

Here, the required condition for non-singularity of the estimated covariance matrices (n > m)

is relaxed since we need only n > maxfmA;mBg. GLR test statistics are listed in Table I for 3

structured cases where

p(a; sA;XA) = (xA1 � asA)
H(XA2X

H
A2)

�1(xA1 � asA)

q(a; sB ;XB) = tr
�
(XB � asBe

T
1 )

H(XB � asBe
T
1 )
	

and complete derivations can be found in [16]. Note that those GLRs still involve a maximization

over the unknown amplitude a in a complex quartic equation and cannot be represented in closed

form. However, for real-valued data the roots of the quartic equation are explicit. For complex

data we implement the GLR tests, derived under the structured cases, using numerical root

�nding and compare their performance in Section VI.

GLR 2 can be reduced to either of l1 in (8) for XA alone or the GLR over XB alone which

can be simpli�ed to

l2 = max
a

�
q(0; sB ;XB)

q(a; sB ;XB)

�mBn

:

We named it l2 after the previous unstructured GLR test statistic l1 in (8). As in l1, the

maximization in unstructured l2 can be completed and we have the equivalent form of this GLR:

1� 1
mBn
p
l2

=
jxB11j2Pn
i=1 jxBij2

: (14)

Similarly, we can also show that GLR 3 can be reduced to either of l1 in (8) for XA alone or the

GLR l3 for XB alone which is equivalent to

ln l3 = jxB11j2: (15)

B. MI Tests

In this section we apply the invariance principle to the structured covariance cases studied

above. For each case, MI test is proposed based on the maximal invariants and compared to the

previous results of Kelly [9] and Bose and Steinhardt [7].
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B.1 Case 1: RA > 0;RB > 0

In this case, we can construct a structured group of transformations on X which is extended

from (10):

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

2
4 � �H

B

0 MB

3
5 XB

2
4 1 0T

0 UB

3
5

3
7777775

(16)

where � 6= 0, �
A
(1� (mA � 1)), �

B
(1� (mB � 1)), MA((mA � 1)� (mA � 1)) and MB((mB �

1)� (mB � 1)) are arbitrary, and UA and UB are ((n� 1)� (n� 1)) unitary matrices. Showing

the invariant property of this group is analogous to the unstructured example. With the model

in (5) and the partition in (13), it was shown in [7] that the maximal invariant under (16) is

5-dimensional:

zA1 = juAj2=DA;

zA2 = xHA21(XA22X
H
A22)

�1xA21;

zB1 = juB j2=DB ;

zB2 = xHB21(XB22X
H
B22)

�1xB21;

zAB = uA=uB

(17)

where the subscripts denote whether the quantities are computed over the region A, B or both

A and B, and

uA = xA11 � xA12X
H
A22(XA22X

H
A22)

�1xA21;

DA = xA12
�
I�XH

A22(XA22X
H
A22)

�1XA22

�
xHA12:

uB and DB can be de�ned similarly over XB . It can be shown that zAB can be replaced by

zAB0 =
juA=sA � uB=sB j2

DA=jsAj2 +DB=jsB j2

or

zAB00 =
juA=sA � uB=sB j2

qADA=jsAj2 + qBDB=jsB j2 (18)

where qA = 1+ zA1+ zA2 and qB = 1+ zB1+ zB2 [16, Proposition 2]. zA1 and zB1 correspond to

the estimated s-prediction SNRs in region A and B, respectively. zA2 and zB2 are the normalized
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sample correlation between primary and secondary data pixels in region A and B, respectively.

We can see that zA1 and zA2 correspond to z1 and z2 in the unstructured case (11) applied to

region A, and zB1 and zB2 correspond to those applied to region B. The coupling term, zAB ,

zAB0 , or zAB00 , not present in the unstructured test, captures the common amplitude a for both

regions.

A natural modi�cation of Kelly's test (9) which re
ects the block covariance structure was

proposed by Kelly in [24] and later by Bose and Steinhardt [7]:

TKs =

��sHK�1x1
��2

sHK�1s � f1 + xH1 K
�1x1g

(19)

where x1 = [xHA1 x
H
B1]

H , s = [sHA sHB ]
H and

K =

2
4 XA2X

H
A2 O

O XB2X
H
B2

3
5 :

The structured Kelly's test (19) can be equivalently expressed [16] in terms of the maximal

invariants (17) as

TKs =
zA1 + zB1 � zAB0

1 + zA1 + zA2 + zB1 + zB2
: (20)

Note that the denominator of TKs essentially modulates the sum zA1+ zB1 of s-prediction SNRs

by the sum of the associated ancillary statistics zA2+ zB2. This has the e�ect of attenuating the

individual s-prediction SNRs in each region when both SNRs are strong.

Alternatively, by the maximal invariant representation of TKs, we can obtain another invariant

test:

T1 =

�������
�
sHA s

H
B

� 24 qAXA2X
H
A2 O

O qBXB2X
H
B2

3
5
�1 2
4 xA1

xB1

3
5
�������

2

�
sHA s

H
B

� 24 qAXA2X
H
A2 O

O qBXB2X
H
B2

3
5
�1 2
4 sA

sB

3
5

: (21)

Note that qA and qB are placed in the estimated covariance matrix to separate the A and B

coupled denominator in (20). This is equivalent to:

T1 =
zA1

1 + zA1 + zA2
+

zB1
1 + zB1 + zB2

� zAB00 (22)
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where a di�erent coupling term zAB00 given in (18) is used instead of zAB0 [16]. Unlike (20) the

s-prediction SNRs are normalized in an independent uncoupled manner. The MI test (22) will

be shown to outperform (20) for some important situations.

B.2 Case 2: RA > 0;RB = �2I

Now suppose RB = �2I with unknown �2, then the appropriate invariant group of transfor-

mations in this case is

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

� XB

2
4 1 0T

0 UB

3
5

3
7777775

(23)

since XB still remains Gaussian under this group except that a and �2 are replaced by ~a =

�a and ~�2 = (��)2 [7]. Similarly to (16), the same scaling factor � captures the common

amplitude in both regions. With the partition in (13), the maximal invariant [7] under the group

of transformations in (23) is composed of zA1 and zA2 in (17), and

zB =
jxB11j2Pn
i=1 jxBij2

;

zAB = uA=xB11:

(24)

We have equivalent forms [16, Proposition 3] for zB and zAB : zB can be replaced by

zB0 =
jxB11j2

jxB12j2 + jxB21j2 + jXB22j2F
; (25)

and zAB can be replaced by either of

zAB0 =
juA=sA � xB11=sB j2
�DA=jsAj2 + v1=jsB j2 (26)

where

� = f(n�mA)(1 + zA2)g�1;
v1 = fjxB12j2 + jxB21j2 + jXB22j2F g=(mBn� 1);

(27)

or

zAB00 =
juA=sA � xB11=sB j2

qADA=jsAj2 + v2=jsB j2 (28)
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where

qA = 1 + zA1 + zA2;

v2 =

nX
i=1

jxBij2=mB :
(29)

In (24) and (25) zB and zB0 are the maximal invariants for the case that only region B is

considered, and the coupling terms zAB ; zAB00 are present due to the common scaling factor � in

regions A and B which preserves overall target amplitude a.

Bose and Steinhardt derived similar maximal invariants in the context of array detection

problems in [7]. Based on these statistics they proposed an invariant test which was shown to

be approximately CFAR and took the form:

TBS =

�������
�
sHA sHB

� 24 �XA2X
H
A2 O

O v1I

3
5
�1 2
4 xA1

xB1

3
5
�������

2

�
sHA sHB

�
2
4 �XA2X

H
A2 O

O v1I

3
5
�1 2
4 sA

sB

3
5

(30)

where � and v1 are as in (27). An equivalent form [16] for (30) is:

TBS = (n�mA)zA1(1 + zA2) + (mBn� 1)zB0 � zAB0 : (31)

By considering the structures of both the GLR 2 and the MI test 1 (21), we can construct

another invariant test statistic T2 which is same as (30) except that, as in (21), � and v1 in (30)

are replaced by qA and v2 de�ned in (29). The resultant test takes the form [16]

T2 =
zA1

1 + zA1 + zA2
+mB � zB � zAB00 : (32)

Thus the weighting between the terms from regions A and B is maintained as in GLR 2, and

this test reduces exactly to the unstructured tests: (12) for XA alone or (14) for XB alone. This

reduction does not hold for Bose and Steinhardt's test (31).
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B.3 Case 3: RA > 0;RB = I

For this case, the invariant group of transformations is de�ned as

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

XB

2
4 1 0T

0 UB

3
5

3
7777775

where, unlike the previous two cases, there is no scaling term on the left of XB since the variance

is exactly known in XB and must not be altered by the group actions. Thus the set of maximal

invariants will not include any coupling term zAB from regions A and B.

An MI test can be constructed in much the same way as T2 was constructed;

T3 =
zA1
qA

+
1

n
jxB11j2 � juA=sA � xB11=sB j2

qADA=jsAj2 + n=jsB j2 : (33)

This test is equivalent to T2 when v2 is replaced by v3 = n. Note that jxB11j2 can be interpreted

as the maximal invariant when only region B is considered. This test also reduces to either of

the unstructured cases: (12) for XA alone or (15) for XB alone.

In Table II, MI tests are reproduced as functions of the maximal invariants under each case.

V. Extension to One of p Known Targets

Previously the target signature in the primary vector was assumed to be exactly known and the

problem was to decide whether the one and only signal vector s is present or not. In real radar

applications, however, a more realistic model must be considered. Suppose that we know the form

of the target of interest, but do not know its position or orientation in the subimage chip. We

assume that the target is totally contained in a chip, i.e. \coarse detection" has somehow been

performed. An extension to the case where a target overlaps more than one chip can be handled

in a similar manner to the within-chip positional uncertainty considered here, but is beyond the

scope of this paper. Then di�erent target signature vectors can be constructed accordingly. To

accommodate this scenario, let the image model have an m � p matrix S =
�
s1; : : : ; sp

�
for p

target signatures:

aS �k e
T
1 +N (34)

where �k is a p � 1 unit vector [0; : : : ; 0; 1; 0; : : : ; 0]T and `1' is in position k. Here p � m

for unstructured clutter or p � minfmA;mBg for structured clutter. The model (34) implies
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that only one of the signatures, sk, may be present at a time in the primary vector, and in the

structured case this signature vector is written as sk =
�
sHAk s

H
Bk

�H
.

For the GLR tests in Table I, it is easy to extend the results of the single target case to this

multiple target case. We only need to replace sA and sB in the GLR tests with sAk and sBk,

and maximize over k = 1; : : : ; p, i.e.

max
k=1;::: ;p

1

n
ln�(sAk; sBk):

Similarly, for the MI tests we also propose to maximize the test statistic over the p target signa-

tures. In the following, the invariance procedure is applied to (34) for both cases of unstructured

and structured clutter. Due to length constraints, only the structured case of RA > 0;RB > 0

(Case 1) is treated in this paper.

A. Unstructured Case

Since the set of possible signatures S is known, we can de�ne the canonical model by left-

multiplying (34) with the m�m matrix

2
4 (SHS)�1SH

PS

3
5

where the (m � p) �m matrix PS is an orthogonal matrix to (SHS)�1SH . Then we have the

equivalent model

X = a

2
4 �k

0

3
5 eT1 + ~N (35)

with ~N also zero-mean Gaussian with i.i.d. columns. This model (35) can be partitioned as

in (3) where the p � 1 vector x11 may contain any one of the target signatures which have

been transformed to unit vectors f�kgpk=1. With this model, a group of transformations which

preserves the decision problem is de�ned as

g(X) =

2
4 � B

O M

3
5 X

2
4 1 0T

0 U

3
5 (36)

where � is a p�p diagonal matrix, B (p� (m�p)) andM ((m�p)� (m�p)) are arbitrary, and

U is an (n� 1)� (n� 1) unitary matrix. Note that by putting the model (34) into the canonical

form (35), we must restrict � to a diagonal matrix in (36) instead of an arbitrary matrix in
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order to preserve the model (35). This group of transformations with larger degrees of freedom

will thus lead to a larger set of maximal invariants. The maximal invariant of the model (35)

under the group of transformations in (36) is derived in [16, Proposition 4] and consists of p+ 2

functions of the measurement:

z1 = uHD�1u;

z2 = xH21(X22X
H
22)

�1x21;

z3k = uHD�1�k(�
T
kD

�1�k)
�1�TkD

�1u

where k = 1; : : : ; p and

u = x11 �X12X
H
22(X22X

H
22)

�1x21;

D = X12

�
I�XH

22(X22X
H
22)

�1X22

�
XH
12:

(37)

The unstructured Kelly's test (9) can be modi�ed by maximizing the likelihood ratio over

f�kgpk=1 which reduces it to

TKu = max
k=1;::: ;p

z3k
1 + z1 + z2

:

B. Structured Clutter Covariance

Next consider Case 1 (RA > 0;RB > 0) for the structured clutter covariance model. Then,

similarly to the above unstructured model (35), the canonical image model can be de�ned as

X = a

2
6666664

�k

0A

�k

0B

3
7777775
eT1 +N (38)

where 0A and 0B are (mA�p)�1 and (mB�p)�1 zero vectors, respectively. Thus, this canonical
form can be partitioned as (3) for each of XA and XB , and the appropriate invariant group of

transformations on X is

g(X) =

2
6666664

2
4 � BA

O MA

3
5 XA

2
4 1 0T

0 UA

3
5

2
4 � BB

O MB

3
5 XB

2
4 1 0T

0 UB

3
5

3
7777775

(39)



KIM AND HERO: COMPARISON OF GLR AND INVARIANT DETECTORS 19

where we have the same p� p diagonal matrix � for XA and XB to preserve the signal vector �k

and the same amplitude in both regions. With the model (38) and the group of transformations

in (39), the maximal invariant is obtained in [16, Proposition 5] as

zA1 = uHAD
�1
A uA;

zA2 = xHA21(XA22X
H
A22)

�1xA21;

zA3k = uHAD
�1
A �k(�

T
kD

�1
A �k)

�1�TkD
�1
A uA;

zB1 = uHBD
�1
B uB ;

zB2 = xHB21(XB22X
H
B22)

�1xB21;

zB3k = uHBD
�1
B �k(�

T
kD

�1
B �k)

�1�TkD
�1
B uB ;

zABk =
(�TkD

�1
A �k)

�1�TkD
�1
A uA

(�T
kD

�1
B �k)

�1�T
kD

�1
B uB

(40)

where k = 1; : : : ; p, and uA, uB , DA and DB can be de�ned as u and D in (37) over XA alone

or XB alone. And zABk can be replaced by

zABk0 =��(�TkD�1
A �k)

�1�TkD
�1
A uA � (�TkD

�1
B �k)

�1�TkD
�1
B uB

��2
(�TkD

�1
A �k)

�1 + (�TkD
�1
B �k)

�1

(41)

or zABk00 which is equivalent to zABk0 except that qADA and qBDB are substituted for DA and

DB , respectively, where again qA = 1 + zA1 + zA2 and qB = 1 + zB1 + zB2. Note that zA1, zA2,

zB1 and zB2 are again equivalent to those in (17) except for the increased dimension (p vs. 1) of

these matrices.

We now generalize the structured Kelly's test, TKs (19), and the MI test, T1 (21), to p >

1. First, consider TKs modi�ed to �t the multiple signature model as a function of maximal

invariants (40) and (41)

TKs = max
k=1;::: ;p

zA3k + zB3k � zABk0

1 + zA1 + zA2 + zB1 + zB2
:

The MI test can also be modi�ed similarly

T1 = max
k=1;::: ;p

�
zA3k

1 + zA1 + zA2
+

zB3k
1 + zB1 + zB2

� zABk00

�
:

VI. Numerical Results

To analyze the performance of the GLR and MI tests derived under the three structured clutter

covariance assumptions (Case 1: RA > 0;RB > 0, Case 2: RA > 0;RB = �2I, and Case 3:
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RA > 0;RB = I), receiver operating characteristic (ROC) curves are generated and compared

in this section. More examples are presented in [22]. In each simulation, we generated n 10� 10

subimages containing 2 independent clutter regions of area mA and mB pixels, respectively, and

a 5�5 synthetic canonical target is inserted into the �rst subimage in such a manner to straddle

the boundary of the two di�erent regions. Each of the subimages is then concatenated into a

column vector of size 100 to obtain a 100 � n measurement matrix. Each of the ROC curves

(probability of detection (PD) vs. probability of false alarm (PFA)) shown below was obtained

after 500 simulations. We show results of experiments on a real synthetic-aperture radar (SAR)

image where both of our GLR and MI tests were applied to a SAR clutter image with an inserted

real target at various pose angles.

A. Comparison of ROC curves

First, in Figs. 1 and 2, Cases 1 and 2 are considered separately under di�erent assumptions

on clutter covariance. The results for Case 3 are omitted since a large number of pixels (mB�n)

are available to generate a good MLE of the unknown variance in region B and we were able to

observe that the ROC curve for GLR 2 approaches that of the matched GLR 3. In each case, the

three GLR tests in Table I and the three MI tests in Table II matched to one of the three cases

are compared. Also shown are ROC curves for the following tests proposed by other authors:

Kelly's structured test (20) matched to Case 1, and Bose and Steinhardt's invariant test (31)

matched to Case 2. Those ROC curves are compared for di�erent ratios of mA=mB by up and

down shifting the 10 � 10 windows used to collect the subimages along the boundary. In Fig.

1 for Case 1, the structured Kelly's test is as accurate as or better than the GLR and MI tests

only for the smaller size covariance of (a). Also Bose and Steinhardt's test is more sensitive to

mA and mB than MI test 2 and GLR 2, and its ROC falls below even those of the mismatched

tests shown in Fig. 2 (b). This con�rms the results from Section IV. For Case 1, we were able to

achieve performance improvement by separating the same coupled denominator for both regions

found in the matched Kelly's test (20). For Case 2, the ROC improvement over the matched

Bose and Steinhardt's test is explained by the weighting between two di�erent regions which is

carefully managed in GLR 2 and MI test 2. Note that, however, neither the GLR nor the MI

test uniformly outperforms the other. Of particular interest are the curve crossings in the low

PFA regions between the GLR and the MI tests as in Fig. 1 (b).

The relative advantages of MI vs. GLR tests are more closely investigated in the next two
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�gures. In Figs. 3 and 4, we consider Cases 1 and 2, respectively. In (a) of both �gures, we

increased the number of chips n while �xing SNR. Note that the GLR and MI tests have ROCs

which are virtually indistinguishable for large n. In (b), however, we �xed n and increased

SNR. The PFA positions of the crossings of the ROCs for the GLR and MI tests decreased with

increasing SNR. In particular, if one �xes a level of false alarm, say PFA = 0:1, then note from

Fig. 3 (b) that the GLR test dominates the MI test for SNR = 19 dB while the reverse is

true for SNR = 7 dB. This behavior is best explained by the fact that at high SNR, the MLE

is an accurate estimate of target amplitude, while at low SNR the MLE degrades signi�cantly.

Therefore, the GLR which depends on the accuracy of the MLE for accurate detection breaks

down for low SNR.

Since both the structured GLR and MI tests can only be implemented with the known bound-

ary separating two di�erent regions, sensitivity of the tests to boundary estimation errors is

illustrated in Fig. 5. In both cases, ROC curves obtained with the biased boundary are com-

pared with those using the true boundary. As can be seen, the overall performance of each test

is degraded with false information, but the relative advantages of the GLR and MI tests still can

be observed.

B. Application to a Real Image

Next, we consider an application to actual acquired complex-valued SAR imagery. In Fig.

6 the magnitude-only SAR image is shown. This corresponds to a rural scene near Redstone

Arsenal at Huntsville, Alabama, reproduced from the data collected using the Sandia National

Laboratories Twin Otter SAR sensor payload operating at X band (center frequency = 9.6 GHz,

band width = 590 MHz). This clutter image consists of a forest canopy on top and a �eld on

bottom, separated by a coarse boundary. The boundary was hand-extracted, and a sequence

of 9 � 7 SLICY targets at di�erent poses were also hand-extracted from the image data in Fig.

7. The images in Fig. 7 correspond to the same target but viewed at di�erent pose angles of

azimuth. The elevation of 39Æ was �xed for all poses. These images display the magnitudes of

complex-valued SAR data which have been converted into decibels (dB). The data from which

these images are reproduced was downloaded from the MSTAR SAR database at the Center for

Imaging Science (www.cis.jhu.edu).

In a �rst experiment the target signature at pose of azimuth 163Æ from Fig. 7 (e) was tested

at di�erent positions along the boundary. In Fig. 6, the target is inserted additively with the
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center at column 305 so that it straddles the boundary. From the realigned image in Fig. 8,

we took subimages (chips) along the boundary by centering a 20 � 20 window at the boundary

and sliding it over the image from left to right. Each of these subimages is then concatenated

into a column vector of size m = 400 where mA = 200 and mB = 200. Since we need at least

200 secondary chips to implement the structured detectors, clutter-alone pixels above and below

those 20 � 20 subimages taken along the boundary were used to generate enough secondary

data for region A and B, respectively. Each of the subimages along the boundary was tested

as a primary chip, and the test statistics derived under Case 1 were calculated and maximized

over each possible location in the subimage. After normalizing the known target signature, we

obtained the minimum magnitude of target amplitude required for each test to detect the target

at the correct location. The resulting amplitude is the minimum detectable threshold for each

of the detectors and these thresholds are shown in Table III for di�erent number of secondary

chips (n� 1). As can be seen, with a large number of chips (n� 1 = 250), both the GLR and MI

tests perform as well as the structured Kelly's test. On the other hand, with a limited number

of chips (n � 1 = 200), MI test 1 successfully detects the target down to a signi�cantly lower

threshold than for GLR 1 and structured Kelly detectors.

Next we maximized the test statistics over the di�erent target poses in Fig. 7 as well as over

all possible locations along the boundary. Again the normalized signature from Fig. 7 (e) was

inserted with jaj = 0:015, and 250 secondary chips were obtained from the surrounding clutter.

Test values for the 3 detectors under Case 1 are obtained using 9 di�erent target signatures. For

each test the peak values for 9 target signatures are plotted in Fig. 9. Note that all the tests

successfully picked the signature at the true pose and location for this target amplitude.

As a �nal experiment minimum detectable amplitudes for the GLR and MI tests are obtained

with a boundary extraction procedure utilizing Sobel's edge detection method [25]. Note that

we only applied the estimation algorithm to the clutter-alone chips so as to evaluate the e�ect

of boundary estimates on clutter covariance estimates. Table IV shows the results for 200 sec-

ondary chips using two di�erent boundary extractions. As in the ROC simulation (Fig. 5), both

detectors require larger target amplitudes for correct detection, but we conclude that the MI

test remains more robust than the GLR test even in the presence of segmentation errors. In this

experiment, the boundary between two regions was extracted using the simple Sobel operator.

More sophisticated model-based methods of an automatic image segmentation, e.g. methods
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such as proposed in [26], [27], [28], would potentially perform better than the Sobel operator.

VII. Conclusion

The deep-hide scenario considered in this paper complicates the design of optimal target de-

tectors. Both GLR and MI tests can be derived under block diagonal constraints imposed by the

clutter covariance structure. Numerical results indicate that neither GLR nor MI tests dominate

the other in terms of ROC performance. Both detectors have comparable performance when

high estimator accuracy is attainable, e.g. for a large number of independent clutter samples,

but otherwise the MI test is better especially in low PFA. This property is also shown to be

robust to segmentation errors. The results in this paper are generalizable to other applications

where structured covariance information is available.
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Case RA RB Log GLR :
1

n
ln� = max

a
f�g

1 ? ? ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+ ln

�
1 + p(0; sB ;XB)

1 + p(a; sB;XB)

�

2 ? �2I ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+mB � ln

�
q(0; sB ;XB)

q(a; sB ;XB)

�

3 ? I ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+

1

n
[q(0; sB;XB)� q(a; sB ;XB)]

TABLE I

GLR tests for Cases 1, 2 and 3 derived in this paper (The notation `?' denotes that the

matrix RA or RB is completely unknown but positive definite symmetric.)

Case RA RB MI test

TKs =
zA1 + zB1 � zAB0

qA + qB � 1
(20) Kelly [24]

1 ? ?
T1 =

zA1
qA

+
zB1
qB

� juA=sA � uB=sB j2
qADA=jsAj2 + qBDB=jsB j2 (22) MI test 1

TBS =
zA1
�

+
jxB11j2
v1

� juA=sA � xB11=sB j2
�DA=jsAj2 + v1=jsB j2 (31) Bose-Steinhardt [7]

2 ? �2I
T2 =

zA1
qA

+
jxB11j2
v2

� juA=sA � xB11=sBj2
qADA=jsAj2 + v2=jsB j2 (32) MI test 2

3 ? I T3 =
zA1
qA

+
jxB11j2
v3

� juA=sA � xB11=sBj2
qADA=jsAj2 + v3=jsB j2 (33) MI test 3

TABLE II

Maximal invariant tests (The notation `?' denotes that the matrix RA or RB is

completely unknown but positive definite symmetric.)

jaj
Test

(n� 1 = 250) (n� 1 = 200)

Structured Kelly 1:407 � 10�2 1:049 � 10�1

MI test 1 1:454 � 10�2 0:609 � 10�1

GLR 1 1:462 � 10�2 1:042 � 10�1

TABLE III

Minimum detectable amplitudes for detection of the target at the correct location.
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jaj (n� 1 = 200)
Test

(1) (2)

MI test 1 0:609 � 10�1 2:327 � 10�1

GLR 1 1:042 � 10�1 8:655 � 10�1

TABLE IV

Minimum detectable amplitudes with (1) the hand-extracted boundary and (2) the

estimated boundary.
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(a) mA = 50; mB = 50
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Fig. 1. ROC curves for Case 1 with di�erent ratios of mA=mB (SNR = 19 dB, n = 61).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

Structured Kelly
Bose−Steinhardt 
MI test 1       
MI test 2       
MI test 3       
GLR 1           
GLR 2           
GLR 3           
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Fig. 2. ROC curves for Case 2 with di�erent ratios of mA=mB (SNR = 10 dB, n = 61).
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Fig. 3. Comparison of GLR and MI tests for Case 1 by (a) increasing n with �xed SNR, and (b) increasing

SNR with �xed n (mA = 60;mB = 40).
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Fig. 4. Comparison of GLR and MI tests for Case 2 by (a) increasing n with �xed SNR, and (b) increasing

SNR with �xed n (mA = 50;mB = 50).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

MI test 1
GLR 1    

w/ TRUE boundary 

w/ FALSE boundary 

(a) Case 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

MI test 2
GLR 2    

w/ FALSE boundary 

w/ TRUE boundary 

(b) Case 2

Fig. 5. Comparison of ROC curves using true boundaries and false boundaries (a) moved downward by

one pixel, and (b) moved upward by one pixel in each snapshot (True values: (a) mA = 60;mB =

40; n = 61, (b) mA = 50;mB = 50; n = 51).
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Fig. 6. Magnitude-only image of SAR clutter with target in Fig. 7 (e) straddling the boundary at column

305. Complex image was used in all simulations
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Fig. 7. Magnitude images of SLICY canonical targets at elevation 39Æ and di�erent azimuth angles.

Image in (e) is inserted in Fig. 6.
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Fig. 8. Magnitude-only SAR image (Fig. 6) realigned along the extracted boundary. SLICY target is

located at column 305 with jaj = 0:015. This target is just above the minimal detectable threshold

for the three tests investigated in Fig. 9.
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Fig. 9. Peak values obtained for 9 di�erent target images in Fig. 7 (jaj = 0:015; n� 1 = 250).


