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ABSTRACT

This paper considers sequential adaptive estimation of sparse signals
under a constraint on the total sensing effort. A dynamic program-
ming formulation is derived for the allocation of sensing resources
to minimize a cost function related to mean squared estimation error.
Allocation policies are developed based on the method of open-loop
feedback control. These policies are optimal in the two-stage case
and improve monotonically thereafter with the number of stages.
Numerical simulations show gains up to several dB as compared to
recently proposed adaptive methods, and dramatic gains approach-
ing the oracle limit as compared to non-adaptive estimation.

Index Terms— Adaptive sensing, adaptive sampling, resource
allocation, sparse signals.

1. INTRODUCTION

This work considers the estimation of sparse signals from observa-
tions that are taken sequentially and adaptively. It is now well-known
that sparse signals can be efficiently acquired via compressive sens-
ing (see e.g. [1]) using a relatively small number of observations that
are incoherent with the basis in which the signal is sparse. However,
when noise is present and sensing resources are limited, incoherent
observations may not be the most efficient since a large fraction of
the resources are allocated to dimensions where the signal is absent.
Alternatively, by shaping future observations according to estimates
of the signal support derived from past observations, better signal-to-
noise ratios (SNR) are possible. Applications in which such adap-
tive sensing can be readily utilized include agile radars and medical
imaging [2,3].

Existing methods for adaptive sensing of sparse signals can be
roughly grouped around two classes of models. In the first class,
which is the focus of this paper, observations are restricted to sin-
gle components in the basis that induces signal sparsity, while re-
sources can be distributed arbitrarily over components and observa-
tion stages. An optimal two-stage resource allocation policy was
developed in [2] for a cost function related to bounds on estima-
tion and detection performance. The problem in [2] was simplified
in [4] through Lagrangian constraint relaxation, while a multiscale
approach that uses linear combinations in the first stage was sug-
gested in [3] to reduce the number of measurements. Based on a
similar model, a method known as distilled sensing was proposed
in [5] for signal support identification and was shown to be asymp-
totically reliable at SNR levels significantly lower than non-adaptive
limits. In the second class of models, the observations can consist
of arbitrary linear combinations as in compressive sensing, but in
most cases the resource budget is assumed to be discrete, measured
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in units of normalized observations. Methods in this second cate-
gory include Bayesian approaches based on maximizing information
gain [6,7], a bisection algorithm [8], and a generalization of distilled
sensing [9].

In this paper, we extend the two-stage allocation policy in [2]
to an arbitrary number of stages, focusing on mean squared estima-
tion error directly as opposed to performance bounds in [2]. It is
shown that the problem can be formulated as a dynamic program,
a framework that facilitates the development of allocation policies.
An approximate dynamic programming solution is proposed based
on open-loop feedback control (OLFC). The performance of these
OLFC policies improves monotonically with the number of stages,
and in particular upon the optimal two-stage policy in [2]. Simula-
tions show MSE reductions up to 3 dB relative to the optimal two-
stage policy and dramatic reductions relative to non-adaptive poli-
cies, approaching the oracle limit at high SNR. The OLFC policies
also outperform distilled sensing [5] at all SNR and most signifi-
cantly at higher SNR.

In Section 2, we specify the signal and observation models and
formulate a problem of resource-constrained sequential estimation,
which is then recast as a dynamic program. In Section 3, optimal and
OLFC approaches to the resource allocation problem are discussed
and a family of OLFC policies is proposed. Numerical simulations
comparing our OLFC policies to other policies are presented in Sec-
tion 4. Future directions are discussed in Section 5.

2. PROBLEM FORMULATION

We consider signals that are sparse with respect to the standard basis
(without loss of generality) in a ()-dimensional space. The subset of
indices corresponding to non-zero signal components is referred to
as the region of interest (ROI). Let I; be an indicator such that I; = 1
if 7 is in the ROI and I; = O otherwise. We use a probabilistic signal
model in which I; = 1 with prior probability p;(0), independently
of the other indicators. The non-zero signal amplitudes are modelled
as independent Gaussian random variables 6; with prior means p;(0)
and variances ¢2(0). As in [2,3], a non-informative uniform prior
is assumed with p; (0) = po, 1:(0) = po and ¢7(0) = o3 for all 4,
although non-uniform priors could also be accommodated.

A sequence of T observations are made with effort levels A, (t)
that vary with index ¢ and time ¢ = 0,...,7T — 1. Depending on the
application, the effort A, (¢) might represent observation time, num-
ber of samples, energy, cost, or computation. It is assumed that the
precision (inverse variance) of an observation increases with effort:
given \;(t — 1), the corresponding observation y; (t) takes the form

yi(t) = Loi + Xt — 1) 2n(t), t=1,....T, (1)

where n; (t) represents i.i.d. zero-mean Gaussian noise with variance
o2, We restrict attention to static signals so that the signal compo-
nent 7;6; in (1) does not change with time. For convenience, we
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write y(t) = [y1(t) ... yo(t)]" (similarly for other indexed quan-
tities) and denote by Y (¢t) = {y(1),...,y(¢)} the history of ob-
servations up to time ¢. In adaptive sensing, the effort allocation
A(t) at time ¢ can depend on the observations Y () collected up to
that point, thus incorporating current knowledge. The task is to de-
termine the mapping from Y (¢) to A(t), referred to as an effort or
resource allocation policy, subject to a total budget constraint:
T-1 Q
Y am =@ 2
t=0 i=1
For notational brevity, we suppress the dependence of A(t) on Y (¢).
To guide the selection of an effort allocation policy, we seek to
minimize the mean squared error (MSE) associated with estimates

0; of the amplitudes 6;, based on all observations up to time 7" and
summed over the ROI:

Q
E{Zli(éi —91-)2}, A3)
=1

where the expectation is taken over I;, 0;, and Y (7). It can be
shown [10] that él should be chosen as the conditional mean E[0; |
I, = 1,Y(T)]. Define p;(t) and o2 (t) to be the conditional mean
and variance of 0; | I; = 1, Y (t), and p;(t) = Pr(I; = 1| Y(¢)).
Substituting 6; = 12;(T") in (3) and simplifying, we obtain

O_QE i Pi(T) 4)
YN N [

=1

where the form of the denominator can be derived from (5c) below.
In the sequel, we focus on minimizing the expected cost in (4) with
respect to the effort allocation policy A(0), ..., A(T — 1), subject
to the total effort constraint (2). We note that (4) is similar but not
identical to the cost function in [2].

2.1. Formulation as a dynamic program

The determination of an optimal effort allocation policy according to
(4) can be formulated as a dynamic program. The dynamic program-
ming viewpoint makes available a well-developed set of approaches,
some of which are considered in Section 3. Further background in
dynamic programming can be found in [11].

To formulate a sequential decision problem as a dynamic pro-
gram, the cost function must be expressible as a sum of terms in-
dexed by time ¢, where each term depends only on the current system
state x(t) and the current effort allocation A(¢). While at first glance
the cost function (4) does not appear to have such a time-separable
property, it can be recast in the required form by defining the state
x(t) as x(t) = (p(t), u(t), o>(t), A(t)), where A(t) represents the
effort budget remaining at time ¢. The state variables are initialized
as p; (0) = po, :(0) = po, 02(0) = o3, and A(0) = Q, and evolve
according to the following recursions derived in [10]:

pi(t)¢1

pi(t+1) = pi(t)1 + (1 — pi(t))do’ Y
pi(t+1) = UQM(t)C,jiit)(j)Za(?(ztl)(t . 1)’ (5b)
4y = Z I °o
A(t+1) = A(t) — i Ai(t), oD

where
¢0 = ¢(y2(t + 1)7 07 UQ//\i(t))a
b1 = Syt + 1) pa(t), 07 () + 0/ Ni(t)),

and ¢(-; 1, %) denotes a Gaussian probability density function with
mean g and variance o2. It can also be shown that the distribution
for y; (¢t +1) | Y (¢) is given by the denominator in (5a), from which
it follows that

Eyrn{pi(t+1) [ Y()} = pi(t),
Using (5¢) and (6), the allocation problem may be stated as

Q
. pi(T —1)
Evy(r_
A©), AT YT {Z 02/o3(T — 1) + Mi(T — 1)

i=1

s.t. Z Z \i(t) = Q, @)

where the cost function is now of the desired form with a single non-
zero term at time 7'—1. The cost function depends implicitly on g (t)
and A(t),t =0,...,T — 2 through the distribution of Y (7" — 1).

t=0,....,T—1. (6)

3. EFFORT ALLOCATION POLICIES

3.1. Optimal policies

In principle, it is possible to employ exact dynamic programming to
obtain an optimal policy for (7). We decompose (7) into a sequence
of optimizations proceeding backward in time, starting with

Q

Jia(e(T 1)) = min

pi(T = 1)
; 02/c?(T - 1)+ XN(T —-1)
Q
st MT=1)=AMT-1), @)

i=1

and defining recursively
Je(xe(t)) = min By {Jia (x(t+1)) | x(5), A}

Q ©)
st Y N(t) SA()

fort =T —2,T —3,...,0. The desired optimal cost in (7) is
Jg (x(0)). The notation in (9) reflects the fact that the distribution of
y(t+1) | Y(t) is completely specified by x(¢) and A(¢), and the
state x(t + 1) is specified by x(t), A(t), and y (¢ + 1) through (5).
An optimal policy can be obtained by first solving (8) for A(T"—
1) and then using the result in (9) to solve for A(T" — 2). The re-
maining allocations are determined in the same recursive way. This
exact procedure is tractable in a few cases. For T' = 1, it suffices to
solve (8), a convex optimization problem whose solution is derived
in [10]. For T' = 2 and a uniform prior (p;(0) = po, wi(0) = po,
0?(0) = o¢), symmetry allows the initial allocation A(0) to be re-
stricted to the form A(0) = 8®)(0)1, where 1 denotes a vector with
unit entries. Thus (9) becomes a one-dimensional optimization with
respect to the multiplier 5 (0). For fixed 82 (0), the expectation
in (9) can be evaluated by sampling from the distribution of y(1)
and then solving (8) for the resulting values of the state x(1). In
other cases however, an exact solution to (7) is very difficult. Thus
for T' > 2 we consider an approximate method as described next.



3.2. Open-loop feedback control policies

A well-known approach to approximate dynamic programming is
that of open-loop feedback control (OLFC) [11]. To determine the
allocation A(t) at time ¢ in an OLFC policy, we make the simpli-
fying assumption that future allocations X(¢ + 1),...,A(T — 1)
can depend only on the current set of observations Y (¢) and not
future observations. In light of this assumption, the expectations
Ey(t+1)Y@®) - - - Ey(r—1)|v(T—2) may be applied to the numerator
only in (7), yielding p;(t) using (6). Conditioning on Y (¢) or equiv-
alently the state x(t), the problem becomes

pi(t)
-+
Q T-1

D =

i=1 7=t

Q

min
A(t),.. A (T—1) ; 02 /o?
5 (10)

which is an optimization in the variables \;(t) = Zf;tl Ai(7) and
is of the same form as the last-stage optimization (8). To state the
optimal solution to (10), we define 7 to be an index permutation that
sorts the quantities p; (t)o (t) in non-increasing order:
4 4 4
Pr(1) () 0r(1)(t) = Pr(2)()Tn(2)(t) = -+ = Pr(@) (H)orm() (1)
an

Next define g(k) to be the monotonically non-decreasing function of

k=0,1,...,Q with g(0) = 0, g(Q) = oo, and
2
o
g(k) = Z VP (¢ Z
pW(k+1)(t) 7-r(k+1) i—1 i—1 7r()

. (12)
fork =1,...,Q — 1. Then the solution A" (¢) to (10) is given by
_ Pr(i) (1) o’
A'fr(z)( + k T o2

Z LETNON D SR/ S OREO0)
. (13)
fori = 1,...,k and A;(;)(t) = O otherwise, where the number of

non-zero components k is determined by the interval (g(k—1), g(k)]
to which the budget parameter A(t) belongs. The monotonicity of
g(k) ensures that the mapping from A () to k is well-defined.

Equations (11)-(13) specify the optimal values of X;(t) =
Zz:tl i (7), but they do not specify how much effort should be put
into the present allocation A(t). In the remainder of the section, we
restrict attention to A(t) of the form A(t) = ST (£)X" (¢), where
BT (t) € [0,1] is the fraction of the remaining budget used at time
t and the superscript 7" denotes the number of stages.

The multipliers S ) (t) are chosen based on a generalization of
the optimal policies for 7" = 1, 2 discussed in Section 3.1. It can
be seen that both of these optimal policies belong to the OLFC class
with 1 (0) = (1) = 1 and @ (0) determined according to
the exact procedure in (9). Note that the second stage in the 7" = 2
policy is identical to the 7" = 1 policy. For T' > 2, we follow the
same strategy of nesting the (7" — 1)-stage policy within the T'-stage
policy, setting B<T>(t) = ﬁ(T’l)(t —1)fort = 1,2,...,T —
1. We then optimize over the first-stage multiplier 57 (0). Define
J§T>(x(t)) to be the cost-to-go of a T-stage policy in this family
starting from time ¢ and state x(t). Then 57 (0) is given by

87(0) = arg min By {J7 7V (x(1) | x(0). 60X (0},
0<B(0)<1
(14)

where X" (0) = 1 under a uniform prior. Policies with an increasing
number of stages are determined recursively using (14) starting from
6(1)(0) = 1for T = 1. The expectation in (14) can be computed
by sampling from the distribution of y(1) and then simulating the
(T — 1)-stage policy starting from state x(1). These computations
can be done offline since they depend only on the initial state x(0)
and the previously determined policy of 1" — 1 stages.

The cost of the nested OLFC policies defined above improves
with the number of stages. The cost of the 7T'-stage policy is

By {5V (x(1) | x(0), 50X (0)}

1s)
using the fact that Jl(T) (x(1)) = J0<T71>(x(1)) by construction.
When 3(0) = 0, the observations y (1) are not taken, x(1) = x(0),
and J{" (x(0)) = J§" 7V (x(0)). It follows from (15) that

IS (x(0) < SV (x(0), T=2,3,..., (16

implying in particular that the nested policies for 1" > 2 improve
upon the optimal policy for 1" = 2.

JéT) (x(0)) = min

0<B(0)<1

4. NUMERICAL SIMULATIONS

We use numerical simulations to quantify the performance gains pre-
dicted by (16) for OLFC policies. We set () = 1000 and generate
signals and observations according to the model in Section 2. The
signal mean o is normalized to 1 and the signal standard deviation
oo is set to 1/4. The OLFC policies are compared to the optimal
non-adaptive policy, which under a uniform prior allocates one unit
of sensing effort to all components, and to distilled sensing (DS) [5].
For both OLFC and DS, the number of stages 7" is varied from 2 to
10 and the final estimate is p(7"). For DS, we use the allocation of
effort over stages suggested in [5] with equal first and last stages and
a geometric decrease by a factor of 3/4 for the intervening stages.

In Fig. 1, we plot estimation gains (i.e. reductions in MSE) rel-
ative to the non-adaptive policy as a function of SNR, defined as
101log,, (13 /o) in dB. Each point represents the average of 4000
simulations. For context, we also plot the gain of the oracle policy,
which has perfect knowledge of the ROI and distributes resources
uniformly over the ROI. Higher gains are achieved in general for
po = 0.01 since resources can be concentrated on fewer components
once the ROI is identified. The 10-stage OLFC policy improves
upon the 2-stage OLFC policy as expected with the largest gains
at intermediate SNR, although the gains are proportionally larger at
low SNR. Recall that the 2-stage OLFC policy is optimal for 7" = 2.
At high SNR, the OLFC policies approach the oracle gain, which in
turn approaches the sparsity factor 1/po. In contrast, the DS policies
saturate at significantly lower gains since they are not designed with
estimation performance in mind. While the 10-stage DS policy out-
performs the optimal two-stage policy at lower SNR, the 10-stage
OLFC policy has the best performance at all SNR.

Fig. 2 shows increases in estimation gains with the number of
stages T'. The incremental gains predicted by (16) diminish as 7" in-
creases. Allowing more stages is more beneficial at lower SNR and
higher sparsity, whereas at higher SNR most of the signal compo-
nents can be located in a single step and a two-stage policy performs
almost as well as a policy with many more stages. In all cases shown,
a 5-stage OLFC policy performs better than a 10-stage DS policy.

5. CONCLUSIONS AND FUTURE WORK

We have presented multistage resource allocation policies that im-
prove upon the optimal two-stage policy in [2] for sequential esti-
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Fig. 1. Estimation gain relative to non-adaptive allocation as a function of SNR for (a) po = 0.1 and (b) po = 0.01. The 10-stage open-loop
feedback control (OLFC) policy improves upon the 2-stage OLFC policy with maximum gains around 1 dB for pg = 0.1 and SNR = 10-20
dB, and 2.5-3 dB for pp = 0.01 and SNR = 10-15 dB. Note that the 2-stage OLFC policy is optimal for 7" = 2. As the SNR increases, the
proposed OLFC policies approach the oracle gain of 1/po and outperform distilled sensing (DS) by several dB.
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Fig. 2. Estimation gain as a function of the number of stages 7.
Gains diminish as 7" increases but less quickly at lower SNR and
higher sparsity. In all cases shown, our proposed open-loop feedback
control (OLFC) policy with 5 stages performs better than a 10-stage

distilled sensing (DS) policy.

mation of sparse signals. Demonstrating gains in a more realistic
example is part of ongoing work. The dynamic programming frame-
work introduced in this paper can potentially be leveraged to de-
velop tractable policies for other inference tasks such as detection or
a combination of detection and estimation. More general observation

models involving linear combinations may also be incorporated.
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