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Abstract

Many bioinformatics problems can implicitly depend on estimating large-scale
covariance matrix. The traditional approaches tend to giverise to high variance
and low accuracy estimation due to “overfitting”, and hence not completely sat-
isfactory. We cast the large-scale covariance matrix estimation problem into the
Bayesian hierarchical model framework, and introduce dependency between co-
variance parameters. We demonstrate the advantages of our approaches over the
traditional approaches using simulations and an exemplaryomics data analysis.

Estimating covariance matrix from high-throughput “omics” data is indispensable
for many tasks, notably for finding clusters in the data, whether of the hierarchical or
network flavor. The problem remains to be challenging due to the large number of
variablesp (such as genes or proteins) and the comparatively small number of sam-
plesn (such as conditions under which gene expression is measured). The existing
approaches that rely on the maximum likelihood estimation or the related unbiased
empirical covariance matrix suffer from low accuracy and high variance inherent in
any “large p, small n” type of data. A regularized and conditioned covariance matrix
would be a great improvement over the unconstrained simple estimation of the covari-
ance matrix in the high-throughput omics data setting. Estimation of such a matrix is
a difficult problem because relatively few observations do not provide adequate degree
of freedom to draw reliable statistical inference on tens ofthousands of correlation pa-
rameters. Proper constraints need to be imposed on these parameters to overcome this
difficulty.

There are two sets of existing approaches. One is based on thepairwise correla-
tion estimation followed by the variance reduction techniques such as bagging (Hastie
et al. 2001) and bootstrap aggregation (Breiman 1996). Representative work includes
the full order (also called Gaussian Graphical Modeling (GGM)) partial correlation es-
timation approach (Schafer and Strimmer 2005a). It introduced a Bayes model from
which all correlations are estimated using an Empirical Bayes method (Schafer and
Strimmer 2005a). Another is to obtain improved estimates ofthe covariance matrix via
shrinkage combined with analytic determination of the shrinkage intensity according
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to the Ledoit-Wolf theorem (Ledoit and Wolf, 2003). The authors showed that the new
regularized estimator greatly enhances inferences of geneassociation networks using
synthetic data (Schafer and Strimmer 2005b). Their approach is based on the assump-
tion that the omics data is independently and identically distributed (i.i.d)p-variate
observations sampled from ap-variate Gaussian distribution with the (p× p) covari-
ance matrix of interest. The assumption is plausible only for small sized homogenous
data because the underlying statistical distribution of larger sized heterogenous data
is often mixed (Yeunget al. 2001). In both approaches, dependency was introduced
among the correlation parameters but with different ways.

We advocate the framework of the first set of approaches sinceit does not reply on
the stringent assumption, and it’s usage has been demonstrated by numerous biological
examples. We improve over the existing Empirical Bayes method by providing a full
Bayesian treatment of the problem. In the Bayesian framework, we derive the posterior
distribution for each correlation parameter based on the observed then× p data matrix.
The posterior distributions allow the statistical inference of the correlation parameters
to be conveniently drawn.

In our previous work (Zhuet al. 2005), we described an error control procedure
based on correlation statistic that simultaneously controls statistical significance and
biological significance of the estimated covariance matrix. The correlation statistic
works reasonably well for the data with relatively large sample size. However, it has
poor accuracy for data with small sample size due to overfitting (Ledoit and Wolf 2004,
Schafer and Strimmer 2005b). Introducing some form of strong dependency among
correlation parameters can lead to improved accuracy in this small sample situation.
Many approaches to introducing dependency can be adopted. Bayesian hierarchical
models accomplish this introduction of dependency in a simple but effective manner.

The remainder of the paper is organized into five parts: Introduction of Bayesian
Hierarchical Model for large-scale covariance matrix estimation (Sec. 2); Simulation
studies of comparing the Bayesian estimator versus simple estimator (Sec 3); Analyz-
ing the galactose metabolism data using proposed Bayesian approach and compared
with the traditional approach (Sec 4); Conclusion and discussion (Sec 5).

1 The Bayesian Hierarchical Model of Covariance Ma-
trix

The framework of Bayesian hierarchical models is a powerfultechnique that allows for
high complexity of modeling structure without a large number of parameters (pairwise
correlation parameters in this context) (Gelmanet al. 2004). We assume the correla-
tion parameters areexchangeablemeaning that their joint distribution is invariant to
permutations of their indexes. It represents a kind of topological invariance that im-
poses prior assumptions on the location of high correlations in the network. We then
regularize variances of the marginal correlation densities by specifying a parent Gaus-
sian distribution from which marginal correlation parameters are sampled. Using a
prior population distribution we are able to introduce dependency into the parameters
that tends to avoid problems of overfitting. Using quantilesof posterior distributions
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of the correlation parameters provide a seamless combination of correlation estima-
tion and strength thresholding that can be used as an alternative to FDR-CI methods
(Benjamini and Yekutieli 2005, Zhuet al. 2005) for small samples.

Without loss of generality, we employ marginal correlationcoefficient to demon-
strate the Bayesian hierarchical model for large-scale (marginal) correlation matrix es-
timation. The model can be easily extended for large-scale partial correlation matrix
estimation, and we will discuss this issue in section 5. We use ρ to denote the true
correlation coefficient between a pair of gene expression profiles (Bickel and Doksum
2000). Specifically, letXg j (n) be then-th condition index of thei-th gene profile and let
SXgi ,Xgi

, SXgj ,Xgj
, andSXgi ,Xgj

are sample variances and covariance defined as:

SXgi ,Xgi
= (N−1)−1

N

∑
n=1

(Xgi(n)−Xgi )
2,

SXgj ,Xgj
= (N−1)−1

N

∑
n=1

(Xg j (n)−Xg j )
2,

SXgi ,Xgj
= (N−1)−1

N

∑
n=1

(Xgi(n)−Xgi)(Xg j (n)−Xg j ).

The true correlation coefficient is defined as

ρ =
E[SXgi ,Xgj

]
√

E[SXgi ,Xgi
]E[SXgj ,Xgj

]
, (1)

where E[.] is statistical expectation. ForGgene expression profiles in a gene microarray
sequence, there areΛ =

(G
2

)
of these correlation parametersρ that need to be estimated,

denoted asρλ,λ = 1, . . . ,Λ. We definêρλ as theλth sample correlation coefficient, and
Γ̂λ as the hyperbolic arc-tangent transformation ofρ̂λ. Then the transformed sample
correlation coefficientŝΓλ = atanh(ρ̂λ) are asymptotically Gaussian distributed with
means ofρλ and stabilized variance approximations ofσ2

λ = 1/(N−3) (Fisher 1923),
hereN is the sample size. We defineΓλ = atanh(ρλ) as the corresponding transformed
true correlation coefficients.

Our previous simulation studies showed that this variance approximation works
reasonably well even at a relatively small sample size (e.g.N < 10) (Zhuet al. 2005). In
this sequel we assume known variance of the transformed correlation matrix to reduce
computational complexity of the full Bayesian correlationmatrix estimation. In case of
unknown variances, the conditional posterior distribution can not generally be written
in closed form, for this reason, Markov Chain Monte Carlo (MCMC) techniques might
be applied but at high cost.

From our assumption that the{ρλ}Λ
λ=1 are exchangeablewe model{ρλ}Λ

λ=1 as
random variables drawn from a Gaussian distribution with unknown hyperparameters
(α,β2) (Fig. 1).

p(Γ1, . . . ,ΓΛ|α,β2) =
Λ

∏
λ=1

P(Γλ|α,β2), (2)
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Figure 1:Bayesian hierarchical model structure (Gelmanet al. 2004, Chapter V).

whereP(Γλ|α,β2) is a Gaussian distribution with meanα and varianceβ2.
In order to generate conditional posterior distributionsp(Γλ|α,β,y) for each pa-

rameterΓλ,λ = 1, . . . ,Λ, we performed simulation steps as follows: (Gelmanet al.
2004, Chapter V) (refer to Appendix for details):

• Assign prior distribution forβ, e.g. uniform prior distributionp(β) ∝ 1. Note,
the choice of uniform prior yields aproperposterior density while othernonin-
formativeprior distributions such as,p(β) ∝ β−1 do not. (refer to Appendix for
mathematical proof.)

• Drawβ from posterior distributionp(β|y).

p(β|y) ∝
p(β)∏Λ

λ=1N(Γ̂λ|α̂,σ2
λ + β2)

N(α̂|α̂,Vα)
(3)

∝ p(β)V1/2
α

Λ

∏
λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

), (4)

whereα̂ andVα are defined as:

α̂ =
∑Λ

λ=1
1

σ2
λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

, (5)

and

V−1
α =

Λ

∑
λ=1

1

σ2
λ + β2

. (6)

See Appendix for detailed derivation ofp(β|y).
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• Draw α from p(α|β,y). Combining the data with the uniform prior density
p(α|β) yields,

p(α|β,y) ∼ N(α̂,Vα). (7)

whereα̂ is a precision-weighted average of theΓ̂’s andVα is the total precision.
Note, we define precision as inverse of variance.

• DrawΓλ from p(Γλ|α,β,y)

p(Γλ|α,β,y) ∼ N(Θ̂λ,Vλ), (8)

whereΘ̂λ,Vλ are defined as:

Θ̂λ =

1
σ2

λ
Γ̂λ + 1

β2 α
1

σ2
λ
+ 1

β2

, (9)

and

Vλ =
1

1
σ2

λ
+ 1

β2

. (10)

The atanh-transformed posterior mean correlation coefficientΘ̂λ is a precision-
weighted average of the prior population meanα and theλth sample mean̂Γλ.

The posterior distribution (Eq. 8) contains all the currentinformation about the
atanh-transformed parameterρλ. In particular, theposterior meanandposterior inter-
val are derived as the following:

E[Γλ] = E[atanh(ρλ)]

= atanh(E[ρλ]) = Θ̂λ. (11)

Applying function tanh to both sides of the Eq. 11, we have,

E[ρλ] = tanh(Θ̂λ). (12)

For deriving the posterior interval of theρλ, we used the fact that the cumulative

density function (cdf) ofΓλ
′ = Γλ−Θ̂λ√

Vλ
is Φ, the cdf of standard Gaussian random vari-

able. Hence, we define its quantile function asΦ−1, and write down the(1−q)×100%
posterior interval of the parameterΓλ

′:

IΓλ
′
(q) : [Φ−1(q/2),Φ−1(1−q/2)]. (13)

After some algebraic derivation and based on the fact that tanh is a monotonically
increasing function, we have a(1−q)×100% posterior interval for the parameterρλ:

Iρλ(q) : [tanh(
√

Vλ(Φ−1(q/2))+ Θ̂λ), tanh(
√

Vλ(Φ−1(1−q/2))+ Θ̂λ)]. (14)
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2 Simulation Studies

2.1 Comparisons in terms of Confidence Interval, Mean Squared
Error, and Variance

We evaluated the performance of full Bayesian hierarchicalmodel estimation of cor-
relations and compared with the frequentist method in Zhuet al. 2005. We define the
frequentist CI as follows: If L and U are statistics (i.e., observable random variables)
whose probability distribution depends on some unobservable parameterθ, and

Pr(L ≤ θ ≤U) = q,q∈ (0,1),

then the random interval [L,U] is a(1− q)× 100%confidence intervalfor θ. A fre-
quentist interval may strictly be interpreted only in relation to a sequence of similar
inferences that might be made in repeated trials, while aBayesian (confidence) interval
for an unknown quantity of interest can be directly regardedas having a high probabil-
ity of containing the unknown quantity. Therefore, Bayesian approach where a reliable
prior is available, facilitates a common-sense interpretation of statistical conclusions
(Gelmanet al. 2004).

We first compared two point estimators of correlations in terms of the average width
of the individual frequentist (Pearson) CI’s for the correlation parameters versus that
of the posterior CI’s for the same set of correlation parameters at the corresponding
significance levels. Obviously, more concentrated (narrower) CI’s, at the given signif-
icance level, are superior to less concentrated CI’s. It is clear from Fig. 2 and Fig.
3 that the average Bayesian posterior CI’s are uniformly narrower than the average
freqentist CI’s in both small (N = 4) and larger sample data (N = 20). This dramatic
contrast indicates the advantages of Bayesian approach forsmall sample size problems
(Fig. 3). From Eqs. 22 and 3, the posterior distributions of the meanp(α|β,y) and
of the variancep(β|y) are decreasing functions ofΛ, i.e., the number of correlation
parameterΓ′s. Therefore, narrower posterior CI’s are expected for larger Λ. On the
other hand, wider CI’s are expected when transforming individual frequentist CI’s into
simultaneous FDR-CI’s.

We also compared these two correlation estimators in terms of Mean Squared Error
(MSE) and variance criteria. Similar to the definition in Zhuet al. 2005, the MSE is
defined as:

MSE=
1
Λ

Λ

∑
λ=1

(ρ̂λ −ρλ)
2, (15)

whereρλ is the true population correlation, andρ̂λ is the sample correlation estimator,
λ is the parameter index, andΛ is the total number of parameters.

The simulation steps proceed as follows:

• DrawΛ population correlations from a normal distribution with known mean (α)
and variance (β) (hyperparameters) as defined in Eq. 2.

• Re-estimate theΛ parameters either separately using the frequentist (Pearson)
correlation estimator or using Bayesian hierarchical model. For the Bayesian
approach, the correlation estimator is the posterior mean (Eq. 11).
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Figure 2:Comparison of average posterior CI’s versus average individual frequentist CI’s over
a wide range of significance levels at a small sample size (N = 4).

• Compare the two estimators in terms of both MSE and variance.An estimator
with low MSE and variance are considered to be superior.

Fig. 4 plots MSE’s (upper panel) and variances (lower panels) of Bayesian corre-
lation estimators and frequentist (Pearson) correlation estimators at a small sample size
(e.g.N = 4) and a larger sample size (e.g.N = 20) over 500 runs of simulations. It is
evident in upper panel of the Fig. 4 that the MSE of Bayesian estimators is about three-
fold smaller than the frequentist estimators for larger sample size. Similarly to the CI’s
comparisons, this indicates the advantages of the Bayesiancorrelation estimator for the
small sample size problems (Fig. 4). The lower panel of the Fig. 4 plots variances of
the Bayesian correlation estimator and the frequentist correlation estimator. Again, the
comparison of variances follow the same trend as that of the MSE’s (Fig. 4).

It is worth mentioning that the above simulations were biased towards the assump-
tions of Bayesian hierarchical model. In order to test robustness of our algorithm to
model mismatch, we also generated data using the uniform distribution but imple-
mented with Pearson CI’s and Bayesian CI’s that assume mismatched Gaussian and
hierarchical models, respectively. In Fig. 5, we compared the average width of in-
dividual Pearson CI’s with that of individual Bayesian intervals. The superior perfor-
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Figure 3:Comparison of average posterior CI’s versus average individual frequentist CI’s over
a wide range of significance levels at a larger sample size (N = 20).

mance of hierarchical Bayesian estimator (Fig. 2, Fig. 3) isclearly offset by the
invalid model assumption in that average Bayesian CI’s are uniformly wider than av-
erage frequentist CI’s (Fig. 5). This simulation results highlight the importance of
Fisher transformation.

2.2 Evaluation of the Bayesian Hierarchical Model

In order to evaluate our Bayesian approach in terms of error control and compare
with the frequentist counterpart, we simulated pairwise gene expression data based
on known population covariances, and then simulated Bayesian intervals for each pa-
rameter from the hierarchical model. The actual False Positive (FP) at a given MAS
level is calculated as a ratio of the number of screened gene pairs whose corresponding
population correlation parametersρi, j are less than the MAS level specified, divided by
the total number of gene pairs. The actual MAS is the minimum true discovery of pop-
ulation correlationρi, j among the screened pairs. We specified 16 pairs of (FP,MAS)
criteria (Four FP levels: 0.2, 0.4, 0.6, 0.8; Four MAS levels: 0.2, 0.4, 0.6, 0.8), and
each is plotted as a different upper case Roman alphabet (Red) in Fig. 6. The 16

8



Bayesian
 N=20

Marginal
 N=20

Bayesian
 N=4

Marginal
 N=4

0.
05

0.
20

Estimation Comparison: Bayesian vs. Marginal
 MSE:upper, Variance:lower

Bayesian
 N=20

Marginal
 N=20

Bayesian
 N=4

Marginal
 N=4

0.
00

0.
15

0.
30

Figure 4:Mean Squared Errors (MSE’s) and Variances of the Bayesian estimations versus the
simple estimations over 500 runs of simulations.

corresponding pairs of actual (FP,MAS) criteria are also shown in Fig. 6 using the
same set of lower case Roman alphabets (Blue). It can be observed that generally the
actual FP’s (lower case) fall further below the specified constraint (upper case) than
those did in Fig. 4 of Zhuet al. 2005 (Fig. 6), and the actual MAS’s (lower case) fall
above the specified constraints (upper case). The more dramatic deviations of actual
FP’s from their specified levels are due to multiple factors,such as, lack of multiplicity
adjustment and the conservative asymptotic approximation. Simulations using some
other combinations ofN andΛ, as compared with the FDR-CI approach, give rise to
the similar results. We conclude that Bayesian hierarchical model yields better cor-
relations estimates. However, the false positive rate is overestimated by the Bayesian
procedure and this leads to overly stringent error control.
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Figure 5:Comparison of average CI’s when the Bayesian model is unsustained.

3 Applications to Network Construction and Seeded Clus-
tering

3.1 Constructing Relevance Networks

We applied the Bayesian hierarchical model to high-throughput data and compared it
with the frequentist approach using the same subset of yeastgalactose catabolism two-
color microarray data that was described in Zhuet al. 2005. The data contains 997
gene expression profiles across 20 genetic/physilogical conditions that was identified
by Ideker et al using the generalized likelihood ratio test (Idekeret al. 2000).

Following the procedure described in section 1, we simulated the empirical pos-
terior distribution for each of the

(997
2

)
= 496,506 correlation parametersρλ. The

(1−q)×100%posterior intervalfor each ‘parameter’ was obtained by thresholding
q/2×100% and(1−q/2)×100% of it’s quantile function (Eq. 14). Analogous to the
FDR-CI screening procedure described in
citealtZhu05a, a network edge is declared to be present at the significance levelq and
the MAS levelcormin if it’s posterior CI does not intersect with[−cormin,cormin].
We sought to compare the two approaches in terms of network topological properties
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Figure 6:Evaluation of error control of the Bayesian hierarchical model. Sample sizeN = 20,
andΛ = 1000 correlation coefficients were simulated. Simulationsusing smaller sample size
data yield more stringent error control.

that are interesting to the biologists. In particular, we compared the biological func-
tional annotations of the top hub genes of the two networks. In Zhuet al. 2005, we
controlled FDR at 5%, and constructed networks at five MAS levels, i.e. 0.5, 0.6, 0.7,
0.8, 0.9. Correspondingly, 18135, 9337, 4151, 1346, 133 edges weredeclared to be
present using Pearson correlation statistic alone. Controlling the significance level at
5%, we screened the same set of numbers of edges using Bayesian hierarchal model to
construct the five networks that are more comparable to thosein Zhuet al. 2005. A list
of stable hub genes were obtained by calculating and sortingthe average rank of each
vertex (gene) degree over five networks (Table 1).

Comparing the Table 1 with the that was reported in Zhuet al. 2005, note that
the GO biological process annotation “protein biosynthesis[GO:0006412]” and/or it’s
children annotations “hypusine biosynthesis[GO:0046515]”, “branched chain family
amino acid biosynthesis[GO:0009082]”, and “tryptophan biosynthesis[GO:0000162]”
are significantly enriched in both tables. This is consistent with the established fact
that protein biosynthesis plays a key role in galactose metabolism (Berget al. 2006).
The underlying biological mechanism is that many types of proteins need to be syn-
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Table 1: Top twenty “hub genes” from Bayesian hierarchical model applied to the galactose
metabolism data (Idekeret al. 2000). The rank of each gene is the average rank over five different
networks with the same set of edge numbers as in Table 1 of Zhuet al. 2005. The highest ranked
gene is the most connected and stable gene under varying constraints of (FP,MAS).

Gene Name Average Rank GO Annotation
YJR070C 4 hypusine biosynthesis[GO:0046515]
YBR043C 4.4 multidrug transport[GO:0006855]

AGA2 4.4 agglutination[GO:0000771]
RPP0 4.6 protein biosynthesis[GO:0006412]

RPL26A 4.6 protein biosynthesis[GO:0006412]
YOR263C 5 biological process unknown

TRP2 5.4 tryptophan biosynthesis[GO:0000162]
ASC1 5.6 regulation of protein biosynthesis[GO:0006417]

YIL064W 5.6 biological process unknown
BOP2 5.6 biological process unknown
GAP1 5.8 amino acid transport[GO:0006865]
RPS2 6 protein biosynthesis[GO:0006412]

RPL11A 6.2 protein biosynthesis[GO:0006412]
SSF2 6.2 ribosomal subunit assembly[GO:0042257]
ILV5 6.2 branched chain family amino acid biosynthesis[GO:0009082]

YPL185W 6.2 biological process unknown
PCK1 6.4 hexose biosynthesis[GO:0019319]

YDR100W 6.4 biological process unknown
YMR291W 6.6 biological process unknown

ATC1 6.6 bipolar bud site selection[GO:0007121]

thesized upon switching from primary carbon source (glucose) to secondary carbon
source (galactose) or the other way around (Wieczorkeet al. 1999).

A salient feature in Table 1 that is not possessed in that of Zhu et al. 2005 is that it
includes several transporters and regulators such as GAP1[GO:0006865],YBR043C[GO:0006855],
and ASC1[GO:0006417] etc. These proteins are essential fora smooth transition from
glucose to galactose (Berget al. 2006, Wieczorkeet al. 1999). In addition, Table 1
also includes several uncharacterized genes that are hypothesized to be important for
galactose metabolism. In general, the Bayesian data analysis results not only conform
to the previous frequentist data analysis results, but alsoprovide additional justification
for the biological mechanism and motivation for illustrating new gene functions.

3.2 Seeded Clustering

In parallel with the application of the two-stage algorithmto rediscover the galactose
metabolic pathway reported in Zhuet al. 2005, we also applied the Bayesian hierarchi-
cal model to perform the seeded (one-to-all) clustering. Performance was evaluated ac-
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cording to the relative ranks of a handful of known members ofthe galactose metabolic
pathway. The gene ranks were used instead of p-values due to substantial differences
of the two statistical frameworks.

We selected gene “GAL10” as the “seed gene” in order to compare the results with
those reported in Zhuet al. 2005. The comparison was made at a large sample sizeN =
20 and a smaller sample sizeN = 4 respectively aiming to examine the performance
of the two methods as a function of the sample size. In the former, we used all the 20
genetic/physiological conditions under which gene expression levels were measured
(Table 2); In the later, we sampled a small subset (e.g.N = 4) of these 20 conditions
each time without replication and repeated a number of timesto obtain a “bagged”
(stable) estimation of gene ranks in the seeded clusters (Table 2).

When all the 20 observations were used, the two approaches give rise to very similar
seeded clusters indicating that the Bayesian hierarchial model approach is as powerful
as the frequentist approach for relatively large sample size problems. As shown in
Table 2, all of the top 20 seeded gene pairs have the identicalrank across two methods.
When multiple random subset data were used, many genes have dissimilar average
ranks across the two approaches. Among the top five genes (GAL10, GAL7, GCY1
GAL1, GAL2) screened by the seeded clustering using “GAL10”as the seed gene (see
Zhu et al. 2005 and Table 3), 4 out of 5 (GAL10, GAL7, GAL1, GAL2) genes rank
higher in Bayesian estimation than those in marginal estimation, and the remaining
“GCY1” gene receives tie ranks. In addition, our results provide strong experimental
motivation for examining the genes that received higher ranks in the Bayesian analysis,
for example, gene YEL057C. The evaluation using “GAL7” as the “seed gene” gave
the similar results.

4 Discussion

Numerous previous studies have demonstrated the suitability of using gene co-expression
networks for functional discoveries (e.g. Butte and Kohane2000, Zhouet al. 2002).
There are different approaches to building the co-expression network - in particular,
different ways of estimating correlation matrix, of testing significance of these correla-
tions, and of controlling the error rate have been proposed.We emphasize that our goal
is to estimate correlation matrix with reduced variance andimproved accuracy.

Towards this goal, the major improvement that we have made isthat we provided a
full Bayesian treatment that combines the correlation estimation and testing seamless.
For the estimation, we improve over existing approaches by providing a regularized full
Bayesian estimation. For the hypothesis test, the main improvement over the existing
approaches is that we test whether the magnitude correlation is different from a non-
zero positive number instead of 0. This allows for more stringent control of biological
significance. For example, in small-sample data the traditional test declares many small
but statistically significant correlations to be biologically relevant. However, these may
be caused by non-biological effects such as spatial and positional effects of genes along
the chromosome (Klugeret al. 2003).

Our framework is sufficiently general to be extended to many different correlation
measures, such as full order (Schafer and Strimmer 2005a) and limited order (Fuente
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Table 2:Comparison of Bayesian estimations versus Marginal estimations using “seeded” clus-
tering at a small and a larger sample sizes. In the former, theranks were averaged over 100
estimations, in each of which a subset data of sample sizeN = 4 was randomly sampled from
the whole data of sample sizeN = 20. In the later, the ranks were obtained using the whole data
of sample sizeN = 20.

N = 4 N = 20
Gene1 Gene2 Bayesian Frequentist Gene1 Gene2 Bayesian Frequentist
GAL10 GAL1 5.25 5.35 GAL10 GAL7 1 1
GAL10 GAL2 6.65 7.4 GAL10 GCY1 2 2
GAL10 GAL7 6.7 6.85 GAL10 GAL1 3 3
GAL10 GCY1 7.7 7.7 GAL10 GAL2 4 4
GAL10 YOR121C 8.05 7.8 GAL10 YOR121C 5 5
GAL10 YEL057C 8.55 10.6 GAL10 YEL057C 6 6
GAL10 SSU1 8.6 7.65 GAL10 YDR010C 7 7
GAL10 FKS1 8.75 8.25 GAL10 SSU1 8 8
GAL10 PCL10 9.95 7.85 GAL10 PCL10 9 9
GAL10 YJL212C 11 8.85 GAL10 YJL212C 10 10
GAL10 MET14 11.1 10.4 GAL10 FKS1 11 11
GAL10 YDR010C 11.3 10.9 GAL10 MET14 12 12
GAL10 MCM1 11.35 12.3 GAL10 MCM1 13 13
GAL10 EXG1 11.85 13.1 GAL10 EXG1 14 14
GAL10 CRH1 12.05 12.95 GAL10 ARG1 15 15
GAL10 ARG7 12.8 12.3 GAL10 CRH1 16 16
GAL10 YPR157W 13.2 15.35 GAL10 PRY2 17 17
GAL10 PRY2 14.4 13.3 GAL10 YPR157W 18 18
GAL10 YKR012C 14.6 16.25 GAL10 YKR012C 19 19
GAL10 CPA2 16.15 14.85 GAL10 CPA2 20 20
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Table 3: Clustering co-expressed genes with Bayesian hierarchicalmodel at the significance
level 5% using “GAL10” as the “seed gene”. Known genes in the pathway are in bold face
(N = 20).

Gene1 Gene2 2.5% 50% 97.5%
GAL10 GAL7 0.699967273 0.843269806 0.919377659
GAL10 GCY1 0.695895931 0.83904824 0.917448689
GAL10 GAL1 0.685628575 0.824914454 0.906837751
GAL10 GAL2 0.664031223 0.817631953 0.903466008
GAL10 YOR121C 0.652511568 0.814118521 0.901500909
GAL10 YDR010C 0.574348042 0.77081336 0.875409524
GAL10 YEL057C 0.582835775 0.769743768 0.880618535
GAL10 SSU1 0.584487078 0.769335123 0.879019784
GAL10 PCL10 0.552529392 0.751817344 0.871763977
GAL10 YJL212C 0.543601479 0.747480187 0.862433646
GAL10 MET14 0.525320838 0.723128249 0.852859396
GAL10 FKS1 0.515021843 0.719874179 0.854759107
GAL10 MCM1 0.474061933 0.697313988 0.834101087
GAL10 EXG1 0.446476056 0.666889754 0.818233838
GAL10 ARG1 0.382292245 0.63708452 0.807736956
GAL10 CRH1 0.344971636 0.594425382 0.773435199
GAL10 PRY1 0.299057555 0.588919717 0.774038296
GAL10 YPR157W 0.29645952 0.576125639 0.765975044
GAL10 CPA2 0.303356019 0.571475575 0.745218878
GAL10 YKR012C 0.262900828 0.566724743 0.748081117
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et al. 2004) partial correlation statistics. The rational is that these correlation statistics
are asymptotically normal distributed through transformations (Hotelling 1953). Our
approach is also not computational cumbersome. In derivingthe posterior distribu-
tions of the correlation ‘parameters’, the conjugate priorand likelihood (i.e. Gaussian
parental distribution) were assumed in order to keep the posterior distributions in a
closed form. The computational load is thus greatly reducedand we avoided MCMC
techniques, making the application to the larger networks become more feasible.

As discussed in Zhuet al. 2005, one should seek a good combination of level of
significance and correlation strength. The Bayesian approach prescribed here imposes
a model of the parameters as random variables sampled from a parental population
distribution. This model structure allows the regularization of variances by introduc-
ing dependency between the parameters. Using simulations,we have shown the su-
perior performance of Bayesian hierarchical model approach to marginal estimation
approach, in terms of width of the CI’s, MSE and variance, especially for small sample
size. The posterior distribution provides a natural way of correlation thresholding that
bridges between statistical correlation and biological relevancy.

Appendix

Selecting Prior Distribution

Here we present the mathematical details of choosing a prioras described in section
3.1. They were adapted from the solution to exercises 2.8 in Gelmanet al. 2004.

We need to show the joint posterior densityp(Γ,α,β|y) is improper if we select
the hyperprior distributionp(β) ∝ β−1, while p(Γ,α,β|y) is proper if we select the
hyperprior distributionp(β) ∝ 1.

We first factor the joint posterior distributionp(Γ,α,β|y) ∝ p(β|y)p(α|β,y)p(Γ|α,β,y).
Note thatp(α|β,y) andp(Γ|α,β,y) have proper densities. The joint posterior density
p(Γ,α,β|y) is proper if and only if the marginal densityp(β|y) is proper, i.e. has a
finite integral forβ from 0 to∞.

In Eq. 3.3, asβ approaches 0, everything multiplyingp(β) approaches a nonzero
constant limitC(y). Thus the behavior ofp(β|y) near 0 is determined by the prior
densityp(β). It is easy to show that the functionp(β) ∝ 1/β is not integrable for any
small interval around 0, and so it leads to a nonintegrable posterior density.

If prior density p(β) ∝ 1, then the posterior density is integrable near zero. We
need to examine the behavior asβ → ∞ and find an upper bound that is integrable.
The exponential term is clearly less than or equal to 1. We canrewrite the remaining
terms as(∑J

j=1[∏k6= j(σ2
k +β2)])−1/2. Forβ > 1 we make this quantity bigger by drop-

ping all of theσ2 to yield (Jβ2(J−1))
−1/2

. An upper bound onp(β|y) for β large is
p(β)J−1/2/βJ−1. Whenp(β) ∝ 1, this upper bound is integrable ifJ > 2, and sop(β|y)
is integrable ifJ > 2.
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Deriving Posterior Distribution p(β|y)
Here we present the mathematical details of deriving posterior distribution p(β|y) as
described in section 3.1. They were adapted from Chapter V ofGelmanet al. 2004.

We factor the marginal posterior density of the hyperparameters as follows:

p(α,β|y) = p(α|β,y)p(β|y), (16)

which is equivalent to:

p(β|y) =
p(α,β|y)
p(α|β,y)

. (17)

We then derivep(α,β|y) andp(α|β,y) respectively as the following. For hierarchical
model, we can simply consider the information supplied by data about the hyperpa-
rameters directly:

p(α,β|y) ∝ p(α,β)p(y|α,β). (18)

For many problems, decomposition in Eq. 18 is of no help sincep(y|α,β) cannot gen-
erally be written in closed form. For the Gaussian distribution, the marginal likelihood
has a particularly simple form. The marginal distributionsof the sample correlation̂Γλ
are independent (but not identically distributed) Gaussian:

p(Γ̂λ|α,β) ∝ N(α,σ2
λ + β2). (19)

Thus we can write the marginal posterior density as

p(α,β|y) ∝ p(α,β)
Λ

∏
λ=1

N(Γ̂λ|α,σ2
λ + β2). (20)

From inspection of Eq. 20 withβ assumed known, and with a uniform conditional
prior densityp(α|β), wherep(α|β,y) is also Gaussian, i.e.

p(α|β,y) ∝ N(α̂,Vα), (21)

where

α̂ =
∑Λ

λ=1
1

σ2
λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

, (22)

and

V−1
α =

Λ

∑
λ=1

1

σ2
λ + β2

. (23)

α̂ is a precision-weighted average ofΓ’s andVα is the total precision. We define preci-
sion as inverse of variance. From Eqs. 17, 20 and 21,

p(β|y) =
p(α,β|y)
p(α|β,y)

(24)

∝
p(β)∏Λ

λ=1N(Γλ|α,σ2
λ + β2)

N(α|α̂,Vα)
(25)
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This identity holds for any value ofα, in particular, it holds if we setα to α̂, which
makes evaluation of the expression quite simple.

p(β|y) ∝
p(β)∏Λ

λ=1N(Γ̂λ|α̂,σ2
λ + β2)

N(α̂|α̂,Vα)
(26)

∝ p(β)V1/2
α

Λ

∏
λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

), (27)

whereα̂ andVα are defined in Eqs. 22 and 23. Both expressions are functions of β,
which means thatp(β|y) is a complicated function ofβ.
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