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Abstract

Many bioinformatics problems can implicitly depend onestfing large-scale
covariance matrix. The traditional approaches tend to gseto high variance
and low accuracy estimation due to “overfitting”, and henoe gcompletely sat-
isfactory. We cast the large-scale covariance matrix edion problem into the
Bayesian hierarchical model framework, and introduce deéeecy between co-
variance parameters. We demonstrate the advantages opjuaaghes over the
traditional approaches using simulations and an exemplaigs data analysis.

Estimating covariance matrix from high-throughput “onfidata is indispensable
for many tasks, notably for finding clusters in the data, Whebf the hierarchical or
network flavor. The problem remains to be challenging duéhé&large number of
variablesp (such as genes or proteins) and the comparatively small auoftsam-
plesn (such as conditions under which gene expression is megsufé@ existing
approaches that rely on the maximum likelihood estimatipthe related unbiased
empirical covariance matrix suffer from low accuracy anghhvariance inherent in
any “large p, small n” type of data. A regularized and comdliid covariance matrix
would be a great improvement over the unconstrained singpieation of the covari-
ance matrix in the high-throughput omics data setting.nizstion of such a matrix is
a difficult problem because relatively few observations dbprovide adequate degree
of freedom to draw reliable statistical inference on tenthofisands of correlation pa-
rameters. Proper constraints need to be imposed on themagi@rs to overcome this
difficulty.

There are two sets of existing approaches. One is based qrativése correla-
tion estimation followed by the variance reduction teclueis|jsuch as bagging (Hastie
et al 2001) and bootstrap aggregation (Breiman 1996). Reptasenwork includes
the full order (also called Gaussian Graphical Modeling §¥partial correlation es-
timation approach (Schafer and Strimmer 2005a). It intoedua Bayes model from
which all correlations are estimated using an Empirical ésagnethod (Schafer and
Strimmer 2005a). Another is to obtain improved estimateébh@ftovariance matrix via
shrinkage combined with analytic determination of the rgtage intensity according



to the Ledoit-Wolf theorem (Ledoit and Wolf, 2003). The aurthshowed that the new
regularized estimator greatly enhances inferences of ges@ciation networks using
synthetic data (Schafer and Strimmer 2005b). Their appraloased on the assump-
tion that the omics data is independently and identicalbtriiuted (i.i.d) p-variate
observations sampled frompmvariate Gaussian distribution with the & p) covari-
ance matrix of interest. The assumption is plausible onlysioall sized homogenous
data because the underlying statistical distribution ajda sized heterogenous data
is often mixed (Yeungpt al. 2001). In both approaches, dependency was introduced
among the correlation parameters but with different ways.

We advocate the framework of the first set of approaches #idoes not reply on
the stringent assumption, and it's usage has been demimusthyanumerous biological
examples. We improve over the existing Empirical Bayes webthy providing a full
Bayesian treatment of the problem. In the Bayesian framlewes derive the posterior
distribution for each correlation parameter based on tiseted the x p data matrix.
The posterior distributions allow the statistical infecerof the correlation parameters
to be conveniently drawn.

In our previous work (Zhtet al. 2005), we described an error control procedure
based on correlation statistic that simultaneously cdmstatistical significance and
biological significance of the estimated covariance matithe correlation statistic
works reasonably well for the data with relatively large géarsize. However, it has
poor accuracy for data with small sample size due to ovaditiiedoit and Wolf 2004,
Schafer and Strimmer 2005b). Introducing some form of gfrd@pendency among
correlation parameters can lead to improved accuracy sdmall sample situation.
Many approaches to introducing dependency can be adoptagesin hierarchical
models accomplish this introduction of dependency in a krbpt effective manner.

The remainder of the paper is organized into five parts: thtction of Bayesian
Hierarchical Model for large-scale covariance matrixrastion (Sec. 2); Simulation
studies of comparing the Bayesian estimator versus singpiaa&tor (Sec 3); Analyz-
ing the galactose metabolism data using proposed Bayepjaoach and compared
with the traditional approach (Sec 4); Conclusion and dismn (Sec 5).

1 The Bayesian Hierarchical Model of Covariance Ma-
trix

The framework of Bayesian hierarchical models is a poweeftthnique that allows for
high complexity of modeling structure without a large numbfparameters (pairwise
correlation parameters in this context) (Gelnedral. 2004). We assume the correla-
tion parameters arexchangeableneaning that their joint distribution is invariant to
permutations of their indexes. It represents a kind of togigkl invariance that im-
poses prior assumptions on the location of high correlatiorthe network. We then
regularize variances of the marginal correlation dershigspecifying a parent Gaus-
sian distribution from which marginal correlation paraerstare sampled. Using a
prior population distribution we are able to introduce degency into the parameters
that tends to avoid problems of overfitting. Using quantiiéposterior distributions



of the correlation parameters provide a seamless combinafi correlation estima-
tion and strength thresholding that can be used as an diternna FDR-CI methods
(Benjamini and Yekutieli 2005, Zhet al. 2005) for small samples.

Without loss of generality, we employ marginal correlatamefficient to demon-
strate the Bayesian hierarchical model for large-scaledimal) correlation matrix es-
timation. The model can be easily extended for large-scattgb correlation matrix
estimation, and we will discuss this issue in section 5. Wepi® denote the true
correlation coefficient between a pair of gene expressiofiles (Bickel and Doksum
2000). Specifically, Iexgj(m be then-th condition index of thé-th gene profile and let
S ngj Xg; andSy, Xg are sample variances and covariance defined as:
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The true correlation coefficient is defined as
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where H.] is statistical expectation. F@& gene expression profiles in a gene microarray
sequence, there afe= (2) of these correlation parametgrthat need to be estimated,
denoted ap),A = 1,...,A. We defingd, as thekth sample correlation coefficient, and
[\ as the hyperbolic arc-tangent transformatiopf Then the transformed sample
correlation coefficient$ , = atanh{p,) are asymptotically Gaussian distributed with
means op, and stabilized variance approximationsrﬁf: 1/(N—3) (Fisher 1923),
hereN is the sample size. We defifig = atankip, ) as the corresponding transformed
true correlation coefficients.

Our previous simulation studies showed that this variamg@aimation works
reasonably well even at a relatively small sample size (¢g.10) (Zhuet al. 2005). In
this sequel we assume known variance of the transformedlation matrix to reduce
computational complexity of the full Bayesian correlatioatrix estimation. In case of
unknown variances, the conditional posterior distributian not generally be written
in closed form, for this reason, Markov Chain Monte Carlo (MC) techniques might
be applied but at high cost.

From our assumption that thigoy }{_, are exchangeablave model{p,}{_, as
random variables drawn from a Gaussian distribution witknown hyperparameters

(o, B?) (Fig. 1).
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Figure 1:Bayesian hierarchical model structure (Gelneaial. 2004, Chapter V).
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whereP(I"y |a, B?) is a Gaussian distribution with mearand variancg?.

In order to generate conditional posterior distributigri,|a,B,y) for each pa-
rameter,,A = 1,..., A, we performed simulation steps as follows: (Gelnetral
2004, Chapter V) (refer to Appendix for details):

e Assign prior distribution fof3, e.g. uniform prior distributiorp(f) 0 1. Note,
the choice of uniform prior yields properposterior density while otharonin-
formativeprior distributions such ag(B) 0 B~ do not. (refer to Appendix for
mathematical proof.)

e Draw 3 from posterior distributiomp(B|y).

A N(Ty|d,02 + B2
o(Bly) O p(B)HANl(dTaT\\'/Z)GA—FB) 3)

A r ~)2
1/2 2 an—1/2 (M —a)

whered andVy are defined as:
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See Appendix for detailed derivation pfp|y).



e Draw a from p(a|B,y). Combining the data with the uniform prior density

p(a|B) yields,
p(aley) NN(G,VG) (7)

whered is a precision-weighted average of e andV, is the total precision.
Note, we define precision as inverse of variance.

e Drawl) from p(I)|a,B,y)
p(Malo,B,Y) ~ N(©y, Vi), 8)

Where(:);\,v;\ are defined as:
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The atanh-transformed posterior mean correlation coelfﬁ@;\ is a precision-
weighted average of the prior population meaand thexth sample meah,.

The posterior distribution (Eq. 8) contains all the curriefibrmation about the
atanh-transformed paramefsy. In particular, theposterior mearandposterior inter-
val are derived as the following:

€[] = Elatantip,)]
— atanhiElp]) = . (11)

Applying function tanh to both sides of the Eq. 11, we have,
Elpa] = tanh(©y,). (12)

For deriving the posterior interval of th®,, we used the fact that the cumulative

density function (cdf) of’)/ = ri/_eh is ®, the cdf of standard Gaussian random vari-

able. Hence, we define its quantile functiortas', and write down thél — q) x 100%
posterior interval of the parametey’:

1™ (q) : [@*(a/2), 91— q/2)). (13)

After some algebraic derivation and based on the fact thdt ta a monotonically
increasing function, we have(a — q) x 100% posterior interval for the paramepgr.

1P2(q) : [tanh(/ VA (®71(q/2)) + ©y), tanh(\ VA (@ 1 (1-q/2)) +©))].  (14)



2 Simulation Studies

2.1 Comparisons in terms of Confidence Interval, Mean Squam
Error, and Variance

We evaluated the performance of full Bayesian hierarchivadlel estimation of cor-

relations and compared with the frequentist method in &hal. 2005. We define the

frequentist Cl as follows: If L and U are statistics (i.e.sebvable random variables)
whose probability distribution depends on some unobsésvadramete6, and

Pr(L<6<U)=q,9<(0,1),

then the random interval [L,U] is 6l — g) x 100%confidence intervaior 6. A fre-
quentist interval may strictly be interpreted only in ra@datto a sequence of similar
inferences that might be made in repeated trials, whBayesian (confidence) interval
for an unknown quantity of interest can be directly regaraetaving a high probabil-
ity of containing the unknown quantity. Therefore, Bayasapproach where a reliable
prior is available, facilitates a common-sense interpi@taof statistical conclusions
(Gelmarnet al. 2004).

We first compared two point estimators of correlations imteof the average width
of the individual frequentist (Pearson) ClI's for the coat@n parameters versus that
of the posterior Cl's for the same set of correlation paramseat the corresponding
significance levels. Obviously, more concentrated (naerd@l’s, at the given signif-
icance level, are superior to less concentrated ClI's. ltdardrom Fig. 2 and Fig.
3 that the average Bayesian posterior Cl's are uniformlyaveer than the average
fregentist ClI's in both smallN = 4) and larger sample dathl & 20). This dramatic
contrast indicates the advantages of Bayesian approashfat sample size problems
(Fig. 3). From Egs. 22 and 3, the posterior distributionshef ineanp(a|B,y) and
of the variancep(B|y) are decreasing functions ¢, i.e., the number of correlation
parametef’s. Therefore, narrower posterior Cl's are expected for largeOn the
other hand, wider CI's are expected when transforming idda&l frequentist Cl’s into
simultaneous FDR-CI’s.

We also compared these two correlation estimators in tefidiean Squared Error
(MSE) and variance criteria. Similar to the definition in Zétal 2005, the MSE is
defined as:

1L )
MSE= Kgl(p)‘_p}‘) , (15)

wherep, is the true population correlation, apg is the sample correlation estimator,
A is the parameter index, andis the total number of parameters.
The simulation steps proceed as follows:

e DrawA population correlations from a normal distribution withdam mean ¢)
and variancef}) (hyperparameters) as defined in Eq. 2.

e Re-estimate thé\ parameters either separately using the frequentist (&&ars
correlation estimator or using Bayesian hierarchical nhodfer the Bayesian
approach, the correlation estimator is the posterior meEgn (1).



Comparison of average Cl's over different
significant levels, N =4
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Figure 2:Comparison of average posterior Cl's versus average ihaififrequentist CI's over
a wide range of significance levels at a small sample $ize 4).

e Compare the two estimators in terms of both MSE and variaAceestimator
with low MSE and variance are considered to be superior.

Fig. 4 plots MSE's (upper panel) and variances (lower parélBayesian corre-
lation estimators and frequentist (Pearson) correlatstimators at a small sample size
(e.g.N = 4) and a larger sample size (eld= 20) over 500 runs of simulations. It is
evidentin upper panel of the Fig. 4 thatthe MSE of Bayesiéimasors is about three-
fold smaller than the frequentist estimators for largerglarize. Similarly to the Cl's
comparisons, this indicates the advantages of the Bayesraglation estimator for the
small sample size problems (Fig. 4). The lower panel of tige Hi plots variances of
the Bayesian correlation estimator and the frequentisetaiion estimator. Again, the
comparison of variances follow the same trend as that of tSB&E®I(Fig. 4).

It is worth mentioning that the above simulations were hiasavards the assump-
tions of Bayesian hierarchical model. In order to test rédess of our algorithm to
model mismatch, we also generated data using the unifortribdisSon but imple-
mented with Pearson Cl's and Bayesian ClI's that assume ik Gaussian and
hierarchical models, respectively. In Fig. 5, we compaledldverage width of in-
dividual Pearson Cl's with that of individual Bayesian int&s. The superior perfor-



Comparison of average Cl's over different
significant levels, N = 20
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Figure 3:Comparison of average posterior Cl's versus average ihaififrequentist CI's over
a wide range of significance levels at a larger sample dize 20).

mance of hierarchical Bayesian estimator (Fig. 2, Fig. 3J)léarly offset by the
invalid model assumption in that average Bayesian Cl's arfformly wider than av-
erage frequentist CI's (Fig. 5). This simulation resultghtight the importance of
Fisher transformation.

2.2 Evaluation of the Bayesian Hierarchical Model

In order to evaluate our Bayesian approach in terms of ematrol and compare
with the frequentist counterpart, we simulated pairwisaegexpression data based
on known population covariances, and then simulated Bagestervals for each pa-
rameter from the hierarchical model. The actual False ReqEP) at a given MAS
level is calculated as a ratio of the number of screened gainewhose corresponding
population correlation parametegs; are less than the MAS level specified, divided by
the total number of gene pairs. The actual MAS is the minimura tliscovery of pop-
ulation correlatiorp; j among the screened pairs. We specified 16 pairs of (FP,MAS)
criteria (Four FP levels: 0.2, 0.4, 0.6, 0.8; Four MAS levél2, 0.4, 0.6, 0.8), and
each is plotted as a different upper case Roman alphabe} (Ré&dy. 6. The 16



Estimation Comparison: Bayesian vs. Marginal
MSE:upper, Variance:lower
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Figure 4:Mean Squared Errors (MSE’s) and Variances of the Bayesi@matsons versus the
simple estimations over 500 runs of simulations.

corresponding pairs of actual (FP,MAS) criteria are alsoashin Fig. 6 using the
same set of lower case Roman alphabets (Blue). It can bewvausrat generally the
actual FP’s (lower case) fall further below the specifiedst@int (upper case) than
those did in Fig. 4 of Zhet al. 2005 (Fig. 6), and the actual MAS’s (lower case) fall
above the specified constraints (upper case). The more tcadeaiations of actual
FP’s from their specified levels are due to multiple factetgh as, lack of multiplicity
adjustment and the conservative asymptotic approximat®imulations using some
other combinations dN and/\, as compared with the FDR-CI approach, give rise to
the similar results. We conclude that Bayesian hierar¢mzadel yields better cor-
relations estimates. However, the false positive rate éastimated by the Bayesian
procedure and this leads to overly stringent error control.



Comparison of average CI's for mismatched
Bayesian model
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Figure 5:Comparison of average Cl's when the Bayesian model is unisigst.

3 Applications to Network Construction and Seeded Clus-
tering

3.1 Constructing Relevance Networks

We applied the Bayesian hierarchical model to high-thrgugldata and compared it
with the frequentist approach using the same subset of gaksttose catabolism two-
color microarray data that was described in Z&twal. 2005. The data contains 997
gene expression profiles across 20 genetic/physilogicalitons that was identified

by Ideker et al using the generalized likelihood ratio tédtKeret al. 2000).

Following the procedure described in section 1, we simdl#dte empirical pos-
terior distribution for each of th¢®)") = 496,506 correlation parameteps,. The
(1—q) x 100%posterior intervalfor each ‘parameter’ was obtained by thresholding
g/2x 100% and1—q/2) x 100% of it's quantile function (Eq. 14). Analogous to the
FDR-CI screening procedure described in
citealtZzhuO5a, a network edge is declared to be preseneaiginificance leved and
the MAS levelcorminif it's posterior Cl does not intersect with-cormin cormin.
We sought to compare the two approaches in terms of netwpikdgical properties
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Bayesian hierarchical model
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Figure 6:Evaluation of error control of the Bayesian hierarchicaldelo Sample sizé&l = 20,
and A = 1000 correlation coefficients were simulated. Simulatiosisg smaller sample size
data yield more stringent error control.

that are interesting to the biologists. In particular, wenpared the biological func-
tional annotations of the top hub genes of the two networksZHu et al. 2005, we
controlled FDR at 5%, and constructed networks at five MA&Ig\.e. 05, 0.6, 0.7,
0.8, 0.9. Correspondingly, 18135, 9337, 4151, 1346, 133 edges tamiared to be
present using Pearson correlation statistic alone. Cllintyaghe significance level at
5%, we screened the same set of numbers of edges using Bakiesiarchal model to
construct the five networks that are more comparable to tinagleu et al. 2005. A list
of stable hub genes were obtained by calculating and sdtimgverage rank of each
vertex (gene) degree over five networks (Table 1).

Comparing the Table 1 with the that was reported in Zhal. 2005, note that
the GO biological process annotation “protein biosynt{€&D:0006412]" and/or it's
children annotations “hypusine biosynthesis|[GO:004§51branched chain family
amino acid biosynthesis[GO:0009082]", and “tryptophasslgnthesis[GO:0000162]”
are significantly enriched in both tables. This is consisteith the established fact
that protein biosynthesis plays a key role in galactose boditan (Berget al. 2006).
The underlying biological mechanism is that many types otgins need to be syn-
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Table 1: Top twenty “hub genes” from Bayesian hierarchical modelligppto the galactose
metabolism data (Ideket al. 2000). The rank of each gene is the average rank over fiverelift
networks with the same set of edge numbers as in Table 1 0&éZ&lu2005. The highest ranked
gene is the most connected and stable gene under varyingaiatsof (FP,MAS).

Gene Name Average Rank GO Annotation
YJR0O70C 4 hypusine biosynthesis[GO:0046515]
YBR043C 4.4 multidrug transport[GO:0006855]
AGA2 4.4 agglutination[GO:0000771]
RPPO 4.6 protein biosynthesis[GO:0006412]
RPL26A 4.6 protein biosynthesis[G0O:0006412]
YOR263C 5 biological process unknown
TRP2 5.4 tryptophan biosynthesis[GO:0000162]
ASC1 5.6 regulation of protein biosynthesis[GO:0006417]
YILO64W 5.6 biological process unknown
BOP2 5.6 biological process unknown
GAP1 5.8 amino acid transport{GO:0006865]
RPS2 6 protein biosynthesis[GO:0006412]
RPL11A 6.2 protein biosynthesis[GO:0006412]
SSF2 6.2 ribosomal subunit assembly[GO:0042257]
ILV5 6.2 branched chain family amino acid biosynthesis[GO:0009082
YPL185W 6.2 biological process unknown
PCK1 6.4 hexose biosynthesis[G0:0019319]
YDR100W 6.4 biological process unknown
YMR291W 6.6 biological process unknown
ATC1 6.6 bipolar bud site selection[GO:0007121]

thesized upon switching from primary carbon source (glagds secondary carbon
source (galactose) or the other way around (Wieczetla 1999).
A salient feature in Table 1 that is not possessed in that afetlal. 2005 is that it
includes several transporters and regulators such as GXP.0P06865], YBR043C[GO:0006855],
and ASC1[G0:0006417] etc. These proteins are essential§orooth transition from
glucose to galactose (Berj al. 2006, Wieczorkeet al. 1999). In addition, Table 1
also includes several uncharacterized genes that arelieginéd to be important for
galactose metabolism. In general, the Bayesian data amadgilts not only conform
to the previous frequentist data analysis results, but@aieade additional justification
for the biological mechanism and motivation for illustrefinew gene functions.

3.2 Seeded Clustering

In parallel with the application of the two-stage algorithorrediscover the galactose
metabolic pathway reported in Zleti al. 2005, we also applied the Bayesian hierarchi-
cal model to perform the seeded (one-to-all) clusteringidPmance was evaluated ac-
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cording to the relative ranks of a handful of known membetiefgalactose metabolic
pathway. The gene ranks were used instead of p-values dubstastial differences
of the two statistical frameworks.

We selected gene “GAL10" as the “seed gene” in order to comiber results with
those reported in Zhet al. 2005. The comparison was made at a large samplé\size
20 and a smaller sample side= 4 respectively aiming to examine the performance
of the two methods as a function of the sample size. In thedorme used all the 20
genetic/physiological conditions under which gene exgogslevels were measured
(Table 2); In the later, we sampled a small subset (N.g- 4) of these 20 conditions
each time without replication and repeated a number of titoesbtain a “bagged”
(stable) estimation of gene ranks in the seeded clustebdg(T23).

When all the 20 observations were used, the two approachedsg to very similar
seeded clusters indicating that the Bayesian hierarctodietrapproach is as powerful
as the frequentist approach for relatively large sample pioblems. As shown in
Table 2, all of the top 20 seeded gene pairs have the idengicklacross two methods.
When multiple random subset data were used, many genes Issmithr average
ranks across the two approaches. Among the top five genes{GARAL7, GCY1
GAL1, GAL?2) screened by the seeded clustering using “GAL49the seed gene (see
Zhu et al. 2005 and Table 3), 4 out of 5 (GAL10, GAL7, GAL1, GAL2) genask
higher in Bayesian estimation than those in marginal esiimaand the remaining
“GCYL1" gene receives tie ranks. In addition, our resultsvide strong experimental
motivation for examining the genes that received higheksamthe Bayesian analysis,
for example, gene YELO57C. The evaluation using “GAL7" as theed gene” gave
the similar results.

4 Discussion

Numerous previous studies have demonstrated the suiyaifilising gene co-expression
networks for functional discoveries (e.g. Butte and Koha@e0, Zhouet al. 2002).
There are different approaches to building the co-expwassetwork - in particular,
different ways of estimating correlation matrix, of tegtgignificance of these correla-
tions, and of controlling the error rate have been propodédemphasize that our goal
is to estimate correlation matrix with reduced variance iamatroved accuracy.

Towards this goal, the major improvement that we have mattatsve provided a
full Bayesian treatment that combines the correlatiomestion and testing seamless.
For the estimation, we improve over existing approachestyiging a regularized full
Bayesian estimation. For the hypothesis test, the maindugment over the existing
approaches is that we test whether the magnitude corneligtidifferent from a non-
zero positive number instead of 0. This allows for more gtimt control of biological
significance. For example, in small-sample data the tauiditest declares many small
but statistically significant correlations to be biolodigaelevant. However, these may
be caused by non-biological effects such as spatial antiquei effects of genes along
the chromosome (Klugeat al. 2003).

Our framework is sufficiently general to be extended to maffgrént correlation
measures, such as full order (Schafer and Strimmer 2005d)raited order (Fuente
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Table 2:Comparison of Bayesian estimations versus Marginal etitmausing “seeded” clus-
tering at a small and a larger sample sizes. In the formerrahks were averaged over 100
estimations, in each of which a subset data of sampleNize4 was randomly sampled from
the whole data of sample siké= 20. In the later, the ranks were obtained using the whole data
of sample sizé\ = 20.

N=4 N =20

Genel Gene2 | Bayesian| Frequentist Genel Gene2 | Bayesian| Frequentist
GAL10 GAL1 5.25 5.35 GAL10 GAL7 1 1
GAL10 GAL2 6.65 7.4 GAL10 GCY1 2 2
GAL10 GAL7 6.7 6.85 GAL10 GAL1 3 3
GAL10 GCY1 7.7 7.7 GAL10 GAL2 4 4
GAL10 | YOR121C 8.05 7.8 GAL10 | YOR121C 5 5
GAL10 | YELO57C 8.55 10.6 GAL10 | YELO57C 6 6
GAL10 SSuU1l 8.6 7.65 GAL10 | YDRO10C 7 7
GAL10 FKS1 8.75 8.25 GAL10 SSuU1l 8 8
GAL10 PCL10 9.95 7.85 GAL10 PCL10 9 9
GAL10 | YJL212C 11 8.85 GAL10 | YJL212C 10 10
GAL10 MET14 11.1 10.4 GAL10 FKS1 11 11
GAL10 | YDRO10C 11.3 10.9 GAL10 MET14 12 12
GAL10 MCM1 11.35 12.3 GAL10 MCM1 13 13
GAL10 EXG1 11.85 13.1 GAL10 EXG1 14 14
GAL10 CRH1 12.05 12.95 GAL10 ARG1 15 15
GAL10 ARG7 12.8 12.3 GAL10 CRH1 16 16
GAL10 | YPR157W 13.2 15.35 GAL10 PRY2 17 17
GAL10 PRY2 14.4 13.3 GAL10 | YPR157TW 18 18
GAL10 | YKRO12C 14.6 16.25 GAL10 | YKRO12C 19 19
GAL10 CPA2 16.15 14.85 GAL10 CPA2 20 20
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Table 3: Clustering co-expressed genes with Bayesian hierarchicael at the significance
level 5% using “GAL10" as the “seed gene”. Known genes in théhway are in bold face

(N = 20).

Genel Gene2 2.5% 50% 97.5%

GAL10 GAL7 0.699967273 0.843269806 0.919377659
GAL10 GCY1 0.695895931| 0.83904824 | 0.917448689
GAL10 GAL1 0.685628575 0.824914454 0.906837751
GAL10 GAL2 0.664031223 0.817631953 0.903466008
GAL10 | YOR121C | 0.652511568 0.814118521] 0.901500909
GAL10 | YDRO10C | 0.574348042 0.77081336| 0.875409524
GAL10 | YELO57C | 0.582835775 0.769743768 0.880618535
GAL10 SSuU1 0.584487078 0.769335123 0.879019784
GAL10 PCL10 0.552529392 0.751817344 0.871763977
GAL10 | YJL212C | 0.543601479 0.747480187 0.862433646
GAL10 MET14 0.525320838 0.723128249 0.852859396
GAL10 FKS1 0.515021843 0.719874179 0.854759107
GAL10 MCM1 0.474061933 0.697313988 0.834101087
GAL10 EXG1 0.446476056) 0.666889754 0.818233838
GAL10 ARG1 0.382292245 0.63708452| 0.807736956
GAL10 CRH1 0.344971636 0.594425382 0.773435199
GAL10 PRY1 0.299057555 0.588919717 0.774038296
GAL10 | YPR157W /| 0.29645952| 0.576125639 0.765975044
GAL10 CPA2 0.303356019 0.571475575 0.745218878
GAL10 | YKR012C | 0.262900828 0.566724743 0.748081117
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et al. 2004) partial correlation statistics. The rational isttth@se correlation statistics
are asymptotically normal distributed through transfaiores (Hotelling 1953). Our
approach is also not computational cumbersome. In derithegoosterior distribu-
tions of the correlation ‘parameters’, the conjugate paiod likelihood (i.e. Gaussian
parental distribution) were assumed in order to keep théepos distributions in a
closed form. The computational load is thus greatly reduwsetiwe avoided MCMC
techniques, making the application to the larger netwodcome more feasible.

As discussed in Zhet al. 2005, one should seek a good combination of level of
significance and correlation strength. The Bayesian aghrpeescribed here imposes
a model of the parameters as random variables sampled froanestpl population
distribution. This model structure allows the regulaii@atof variances by introduc-
ing dependency between the parameters. Using simulatim$ave shown the su-
perior performance of Bayesian hierarchical model apgrdaanarginal estimation
approach, in terms of width of the CI's, MSE and variancegesly for small sample
size. The posterior distribution provides a natural wayarfelation thresholding that
bridges between statistical correlation and biologicksvancy.

Appendix

Selecting Prior Distribution

Here we present the mathematical details of choosing a psiatescribed in section
3.1. They were adapted from the solution to exercises 2.&Im@net al. 2004.

We need to show the joint posterior densiyl”, o, B|y) is improper if we select
the hyperprior distributiorp(8) 0 B~1, while p(T",a,B|y) is proper if we select the
hyperprior distributiorp(B) O 1.

We first factor the joint posterior distributiqa(l”, o, B|y) O p(Bly) p(a|B,y) p(T |a, B, Y).
Note thatp(a|B,y) andp(I|a,B,y) have proper densities. The joint posterior density
p(T,a,Bly) is proper if and only if the marginal densify(Bly) is proper, i.e. has a
finite integral forf3 from O toco.

In Eq. 3.3, af approaches 0, everything multiplyingj3) approaches a nonzero
constant limitC(y). Thus the behavior op(B|y) near 0 is determined by the prior
densityp(B). It is easy to show that the functige{3) O 1/ is not integrable for any
small interval around O, and so it leads to a nonintegrabdégpor density.

If prior density p(B) O 1, then the posterior density is integrable near zero. We
need to examine the behavior @s— « and find an upper bound that is integrable.
The exponential term is clearly less than or equal to 1. Wereamite the remaining
terms ae{zle[ﬂk# (02 + B2)])~Y/2. ForB > 1 we make this quantity bigger by drop-

ping all of theo? to yield (JBZ(Jfl))fl/Z. An upper bound omp(Bly) for B large is
p(B)J~Y/2/B>-1. Whenp(B) 0 1, this upper bound is integrablelit- 2, and sap(B]y)
is integrable ifJ > 2.
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Deriving Posterior Distribution p(B|y)

Here we present the mathematical details of deriving pmstdistribution p(Bly) as
described in section 3.1. They were adapted from ChapterGetrhanet al. 2004.
We factor the marginal posterior density of the hyperpatanseas follows:

p(at, Bly) = p(alB,y)p(Bly), (16)
which is equivalent to: |
_ p(a,Bly)

We then derivep(a, Bly) andp(a|B,y) respectively as the following. For hierarchical
model, we can simply consider the information supplied btagdout the hyperpa-
rameters directly:

p(a,Bly) O p(a, B)p(yla, B). (18)

For many problems, decomposition in Eq. 18 is of no help spigé, 3) cannot gen-
erally be written in closed form. For the Gaussian distitiutthe marginal likelihood
has a particularly simple form. The marginal distributiofishe sample correlatioin,
are independent (but not identically distributed) Gaussia

p(Fala, B) ON(a,0f + B?). (19)
Thus we can write the marginal posterior density as

/\ A~
p(a, BlY) O p(at, B) [ N(Falor, 0% +B?). (20)
A=1

From inspection of Eq. 20 witf assumed known, and with a uniform conditional
prior densityp(a|B), wherep(a|B,y) is also Gaussian, i.e.

p(a|Bay) DN(aaVG)v (21)
where R L -
D15zl A
X B
G=—x—"7— (22)
212 @
and
g 1 23
V, = —.

4 is a precision-weighted averageld$ andV, is the total precision. We define preci-
sion as inverse of variance. From Eqgs. 17, 20 and 21,

_ p(a,Bly)

P(B) M-y N(M\|a, 02 +B?)

. N(al.Va)

(25)
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This identity holds for any value df, in particular, it holds if we setr to &, which
makes evaluation of the expression quite simple.

P(B) Mr_N(T)6,02 + B2)

pBly) O NCEAA (26)
A _1/2 (Ty—a)2
O p(B)Vé/Zﬂl(GiJrBZ) exrx—mx 27)

whered andVy are defined in Eqs. 22 and 23. Both expressions are functiofis o
which means thap(By) is a complicated function .
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