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Abstract

This paper outlines a technique which solves the sensitivity as well
as the system equations in an efficient manner. Instead of solving
the two sets of equations simultaneously, we propose integrating
the system equations and then solving the sensitivity equations in a
“staggered fashion”, using the preconditioned Generalized
Minimum Residual (GMRES) method. This reduces the
computation time. The method is directly applicable to hybrid
systems, of which power systems form an important application
area.

1. Introduction

Trajectory sensitivities provide valuable insights into the influence
of parameters on the dynamic behavior of systems. Properties,
which are not obvious from the actual system response, are often
evident in the sensitivities. Applications are numerous and include
parameter estimation, optimal control and stability analysis of
periodic behavior [1, 2, 3]. However, the additional cost of
obtaining the sensitivities may be prohibitive. Currently, methods
such as the Simultaneous Corrector method [4], the Staggered
Direct method [5] and the Staggered Corrector method [6] are used
for this task. In this paper, we introduce a variation called the
Staggered Hybrid method, which involves using an iterative
procedure such as the Generalized Minimum Residual (GMRES)
method [7] along with the traditional LU decomposition to solve
for the sensitivities. We compare these methods for a small, 50-
machine, 145-bus power system.

2. Problem Formulation

The multi-machine model of an m-machine, n-bus power system is
of the form

( ) ( ) 0xxyxfx == 0,,� (1)

( ) ( ) 0yyyxg0 == 0,, (2)

where x is the vector of dynamic state variables and y is the vector
of algebraic network variables. Vector functions f and g represent
the machine and the network equations respectively. The dimension
of x depends on the level of modeling of the generators. We use the
two-axis machine model with the IEEE type-I exciter, resulting in 7
differential equations for each generator, and therefore
dim(x)=dim(f)=7m. The dimension of y and g is 2n [8].

In order to keep a compact notation, we study the trajectory
sensitivities with respect to initial conditions rather than with
respect to the system parameters. Any system parameter of interest
can be modeled as a constant dynamic state variable whose initial
condition is equal to its nominal value. Therefore, x becomes an
augmented vector to include the system parameters [9].

Differentiating (1) and (2) with respect to the initial conditions 0x

gives the sensitivity equations

( ) ( )
000 xyxxx yfxfx tt +=� (3)

( ) ( )
00 xyxx ygxg0 tt += . (4)

Equations (3) and (4) are a linear, time varying set of differential-
algebraic equations. Each trajectory sensitivity computation
involves the integration of 7m differential equations constrained by
2n algebraic equations. This task is comparable, in terms of cost, to
the problem of solving (1) and (2).

A number of methods have been applied to this problem. Here, we
examine and compare the Simultaneous Corrector method [4], the
Staggered Direct method [5], the Staggered Corrector method [6]
and the Staggered Hybrid method proposed in this paper. For all
the methods, the trapezoidal rule was used to algebraize the
differential equations, which are then solved simultaneously with
the algebraic equations. This scheme is known to be very reliable
and fast for the problems arising in power systems. Nevertheless,
most of the results also apply for any general backward
differentiation formula.

3. The Simultaneous Corrector method (SICM) [4]

Applying the trapezoidal rule to (1)-(4) we obtain the following set
of algebraic equations
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where t is the time instant and h is the integration step. In order to
make the notation easier, assume that we compute the trajectory
sensitivities with respect to only one initial condition x0. The
extension to sensitivity computations with respect to more
parameters is straightforward. Equations (5) through (8) are solved
using the Newton-Raphson (NR) method
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Index k refers to the NR iteration count. It is shown in [4] that the
Jacobian in (9) can be approximated by its block diagonal part
without jeopardizing convergence. Therefore, the factorization of
the Jacobian is significantly simplified. Additionally, the Jacobian
may be kept constant for a number of time steps to avoid further
factorizations. This technique is widely known as the Very
Dishonest Newton’s method and is frequently used in dynamic
simulation (see for example [10]).

4. The Staggered Direct method (SDM) [5]

Rearrangement of (7) and (8) reveals that
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Once the states are computed for a new time step, the sensitivity
equations can be computed from (10). The efficiency of this
method comes from the fact that in (10) the coefficient matrix is
already factored, as it happens to be the Jacobian at the current step
of the integration of the system equations. Therefore, only a
forward/backward substitution is required for the solution of the
sensitivity equations. However, this means that the Jacobian must
be computed at every step of the integration. Developments in
sparse-matrix computations, especially in sparse-matrix
factorization and forward-backward substitution, indicate that this
trade-off is crucial for the overall performance of the algorithm
[11].

5. The Staggered Corrector method (SCM) [6]

To address the problem of having to factor the Jacobian at every
time step, Feehery et. al. [6] proposed the use of a quasi-NR
method to compute the sensitivities. Specifically, the Jacobian for
the trajectory computation is not updated at every time step, but

rather the (approximate) Jacobian Ĵ computed in a previous time
step is used
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Since the exact Jacobian LU-factors for the current step are not
available, (10) is solved using the iterative scheme
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This quasi-NR scheme usually converges very quickly provided the
Jacobian is well conditioned.

6. The Staggered Hybrid method (SHM)

We now propose another method to overcome the drawbacks of the
SDM. In order to solve (10) when the current Jacobian is not
factored, we note that the LU-factors of the approximate Jacobian

Ĵ are available. Using these factors as a preconditioner for an
iterative method (i.e. GMRES) we can expect the solution of (10)
in a very small number of iterations, since these factors are a very
good approximation to the current system Jacobian. Therefore,
instead of (10) one effectively solves
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though 1ˆ −J is never explicitly formed.

The closer Ĵ is to the current system Jacobian J the better

GMRES performs, because the product JJ 1ˆ − resembles the
identity matrix. Within GMRES, the current system Jacobian
appears only in sparse matrix-vector multiplications, while the

action of preconditioning requires the inversion of Ĵ , which is
equivalent to a forward-backward substitution. Additionally,
GMRES can be initiated with a very good initial guess, which is the
value of the sensitivities from the previous time step. This method
gains from the fact that the system Jacobian is not factored at every
step of the integration but loses from the fact that an iterative
method (with an excellent preconditioner) replaces the very fast
forward/backward substitution in the solution for the sensitivities.

7. Comparison of the Methods

For typical, large power systems the cost of factoring the Jacobian
usually dominates the computations. We also consider the cost of
forward/backward substitution, the cost of updating the Jacobian
and the cost of computing the mismatches for the sensitivities. The
computational complexity analysis for the SICM, the SDM and the
SCM is undertaken in [12]. The authors in [12] considered the
option of avoiding matrix-vector products (and subsequently
Jacobian updates) via directional derivative computations.
However, for power systems this option does not yield significant
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improvement, as the equations are quite complex. Therefore this
option is not examined here. The analysis of [12] is repeated here to
compare the four methods, using the notation shown in Table 1.

Table 1
Ceval Cost of evaluating the Jacobian
Cfac Cost of factoring the Jacobian
Cfbs Cost of Forward/Backward substitution
Cmvp Cost of Sparse matrix-vector product
Csrhs Cost of evaluating equations (7) and (8)
Csrhs2 Cost of computing the right-hand-side of Eq. (10)
Ctrhs Cost of evaluating equations (5) and (6)

Assume that the NR method for the SICM requires N0 iterations to
converge and that the Jacobian is evaluated and factored every N1

time steps. Note that in this case Csrhs can be approximated by
Ceval+4Cmvp. Therefore the average cost per time step is

( )mvpevalfbstrhs0
1

faceval
SICM 4CCC2C

CC
C ++++

+
= N

N
.

Note that the quasi-NR scheme is used for the trajectory
computation. (Only one evaluation/factorization of the Jacobian is
performed per time step). This is also true for the other three
methods.

Assume that the NR method for the SDM requires N2 iterations to
converge. Then the average cost per time step is

srhs2fbstrhs2facevalSDM CCCCCC ++++= N .

Assume that the NR method for the SCM requires N3 iterations to
converge and that the Jacobian is evaluated and factored every N1

time steps. Further, assume that the quasi-NR scheme for the
sensitivity computation requires N4 iterations to converge. Then

( ) ( ) srhs2mvpfbs4fbstrhs3eval
1

fac
SCM CCCCCC

C
C ++++++= NN

N
.

Assume that the NR method for the SHM requires N3 iterations to
converge and that the Jacobian is evaluated and factored every N1

steps. Further, assume that GMRES requires N5 iterations to
converge. The cost of GMRES is dominated by the preconditioning
steps and by a matrix-vector product. The cost of
orthonormalization using the Gram-Schmidt method can be

overlooked for small N5. Then, the cost of GMRES is approximated
by (N5+1)(Cfbs+Cmvp), and

( )

( )( ) srhs2mvpfbs5

fbstrhs3eval
1

fac
SHM

CCC1

CCC
C

C

+++

++++=

N

N
N .

Evidently, N4 and N5 determine the relative efficiency of SCM and
SHM.

The previous analysis involves the trajectory sensitivity
computation with respect to only one initial condition. When more
sensitivities are required SHM may become more efficient with the
use of block-Krylov GMRES [13].

8. Numerical Results

The methods described earlier were applied to the sensitivity
analysis of a 50-machine, 145-bus system. The system was
simulated for 3 seconds, for a self-clearing fault on bus 58 at 0.1
seconds, cleared at 0.3 seconds. The initial integration step size was
0.001 seconds. This was increased to 0.01 seconds after a lapse of
0.1 seconds following the fault clearance. All trajectory
sensitivities with respect to the clearing time were computed. The
computations were performed in Matlab, on a Pentium III
processor using Linux 6.2. Only floating point operations (flops)
are reported here. It should be noted that the cost of the re-ordering
stage of the LU factorization does not show in flops even though it
consumes almost 1/3 of the total time required by the LU method.
However, the re-ordering scheme is computed infrequently,
because the structure of the Jacobian only changes at events such as
reactive power limit violations or controller saturation.

Table 2 shows the comparison between the four methods. The
simulation required 661 steps. Each column shows the number of
times each task was performed and the average cost per time step.
The last column shows the total cost for the simulation for each
method. The cost for the right-hand side evaluation is either

srhstrhs CC + or srhssrhs2 CC + depending on the method.

On average, the NR method for the trajectory computation required
5.23 iterations for SICM, 4.42 iterations for SDM and 4.85
iterations for SCM and SHM per time step. This is an expected
result [12] because SDM uses the most updated version of the
Jacobian, while SICM approximates the Jacobian by its block
diagonal part in addition to the fact that it keeps it constant for a
number of time steps.

Table 2

stepper time(Kflops)operationofCost
executedisoperationthetimesofNumber

Method
Jacobian

evaluation
Jacobian

factorization
Forward-Backward

substitution
Right-hand side

evaluation
GMRES or Quasi-

NR
Total Cost
(Mflops)

SICM 6.17
70

188
70

5.25
5882

9.49
3602 326.18

SDM 6.17
564

188
564

5.25
3143

8.13
3804 243.3

SCM 6.17
565

188
31

5.25
2885

9.13
4050

3.157
534 228.96

SHM 6.17
565

188
31

5.25
2885

9.13
4050

4.152
534 226.3
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Table 3

stepper time(Kflops)operationofCost
executedisoperationthetimesofNumber

Method
Jacobian

evaluation
Jacobian

factorization
Forward-Backward

substitution
Right-hand side

evaluation
GMRES or Quasi-

NR
Total Cost
(Mflops)

SCM 5.17
661

188
78

8.25
4649

4.14
5995

8.163
586 328.86

SHM 5.17
661

188
78

8.25
4649

4.14
5995

2.146
586 318.53

It is evident from Table 2 that SCM and SHM outperform SDM
and SICM. This difference will be more obvious for larger systems,
where the cost ratio between Cfac and Cfbs will be greater. (For this
system the ratio was 7.1:1.)

It was shown earlier in the computational complexity analysis that
the difference in performance between SCM and SHM depends on
the number of iterations that the quasi-NR scheme and GMRES
respectively, require to converge. For this example, the quasi-NR
scheme of SCM required on average 1.69 more iterations to
converge, making SHM slightly more efficient.

It is shown in Table 2 that the difference in performance between
GMRES (SHM) and the quasi-NR method (SCM) is about 5 Kflops
per time step. This difference may grow if the Jacobian becomes
ill-conditioned as in the case of an unstable system. The quasi-NR
method is more sensitive than GMRES to the ill-conditioning of the
Jacobian (unless of course, arithmetic errors are introduced). To
illustrate this fact for the 50-machine system, we set the clearing
time to 0.31 seconds in order to simulate an unstable system. Table
3 shows the results for the SCM and SHM.

From Table 3 we see that the difference between GMRES and the
quasi-NR method is now 17.6 Kflops per time step. On average

71.254 =− NN , thus the difference in the performance.

9. Conclusions

In this paper we applied three well-established methods for the
sensitivity calculations of differential-algebraic equations to power
systems. We also proposed a new method that involves using an
iterative linear solver (GMRES) for the sensitivity computations.
The results show that this new method is slightly better than the
other methods when the sensitivity of the trajectories with respect
to only one parameter is required. Future work will focus on
computing a full set of sensitivities through the use of the block-
GMRES method, and on testing the techniques on larger systems.
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