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Abstract: Performance specifications place restrictions on the dynamic response of
many systems, including power systems. It is often convenient to know parameter
values that induce limiting behaviour, i.e., force the system to just meet the
specification. This limiting behaviour is a form of grazing bifurcation, and can be
formulated as a boundary value problem. The paper develops a numerical shooting
method for computing such bifurcation parameter values, and an optimization
algorithm for finding bifurcation values that are closest to a given parameter set.
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1. INTRODUCTION

Power system dynamic behaviour is generally sub-
ject to performance constraints that ensure appro-
priate post-fault response. Controls on generators
and FACTS devices, for example, seek to mini-
mize voltage and/or current excursions. Otherwise
excessive swings may trigger generator or feeder
protection, outaging those items of equipment,
and possibly leading to cascading system fail-
ure. Bounding cases, where the system trajectory
just (tangentially) encounters a performance con-
straint, separate regions of desirable and undesir-
able behaviour. Figure 1 provides an illustration.

Referring to Figure 1, for a certain value of pa-
rameter γ

+, the system trajectory encounters a
performance constraint at a point x

+. An event
possibly occurs, and the trajectory continues ac-

⋆ Research supported by the National Science Foundation

through grant ECS-0332777.

Parameter values

Performance constraint

xg
x+

γg
γ+

γ−

Fig. 1. Grazing phenomenon.

cordingly. However for a small change in parame-
ter value, to γ

−, the trajectory misses (at least
locally) the constraint, and subsequently exhibits
a completely different form of response. At a
parameter value γ

g, lying between γ
+ and γ

−,
the trajectory tangentially encounters (grazes) the
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constraint. Behaviour beyond the grazing point
xg is generally unpredictable, in the sense that
without further knowledge of the system, it is
impossible to determine whether or not an event
triggers. This bounding case describes a grazing

bifurcation, see (di Bernardo et al., 2001) for ex-
ample, with γg referring to the critical value of
the bifurcation parameter.

Vulnerability to event triggering can be assessed
by comparing given (nominal) parameter values
with values that induce grazing. If a sufficient
margin exists between actual and grazing values,
then dynamic performance is guaranteed. Crucial
to this assessment is the ability to determine graz-
ing values. A shooting method was developed in
(Donde and Hiskens, 2003) for locating grazing
bifurcations. However a priori knowledge of the
parameter space search direction was required.
This paper generalizes that earlier formulation,
by developing an algorithm that searches over pa-
rameter space for the closest grazing bifurcation.
The resulting distance provides a more complete
indication of robustness to grazing.

2. HYBRID SYSTEM MODEL

Power systems exhibit hybrid system behaviour,
which is characterized by continuous and discrete
states, continuous dynamics, discrete events (trig-
gers), and mappings that define the evolution of
discrete states at events. It is shown in (Hiskens,
2004) that such behaviour can be captured by
a model which consists of a set of differential-
algebraic equations, adapted to incorporate im-
pulsive (state reset) action and switching of the
algebraic equations. This DA Impulsive Switched

(DAIS) model can be written in the form,

ẋ = f(x, y) +
r

∑

j=1

δ(yr[j])
(

hj(x, y) − x
)

(1)

0 = g(x, y) ≡ g(0)(x, y) +

s
∑

i=1

g(i)(x, y) (2)

where

g(i)(x, y) =

{

g(i−)(x, y)

g(i+)(x, y)

ys[i] < 0
ys[i] > 0

i = 1, ..., s

(3)

x ∈ !
n are dynamic states, y ∈ !

m are algebraic
states, and δ(.) is the Dirac delta. Also r[j] indexes
the element of y that triggers the j-th reset event,
and s[i] provides the index for the i-th switching
event. Full details of the model (1)-(3) can be
found in (Hiskens, 2004).

A compact development of the equations describ-
ing grazing phenomena results from incorporat-
ing parameters γ ∈ !

ℓ into the dynamic states
x. (Numerical implementation is also simplified.)

This is achieved by introducing trivial differential
equations γ̇ = 0 into (1).

Away from events, system dynamics evolve
smoothly according to the familiar differential-
algebraic model

ẋ = f(x, y) (4)

0 = g(x, y) (5)

where g is composed of g(0) together with appro-
priate choices of g(i−) or g(i+), depending on the
sign of the respective ys[i]. The flows of x and y

are defined as

x(t) = φ1(x0, t) (6)

y(t) = φ2(x0, t) (7)

where x(t) and y(t) satisfy (1)-(3), along with
initial conditions φ1(x0, t0) = x0.

3. GRAZING BIFURCATIONS

3.1 Formulation

Grazing is characterised by a trajectory (flow) of
the system touching a target hypersurface tangen-
tially. Let that hypersurface be described by

b(x, y) = 0 (8)

where b : !n+m → ! . Tangency of the flow corre-
sponds to [ẋT ẏT ]∇b = bxf(x, y)+ byv = 0, where
v ≡ ẏ. A single degree of freedom is available
for varying parameters to find a grazing point.
Recall that parameters γ are incorporated into the
initial conditions x0. Therefore the single degree
of freedom can be achieved by parameterization
x0(θ), where θ is a scalar.

It is shown in (Donde and Hiskens, 2003) that
grazing points are described by combining to-
gether the flow definition (6) (appropriately pa-
rameterized by θ), algebraic equations (5), target
hypersurface (8), and tangency conditions to give

Fg1(xg, θ, tg) := φ1(x0(θ), tg) − xg = 0 (9)

Fg2(xg, yg) := g(xg, yg) = 0 (10)

Fg3(xg, yg) := b(xg, yg) = 0 (11)

Fg4(xg, yg, v) :=

[

bx by

gx gy

] [

f(xg, yg)
v

]

= 0 (12)

where the partial derivatives in (12) are evaluated
at the grazing point xg, yg. Grazing occurs at time
tg along the trajectory. This set of equations may
be written compactly as

Fg(xg, yg, θ, tg, v) = Fg(z) = 0 (13)

where Fg : !
n+2m+2 → !

n+2m+2 and z =
[xT

g yT
g θ tg vT ]T .
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3.2 Shooting method

Numerical solution of (13) using Newton’s method
amounts to iterating on the standard update
formula

zk+1 = zk −
(

DFg(z
k)

)

−1
Fg(z

k) (14)

where DFg is the Jacobian matrix

DFg =















−I 0 Φ1

dx0

dθ
f 0

gx gy 0 0 0
bx by 0 0 0

fT bxx + bxfx + vT byx fT bxy + bxfy + vT byy 0 0 by

f̂T gxx + gxfx + v̂T gyx f̂T gxy + gxfy + v̂T gyy 0 0 gy















(15)

with

f̂ =















f

f

f

. . .

f















, v̂ =















v

v

v

. . .

v















(16)

gxx =





















∂2g1

∂x2

∂2g2

∂x2

...
∂2gm

∂x2





















, gyx =























∂2g1

∂y∂x
∂2g2

∂y∂x
...

∂2gm

∂y∂x























(17)

gyy =























∂2g1

∂y2

∂2g2

∂y2

...
∂2gm

∂y2























, gxy =























∂2g1

∂x∂y
∂2g2

∂x∂y
...

∂2gm

∂x∂y























. (18)

The matrices gxx, gyx, gxy and gyy are usually
extremely sparse. They can be obtained by numer-
ical differencing. However by utilizing an object
oriented modelling structure, these second deriv-
ative terms occur only within components. There
are no terms introduced by inter-component de-
pendencies. Explicit formulae for these second
derivatives can be established for each component
model. The sparse matrices can then be efficiently
constructed.

The entry Φ1 in (15) gives the sensitivity of the
flow (6) to perturbations in initial conditions x0,

Φ1(t) ≡
∂φ1

∂x0

(x0, t).

The variational equations describing the evolu-
tion of trajectory sensitivities Φ1, Φ2 are given
in (Hiskens and Pai, 2000). These quantities are
defined for non-smooth trajectories generated by
hybrid systems, and can be efficiently computed
as a by-product of implicit integration.

4. CLOSEST BIFURCATIONS

Isolated grazing bifurcation points require a single
degree of freedom in parameter space i.e., θ ∈ ! .
However in practice system response is affected
by many parameters. If multiple parameters are
allowed to vary, a continuum of bifurcation points

is obtained. Bifurcations therefore define a hyper-
surface Σ in parameter space.

Assume that parameter space has dimension p.
Nominal (initial) parameter values correspond to
a point θ0 ∈ !

p . The distance between θ0 and
the grazing bifurcation hypersurface Σ ⊂ !

p

provides an indication of the robustness of the
system to grazing phenomena. A small distance
would suggest that the system was vulnerable to
grazing. Therefore identifying points on Σ that
are (locally) closest to θ0 is important in many
application areas, including power systems. The
direction from θ0 to those closest points describes
the “worst case” for parameter variations.

Locally closest points on Σ are called closest bi-

furcations (Dobson, 2003). An analytical descrip-
tion of such points is formulated in the following
section. Their computation is discussed in Sec-
tion 4.2.

4.1 Mathematical formulation

Initially consider the optimization problem 1

min ||θ − θ0||
2
2 (19)

s.t. F (θ) = 0 (20)

where grazing bifurcations are given by F (θ) = 0,
that is Σ = {θ : F (θ) = 0}, and F : ! p → !

l . The
corresponding Lagrangian is given by

L(θ, λ) = ||θ − θ0||
2
2 + λT F (θ) (21)

and the optimal solution by

∇L(θ, λ) =





2(θ − θ0) +
∂F

∂θ

T

λ

F (θ)



 = 0. (22)

The optimal solution lies on the (p − l)-manifold
F (θ) = 0, at a point where (θ − θ0) is a linear
combination of ∇F1, ∇F2, · · · , ∇Fl. In other
words, (θ − θ0) lies in the hyperplane spanned

1 The Euclidean norm is used throughout this paper.

Similar developments apply for other norms.
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Fig. 2. Geometry of closest bifurcations.

by the gradient vectors. Figure 2 illustrates the
geometry of this optimization problem for p = 2
and l = 1. Note that at the closest bifurcation
point, (θ − θ0) aligns with the gradient vector
∇F (θ), which defines the normal N(θ) to Σ at
θ. Other aspects of Figure 2 are discussed in
Section 4.2.

Referring back to (13), it can be seen that the
grazing bifurcation description does not have ex-
actly the form of (20). A more general optimiza-
tion formulation is required,

min ||θ − θ0||
2
2 (23)

s.t. Fg(θ, z̃) = 0 (24)

where z̃ = [xT
g yT

g tg vT ]T ∈ !
n+2m+1 , θ ∈

!
p , and Fg : !

n+2m+1+p → !
n+2m+2 . If p =

1, so that θ is a scalar parameter, then (24)
defines 0-manifolds, or point solutions. There are
no degrees of freedom to optimize over. This is the
standard grazing bifurcation problem discussed in
Section 3.

If p > 1, the Lagrangian becomes

L(θ, z̃, λ) = ||θ − θ0||
2
2 + λT Fg(θ, z̃) (25)

and optimal solutions are given by

∇L(θ, z̃, λ) =








2(θ − θ0) +
∂Fg

∂θ

T

λ

∂Fg

∂z̃

T

λ

Fg(θ, z̃)








= 0. (26)

Well defined solutions require rank{
∂Fg

∂z̃
} = n +

2m + 1.

To establish a connection between (26) and (22),
it is convenient to form the partition

∂Fg

∂z̃
=

n+2m+1




Fz1

· · ·
Fz2





n+2m+1

· · ·
1

(27)

where the dimensions of the submatrices Fz1 and
Fz2 are indicated. (The above rank condition en-

sures that a nonsingular Fz1 exists.) Correspond-
ingly,

∂Fg

∂θ
=

p




Fθ1

· · ·
Fθ2





n+2m+1

· · ·
1

(28)

λ =

1




λ1

· · ·
λ2





n+2m+1

· · ·
1

(29)

The first two equations of (26) can then be rewrit-
ten,

[

FT
θ1 FT

θ2

FT
z1 FT

z2

][
λ1

λ2

]

=

[
−2(θ − θ0)

0

]

. (30)

Given that Fz1 is nonsingular, (30) can be reduced
to

2(θ − θ0) + (FT
θ2 − FT

θ1F
−T
z1 FT

z2)
︸ ︷︷ ︸

F̃ T
θ

λ2 = 0. (31)

From (26) and (31), optimal solutions are given
by,

∇L(θ, z̃, λ) =

[

2(θ − θ0) + F̃T
θ λ2

Fg(θ, z̃)

]

= 0. (32)

Notice that (32) is directly comparable with (22),
with the optimal point lying on the manifold
Fg(θ, z̃) = 0 at the location where the vector

(θ − θ0) aligns with the vector N(θ) = F̃T
θ that is

normal to Σ at θ.

The matrix
∂Fg

∂z̃
is constructed from DFg in (15)

by removing the third block column. That column
becomes

∂Fg

∂θ
. Rather than obtaining F̃θ as in (31),

it is computationally more efficient to solve the
middle equation of (26) for λ using a Gaussian
elimination process, and substitute into the first
equation of (26).

4.2 Iterative method for closest bifurcation

The iterative method utilizes the fact that vectors
(θ − θ0) and N(θ) align at the closest bifurcation
point. This method is adapted from (Dobson,
2003). It converges locally to closest bifurcations if
Σ is convex (at least locally) or if it is only slightly
concave.

Referring to Figure 2, let k be a unit vector in
!

p defining the direction of parameter change
from θ0. As parameters vary along k from θ0,
the grazing bifurcation hypersurface Σ will be
encountered. The shooting method (14) can be
used to locate that intersection point. Let M be
the distance from θ0 to the grazing point along k,
or equivalently ||θ − θ0||2. The following iterative
procedure seeks to minimize M .
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1+sTR

1+sTC

1+sTB
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Σ Efd

Vref

Vt
−

+

+

Efdmax

Efdmin

Fig. 3. Excitation system (AVR/PSS) representa-
tion.

(1) Let k(0) be an initial guess for k. For example,
this initialization can be achieved by freeing
a single parameter and holding other para-
meters fixed.

(2) Given k(i−1), compute the first grazing point
in the direction k

(i−1); that is, compute M
(i)

and θ(i) so that θ(i) = θ0 + k(i−1)M (i)
∈ Σ.

(3) Compute the vector N(θ(i)) normal to Σ at
θ
(i). Figure 2 illustrates the computation of

θ(i) and N(θ(i)) graphically.
(4) Set k(i) = N(θ(i)). Iterate until convergence

of k(i) to k∗. The (locally) closest bifurcation
point occurs at θ

∗ = θ0 + k
∗
M

∗.

The direction k∗ of a closest bifurcation is aligned
with the normal vector N(θ∗), and is the fixed
point of the iterations. Note that in the special
case of Σ being a hyperplane, iterations converge
in one step.

5. EXAMPLE

A single machine infinite bus power system will
be used for illustrations. The generator was accu-
rately represented by a sixth order machine model
(Sauer and Pai, 1998), and the generator excita-
tion system was modelled according to Figure 3.
Note that the output limits on the field voltage
Efd are anti-wind-up limits, while the limits on
the stabilizer output VPSS are clipping limits.
Therefore even though this example utilizes a sim-
ple network structure, it exhibits nonlinear, non-
smooth, hybrid system behaviour. Larger systems
are no more challenging. A single phase fault was
applied at the generator terminal bus at 0.05 sec.
The fault was cleared, without line tripping, at
0.28 sec.

Generators are susceptible to over-voltage protec-
tion operation if their terminal voltage rises too
high. This may occur during transients following
a large disturbance. The field voltage maximum
limit Efdmax, and PSS output limits Vmax and
Vmin, have a large influence on transient over-
voltages. Therefore this example considers values
of those parameters that ensure the initial ter-
minal voltage overshoot does not rise above a
specified value of 1.2 pu. The target hypersurface
in this example is therefore Vt − 1.2 = 0.
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Fig. 4. Convergence in parameter space, θ =
[Vmax Efdmax]T .
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Fig. 5. Terminal voltage, Vt.

Initially consider Vmax and Efdmax as free pa-
rameters, so that θ = [Vmax Efdmax]T . Conver-
gence to the closest bifurcation point occurred
in three iterations. The iterative process is pre-
sented graphically in Figure 4, and tabulated in
Table 1. Figure 5 shows the time domain response
of terminal voltage Vt. The initial grazing bifurca-
tion, corresponding to θ(0) is shown in the figure,
along with the grazing bifurcation for the closest
parameter set θ∗. Notice that in both cases the
trajectory is tangential to the target hypersurface.

Figure 4 indicates that the bifurcation hypersur-
face Σ is quite nonlinear, with a sharp turning
point near θ = [0.1 4.7575]T . The initial point θ(0)

was obtained with k(0) = [0 1]T , i.e., variation of
Efdmax only. Even though this was a poor choice,
with θ(0) some distance from θ∗, convergence was
reliable due to the local convexity of Σ.

Consider now the case where all three parameters
are free to vary simultaneously. The hypersurface
Σ becomes a surface in !

3 . Figure 6 shows a view
of slices of Σ, where the surface is cut parallel to
the Vmax-Efdmax plane. These equi-Vmin curves
were produced using a continuation method. The
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Iteration Vmax Efdmax kT

0 0.1000 4.7880 [0.0000 1.0000]
1 0.0745 4.9739 [-0.6980 -0.7153]
2 0.0739 4.9994 [-0.9997 -0.0244]
3 0.0739 4.9994 [-0.9997 -0.0242]

Table 1. Convergence progress, two free
parameters.

Iter [Vmax Vmin Efdmax] kT

0 0.1000 -0.1000 4.7883 0.0000 0.0000 1.0000
1 0.0879 -0.1218 4.9877 -0.4325 -0.7854 -0.4428
2 0.0815 -0.1120 4.9996 -0.8401 -0.5422 -0.0167
3 0.0814 -0.1119 4.9996 -0.8432 -0.5372 -0.0183
4 0.0815 -0.1119 4.9996 -0.8433 -0.5371 -0.0183

Table 2. Convergence progress, three
free parameters.
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Fig. 6. Convergence in parameter space, θ =
[Vmax Vmin Efdmax]T .

figure also shows the projection of these curves
on the Vmax-Efdmax and Vmax-Vmin planes. Note
that the projection on the Vmax-Efdmax plane
corresponds to Figure 4, drawn for various values
of Vmin. The projections of the equi-Vmin curves
on the Vmax-Vmin plane are straight lines parallel
to the Vmax axis. The corresponding values of
Vmin are noted in the figure.

Results of the iterative process are given in Ta-
ble 2. Reliable convergence was obtained in 4 it-
erations, even though the initial guess of k(0) =
[0 0 1]T was quite poor. The vector (θ∗ − θ(0))
aligns with the normal N(θ∗) at convergence.

It is perhaps not evident from Figure 5, but this
system exhibits quite non-smooth behaviour. In
fact, fifteen events occur over the initial 2 sec tran-
sient, primarily VPSS banging on maximum and
minimum limits. Discrete events exert a strong
influence on system dynamics. However because
the Jacobian DFg takes those events into account,
through the trajectory sensitivities Φ1, shooting
method convergence is unaffected.

6. CONCLUSIONS

Performance specifications place restrictions on
the dynamic response of systems. These specifi-
cations dictate regions of parameter space where
operation is acceptable. Parameter values on the
boundary of such a region give rise to behaviour
that just meets the specification. This situation
corresponds to a grazing phenomenon.

The paper formulates grazing conditions as a set
of nonlinear, algebraic equations. Iterative solu-
tion via Newton’s method requires numerical inte-
gration of the system trajectory, and therefore has
the form of a shooting method. The associated Ja-
cobian incorporates trajectory sensitivities, which
can be efficiently computed along with the trajec-
tory. The shooting method is therefore practical
for arbitrarily large hybrid systems.

The shooting method searches in a specified direc-
tion, in parameter space, for a grazing bifurcation.
However for a given parameter set, closer bifurca-
tions may lie in a different direction. The paper
has formulated and illustrated an optimization
algorithm for locating the (locally) closest grazing
bifurcation point. The shooting method is utilized
at each iteration of the optimization process.
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