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Estimating Wind Turbine Parameters and
Quantifying Their Effects on Dynamic Behavior

Jonathan Rose Ian A. Hiskens, Fellow, IEEE

Abstract— Numerous models have been proposed for repre-
senting variable-speed wind turbines in grid stability studies.
Often the values for model parameters are poorly known though.
The paper initially uses trajectory sensitivities to quantify the
effects of individual parameters on the dynamic behavior of wind
turbine generators. A parameter estimation process is then used
to deduce parameter values from disturbance measurements.
Issues of estimation bias arising from non-identifiable parameters
are considered. The paper explores the connection between the
type of disturbance and the parameters that can be identified
from corresponding measurements. This information is valuable
in determining the measurements that are required from testing
procedures and disturbances in order to build a trustworthy
model.

Index Terms— Wind turbine dynamics, parameter estimation,
trajectory sensitivity.

I. INTRODUCTION

W IND generation has experienced enormous growth in
recent years, with that trend set to continue [1], [2].

Accordingly, the impact of wind turbine generators (WTGs) on
power system dynamic performance is becoming increasingly
important. Inclusion of WTGs in studies of dynamic behavior
is difficult though, as many parameters are not well known.
The reasons for this are varied, but include:
• Manufacturers do not wish to disclose their intellectual

property.
• Some wind turbine manufacturers have disappeared, yet

their turbines continue to operate.
• Often manufacturers have very detailed models, but de-

riving simplified models that are suited to grid stability
studies is far from straightforward.

• Planning studies require typical values for proposed
WTGs.

Consequently, parameter values are frequently unknown or
uncertain. Yet discrepancies may lead to erroneous conclusions
regarding dynamic performance.

Not all parameters are influential though. In some cases,
parameters can be varied over a relatively large range without
causing any appreciable change in the dynamic response.
Other parameters, however, exert quite an influence, with
small perturbations giving rise to large deviations in the
dynamic behavior. It is also quite common for parameters to
be influential during certain disturbances but inconsequential
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for others. The paper uses trajectory sensitivity concepts [3],
[4] to quantify the effect of parameter variations on large-
disturbance behavior.

Parameters that are significant, in the sense that they exert
a non-negligible influence on system dynamics, need to be
known quite accurately. If they are not otherwise available,
then they should be estimated from measurements of WTG
response during disturbances. Interestingly, parameters that are
influential will also be identifiable from measurements [5],
[6]. Conversely, parameters that are not identifiable tend not
to be particularly important. The paper uses a nonlinear least
squares formulation to estimate significant, but poorly known,
parameters.

The paper is organized as follows. Section II presents the
wind turbine generator model that is used throughout the
paper. Parameter sensitivity analysis techniques are discussed
in Section III, and parameter estimation is described in Sec-
tion IV. Conclusions are provided in Section V.

II. WIND TURBINE GENERATOR MODEL

A. Overview

The examples presented in the paper refer to a variable-
speed wind turbine that is based on doubly-fed induction
generator (DFIG) technology. The model used throughout the
paper is very similar to that developed in [7]. It is highly sim-
plified from an actual WTG, and is designed to represent only
the dynamics of interest in large-scale grid stability studies [8].
(For example, the model can only tolerate voltage deviations
to 0.7 pu.) Although a DFIG wind turbine was selected for
illustration, the concepts presented are nevertheless applicable
to other types of turbines.

It is convenient to divide a wind turbine system into various
subsystems, as shown in Figure 1. The physical device is
composed of the wind turbine connected through the drivetrain
to the electromechanical power conversion equipment. The
Supervisor Controller (SC) fulfills two main goals:

1) Maximize real power production (within equipment rat-
ing).
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Fig. 1. Wind turbine generator subsystems.
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Fig. 2. Generator control.

2) Control reactive power. Older DFIG WTGs usually
controlled reactive power to a specified power factor.
Newer designs are capable of regulating the terminal
bus voltage [9]. The paper focuses on the latter case.

Models for the aerodynamic block [10], the drivetrain block
[9], [10], and the generator [11], [12] are well-established from
the underlying physics, and do not warrant reproduction. Two
simplifications that are common in grid stability studies have
been used though:

1) The drivetrain is modeled as a single lumped-mass
inertia.

2) The induction generator model neglects stator transients.
(This is common practice for grid simulations [12].)

Models for the Supervisor Controller (SC) and the Genera-
tor Controller (GC) are not well established [13]. Both the SC
and GC contain custom control loops designed by the wind
turbine manufacturers. The models used here are provided for
example purposes only, and may not be reflective of an actual
wind turbine.

B. Generator control

The GC regulates the DFIG rotor excitation so that the
active and reactive power delivered by the WTG match the
setpoint values Pord and Qord. Unlike traditional synchronous
machines, the DFIG requires AC rotor excitation [14]. Varying
the rotor voltage magnitude |Vr| and phase ∠Vr allows com-
plete control over complex power generation. The frequency
of the rotor voltage cannot be set independently, but must
equal the difference between rotor speed and synchronous
grid frequency. Physically, the GC consists of a voltage-source
inverter, together with a controller, as shown in Figure 2.

The controller of Figure 2 is conceptually similar to [15],
and consists of two proportional-integral (PI) rotor current
regulators. Variables are expressed in d-q notation [11]. Active
and reactive power controls are virtually decoupled when a
reference frame is chosen such that the d-axis aligns with the
stator voltage vector Vg, and the q-axis leads the d-axis by
90o. The “algebraic equations” block in Figure 2 represents
the fact that there is a direct, algebraic relationship between
rotor current and machine power1 [16].

C. Supervisory control

The SC has three major roles. As illustrated in Figure 3,
inputs ωr and Pgen are used to determine the active power

1This assumes that stator transients are neglected.
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Fig. 3. Supervisor control. “MPP Lookup” provides a lookup table (or
polynomial fit) of optimal (Pgen, ωr) pairs resulting in maximum power
[10].
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Fig. 4. WTG test network.

setpoint Pord that maximizes generated power. Also, the
reactive power setpoint Qord is adjusted to drive the terminal
bus voltage |Vg| to its setpoint Vref . This SC model is similar
to models found in the literature [17], particularly [7].

The third function, which is not illustrated in Figure 3, is
to adjust the blade pitch angle (αpitch) if high winds risk
overloading the generator. This blade pitch control system has
not been modeled. (During simulations, wind speed has been
capped to eliminate the need for a working pitch mechanism.)
Detailed of such models can be found in [7], [13].

D. Disturbance models

Three different disturbances are used for various tests
throughout the paper:
• Wind speed: Ramp decrease in wind speed,

νwind =





11.5 t < 1
18− 6.5t 1 ≤ t ≤ 2
5 t > 2

(1)

where νwind is the wind speed in m/s.
• Voltage reference: Step change in Vref from 0.99 pu to

0.95 pu at t = 0.5s.
• Fault: The test system, shown in Figure 4, consists of

a WTG connected to an infinite bus through a line with
reactance 0.2 pu. A fault, with reactance XF = 0.3 pu is
applied at the terminal bus of the WTG, and is cleared
after 0.23 s.

III. PARAMETER ANALYSIS TECHNIQUES

A. Trajectory sensitivities

The time evolution of system quantities following a dis-
turbance is referred to as a trajectory, and can be compactly
expressed as z(t). In the case of a WTG, quantities of interest
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include currents, voltages, power measurements, rotor speed
ωr, and pitch angle αpitch. The generated complex power
is of particular importance in subsequent discussions, so for
convenience, Pgen and Qgen shall be ordered first among the
system quantities,

[
z1(t)
z2(t)

]
=

[
Pgen(t)
Qgen(t)

]
. (2)

System constants are called parameters, and are denoted by
θ. WTG systems include numerous parameters, with Figures 2
and 3 showing various control system parameters. Subsequent
investigations will focus on a subset of the parameters, namely

θ = [KPvar KIvar KIpwr KPd KId KPq KIq H]T .
(3)

An actual trajectory depends on the choice of parameter
values. This parameter dependence is commonly expressed in
terms of the system flow, φ(t, θ), with

z(t) = φ(t, θ) (4)

implying that for a particular value of θ, the point on the
trajectory z at time t is given by evaluating the flow φ at that
time. Generally φ cannot be written explicitly, but instead is
obtained numerically by simulation.

Trajectory sensitivities provide a useful way of quantifying
the effect that individual parameters have on overall system
behavior [18]. A trajectory sensitivity is simply the partial
derivative of the trajectory, or equivalently the flow, with
respect to the p parameters of interest,

Si(t, θ) =
∂φi

∂θ
(t, θ)

=
[
∂φi

∂θ1
(t, θ)

∂φi

∂θ2
(t, θ) · · · ∂φi

∂θp
(t, θ)

]
(5)

where φi refers to the i-th element of the vector function φ,
and θj is the j-th parameter. The ordering given by (2) implies

S1(t, θ) ≡ ∂Pgen

∂θ
(t, θ), S2 ≡ ∂Qgen

∂θ
(t, θ). (6)

Trajectories are obtained by numerical integration, which
generates a sequence of points at discrete time steps
t0, t1, ..., tN along the actual trajectory. The discretized tra-
jectory will be described using the notation

z = [z(t0) z(t1) ... z(tN )]T . (7)

Trajectory sensitivities can be calculated efficiently as a
byproduct of numerical integration [4]. The corresponding
discretized sensitivities can be written,

Si(θ) =




Si(t0, θ)
Si(t1, θ)

...
Si(tN , θ)


 . (8)

Unfortunately, few of the commercial simulation packages
currently calculate trajectory sensitivity information. Approxi-
mate sensitivities must be generated by varying each parameter
in turn by a very small amount, re-simulating, determining
the difference in trajectories, and thus finding the sensitivity.

TABLE I
PARAMETER SENSITIVITY NORMS FOR Vref DISTURBANCE.

KPvar KIvar KIpwr KPd KId KPq KIq H

‖S1·‖ ≈ 0 0.01 0.62 1.57 1.49 0.68 0.36 0.05
‖S2·‖ 0.03 0.31 0.08 0.20 0.19 1.92 0.69 ≈ 0

Sum 0.03 0.32 0.70 1.77 1.68 2.60 1.05 0.05

The disadvantage of this method is that it is computationally
expensive, and requires an additional simulation for each
parameter.

B. Quantifying parameter effects

Trajectory sensitivities can be used directly to identify
significant parameters in a model. Parameters that have a
large associated trajectory sensitivity (for part or all of the
simulation time) have a larger effect on the trajectory than
parameters with smaller sensitivities. This relative significance
can be quantified by using an appropriate norm. Considering
the sensitivity of the i-th system quantity (trajectory) to the j-
th parameter, given by Sij(t, θ), the 2-norm (squared) is given
by

‖Sij‖22 =
∫ tN

t0

Sij(t, θ)2dt (9)

where the period of interest is t0 ≤ t ≤ tN . In terms of
the discrete-time approximation provided by simulation, the
equivalent 2-norm can be written

‖Sij‖22 =
N∑

k=0

Sij(tk, θ)2. (10)

For illustration, Table I tabulates the sensitivity norms for the
voltage reference disturbance described in Section II-D.

From this table, it can be seen that parameters KPvar,
KIvar, and H have much smaller sensitivities, and thus are
likely to have minimal effect on the simulation trajectory,
while parameters KIpwr, KPd, KId, KPq and KIq are likely
to have a larger effect on the trajectory. Figure 5 verifies
this conclusion. Notice that parameters KPd, KId, KPq and
KIq all have a significant influence on the Pgen trajectory, in
good agreement with Table I. Parameters KPq , KIq , and to a
lesser extent KIvar all affect the Qgen trajectory, also in good
agreement with Table I.

Parameters that had little effect on the trajectory resulted in
nearly identical plots, and so are shown by one representative
graph labeled “Vary Others.” The parameters included in
this category are KPvar, KIvar, and H in Figure 5(a), and
parameters KPvar, KIpwr, KPd, KId and H in Figure 5(b).

Keep in mind that the sensitivities in Table I were obtained
for a single disturbance, and thus are applicable only for
similar disturbances. Different forms of disturbances may
excite the system in ways that accentuate the impact of other
parameters. As a general rule, more severe disturbances yield
higher sensitivities.
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(a) Pgen trajectories.
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(b) Qgen trajectories.

Fig. 5. Effect of varying parameters by ±80%, for the Vref disturbance.

IV. PARAMETER ESTIMATION

A. Gauss-Newton solution method

It is often possible to deduce parameter values from distur-
bance measurements. In the case of WTGs, simply measuring
the generated real and reactive power during a disturbance
may yield sufficient information to accurately estimate several
model parameters. The aim of parameter estimation is to
determine parameter values that achieve the closest match
between the measured samples and the model trajectory.

Disturbance measurements are obtained from data acqui-
sition systems that record sampled system quantities. Let a
measurement of interest be given by the sequence of samples

m = [m0 m1 ... mN ]T (11)

with the corresponding simulated trajectory being given by

zi = [zi(t0) zi(t1) ... zi(tN )]T , (12)

which is the i-th column of z defined in (7). The mismatch
between the measurement and its corresponding (discretized)
model trajectory can be written in vector form as

e(θ) = zi(θ)−m (13)

where a slight abuse of notation has been used to show the
dependence of the trajectory on the parameters θ.

The best match between model and measurement is obtained
by varying the parameters so as to minimize the error vector
e(θ) given by (13). It is common for the size of the error
vector to be expressed in terms of the cost,

C(θ) = ‖e(θ)‖22 =
N∑

k=0

ek(θ)2. (14)

The desired parameter estimate θ̆ is then given by

θ̆ = argmin
θ

C(θ). (15)

This nonlinear least squares problem can be solved using a
Gauss-Newton iterative procedure [19]. At each iteration j of
this procedure, the parameter values are updated according to

Si(θj)T Si(θj)∆θj+1 = −Si(θj)T e(θj) (16)

θj+1 = θj + αj+1∆θj+1 (17)

where Si is the trajectory sensitivity matrix defined in (8), and
αj+1 is a suitable scalar step size2.

An estimate of θ which (locally) minimizes the cost function
C(θ) is obtained when ∆θj+1 is close to zero. Note that
this procedure will only locate local minima though, as it
is based on a first-order approximation of e(θ). However if
the initial guess for θ is good, which is generally possible
using engineering judgement, then a local minimum is usually
sufficient.

B. Parameter conditioning

Often there is insufficient information in a measured trajec-
tory to estimate all the parameters. In Section III it was seen
that some parameters have little effect on trajectory shape.
These parameters are usually not identifiable.

When developing a parameter estimation algorithm, it is
necessary to separate identifiable parameters from those that
are not, in order to avoid spurious results. This can be achieved
using a subset selection algorithm [21], [22]. This algorithm
considers the conditioning of the matrix ST

i Si that appears in
(16). If it is well conditioned, then its inverse will be well
defined, allowing (16) to be reliably solved for ∆θj+1. On
the other hand, ill-conditioning of ST

i Si introduces numerical
difficulties in solving for ∆θj+1, with the Gauss-Newton
process becoming unreliable.

The subset selection algorithm considers the eigenvalues
of ST

i Si (which are the same as the singular values of Si.)

2Numerous line search strategies for determining α are available in [20],
for example.



5

TABLE II
PARAMETER CONDITIONING. (AN ‘×’ DENOTES WELL-CONDITIONED.)

KPvar KIvar KIpwr KPd KId KPq KIq H

νwind × × × ×
Vref × × × × × ×
Fault × × × ×

Small eigenvalues are indicative of ill-conditioning. The subset
selection algorithm therefore separates parameters into those
associated with large eigenvalues (identifiable parameters) and
the rest which cannot be identified. The latter parameters are
then fixed at their initial values.

Interestingly, the diagonal elements of ST
i Si are exactly

the values given by the 2-norm (10). If the trajectory sen-
sitivities corresponding to parameters were orthogonal, then
ST

i Si would be diagonal, and separating the influences of
parameters would be straightforward. This is not generally
the case though, with the impacts of parameters often being
partially correlated. For that reason, large values of (10) are
not sufficient to guarantee parameter identifiability.

From a numerical (and practical) standpoint, it is best to
initially estimate parameters using a disturbance that results
in the highest number of well-conditioned parameters. Having
too many ill-conditioned parameters can prevent good estima-
tion. Even though each individual ill-conditioned parameter
has little effect on the trajectory, when several ill-conditioned
parameters take incorrect initial values, they may irrecoverably
bias the estimation process.

Table II summarizes parameter conditioning for the three
disturbance scenarios described in Section II-D. A Vref distur-
bance results in the fewest ill-conditioned parameters, and thus
this disturbance was used first in parameter estimation. Notice
that the results in Table II are fairly intuitive. A change in
Vref predominantly disturbs the WTG reactive power control
system. All GC parameters are well-conditioned because of the
coupling that occurs through the “algebraic equation” block,
see Figure 2. Parameter KIpwr is on the borderline of the
conditioning classification, and in fact is ill-conditioned for
slightly different Vref disturbances.

In the first row of Table II, a νwind disturbance affects
only turbine active power production, thus only parameters
associated with active power are well-conditioned.

The justification for the last row in Table II is less obvious
but relates to response time. A fault is a relatively quick
disturbance, compared to the other two. In WTGs, it is typical
for the SC to have time constants that are far slower than GC
controller time constants [23]. For the particular parameter
values chosen in this paper, the SC is so slow that it does not
even “notice” the fault; Pord and Qord remain almost constant
throughout the entire simulation.

C. Parameter estimation results

Unfortunately no measurements of actual wind farms were
available for use in this paper. Measurement data was therefore
fabricated by simulation, using a certain set of parameters
henceforth called “actual” parameters. White noise of mag-

TABLE III
PARAMETER ESTIMATION USING Vref DISTURBANCE. (ASTERISK

DENOTES ILL-CONDITIONED.)

K∗
Pvar KIvar KIpwr KPd KId KPq KIq H∗

Actual 20 2 0.6 0.3 0.5 0.3 0.5 4.64
Initial 20 4 0.2 0.5 0.7 0.15 0.2 6
Estim 20 1.99 0.76 0.28 0.54 0.31 0.46 6
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Fig. 6. Measured and simulated Pgen for a Vref disturbance. (Results from
Table III.)

nitude 0.02 pu was added to make the measurements slightly
more realistic.

A simulation was run where Vref was changed according
to Section II-D. The wind speed during the entire simulation
was steady at 11.5 m/s. The resulting turbine output active
and reactive power trajectories were corrupted with noise, and
saved as the measurement vector m. The estimation process
was then initialized with the parameter values shown in the
second row of Table III. After five iterations, the process
converged to the values given in the third row of Table III.
The results are promising, with accurate estimation of most
well-conditioned parameters. The exception is KIpwr, where
its marginal conditioning led to reduced accuracy. Figure 6
shows that these estimated parameters yielded a good match
in trajectories. Ill-conditioned parameters are denoted with
an asterisk in Table III, and were maintained at their initial
(typical) values.

Whilst the parameter values in Table III yield a good
model for Vref disturbances, the error in H , and to a lesser
extent KIpwr, may prevent accurate replication of other events.
Figure 7 shows the results of using Table III “estimated
parameters” to model a wind disturbance. The model does
not perform near as well.

The solution to this problem is to estimate more parameters.
According to Table II, if the model in intended to predict
WTG response to a wind disturbance, then both KIpwr and H
should be estimated because these parameters are influential.
However, if the model is intended for fault studies only, then
the parameters in Table III should be sufficient, because the
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Fig. 7. Measured and simulated Pgen for a νwind disturbance. (Comparison
of results from Tables III and IV.)

TABLE IV
PARAMETER ESTIMATION USING νwind DISTURBANCE. (ASTERISK

DENOTES ILL-CONDITIONED.)

K∗
Pvar K∗

Ivar KIpwr KPd KId K∗
Pq K∗

Iq H

Actual 20 2 0.6 0.3 0.5 0.3 0.5 4.64
Initial 20 1.99 0.76 0.28 0.54 0.31 0.46 6
Estim 20 1.99 0.6 0.3 0.5 0.31 0.46 4.64

influential parameters KPd, KId, KPq , and KIq have already
been accurately estimated.

To create the best model possible, the parameter estimation
process should be repeated, this time using measurements from
a wind disturbance. Initial parameter values are provided by
the “estimated” values in Table III. The results of this second
estimation run are given in Table IV and Figure 7. It is clear
that improved estimates for KIpwr and H have been obtained.

D. Parameters that cannot be estimated

Sometimes parameters cannot be estimated from available
measurements. According to Table II, KPvar is such a pa-
rameter. Table I suggests that behavior is quite insensitive
to variations in KPvar. It is therefore to be expected that
incorrect values for KPvar would have only a marginal impact
on the model accuracy. Table V shows the effect of incorrect
KPvar initialization during parameter estimation. The third
and fourth rows in this table show estimation for a Vref

disturbance. The last two rows show a second estimation for
a νwind disturbance. In this way, the results follow the same
procedure used to produce Tables III and IV.

Comparing the last line of Table V with the last line of Ta-
ble IV, it is clear that the estimated parameters are not as good
as when KPvar was initialized correctly. This illustrates a
certain compounding effect of using incorrect values for an ill-
conditioned parameter. Though small, the influence of KPvar

is still sufficient to bias the trajectory slightly. In striving
for a better match between simulation and measurements, the
estimation process adjusts other parameters to compensate for

TABLE V
PARAMETER ESTIMATION FOR INCORRECT KPvar . (ASTERISK DENOTES

ILL-CONDITIONED.)

KPvar KIvar KIpwr KPd KId KPq KIq H

Actual 20 2 0.6 0.3 0.5 0.3 0.5 4.64
Init 1 30 4 0.2 0.5 0.7 0.15 0.2 6
Est 1 30* 4* 0.62 0.24 0.5 0.28 0.6 6*
Init 2 30 4 0.62 0.24 0.5 0.28 0.6 6
Est 2 30* 4* 0.6 0.31 0.5 0.28* 0.6* 4.64

the bias. This results in somewhat poorer parameter estimates.
In general, parameter estimation should be repeated using
different initial guesses for all non-identifiable parameters. If
the results show significantly different values for estimated
parameters, then the non-identifiable parameter(s) cannot be
ignored.

Another interesting outcome is that KIvar became ill-
conditioned during the first parameter estimation run. Appar-
ently this is caused by the close relationship between KPvar

and KIvar in the SC. It is possible for larger values of
KPvar to overwhelm the KIvar integrator, causing the voltage
controller to have mostly proportional response. It was noted
in Table I that KIvar had relatively small sensitivity. The
increase in KPvar negatively impacted the conditioning of
KIvar. These observations highlight the complex manner in
which parameters may interact.

V. CONCLUSIONS

It is an unfortunately reality that many parameters of wind
turbine models are poorly known. In order to investigate the
dynamic performance of wind turbine generators, parameter
values must be assigned. Not all parameter values need to
be know with the same accuracy though. Using trajectory
sensitivities, it has been shown that for a particular disturbance,
some parameters are much more influential than others. This
pattern of influential parameters may change for different
disturbances.

A subset selection method has been used to determine
parameters that are well-conditioned. Such parameters may
be reliably estimated from disturbance measurements. The
estimation process is formulated as a nonlinear least-squares
problem, which is solved using a Gauss-Newton iterative
algorithm. For the case considered in the paper, a two stage
estimation process was found to be useful. The first stage
used a disturbance in the voltage setpoint to estimate most
of the parameters. The next stage considered a wind speed
disturbance in order to estimate further parameters that were
not initially identifiable.

Even with such a multi-step process, some parameters are
still not identifiable. Errors in the assumed values for these
parameters may bias the estimation results. In such cases, it
may be useful to repeat the parameter estimation process using
different initial guesses for non-identifiable parameters.
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