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INCORPORATION OF SVCS INTO ENERGY FUNCTION METHODS

Ian A. Hiskens, Member, IEEE
Queensland Electricity Commission
Brisbane, Australia

Abstract - The incorporation of static var compens-
ators (SVCs) into energy function methods is described
in this paper. The consequences of SVCs encountering
limits are of particular interest. At a limit point,
the network description undergoes a change. System
behaviour is not smooth. This lack of smoothness is
investigated. A valid energy function, which includes
the effects of SVCs and their limits, is established.
Stability assessment results, obtained for a real power
system, demonstrate the effects of SVC limits. It is
shown that the theory developed for handling limits can
be applied to models of other power system components.

Keywords - energy functions, static var compens—
ators, reactive power limits, network model

discontinuities, direct stability assessment
I INTRODUCTION

The usefulness of direct stability assessment
techniques, based on energy function concepts, has been
steadily improving over the last few years. Advances
have been made in a number of areas. These range from
speed and reliability improvements in the calculation
of critical energy [1,2,3], through to improved
modelling of power system components. In this latter
category, advances have been made in the modelling of
generators/exciters/AVRs [4,5] and of the network
[6.7,8]. Realistic load modelling has been incorpor-
ated [9,10]. Therefore quite accurate modelling of
traditional power systems is possible. However, the
trend in many utilities, including the Queensland
Electricity Commission (QEC)., is to rely on static var
compensators (SVCs) to enhance the power transfer
capability of their transmission systems.

SVCs improve power transfer capability by regulat-
ing voltage through the (effective) variation of shunt
susceptance at a bus. The resulting stabilized
voltages allow a greater level of synchronizing power

between machines, thus improving stability. Unlike
machines, SVCs have no inertia, and so can respond
extremely quickly to disturbances. However, a further

difference is that SVCs offer no possibility for
temporarily exceeding reactive power limits. Suscept-
ance limits are firm, and so must be considered in
direct methods.

Traditionally, energy function methods have been
based on a reduced network model (RNM) of the power
system. In that model, all loads are converted to
constant admittance, and the network is reduced to the
generator internal buses [11]. Realistic modelling of
network based devices such as SVCs is therefore
impossible. However, structure preserving models
(SPMs) maintain the full structure (or topology) of the
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network [8.9]. Therefore, because of the existence of
SVC buses in SPMs, they are the most appropriate system
model within which to incorporate SVCs.

The contents of the paper are as follows. Section
2 firstly reviews an appropriate SPM. Modifications
required to incorporate SVCs are then introduced. In

Section 3, the consequences of SVCs encountering limits
are considered. An energy function which takes account
of SVCs, and their limits, is investigated in Section

4., In Section 5, an example illustrates the effects
that SVCs have on system stability, and on stability
assessment using energy function methods. Section 6
describes how the theory developed to handle the SVC
limit discontinuities can be used to improve modelling
of other system components.

IT1 POWER SYSTEM MODEL

In order to illustrate the modifications to the
power system model which are required to include SVCs,
the basic structure preserving power system model (SPM)
shall initially be reviewed. More extensive details of
this model are available elsewhere [8,9]. Inclusion of
SVCs is then considered.

2.1 Structure Preserving Model without SVCs

The classical machine model is used in the develop-
ment of this SPM. Therefore the synchronous machines
are represented by a constant voltage in series with
transient reactance. As mentioned earlier, other
generator/exciter models could be substituted if
necessary using established techniques. However those
models have no bearing on the incorporation of SVCs
into energy function methods, so shall not be
considered further.

Consider now a network consisting of ng Dbuses
connected by transmission lines. At m of these buses
there are generators. Hence the network is augmented
with m fictious buses representing the generator
internal buses, in accordance with the classical
machine model. The total number of buses in the
augmented system is therefore ng+m:=n .

Let the complex voltage at the ith bus be the (time

varying) phasor Vi=lvi| ééi where éi is the bus

respect to a synchronously rotating
The bus frequency deviation is given

phase angle with

reference frame.
The SPM of interest is based on machine

th

by mi=15i

reference angles, with the n bus taken as  the
reference. We use the internodal angles a.::&.eﬁ

: t t
Detine [VI<LIV,|.....1v, 1% a=fa.....q, 1%[a} 21"

t .
and Qg_[mno-*l ..wn] . In [8] it is shown that the
SPM can be established as
. -1 ~ip
=-M Do -M .Y 1
9, = M Do WITH (a.a,. |¥]) (1a)
a =Tw (1b)
g g8
0 = fyla,.q,.[¥]) (22)
0 =gla,.a,l¥) (2p)
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where M ,D - diagonal matrices of inertia, damping

"8 B constants

Ig - specially structured matrix of %1 entries

—ig - accel. power at generators 1,... .m-1

ie - real power balance at load buses

g - reactive power balance at load buses
Note that the SPM consists of a set of differential-
algebraic (DA) equations. The system variables are
clearly € . og € F"! . g, €E® and
vl € IR:° . The system state is (Qg,(_lg) , with

(g_e. |v]) being algebraicly dependent on that state.

The structure of the solution set for (2) is of
particular importance in the analysis of this DA model.
This set is defined as

G:i={z: £,(z)=0 . g(z)=0} 3)
where z = (gg.ge.|!|) . Typically G is a different—

jable (m-1)-manifold. This manifold shall be referred
to as the constraint manifold.

2.2  SVC Modelling

A model of an SVC control system, suitable for
transient stability studies, is shown in Figure 1. It
is typical of models used by industry for this type of
study [12]. Descriptions of the components of this
model follow. Details of modifications needed to the
SPM to include these various aspects of SVCs are
explained.

jBsvc

Vih Vref Network
1

Under voltage
Protection

Figure 1:

SVC Control System

2.2.1 Regulator

In general, integral control is used to regulate
the output of SVCs [13]. This is indicated in Figure
1. Any error between the sensed voltage Vt and the

reference voltage vref is integrated, resulting in an

adjustment to the thyristor firing angle. This alters
the effective susceptance at the SVC bus. SVC control
system design is based on the assumption that increased
capacitance at a bus will cause its voltage to rise.
This is generally the case, but may not necessarily be
true. Conditions affecting the validity of this
assumption are considered further in [14]. Under
normal operating conditions however, power systems do
behave in the appropriate way. Therefore, in the
following analysis, we shall assume:

Al. Increasing capacitance at a bus causes its voltage
to rise.

SVCs can respond to voltage changes extremely
quickly because their regulator time constants T are
generally small. Step response tests performed on an
SVC in the QEC system have confirmed this [15]. In
fact, compared with the response of generators, SVCs

can be thought of as responding instantaneously [16].
This extremely fast behaviour enables a simplification

of the SVC model in accordance with the following

assumption:

A2. SVCs respond instantaneously to voltage
fluctuations.

Assumption A2 ensures that the regulated bus
voltage remains constant, so it can be treated as a
PV-type bus. Real power and voltage magnitude are
specified, while reactive power and voltage angle are
unknown. A modification to the algebraic equations of
the SPM (2) must be made to incorporate PV buses. Let
the number of SVC buses be ng . and label them

i=no-ns+l....,n° , i.e., the last ng load buses.

Partition g . lv| as g_t =[ g; gst ] and
t t t )

WIS = [ 1%1° 1%1% 7. where g, . [%,| are nowng

vectors referring to load buses, and g, - |!s| are

ng vectors referring to SVC buses. Note that the

voltages at SVC buses are constant, i.e., |!S| = |Y.:|

for some constant Also note that reactive

(]
'
]
power is not constrained at SVC buses, so functions gy

are not constraints of the model. Accordingly, the SPM

becomes
o =M'De -¥T% (a.a, |V, (4a)
8 B gEg g BB B £
e =Tw (4b)
& =g
0 = f,lg,.2, 1Y, (52)

The system state is still (e _,a ) , but the algebraic
B8

200Dy The number of

2n(,—nS .
Once again the constraint manifold is defined as the
solution set of the algebraic equations (5).

variables are now (ge. h—’e“ € R

algebraic equations has also been reduced to

2.2.2 Limits

SVC susceptance is composed of fixed capacitors and
thyristor controlled reactors (TCRs). Therefore unlike
generators, where reactive power limits can be tempor-—
arily exceeded, susceptance limits of an SVC are firm.
Maximum capacitance is achieved when the TCR is fully
blocked, i.e., no current is allowed to pass, while
maximum inductance occurs when the TCR is fully pulsed,
i.e., no chopping of the TCR current. In this latter
case the net susceptance is achieved from a parallel
connection of the fixed capacitors and the TCRs.

Because the susceptance limits are fixed, they must
be modelled. Ignoring them would be equivalent to
assuming SVCs had unlimited capacity to support voltage
during transients. Optimistic (and unreliable)
stability results would be obtained. When a limit is
encountered, voltage can no longer be controlled, so
the bus ceases to behave as a PV bus. The limit also
introduces a reactive power constraint. Therefore the
bus type changes from PV to PQ. The number of SYCs is
effectively reduced by one. The SVC bus becomes like
any other load bus with non-zero susceptance. The
number of algebraic variables increases by one, |Vi| .

and the number of algebraic constraints also increases
by one, 8; Of course, when the SVC comes off the

limit, the voltage again becomes constrained, and the



reactive power unconstrained.

If the SVC encounters, or comes off, a limit as the
power system swings in response to a disturbance, a
discontinuity occurs in the rate of change of f‘g

This follows from a comparison of the SPMs with and

without SVCs. A detailed investigation of the effects
of limits is undertaken in Section 3.

Example 1

The two generator power system of Figure 2 can be
used to illustrate SVC limit behaviour. The responses
to a 50MW load increase at GEN2 are shown in Figure 3.
Note that at the point where the SVC encounters a
limit, fGEN2 is continuous but has a step change in

time derivative. o

@ -25MW

GEN1 BUS1 GEN2

| 2.0 I 1.0 I
25MW ( ~ | |

Figure 2: Two Generator System With SVC
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Figure 3: Transient Response to a Load Step

2.2.3 Undervol eration

In response to a power system fault, local SVCs, if
allowed to operate normally, would sense lpw voltage
and respond by driving susceptances to their capacitive
limits. Upon fault clearing. bus voltages would peak
at unacceptable levels. To overcome this undesirable
behaviour, most SVCs are equipped with undervoltage
detection equipment [13]. Should the voltage fall
below a preset threshold, a large negative offset is
applied to the summing junction. This causes SVC
susceptance to very quickly reach its inductive limit,
where it remains until the fault is removed.

During the faulted period the SVC therefore behaves
as a fixed susceptance, at its inductive limit. The
SVYC bus can be accurately modelled as a PQ bus. Note
though that undervoltage action is only of importance
in determining the system state at fault clearing. It
plays no part in the post-fault dynamics.

2.2.4 Droop Characteristic

To reduce SVC susceptance excursions, the regulat-
ing behaviour of SVCs is often modified so that it
follows a droop characteristic [13]. Droop has the
effect of varying the SVC regulated voltage depending
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upon the value of SVC susceptance. As susceptance goes
more capacitive, the regulated voltage reduces, and
vice versa. Figure 1 shows that droop is implemented
in the control system as a feedback loop through the
droop constant KD .

The implementation of this control system feature
into a network based model can be achieved by recogniz-
ing that feedback droop has exactly the same effect as
if the SVC was regulating (to a constant voltage) a
fictious internal bus behind an appropriate reactance.
This equivalent network arrangement is shown in Figure
4. It is established in [17] that the reactance XD

is related to the droop constant by XD =g where
o
Vo is the SVC reference voltage.

Vi
Vo
Bsve | X

— YYY Y\

S Network
SVC Susceptance ]

= Fictious Internal
Regulated Bus SVC Terminal
Bus

Figure 4: SVC Droop Equivalent Network

Droop is implemented into the SPM via this equiv-
alent network. An extra 'internal’ SVC bus is intro-
duced, as in Figure 4. It is modelled as a PV bus.
The SVC terminal bus is then modelled as a PQ bus.

2.3 Local ODE Representation of the SPM

It is shown in [9] that the DA system describing
the SPM (either with or without SVCs) 1is locally
equivalent to a set of ordinary differential equations
for almost all operating states. This result follows
from the implicit function theorem [18]. Consider the
SPM without SVCs (1),(2). apd define the Jacobian

af af

= =
da av]
1, = =L - € IR2n<,x2no (6)
28 og o
age a !l

If det ,Iee # 0 , locally the load bus variables can be

written explicitly in terms of the generator angles as
ap = 9(g,) vl = ¥(a)) )

An equivalent differential equation form of the SPM can
therefore be obtained locally by substituting (7) into
(1a). Setting

£le) = £ (e 8(a) ¥a)) ®)
gives the model

1.t %

. -1 _

- M Do -
Yy = My Do, Toh(a) (92)
a =Tw (9b)
% = %

Equations (9) define ordinary differential equations
vhich are locally equivalent to the SPM. In [19], this
local solvability is extended to solvability over
disjoint regions, called causal regions. All following
analysis shall be based on the assumption:

A3. The system remains within a single causal region.

Assumption A3 is ‘justified because SVCs do not intro-
duce any new factors into the discussion of boundary
behaviour. That behaviour is investigated in [17].
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The local form (9) shall prove useful in analysing
system behaviour when limits are encountered.

111 EFFECTS OF SVC LIMITS ON CONSTRAINT MANIFOLD

As a power system moves in response to a disturb-
ance, it is likely that SVCs will encounter limits,
usually capacitive limits. This occurs generally
because increased reactive power is required to support
sagging voltages. These result from higher flows
across the network, between swinging groups of
generators.

The essential ideas behind the analysis of limiting
behaviour of SVCs are not dependent on the number of
SVCs in the system. Therefore, to maintain clarity in
the following development, it shall be assumed that the
network contains a single SVC, at bus i . Ve
initially investigate the distortion of the constraint
manifold caused by limits. The effects of this

f*(a )} of

distortion on ¢ and- ¥ of (7). and hence £l

(8) are then established.

Consider a power system with an asymptotically
stable EP at which the SVC is regulating. That EP must
be surrounded by a region of the constraint manifold
where the SVC does not encounter a limit. Define the
regulating region as

®y={z: £,(2)0. g,(2)=0 . IVJI=IV;i .

1
Blo,j<l_v_l_2ij(Z)<Bhi.j }
J
where ij is the reactive power leaving bus j via
transmission lines, B and Bh . are the induct-
lo.j i,j
ive and capacitive susceptance limits respectively and
|V;| is the setpoint voltage. This region is in

general at least partially bounded by points at which
the SVC encounters a limit. At such a limit point, SVC
susceptance reaches its maximum inductive or capacitive
value.

At a point where a limit is encountered, SVC bus
voltage remains at its setpoint value.. (It only starts
to deviate after this point.) However the additional
reactive power balance constraint

v

-1
leI (ij(gg-ge- |!|)—B1im.J j )
=0 (10)
Note that Bl‘ : is the SVC
im, j

susceptance at the appropriate limit. Define the set
of points at which a limit is encountered as the limit
surface,

2
|

n

g;(a .2 V)

must be satisfied.

S;= {2 £(2)20 . gy@)=0 . g(2)=0 . IV;l=IV{] }

Points in 33 satisfy all the constraints of SRJ. .
plus the reactive power constraint (10).

Once a limit has been encountered, SVC bus voltage
can no longer be regulated, so the network description
must change. The constraint governing SVC bus voltage
is replaced by the reactive power constraint (10). It
is then possible to define the region where the SVC is
operating on a limit as

£5(2)0 . gy(2)=0 . £4(2)=0 .

o s
|vj|>|vJ.| if B

T, = :
3 {z

lim. §=Bl0.

o
J<Ive] i
|vJ| |vJ| if B }

lim, j=Bhi,j

Points

This shall be referred to as the limit region.
i , plus the

in ‘3‘]. satisfy all the constraints of T,]'
setpoint voltage constraint le|=|V;| . Note that the

voltage inequalities of this
assumption Al.

definition rely on

It is shown in [17] that in general ij

define differentiable (m-1)-manifolds, (with boundar-
ies). Sj defines a differentiable (m-2)-manifold.

Network solutions are fully described by the constraint
surface

and” T,
J

G' =R, U UT,
J J J

The structure of R, , gj and Tj ensure that G' is

a continuous surface [17]. Note however that G' is

not smooth at points in SJ. .

G' takes the place of the constraint manifold G
in situations where SVC limits are important. However,
because G’ is not differentiable, the terminology
constraint surface is more appropriate than constraint
manifold.

Because the constraint surface is not smooth, the
implicit function theorem is not directly applicable.
Therefore the functions ¢ , ¥ cannot immediately be
defined. However, away from the limit surface, the
regulating region and the limit region are smooth, so

the required functions Q'z . 3&1 and gc . *t, are

locally defined. These regions are open, but they
approach the limit surface arbitrarily closely.
Therefore, using the fact that the constraint surface
is continuous at the limit surface, it is shown in [17]
that the function ¢ . composed of Q,L and it

joining at the limit surface, is continuous. Likewise
¢ , composed of ;Q,l and :Qc , is also continuous.

Neither of these functions is differentiable at the
limit surface however. Therefore ¢ , ¥ € c’.

Within a causal region, the generator powers are
given locally by (8). Because ¢ . ¥ are continuous,
»*
ig(gg) will be continuous. However the Jacobian of
%

f (a
£i(a)
surface.

will undergo a step change at the limit
(This Jacobian is dependent on J_ee . The
structure of ,lee changes at the limit surface, as its
dimension is altered by 1 due to the addition/deletion
of a constraint and variable.) Therefore g; ec’.
Example 2

The simple two generator network of Figure 2 can be
used to illustrate the effect of SVC limits. Figure 5

shows P—ag curves (effectively g;(gg) ) for this

system, for various values of limits. For comparison
purposes, the case where the limits are zero, i.e., no
SVC, is also included. As predicted, for non-zero
limits, these curves are continuous, but have
discontinuous derivatives. Note that higher limits
allow greater power flow across the network. o

IV__ENERGY FUNCTIONS

In this section, we establish an energy function
which incorporates SVCs, including limiting effects.
As background, we initially review an energy function
which is commonly used for the basic SPM.
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Figure 5: P—ag Curves for Various SVC Limits

4.1 Energy Function for the SPM

The development of an energy function for the SPM
has been studied previously using first integral and

Luré problem analysis .methods [7,20,21,8]. A useful
energy function is given by
t z
V(gg.z) =% QgEx(l‘)Qg + Ls <1_1(7T\)-db> 11)
where z = (gg.ge, vy . h(z) = [Lg(z)-ie(z)-g(z)]
and ZS denotes a stable EP. Note that P,{(u) must
satisfy P,{(n)>0 Conditions governing this matrix

are discussed in [8]. The first term of (11) is often
referred to as the kinetic energy function, whilst the
other term is known as the potential energy function.

4.2 Fnergy Function with SVCs

Referring to (11), the kinetic energy term of the
energy function is independent of the algebraic
functions, so no modification to that term is necessary
to account for SVCs. However the potential energy term
becomes

. Z .
PEsvc(Z) = J~S <h(A).dA> (12)

where  z = (a_.,.Y,1) . h(z) = [ig(z)-ie(z).se(;)] .
This potential energy function can be evaluated as

PE_ (z) =

n
EB[|V|1V| cos a, . — |VS||VSI cos as.]
1] 1 J ij i J i

J
i=1 j=1
a o o0 a Q;(74)
- Ls I
- i=1 |V. I b
1
where P(|V|) 1is the vector of real power injections

at each bus, and is the reactive power

Qq; (Ivih

demand at bus i The only difference between (13)
and the evaluation of the potential energy term of (11)
lies in the last summation term. The fact that

v = KE + PE is an energy function follows
sve sve

directly from (11) being an energy function.
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Note

If real power loads were constant, i.e., did not
vary with voltage, then (13) would satisfy all the
conditions of a Lyapunov function. In reality however,

a
loads vary with voltage, so the integral J; B( Iyl)tdg
a

is path dependent. The details of approximating this
type of integral are well documented [11.17].

4.3 Effects of Limits

"It can be seen from (11),(12) that the potential
energy function is dependent on the algebraic variables

ap . v] But in Section 2.3, it was indicated that
within each causal region, there exist . unique
continuous functions g, = Q(gg) and [V] = Jg(gg)

This result was extended in Section 3 to show that even

when limits are encountered, ¢ and ¢ still exist.
Therefore, referring to (8), the potential energy
function on any causal region may be written,
* %
PE :J <f L¢(a ) . ¥(a .da >
(a) = | 5 <L lap0(a) wa)).de,
3
x %
- [F e e (1)
as g g Z

-

These local potential energy functions are dependent on
gg only, so may be conceptualized as (m-1)-

hypersurfaces (or sheets) in gg—space. Note that each

PE"(a,)

information on these potential energy sheets may be
found in [9,17,19].

is unique over its causal region. Further

It was shown in Section 3 that if SVCs encounter
limits, then _f_* is ¢°
ct .

2
Therefore PE (gg) must be
continuous with ‘a continuous derivative.
3
PE (a,)
g
function before a limit was encountered, it must

continue to increase (decrease). at least in the short
term, after the limit has been enforced. Further, it

i.e.,

Hence, if was an increasing (decreasing)

is shown in [17] that the sign of V is not affected
by the network change at the limit surface. Hence V
remains an energy function even when SVC limits are
encountered.

Example 3

Again the simple two generator network of Figure 2
can be used to illustrate SVC limit effects. Figure 6
shows the potential energy curves which correspond to
the limit cases of Figure 5. These curves are smooth
(in fact C' ) functions. Notice that as SVC limits
are increased, thé height of the potential energy well,
and hence the stability margin, also increases. u]

4.4 SVC Contribution to Potential Energy

It is easily shown that the double summation term
of the potential energy function (13) may be evaluated
as

n n
- % E 2 Bij[lvillvj| cos a4 - |Vj| |Vj| cos a?‘j]
i=1 j=1

n
=% ) [Qbi(g. lvh - q (<. |¥s|)] (15)
1=1
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Figure 6: Potential Energy Curves for
Various SVC limits
where Qbi is the reactive power leaving bus i . The

reactive power leaving an SVC bus is equal to the SVC
susceptance times the bus voltage squared. Therefore,
when not on a limit, each SVC's contribution to (15) is
given by,

BS ) (16)

sve, i svec, i sve,i “svc,i

%[B v |2-BS .|v‘.’|2] = %V )38
1 1 1

where st is the present value of SVC susceptance,

c,i
. 1is the value at the stable EP, and IV?| is
sve, i i

the setpoint voltage. Referring to (13). the SVC bus
in this case does not contribute to the other (last)
reactive power summation term of the potential energy
function. Therefore the total contribution to potent-
ial energy of each regulating SVC is given by (16).

S

However, when the SVC is on a limit, its
contribution to (15) becomes
2 s 2
1, —
A[Blim,ilvil stc,i'vil ] an
Further, because in this case SVC susceptance is

constrained at its limit value, it acts as the load

2
177 Brmg 14l

Q (18)

i.e., the reactive power absorbed by the (fixed) SVC

susceptance. It therefore contributes to the last
summation term of (13). This contribution is
v, |
i 2 0,2
_[ Blim1 Ty 97y = %[_Blim‘ilvil *Blim, i V] ] (19)

o
vy !

The total contribution of each limited SVC to the
system potential energy is the sum of (17) and (19),
i.e.,

°12 o8 02| _ ,v°i2 s
%[Blim,ilvil stc,ilvil ] = Alvil (Blim.i_stc.i)
Notice the similarity between this term and (16).
Therefore, whether an SVC is on a limit or not, its
contribution to potential energy depends solely on the
setpoint voltage, the initial value of susceptance, and
the current value of susceptance. The actual bus
voltage is not important.
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V__EXAMPLE

The northern section of the Queensland Electricity
Commission power system, shown in Figure 7, contains an
SVC which has a significant influence on dynamic behav-
iour of that system. It is therefore an appropriate
system to use to examine the sensitivity of direct
stability assessment to SVC limits. Complete data for
this system can be found in [17].

The direct stability assessment algorithm used to
produce the results of this section was based on the
"controlling UEP" method of determining critical energy
[22,17]. This method follows from observations that as
a power system approaches instability, a coherent group
of generators will tend to separate from the rest of
the system. This grouping of generators is referred to
as the mode of instability. A different UEP
corresponds to each mode of instability. Each fault
causes generators to group according to a particular
mode, and hence can be associated with a controlling
UEP. The critical energy for a fault is evaluated as
the potential energy at that controlling UEP. For the
cases considered in this section, the generators at
Kareeya and Barron Gorge separated as a group from the
other generators of the system. Therefore in each case
the predicted critical energy was calculated as the
potential energy at the UEP corresponding to that mode
of instability.

To investigate the effect of SVC limits on direct
stability assessment, a three phase fault at Broadsound
was simulated. This fault was cleared by the tripping



of the 275kV feeder between Broadsound and Nebo. Load
indices of 1.0 and 3.0 were used for all real and
reactive power loads respectively. A number of
different values of the capacitive susceptance limit at
Nebo SVC were tried. Results are given in Table 1.
Note that the actual capacitive susceptance limit of
Nebo SVC is 2.60pu. It is not surprising that as the
limit increased, so did the critical clearing time and

the critical energy. This is consistent with the

results of Example 3.
SvC Predicted Simulated

Max Limit
Critical Crit Critical Crit

(pu) Clearing Time |Energy|[Clearing Time |Energy
2.10 0.124 0.464)0.116 - 0.118| 0.422
2.60 [0.148 - 0.150| 0.656(0.142 - 0.144| 0.601
2.85 0.162 - 0.164| 0.786[i0.152 - 0.154| 0.690

Table 1: SVC Limit Sensitivity.

For each value of SVC limit, good agreement was
obtained between the critical values predicted by the
stability assessment algorithm and the actual values
determined by simulation. When the limit was 2.10pu.
the error in critical clearing time was 6.0% or 7ms.
For the limit at 2.60pu, the error was 4.2%(6ms). A
limit of 2.85pu resulted in a 6.5%(10ms) error.

It is generally expected that energy function
methods give conservative predictions of system stabil-
ity, i.e., predicted critical clearing time is less
than the actual critical value. However the results of
Table 1 are not of that form. The following arguments
should help to clarify this unexpected trend.

If all real power loads in the system were modelled

as constant power, then the energy function stc

would be a Lyapunov function [8,17]. Because Lyapunov
stability theory provides sufficient, but not necess-
ary, conditions for stability, results in this case
would always be conservative [11]. Simulations of the
system of Figure 7, with constant power loads, were
initiated at many locations in generator angle space,
with a number of different initial generator velocity
vectors. Results were in complete agreement with the
theory, i.e., all cases where the initial energy was
less than the critical energy were stable. (In those
cases which were predicted to be unstable, but which
were actually stable, the largest error in predicted
ctitical energy was 3%.) . One of the stable cases is
shown in Figure 8. Notice in this figure that the SVC
periodically encounters its capacitive susceptance
limit of 2.60pu. At those points, the SVC bus voltage
falls. Potential energy varies smoothly through those
points, and total system energy remains constant. The
unexpected results of Table 1 are therefore not related
to the energy function modifications which result from
the incorporation of SVCs.

However, as mentioned in Section 4.2, voltage
dependent loads introduce path dependent terms into the
potential energy function (13). These terms must be
approximated, making results (potentially) system and
disturbance dependent. It would appear that the
results of Table 1 suffer slightly from this approx-
imation.

It is not possible, using currently available
approximations for the path dependent terms, to predict
whether a direct stability assessment algorithm will
give conservative or optimistic results. However
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Figure 8: SVC and Energy Response at a Limit
provided that the absolute errors are small, as they
are in Table 1, direct stability assessment is still
extremely useful. In the stability assessment
application being developed for the QEC, the energy
acquired by the power system during a disturbance is
compared with the predicted value. If the system
energy is greater than a predefined percentage (perhaps
85%) of the critical value, the case is flagged for
more detailed investigation. Such a comparison ensures
that all instability situations are identified, whilst
filtering off cases of little interest.

VI__OTHER C° CONSTRAINT SURFACES

in Sections 3 and 4 for
continuous, but non-smooth, constraints, need not be
restricted to SVC limiting. Other power system compon-—
ents may be described by similar types of constraints.
In fact, by removing the smoothness restrictions, more
accurate models may be possible. As with SVC limits,

The theory developed

o
the only consequence of non-smooth constraints is a C
constraint surface, with the corresponding energy
function being C!

The most obvious extension of the theory is to
generator reactive power limits. These limits must be
considered in the application of energy function meth-
ods to the voltage stability problem [23]. By slightly
adapting the results of Sections 3 and 4, the energy
function term that was proposed in [23] for handling
generator limits can be theoretically justified.

As a further example, the accuracy of load modell-

ing could be improved through the use of Co const—
raints. It is recognized that often load models of the

o

[
form Pdi=Pdi|vi| i
range of voltages. The voltage indices themselves are
voltage dependent. An improvement would result from
the use of different indices over different voltage

ranges. Consider the real power demand at bus i
The voltage dependence of this load may be described by

are not accurate over a large
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because at each point where the load index changes, the
power demand is uniquely defined. However, a step
change occurs in the Jacobian at those points. This is
similar to SVC limits, and can be analysed in exactly

the same way. Again the constraint surface is c’ R
and the energy function ct Further, as in the case
of SVC limits, the energy function is locally positive
definite, with a negative semi-definite derivative
along trajectories.

Hence, rapid stability assessment is possible using
load models of the form given by (20).

VII _CONCLUSIONS

This paper describes the incorporation of static
var compensators (SVCs) into an energy function method.
This innovation is based on the fact that SVCs respond
to disturbances much more quickly than do machines.
Therefore, using a structure preserving model (SPM) of
the power system, SVCs can be accurately represented as
constant voltage (PV) buses.

Any . accurate SVC model
susceptance limits. When a
voltage regulation ceases. A change occurs in the
network description. The paper shows that at a limit
point, system response is continuous, but not smooth.

must take account of
limit is encountered,

Only a minor modification is required to the usual
SPM energy function to include SVCs. It is shown that
even when SVCs encounter limits, the energy function is
smooth, though this smoothness is restricted to ct,
i.e., the energy function is continuous with a contin-
uous derivative. The paper indicates that the theory
developed to investigate the effects of SVC limits can
also be applied to models of other power system
components.

The paper highlights the difficulties associated
with the approximation of the path dependent integral
terms introduced into the potential energy function by
voltage dependent real power loads. It is concluded
that this issue warrants further investigation.
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