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Abstract
Sparse coding is an unsupervised learning algo-
rithm for finding concise, slightly higher-level rep-
resentations of inputs, and has been successfully
applied to self-taught learning, where the goal is to
use unlabeled data to help on a supervised learning
task, even if the unlabeled data cannot be associ-
ated with the labels of the supervised task [Raina et
al., 2007]. However, sparse coding uses a Gaussian
noise model and a quadratic loss function, and thus
performs poorly if applied to binary valued, integer
valued, or other non-Gaussian data, such as text.
Drawing on ideas from generalized linear models
(GLMs), we present a generalization of sparse cod-
ing to learning with data drawn from any exponen-
tial family distribution (such as Bernoulli, Poisson,
etc). This gives a method that we argue is much
better suited to model other data types than Gaus-
sian. We present an algorithm for solving the L1-
regularized optimization problem defined by this
model, and show that it is especially efficient when
the optimal solution is sparse. We also show that
the new model results in significantly improved
self-taught learning performance when applied to
text classification and to a robotic perception task.

1 Introduction
Sparse coding is an unsupervised learning algorithm that at-
tempts to learn a concise, slightly higher-level representation
using large amounts of unlabeled data [Olshausen and Field,
1996]. Though originally inspired by mammalian perception,
the algorithm has recently been applied successfully to ma-
chine learning applications where labeled data is scarce.

We consider the “self-taught learning” problem, in which
we are given limited labeled data from a classification task,
and also large amounts of unlabeled data that is only mildly
related to the task [Weston et al., 2006; Raina et al., 2007].
Specifically, the unlabeled data may not share the class labels
or arise from the same distribution. Raina et al. show that
with a specific sparse coding model, such mildly related un-
labeled data can help improve classification accuracy on some
tasks. However, their sparse coding model assumes that the
inputs consist of real-valued vectors, and that the vectors can
be well described using a Gaussian noise model (details in

Section 2). In our view, and as demonstrated by our experi-
ments, this severely limits the applicability of sparse coding
in a general self-taught learning algorithm.

As a running example, consider the application of self-
taught learning to text classification: suppose we would like
to classify sports webpages as “Baseball” or “Football” us-
ing only very few labeled webpages and many unlabeled text
documents, obtained randomly from the Internet (say). The
natural representation of text documents is often as a binary
“bag-of-words” vector x ∈ {0, 1}k, where the i-th feature
is 1 if the i-th word in our vocabulary occurred in the docu-
ment, or as a word-counts vector x ∈ {0, 1, 2, . . . }k, where
the i-th feature represents the number of times the i-th word
occurred in the document. In either case, such input vectors
are very poorly modeled by a continuous Gaussian distribu-
tion (which could take fractional, or negative values). It is
thus hardly surprising that when sparse coding is applied to a
self-taught learning task involving text data, it only leads to
very small improvements in accuracy.

The above problem is not unique to text classification.
Sparse coding with the Gaussian noise distribution assump-
tion may be too restrictive to model the wide variety of inputs
that we might encounter in machine learning problems, in-
cluding point clouds or depth maps, discrete data, etc.

To address this problem, we generalize the Gaussian prob-
abilistic model behind sparse coding in a principled way to
include most standard distributions. We draw on the widely
studied idea of the “exponential family” of distributions.
This class of distributions includes the Gaussian, Bernoulli
and Poisson distribution, among others, while still provid-
ing guarantees useful for efficient learning and inference.
Our generalization is analogous to the way in which gener-
alized linear models (GLMs) generalize least squares regres-
sion (which relies on a Gaussian assumption) to other kinds of
regression, including logistic regression (for binary inputs) or
softmax regression (for multivalued inputs) [McCullagh and
Nelder, 1989]. We call our model exponential family sparse
coding, and to differentiate it from the previous model, we
henceforth call that model Gaussian sparse coding.

Our generalization makes the parameter learning problem
significantly harder. However, we show that the optimization
problem can be solved via a series of L1-regularized least
squares problems, each of which can be solved using algo-
rithms similar to the ones used for Gaussian sparse coding. In



fact, our optimization procedure can also be applied to other
L1-regularized optimization problems, and is especially effi-
cient for problems that have very sparse optimal solutions.

We apply our model successfully to two self-taught learn-
ing problems—text classification and a robotic perception
task—even though Gaussian sparse coding produces poor
performance for both.

2 Preliminaries
We consider a classification problem with a small labeled
training set {(x(1)

l , y(1)), (x(2)
l , y(2)), . . . , (x(m)

l , y(m))}
drawn i.i.d. from an unknown distribution D. Each input
x

(i)
l ∈ X is assigned a class label y(i) ∈ Y = {1, 2, . . . ,K}.

We do not place the additional restriction that X = Rk.
For example, text documents can be represented as a binary
vector x(i)

l ∈ X = {0, 1}k or as an integer-valued vector
x

(i)
l ∈ X = {0, 1, 2, . . . }k.
Following the self-taught learning framework, we assume

that we are also given a large set of unlabeled examples
{x(1), x(2), . . . , x(r)} (without the subscript “l”). The inputs
x(i) ∈ X are only mildly constrained to be of the same “input
type” as the labeled examples, but need not belong to any of
the labels in the classification task, and need not arise from
the same distribution D.

2.1 Gaussian sparse coding
As studied in the literature, Gaussian sparse coding uses
unlabeled input vectors x ∈ Rk to discover basis vectors
b1, b2, . . . , bn ∈ Rk such that any input x can be represented
approximately as a weighted linear combination of only a
small number of the basis vectors: x ≈

∑
j bjsj . Here, the

weights s ∈ Rn are called the activations corresponding to
the input x, and are encouraged to be sparse (i.e., to have
many of the activations exactly equal to zero).

In detail, Gaussian sparse coding assumes that the input
vector x is generated from a Gaussian distribution with mean
η =

∑
j bjsj and (known) covariance σ2I . The activation

vector s is assumed to follow a Laplacian prior P (s) ∝∏
j exp(−β|sj |) for some constant β. Given unlabeled ex-

amples {x(1), x(2), . . . , x(r)}, the maximum-a-posteriori es-
timate of the corresponding activations {s(1), . . . , s(r)} and
the basis vectors {bj} is obtained by solving:

max
{bj},{s(i)}

∏
i

P
(
x(i)|{bj}, {s(i)}

)
P
(
s(i)
)

(1)

This reduces to the following optimization problem:1

min
{bj},{s(i)}

1
2σ2

∑
i ‖x(i) −

∑n
j=1 bjs

(i)
j ‖2 + β

∑
i,j |s

(i)
j |

subj. to ‖bj‖2 ≤ c, ∀j = 1, ..., n. (2)

This optimization problem is convex in the basis vectors
b or the activations s alone (though not jointly convex in

1Following Lee et al., we use the norm constraint on the bases to
disallow degenerate solutions in which the activations can be scaled
down as long as the basis vectors are scaled up by the same number.

both). As the objective function is simply an L1-regularized
quadratic function, an efficient alternating minimization pro-
cedure can be devised for this problem [Lee et al., 2007].

Sparse coding forces each input x(i) to be “explained” us-
ing a small number of basis vectors, and the activations often
capture certain higher-level features of the input. For exam-
ple, when the inputs x(i) consist of small images (represented
as vectors of pixel intensities), the basis vectors learnt us-
ing Equation (2) capture various kinds of edges. Effectively,
the procedure converts the pixel-based representation x(i) to a
succinct, slightly higher-level, edge-based representation s(i).
Thus, Raina et al. proposed the following simple self-taught
learning algorithm:

1. Use the unlabeled data to learn basis vectors {bj} by
solving the problem in Equation (2).

2. Now fix the basis vectors, and compute the “activa-
tions” for labeled examples xl by computing s∗ =
arg mins 1

2σ2 ‖xl −
∑
j bjsj‖2 + β

∑
j |sj |. This is an

L1-regularized least squares problem, and can be solved
efficiently [Efron et al., 2004; Lee et al., 2007].

3. Finally, use the activations s∗ as features to train a stan-
dard, off-the-shelf classifier (such as an SVM) using the
labeled data. The classifier can then be applied to label
test data.

2.2 Self-taught Learning for Discrete Inputs
To motivate the algorithms introduced in this paper, consider
the application of the above self-taught learning algorithm to
binary input vectors x ∈ {0, 1}k, say for text classification.
The Gaussian sparse coding model makes the probabilistic
assumption that P (x | η =

∑
j bjsj) is a Gaussian distri-

bution, which is a poor fit to binary data. Stated otherwise,
the Gaussian sparse coding model tries to enforce the decom-
position x ≈

∑
j bjsj , even though the unconstrained sum∑

j bjsj is a particularly poor approximation to a binary vec-
tor x. Thus, a straightforward application of Gaussian sparse
coding does not lead to very useful basis vectors or features.

Instead, we might want to find an approximation of the
form x ≈ σ(

∑
j bjsj), where σ(v) = [ 1

1+e−v1 ,
1

1+e−v2 , . . . ]
represents the elementwise logistic function for a vector v.
This promises to be a better formulation, since the logistic
function always lies in (0, 1).

We now present a systematic generalization of the Gaus-
sian sparse coding model. Our generalization includes both
Gaussian sparse coding and our seemingly arbitrary logis-
tic function approximation as special cases, and will directly
suggest models for other input types, such as when the inputs
consist of nonnegative integer counts x ∈ {0, 1, 2, . . . }k.

3 Exponential Family Sparse Coding
The exponential family is a widely used class of distributions
in statistics, and in its most general form, is represented as:
P (x|η) = h(x) exp(η>T (x)− a(η)). Here, η represents the
natural parameter for the model, and the functions h, T and a
together define a particular member of the family. For exam-
ple, it is easy to verify that the multivariate Gaussian distri-
bution N (µ, I) with fixed covariance I and (unknown) mean



parameter µ ∈ Rk is equivalent to the exponential family dis-
tribution defined by h(x) = e−‖x‖

2/2/(2π)k/2, T (x) = x
and a(η) = η>η/2 (with natural parameter η = µ). The ex-
ponential family of distributions is broad enough to include
most standard distributions (Gaussian, Bernoulli, Poisson, ex-
ponential, and others), but also restrictive enough to provide
useful guarantees. Importantly, it guarantees that the log-
likelihood is concave in the natural parameter η, making max-
imum likelihood learning of parameters tractable [McCullagh
and Nelder, 1989].

We modify the Gaussian sparse coding model to allow any
distribution from the exponential family:

P (x|b, s) = h(x) exp(η>T (x)−a(η)), η =
∑
j bjsj (3)

where we use the basis vectors bj and the activations sj to
construct the natural parameter η for the family. Since the
Gaussian distribution is a member of the exponential family,
our new generative model includes the earlier Gaussian gen-
erative model for P (x|η) as a special case. In fact, our model
extends Gaussian sparse coding in the same way that gener-
alized linear models (GLMs) extend the notion of regression
with least squares loss to other loss functions, including lo-
gistic regression and softmax regression as special cases.

Given unlabeled examples {x(1), x(2), . . . , x(r)}, we can
apply Equation (1) to compute the maximum-a-posteriori es-
timates of the basis vectors bj and the activations s(i):2

min
B,{s(i)}

P
i− log h(x(i))− s(i)>B>T (x(i)) + a(Bs(i))

+β
P

i,j |s
(i)
j | (4)

subj. to ‖bj‖2 ≤ c, ∀j = 1, ..., n, (5)

where we define the basis matrix B such that its j-th column
is the basis vector bj , implying that η =

∑
j bjsj = Bs. By

definition, we want the model to produce sparse activations,
so we set β large enough to produce only a small number of
nonzero values per activation vector s(i) on average.

Since the exponential family guarantees convexity of
logP (x|η) with respect to η, we can show that the above opti-
mization problem is convex with respect to s for fixed B, and
with respect to B for fixed s (though it is not jointly convex).
This again suggests an alternating minimization procedure it-
erating the following two steps till convergence: (i) fix the
activations s, and compute the optimal bases B; and, (ii) fix
these bases B, and compute the optimal activations s.

Step (i) involves a constrained optimization problem over
B with a differentiable objective function. We can thus apply
projective gradient descent updates, where at each iteration
we perform a line search along the direction of the (negative)
gradient, projecting onto the feasible set before evaluating the
objective function during the line search. In our case, the pro-
jection operation is especially simple: we just need to rescale
each basis vector to have norm c if its norm is greater than
c. In our experiments, we find that such a projective gradi-
ent descent scheme is sufficiently fast for basis learning. We

2As in Gaussian sparse coding, we assume a Laplacian prior on
s: P (s) ∝

Q
j exp(−β|sj |), and a uniform prior on bj .

thus focus now on the algorithm for computing the optimal
activations in Step (ii).

Step (ii) computes the optimal activation s given fixed basis
vectors. The resulting problem involves a non-differentiable
L1-regularized objective function, to which straightforward
gradient descent methods are not applicable. Recently,
many sophisticated algorithms have been developed for L1-
regularized optimization, including specialized interior point
methods [Koh et al., 2007], quasi-Newton methods [Andrew
and Gao, 2007; Yu et al., 2008] and coordinate descent meth-
ods [Friedman et al., 2007]. When used for computing activa-
tions with 1000 basis vectors, these methods find the optimal
solution in a few seconds per unlabeled example. Since we
often need to solve for the activations of tens of thousands of
unlabeled examples repeatedly in the inner loop of the overall
alternating minimization procedure, these solvers turn out to
be too slow for our model.

We now present a simple optimization algorithm for L1-
regularized optimization problems. We later show that, de-
spite the simplicity of the algorithm, when the optimal solu-
tion is very sparse (as in Equation 4-5) our method is faster
than state-of-the-art solvers for L1-regularized problems.

3.1 Computing optimal activations
We first note that since the optimal values for the activation
vectors s(i) do not depend on each other, and can be opti-
mized separately, it is sufficient to consider the following op-
timization problem for a single input x and its activation s:

mins `(s) + β‖s‖1 (6)

where s corresponds to a vector of activations, and `(s) is a
specific convex function of s.

In the case of Gaussian sparse coding, `(s) is simply a
quadratic function, and the optimization problem is a L1-
regularized least squares problem that can be solved effi-
ciently [Efron et al., 2004; Lee et al., 2007]. This suggests
an iterative algorithm for the general case: at each iteration,
we compute a local quadratic approximation ˆ̀(s) to the func-
tion `(s), and optimize the objective function ˆ̀(s) + β‖s‖1
instead.3 Using this insight, Lee et al. proposed the IRLS-
LARS algorithm for the case of L1-regularized logistic re-
gression, using Efron et al.’s LARS algorithm in the inner
loop to solve the approximated problem.

This method can be applied to other L1-regularized op-
timization problems for which a local quadratic approxima-
tion can be efficiently computed. Indeed, for the case of the
L1-regularized exponential family in Equation (4-5), we can
show that the local quadratic approximation at a point s is:

ˆ̀(s) =
∥∥Λ1/2Bs′ − Λ1/2z

∥∥2
(7)

where Λii = a′′ ((Bs)i) for a diagonal matrix Λ, and z =
Λ−1(T (x)− a′(Bs)) +Bs.4

We note that if the objective function `(s) is reasonably
approximated by a quadratic function, the solutions to the

3This method is an instance of a general method called Iteratively
Reweighted Least Squares (IRLS) in the literature [Green, 1984].

4Proof Sketch: ` and ˆ̀have the same gradient and Hessian at s:
∇` = ∇ˆ̀= −B>T (x) +B>a′(Bs), and∇2` = ∇2 ˆ̀= B>ΛB.



Dataset Small1 Small2 Small3 Med1 Med2 Med3 Large1 Large2 Large3
IRLS-LARS 4.6 4.9 4.3 12.8 12.5 13.2 1131 1270 1214
l1-logreg 18.3 18.9 17.7 181 188 185 3277 3101 3013
CoordDescent 3.6 3.4 5.6 20.7 20.7 31.0 787 653 723
OWL-QN 7.1 7.0 10.3 27.1 31.4 25.6 1018 739 906
SubLBFGS 33.0 22.3 23.1 101 142 57.2 1953 2717 1627
IRLS-FS 2.5 2.3 2.2 5.3 5.5 5.4 117 108 109

Table 1: Total running time in seconds for computing activations for 50 input examples for 9 problems (one per column). There are 3 problems
each of 3 different sizes, and they are labeled Small1 to Small3, Med1 to Med3, or Large1 to Large3 based on the size of the problem. The
“Small” problems had 200 basis vectors and input dimension 369, “Med” problems had 600 basis vectors and dimension 369, and “Large”
problems had 1000 basis vectors and dimension 3891.

Dataset Col Alon Duln Duer Arr Mad Hep Spf Prom Wbc Ion Spl Spc Spam
Sparsity (% nonzero) 0.2 0.5 0.8 1.4 3.5 3.6 26.3 29.5 31.6 40.0 45.5 56.7 63.6 66.7
IRLS-LARS 2.1 3.3 6.2 35.6 2.2 25.6 0.5 5.0 2.1 5.0 3.5 18.3 2.6 57.8
l1-logreg 18.3 16.8 13.6 14.4 34.8 509 1.0 3.0 2.0 3.8 2.7 12.8 2.0 37.1
CoordDescent 83.3 54.1 63.8 129 7.7 101 0.2 2.0 0.6 2.6 1.4 4.5 0.8 14.2
OWL-QN 27.4 29.4 16.9 79.6 7.7 634 0.1 3.4 0.4 13.4 1.9 7.1 0.9 39.3
SubLBFGS 114 80.8 60.5 311 24.3 261 0.7 9.3 2.7 14.4 4.5 13.4 2.1 43.0
IRLS-FS 1.9 1.9 2.5 7.1 1.5 14.0 0.3 2.3 1.3 2.9 2.0 10.4 1.9 50.8

Table 2: Total running time in seconds for 50 trials of learning parameters of various L1-regularized logistic regression benchmarks (obtained
from Lee et al., 2006). The datasets are ordered left-to-right by the increasing fraction of nonzero parameters at the optimal solution (e.g., the
leftmost problem Col had only 0.2% nonzero parameters at the optimal solution).

successive quadratic approximations should be close to each
other. However, the LARS algorithm used in IRLS-LARS
cannot be initialized at an arbitrary point, and thus has to re-
discover the solution from scratch while solving each suc-
cessive approximation. In contrast, the “feature-sign search”
algorithm (originally proposed in the context of Gaussian
sparse coding) can be initialized at an arbitrary point [Lee
et al., 2007], and can thus potentially solve the successive ap-
proximations much faster. We propose to use the feature-sign
search algorithm to optimize each quadratic approximation.

The final algorithm, which we call IRLS-FS, is described
below. The algorithm is guaranteed to converge to the global
optimum in a finite number of iterations. (Proof similar to
IRLS-LARS.)

Algorithm 1: IRLS-FS algorithm for L1-regularized exponential
family problems

Input: B ∈ Rk×n, x ∈ Rk, threshold ε. Initialize s := ~0.
while decrease in objective value at last step > ε do

Compute diagonal matrix Λ with Λii = a′′ ((Bs)i),
Compute vector z = Λ−1(T (x)− a′(Bs)) +Bs.
Initializing feature-sign search at s, compute:
ŝ = arg mins′

∥∥Λ1/2Bs′ − Λ1/2z
∥∥2

+ β‖s′‖1
Set s := (1− t)s+ tŝ, where t is found by backtracking
line-search [Boyd and Vandenberghe, 2004] to minimize
the objective function in Eqn (4).

end while

4 Computational Efficiency
We compare the IRLS-FS algorithm against state-of-the-art
algorithms for optimizing the activations, focusing on the

case of binary sparse coding (i.e., x ∈ {0, 1}k). This case is
especially interesting because this leads to an L1-regularized
logistic regression problem, where the number of “features”
is equal to the number of basis vectors used, but is indepen-
dent of the dimensionality of inputs x in the original problem.
This problem is of general interest (e.g., see Ng, 2004), and
customized algorithms have also been developed for it.

We consider five recent algorithms: the IRLS-LARS al-
gorithm [Lee et al., 2006] and the l1-logreg interior point
method [Koh et al., 2007] specifically for logistic regression,
the Coordinate Descent method [Friedman et al., 2007] with
successive IRLS approximations (constructed locally as in
IRLS-FS), and the OWL-QN [Andrew and Gao, 2007] and
SubLBFGS [Yu et al., 2008] algorithms for L1-regularized
convex optimization problems.5 All algorithms were eval-
uated on nine L1-regularized logistic regression problems
which arise in the course of solving Equations (4-5) for un-
labeled text documents with binary sparse coding (details in
Section 5.1). The sparsity parameter β was set to produce 20
nonzero activations per example on average.6 We measured
the running time taken by each algorithm to converge within
a specified tolerance of the optimal objective value.7

5Baseline algorithms: Lee et al. show that IRLS-LARS outper-
forms several previous algorithms, including grafting [Perkins and
Theiler, 2003], SCGIS [Goodman, 2004], GenLasso [Roth, 2004]
and Gl1ce [Lokhorst, 1999]. IRLS-FS, IRLS-LARS, l1-logreg and
CoordDescent were implemented in Matlab, and OWL-QN and Sub-
LBFGS were compiled in C++ with optimization flags.

6In our experiments, such β values produced reasonable basis
vectors during basis learning.

7Details: Since IRLS-LARS solves the dual or Lasso version of
our problem (i.e., with a constraint C on the L1 norm of the acti-
vations rather than a penalty β), we follow Lee et al.’s method of



Table 1 shows the running times computed over 50 trials.
IRLS-FS outperforms the other algorithms on this task, show-
ing that it well-suited to exponential family sparse coding.
When a large number of basis vectors are used, IRLS-FS can
be 5 to 7 times faster than the best baseline algorithm.

This poses the question: can IRLS-FS be a useful al-
gorithm for general L1-regularized optimization problems
(not necessarily ones generated by the sparse coding prob-
lem)? We compare the algorithms above on 14 moderate-size
benchmark classification datasets, and apply L1-regularized
logistic regression to them. The value of β on each bench-
mark was picked to optimize the generalization error of the
resulting logistic regression classifier; unlike the earlier ex-
periment, β was not set explicitly to obtain sparse solutions.
Table 2 shows the running time of the algorithms to compute
the optimal parameters. IRLS-FS outperforms the other al-
gorithms on 6 out of 14 of these benchmark datasets; more
specifically, it performs best when the optimal parameters
have a very small number of nonzero values.

5 Application to self-taught learning
The model presented in this paper generalizes Gaussian
sparse coding. It is also closely related to exponential fam-
ily PCA [Collins et al., 2001], which corresponds to setting
the sparsity penalty β to zero, and additionally constraining
the basis matrixB to have orthogonal columns. We now show
that the exponential family sparse coding model can produce
better self-taught learning performance than either of these
previous methods.

5.1 Text classification
We first apply the exponential family sparse coding algo-
rithms to two self-taught learning problems in text classifi-
cation: one using binary-valued input vectors, and another
using integer-valued (word count) vectors.

We test on five standard webpage classification problems
[Do and Ng, 2006], and a newsgroup classification problem
(20 newsgroups dataset). We used 470,000 unlabeled news
articles (from the Reuters corpus) to learn basis vectors ac-
cording to the binary and Poisson sparse coding models.8 Ta-
ble 3 gives examples of basis vectors obtained from Poisson
sparse coding. Many basis vectors appear to encode related
words and capture various “topics.”

using the KKT conditions to convert between the constraint value C
and the equivalent penalty β for that problem. We ran all algorithms
until they reached an objective value of (1 + ε)fopt where fopt is
the optimal objective value (we used ε = 10−6).

8Details: The webpage classification problems were created us-
ing subcategories of the Arts, Business, Health, Recreation and
Sports categories of the DMOZ hierarchy. Each of them consisted
of 10 separate binary classification problems over a 500 word vo-
cabulary, with stopword removal and stemming. The newsgroup
classification problem consisted of 10 binary classification problems
constructed using the 20 newsgroups dataset. We used 600 basis
vectors, and picked β to achieve roughly 10% nonzero activations.
We did not tune these numbers. For learning, we used stochastic up-
dates with mini-batches of 2000 randomly sampled examples, and
stopped learning when the objective value did not decrease for 10
consecutive mini-batch iterations.

free share subscrib paint actor novel
market exchange online pictur actress literari
polici stock servic portrait film poet
power secur server museum comedi fiction
peopl commiss databas rule star univers

Table 3: Examples of basis vectors trained for the Business (left
3 columns) and Arts (right 3 columns) problems, using unlabeled
Reuters news data with Poisson sparse coding. Each column shows
the five word stems that were most highly active (i.e., had the highest
weight) for some basis vector.

Using the learnt basis vectors, we computed features for
each classification task using the binary and Poisson sparse
coding model. We call our model “ExpSC” and compare
against several baselines: the raw words themselves (“Raw”),
Gaussian sparse coding (“GSC”), exponential family PCA
with the same binary or Poisson exponential family as-
sumption (“ExpPCA”), and also Latent Dirichlet Allocation
(LDA), a widely-known topic model for text documents [Blei
et al., 2003]. All baselines (except the raw features) were
trained using the same unlabeled data as our model. For LDA,
we tried 20, 50 and 100 topics, and picked the best. We also
consider combinations of the raw word features with the other
types of features (e.g., “ExpSC+Raw” indicates a combina-
tion of the ExpSC features and the raw features). All features
were evaluated using standard supervised-learning classifiers
over 100 trials each for 4, 10 and 20 training documents.9

Table 4 shows the average test error over all problems for
the binary and Poisson case. The exponential family sparse
coding features alone frequently outperform the other fea-
tures, and produce slightly better results when used in com-
bination with the raw features (ExpSC+Raw). The results for
Poisson sparse coding are particularly striking, showing 20-
30% error reduction in some cases. The other three meth-
ods for using unlabeled data (GSC, ExpPCA, LDA) perform
poorly in many cases. Figure 1 shows the test errors (with
standard error bars) plotted against the training set size for
word count (Poisson) data.

5.2 Robotic perception
We also applied the exponential family sparse coding algo-
rithm to a very different self-taught learning problem: object
recognition in 3D range data. The data was collected with a
laser range finder (Velodyne lidar) in a parking lot environ-
ment. Given a 3D box in this space, the task is to predict
whether the box contains a car or not.

A standard, robust represenation for such 3D point cloud
data is the “spin-image” representation [Johnson and Hebert,
1999]. A detailed description of spin-images is beyond the
scope of this paper; but informally, for our application, a spin-
image can be thought of as a sheet spinning about the vertical
z vector at a point, accumulating counts of other points in

9We focused on three standard classifiers—SVM, GDA and ker-
nel dependency estimation (KDE)—that performed best for the raw
bag-of-words features out of several generic classifiers, including
k-NN and decision trees. We report average results of the best per-
forming classifier for each feature. We picked the β value used for
computing the features by cross-validation.



Training set size Raw ExpSC ExpSC+Raw GSC GSC+Raw ExpPCA ExpPCA+Raw LDA+Raw

Binary
4 34.3% 27.9% 30.0% - - 29.1% 31.3% -
10 23.0% 20.5% 20.4% - - 22.3% 22.66% -
20 17.7% 17.4% 16.1% - - 19.3% 17.7% -

Poisson
4 29.6% 25.4% 25.0% 31.2% 26.4% 32.9% 30.4% 33.2%
10 24.3% 18.9% 18.6% 26.1% 22.7% 26.3% 23.8% 24.7%
20 18.4% 15.2% 14.9% 21.4% 17.6% 24.2% 21.2% 17.6%

Table 4: Aggregate test error across all text classification problems (webpages/newsgroups), represented either using binary vectors (Binary)
or word count vectors (Poisson). Gaussian sparse coding (GSC) and LDA work better with word counts, so we show results only for this
case. LDA+Raw performed better than LDA alone.
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Figure 1: Test error vs. training set size for the webpage and newsgroup classification tasks. See text for explanation of algorithms, and
Table 4 for full test errors. Our algorithm is plotted in red color. (Best viewed in color.)

*
Figure 2: Left: A view of a point cloud for a car produced by the
laser range finder. Right: A spin-image generated around the point
marked with a red star on the left.

each pixel as it rotates (see Figure 2). Spin-images robustly
describe the 3D surfaces around a reference point using a 2D
array of counts (20x10 array in our case).

Given a large number of unlabeled spin-images (which can
be extracted very easily) and a small number of spin-images
from regions manually labeled as car or non-car, our task is

to predict whether a new spin image represents a car or non-
car region. Since the spin-image is a count-based represen-
tation, we apply Poisson sparse coding to this problem. Ba-
sis vectors were learnt using 31,000 unlabeled spin-images,
and manual examination of the result reveals that certain ba-
sis vectors capture various 3D features of cars, roads, trees,
and other objects.

Table 5 shows the test error for varying training set size.
When compared with using the raw spin-image alone, the
Poisson sparse coding features reduce test error by 30% with
4 training examples, and by 8-10% for the other cases.

6 Discussion
Our extension to Gaussian sparse coding is conceptually sim-
ilar to the extension proposed for PCA by Collins et al., 2001.
However, PCA itself defines a linear transform of the features,
unlike Gaussian sparse coding, and does not work as well on



Train set size Raw ExpSC ExpSC+Raw GSC GSC+Raw ExpPCA ExpPCA+Raw
4 34.2% 23.7% 25.2% 36.8% 36.0% 38.5% 34.6%
10 22.4% 20.2% 20.7% 31.3% 27.5% 31.4% 22.2%
20 18.4% 19.2% 16.9% 28.7% 19.5% 23.7% 18.0%

Table 5: Test error for various algorithms and training set sizes for classifying spin-images from the laser range finder.

self-taught learning tasks. It is thus not surprising that the ex-
ponential family extension of sparse coding also outperforms
exponential family PCA.

Compared to LDA, our model is more general because it
can be applied to non-text and non-exchangeable domains.
Further, it has been pointed out that when LDA topics are
viewed as defining a simplex over word distributions, the ex-
act topics learnt by LDA can vary a lot—the only constraint
is that the simplex defined by the topics still spans all the
training documents [Blei et al., 2003]. In our view, the ad-
ditional sparsity constraints in the sparse coding model help
reduce this ambiguity, and allow large numbers of “topics” to
be learnt robustly.

7 Conclusion
In this paper, we presented a general method for self-taught
learning, that extends previous models in a natural way. The
extensions can still be solved efficiently using the IRLS-FS
algorithm, which we showed to be an efficient algorithm for
medium-sized L1-regularized learning problems with sparse
optimal solutions. We showed that our model achieves better
self-taught learning performance than Gaussian sparse coding
or exponential family PCA on two very different tasks. We
believe our model will extend the applicability of self-taught
learning to new, previously difficult problems.
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