
Design and implementation of move-based partitioners

Andrew Caldwell, Andrew Kahng and Igor Markov

Abstract

In this report we develop the idea that metaheuristics for VLSI move-based partitioning, such as
Kernighan-Lin passes and simulated annealing, can be built from several reusable components with
well-de�ned interfaces and clear implementation options. For example, the classic net-cut bipartitioning
algorithm by Fiduccia and Mattheyses can be structured for e�cient implementation with many explicit
degrees of freedom by using four components: incremental evaluator, gain container, move manager and
pass-based partitioner proper. We discuss implementation choices and tradeo�s as well as inheritance
hierarchies, internal data structures, optimizations, etc.

Contents

0. Basic De�nitions

1. Top-Down Structure of this Document

2. Common Partitioner Interface

3. Incremental Cost Evaluator

4. Legality Checker and Initial Solution Generator

5. Gain Container

6. Move Manager

7. Pass-Based Partitioner Proper

8. Simulated Annealing Partitioner and Supporting Move Manager

9. Exhaustive Search (Small) Partitioner

10. Dereplicating Partitioner and Supporting Move Manager

Basic De�nitions

0.1 We consider balanced k-way partitioning of an edge- and vertex-weighted hypergraph with N

vertices. This optimization problem seeks to minimize a given cost function c(�) whose arguments are
partitionings, i.e. assignments of vertices to k partitions.

The returned solution must satisfy given constraints, in particular, certain vertices can be �xed
in some partitions (�xed constraints) and the total weight of vertices in each partition may be limited
(balance constraints).1 In other words, the cost function c(�) is minimized over the set of feasible solutions

Sf , which is a subset of the set of all possible solutions S.
0.2 Variant partitioning formulations can be addressed by slight modi�cations of Sf and S:

� In multi-balance partitioning, each vertex is assigned w weights, and independent balance con-
straints are established for each of the w weights. Sf is restricted to partitionings that meet
balance constraints for all weights.

� Kring-Newton replication entails the space S of all partitionings with vertex replications allowed.
Sf is restricted from S by balance constraints and limits on replication.

0.3 A move structure is assumed on S, i.e., a set of moves Ms at each s 2 S, such that for m 2 Ms,
m � s = s0 2 S (i.e., the moves can be applied to the solutions).2

1Numerous other constraints exist.
2The trivial move and the inverse of each move are also moves. The latter can be used in the undo/redo operations of

Section 6.

1



0.4 We distinguish generic moves Mg which can be applied to any solution s 2 S. In other words, Mg

is a subset of Ms for any s 2 S.3 Moves which are not generic typically have preconditions, i.e., can only
be applied to some solutions.4

0.5 Given a solution s 2 S and a move m 2Ms, we say that m is illegal i� s 2 Sf and m � s 2 S n Sf .
5

Otherwise m is legal.6

0.6 The gain of move m from solution s is de�ned as gains(m) = c(m � s)� c(s).

1 Top-Down Structure of This Document

We can distinguish the following reusable components for design of VLSI partitioning heuristics. The
second through �fth components are the four structural components of a traditional pass-based (KLFM-
style) partitioner.

Common Partitioner Interface Describes input and output to partitioners without mentioning in-
ternal structure and implementation details. Invariants that need to be supported are stated.

Initial Solution Generator A stand-alone component, generating partitionings that satisfy given con-
straints. Such partitionings can be randomized, possibly having better than average costs.

Incremental Cost Evaluator A stand-alone component computing the cost of a given partitioning
and e�ciently updating the cost after one move.

Legality Checker A stand-alone component that can verify if a partitioning satis�es a given constraint
as well as e�ciently determine the legality of a move.

Gain container (for pass-based partitioners only) A container de�ned by simple interface (i.e. without
knowing the KL algorithm). Optimized for e�cient storage, quick retrieval and update of gains
of moves from the current solution. Does not perform updates by itself and is not aware of the
incremental cost evaluator.

Move manager A stand-alone component capable of choosing and applying the one (best, random
etc) move. Can perform undo/redo operations on request. If used in pass-based partitioners,
incrementally updates gain container.7 Must report \status information" after each move (e.g.
current cost and how each partition is �lled). May be controlled by the caller via parameter
updates before every move selection (e.g. temperature for simulated annealing).

Accelerated move manager A stand-alone component similar to regular Move Manager, except that
it can perform complete passes in one call. Useful when moves are cheap, e.g. when no gain
container is needed, as in the AGREED algorithm.

Pass-based partitioner (proper) A stand-alone component implementing common partitioning in-

terface that solves partitioning problems by applying incrementally improving passes to initial
solutions (possibly randomly chosen) and determining the best solution. A pass consists of moves,
chosen and applied by the move manager. Within a pass, a partitioner can request that move
manager undo/redo some of the moves.

Simulated annealing partitioner A stand-alone component implementing common partitioning in-

terface that solves partitioning problems by applying moves that are �rst randomly selected and
accepted with probability depending on their gain. The gains are computed only for a small number
of randomly selected moves, therefore the move manager does not need a gain container to maintain
and update gains of all possible moves.

Exhaustive search (small) partitioner A stand-alone component implementing common partition-

ing interface that solves partitioning problems by exhaustive search over feasible solutions with
specialized algorithms. Only applicable to very small, potentially very constrained, problem in-
stances where other partitioners may not easily �nd the optimal solutions.

Dereplicating partitioner A stand-alone component implementing common partitioning interface that
solves partitioning problems by �rst assuming that every vertex can go into any partitioning and
then greedily removing the alternatives leading to best available solution costs.

3Generic moves often allow for additional optimization by storing them in tables, see Section 5.
4For example, all single-vertex partition-to-partition moves are generic. So is \uncutting" a net, i.e., putting all of net's

vertices into one partition. \Unreplicating" moves in Kring-Newton replication can only be applied to replicated vertices, thus
are not generic.

5Some heuristics make illegal moves.
6If the infeasibility of a solution can be quanti�ed, one can choose moves which will decrease it, eventually leading to a

feasible solution. E.g., if one partition is over�lled and the other is under�lled, one moves cells from the former to the latter
until the balance is within reasonable boundaries. Similar examples appear in Kring-Newton replication.

7Must use incremental algorithms itself, oftentimes independently of evaluator.

2



In addition to general de�nitions above, for each component, we discuss \what it is/does", \what it
is not/does not do", and describe requirements, interface and implementation details.

2 Common Partitioner Interface

A move-based partitioner is a stand-alone component that solves partitioning problems by iterative
improvement and is described by the following model.
2.0.7 Input

� PartitioningProblem

{ HGraph

{ PartitioningBuffer which contains initial solutions

{ Context information, including terminal locations, balance targets and tolerances, etc.

� Parameters

{ Move/Pass/Time limits

{ Verbosity level

{ Algorithm-speci�c options

2.0.8 Output

� New Partitionings in the PartitioningBuffer

� Which of the solutions is the best (meets the constraints and has the lowest cost)

� Status information (moves made, time used, etc.)

2.0.9 Invariants

� Partitioners must NOT modify PartitioningProblem except for the PartitioningBuffer.8

� Partitioners must iteratively improve all initial solutions passed.

3 Incremental Cost Evaluator

3.1 What it is/does

� A stand-alone component which maintains and provides on request the current total cost of hyper-
graph and the costs of single nets.9.

� Maintains \internal state", de�ned by internal data structures, to facilitate e�cient cost updates
after single moves.

3.2 What it is not/does not do

� Does not support the concept of gains.10

3.3 Requirements

� Must be able to e�ciently11 update the internal state after one move and e�ciently compute the
cost of the current state.

� For some pass-based partitioners only and not for simulated annealing,12 can only return values
from a small, often pre-de�ned, set. Further, must report the maximal and minimal value each net
can ever return for the given partitioning instance.

8In particular, partitioner cannot change HGraph. Such changes can be done in the code calling the partitioner.
9\local" evaluators are not in the scope of this document, see ~projects/OPTILE
10which makes it usable for algorithms other than FM, e.g. simulated annealing.
11typically, in constant time.
12Required for e�cient implementation of prioritizer in gain container. See Section 5 for details.

3



3.4 Interface

� Initialization (of internal structures and data caches) with a hypergraph and a partitioning solution.

� Reporting current cost (total or of one net) without changing internal state.

� A complete change of internal state (re-initialization) for all vertices and nets

� An incremental change of internal state (for all nets whose cost is a�ected or for a given net) due
to one elementary move without updating the costs.13

� Shortcut for simultaneously changing internal state (incrementally) and updating costs.

3.5 Implementation details

3.5.1 The incremental interface can be used even by evaluators which do not lend themselves to incre-
mental computation. At minimum, they will be able to update their internal state incrementally, e.g.,
with net tallies (see below), possibly allowing for cost precomputation and fast table lookup. The latter
may reasonable for an MST- or bounding box-based cost evaluator.
3.5.2 Depending on the algorithm used by the evaluator, the return values may be discrete (e.g., small
integers) or not (e.g., 
oating point), ditto for small and large ranges. On the other hand, depending
on whether the values are expected to be discrete in a small range, scaling followed by rounding and
type conversion may be needed. Thus, to support reuse in di�erent applications, we say that evalua-
tor components can provide two cost computation methods { one natural to the algorithm, the other
implemented as scaling and conversion of natural values.
3.5.3 Adding a new move type (esp. if not generic) may or may not require new evaluator implementa-
tion.14

3.5.4 In the next subsection we distinguish some generic features common to many incremental evaluators
of practical interest. To ensure code reuse between di�erent implementations, a hierarchy of incremental
evaluators can be created. Generic features will then be inherited by speci�c evaluator classes from
common base classes.15

3.6 Generic Features

3.6.1 Maintaining net tallies, i.e., the numbers of vertices in each partition for each net, is useful for
incremental evaluation of partitioning cost functions (e.g. net-cut, bounding box etc.). Net tallies can
be quickly updated after a single-vertex partition-to-partition move. Net tallies should be implemented
by an evaluator class from which other classes that use net tallies will be derived.
3.6.2 Further net cost computation can be aided by additional incrementally maintained data. Examples
are (a) the maximal number of vertices in any one tally for each net and (b) net vectors maintaining one
bit per tally/partition according to whether the latter is empty.
3.6.3 If the net cost only depends on net vector value, one can precompute costs for all (or the most
frequent) values and store them in a table for fast lookup.16 Such tables will typically be created at
evaluator initialization.17

3.6.4 In placement-related partitioning formulations, certain vertices of the hypergraph (terminals) are
not assigned to any partition and only exist to bias the cost of the nets incident to them. To simplify net
cost computation18 it is often convenient to propagate such vertices to one or more partitions as �xed
vertices.19 While terminal propagation is typically done before iterative partitioning, some evaluator

13Changing the state of one net will most likely make the overall state of the evaluator inconsistent. This can be useful,
however, for \what-if" cost lookups when a chain of incremental changes returns to the original state.

14For example, \uncutting net" moves can synthesized from single-vertex partition-to-partition moves and possibly do not
require a new evaluator (the standard evaluator will be asked to change its state several times and then compute cost). On
the other hand, \replicating" and \unreplicating" moves used in Kring-Newton replication cannot be expressed in single-vertex
partition-to-partition moves and need to be explicitly supported by an evaluator.

15Multiple inheritance may or may not be needed from classes implementing generic features. A \top-most" base class may
be used to implement the incremental evaluator interface described above in pure virtual methods. No virtualization overhead
should be incurred by concrete incremental evaluator classes since the precise class will always be known at compile-time.

16The size of the table is crucial for its feasibility. Net vectors often have size O(k) (k is the number of partitions). Some
variants have size O(2k), e.g. for MST cost evaluators.

17There are at least two main regimes. Generic net vectors are typically used for nets with all incident vertices assigned to
partitions; one generic net vector can be used for all such nets. In contrast, non-generic net vectors may be used for nets with
some incident vertices not assigned to any partition; a separate net vector may be needed for each such net. Tables used to
store net vectors may be initialized on demand, during the move-based partitioning.

18And to guarantee the discreteness of gain values; see Section 5.
19For example, a �xed vertex can be represented by an equivalent of, say, 10 regular vertices in a tally, which can be useful

for evaluators sensitive to the the biggest tally.

4



implementations achieve run-time optimizations by recognizing propagated terminals and caching part
of the cost computation for nets incident to them (see next subsection).

3.7 Cost-function speci�c details

3.7.1 For the bounding box evaluator, it is convenient to maintain a pair of net tallies for x and y

dimensions, each accompanied with a net vector and a precomputed cost table.
3.7.2 Net cost computation for each net can be optimized by recognizing �xed vertices, e.g. terminals
or \locked" vertices, when the evaluator is initialized. Then, portions of net cost computation can be
performed once at initialization, results cached, and used every time the net cost is updated.20

4 Legality Checker and Initial Solution Generator

4.1 Legality checker is a stand-alone reusable component representing partitioning constraints. Gener-
ators of initial solutions satisfying such constraints naturally accompany legality checkers.

4.1 Legality Checker

4.1.1 Given a partitioning, a legality checker can verify if the partitioning satis�es certain constraint.
4.1.2 Similarly to incremental cost evaluator, legality checker can be applied incrementally to test the
legality of a move (e.g., assuming that the constraint is satis�ed by the current partitioning, will be still
satis�ed after a given move). The \cost" returned by a legality checker for a move is boolean value, true
i� the move is legal.
4.1.3 Legality checker(s) will be normally applied to accept or reject moves selected on the basis of their
cost.

4.2 Initial Solution Generators

4.2.1 Initial solution generators create partitionings satisfying given balance constraints, typically ran-
domized, often with better than average costs.
4.2.2 Initial solution generators are parallel to legality checkers in the sense that for every legality checker,
there will normally be a generator of solutions satisfying the corresponding partitioning constraint.
4.2.3 Unlike legality checkers, e�cient21 initial solution generators often can not be easily composed to
produce solutions satisfying multiple constraints.

5 Gain Container

5.1 What it is/does

� Is speci�c to pass-based partitioners.

� Stores all moves currently available and prioritizes them by the immediate e�ect each would have
on the total cost, i.e., the gain.

� A container of move/gain pairs is de�ned by simple interface, i.e., not in terms of a particular
algorithm (e.g., FM).

� Allows quickly updating each move/gain pair after a single move.

� Allows �nding the move with highest gain, possibly subject to various constraints such as a given
source or destination partition etc.

� May provide support for tie-breaking schemes in order to choose the best move among the moves
with highest gain.

20For example, precomputing with caching, and using PartitionIDs bit-vectors, are two alternatives for k-way net cut com-
putation without net tallies:

� If the net has �xed vertices, �x their partitions (if they cannot be all in one partition, the net cut is 1). Assume that
each movable vertex is in exactly one partition. If the �rst movable vertex is in one partition with all terminals, check
whether all other movable vertices are in the same partition.

� Any vertex can be in any number of partitions and is represented by a PartitionIDs bit-vector having 1s in for the
partitions that have this vertex and 0 for those that do not. The net is cut if and only if the bit-wise \and" of all
PartitionIDs on a given net is 0. The computation can be sped up by checking for 0 after every \and" operation, because
during incremental improvement of a randomly chosen initial solution, most of the nets are cut.

Our experiments show that using PartitionIDs bit-vector is slightly faster, even though this computation is not incremental.
21Typically, legal initial solutions must be generated in linear time.

5



5.2 What it is not/does not do

� Does not perform updates by itself.

� Is not aware of incremental cost evaluator.

� Is not aware of move manager or how the gains are interpreted.

� Does not determine legality of moves.22

� Is not used in simulated annealing.

5.3 Requirements

� Implementations described here require that gains take values from a small, discrete, set.

� Requires that the maximum possible gain of a move can be determined given an instantiated cost
evaluator.

� For any move, provide a test to see if the move is in the container (i.e., if there is a move/gain pair
with this move).

� For any move with computed gain, allow for constant-time addition of the corresponding move/gain
pair to the gain container.

� For any move in the gain container, allow for constant-time gain lookup and updating to a given
value.

� Allow �nding the move with highest gain, possibly subject to various constraints, in constant time.

5.4 Interface

� Add a move/gain pair with computed gain.

� Find the move/gain pair, given a move.

� Get the gain for a move/gain pair.

� Set the gain for a move/gain pair (e.g. to update).

� Remove a move/gain pair.

� Find the highest gain move.

� Invalidate current highest gain move to request the next highest gain move.23 Typically applied if
the current highest gain move appears illegal.

� Invalidate current highest gain bucket to access the next highest gain bucket.

� Some GainContainers may support �nding the �rst move/gain pair with a given property.

Sample properties: moves of a given vertex, moves to or from a given partition.

5.5 Implementation Details

5.5.1 The primary components of Gain Containers are repositories and prioritizers.

Repository for gain/move pairs handles allocation and deallocation of move/gain pairs, fast gain
lookups given a move, and gain updates given a move and a new gain value.

Prioritizer chooses the move with highest gain. In addition, may be able to choose choose best-gain
moves among moves with certain properties, such as a particular destination or source partition.
Is responsible for tie-breaking schemes.

5.5.2 We say that some moves stored in the repository are prioritized when they participate in the
prioritizer's data structures.
5.5.3 Not prioritizing the moves a�ecting a given cell is commonly referred to as \locking" the cell.
FM-type heuristics routinely lock a cell after it is moved, however, cells may be locked and unlocked by
additional heuristics.24

5.5.4 There are two general organizations of repositories and prioritizers:

22This makes gain containers designed for common partitioning formulations equally �t for multi-balance partitioning and
other formulations. Also see Section 4.

23Note that this does not remove the move from the Gain Container.
24For example, cells not incident to any cut nets may be locked in the beginning of the pass if the goal is only cut re�nement.

6



� Storage units for each move begin in the repository, then are removed and added to the prioritizer.
When a move is removed from the prioritizer (i.e., the node it corresponds to is \locked"), it is
returned to the repository.

� Storage units are permanently owned by the repository. The prioritizer only references them (either
explicitly with pointers, or by embedding its data structures, e.g. linked lists, into the repository).

5.5.5 When gains are small integers, the prioritizer is most naturally implemented with bucketing.
Typically, this entails an array of size maxGain�2+1 of doubly-linked lists. Each list contains all moves
of a given gain and is known as a bucket.25

5.5.6 Support for choosing highest gain nodes

� When the caller (typically move manager) identi�es the current highest gain move as illegal (typi-
cally using legality checkers), it invalidates the highest gain move in the gain container so that the
next highest gain move can be requested and checked for legality. A whole bucket can be invalidated
as well.

� The Gain Container maintains a counter with the index of the highest gain bucket with at least
one move in it, and a counter with the index of the highest gain non-empty bucket currently being
considered for the purpose of �nding the highest gain move.

� Gain Container maintains a pointer to the highest gain element in the highest gain bucket of those
that have not been invalidated.

� The Gain Container supports two functions which change the index of the highest gain bucket and
the move pointers used to �nd the move to take.

{ InvalidateMove: removes from consideration just the move which previously had highest gain.

{ InvalidateBucket: removes from consideration the whole bucket containing the previously high-
est gain move.

� The functions which update the gains reset the counters and pointers.

5.5.7 Another design aspect for both the repository and the prioritizer is the support for selected
properties.

� To link move/gain pairs with certain properties, gain container implementations often have em-
bedded lists. This is compatible with storing move/gain pairs in a table and can be used to
co-implement the repository and the prioritizer. The list and the table can support associations by
independent properties, e.g. the lists can link moves of cells on same nets, while the table can be
indexed by the destination partition of moves.

� Another way of linking move/gain pairs with important properties is to implement the repository
as several lower-level containers. For example, all moves sharing the source partition can be stored
together in a table, indexed by the destination partition. Such lists need to handle insertion and
deletion with one argument, which implies doubly-linked lists.

� Prioritizer can also be implemented with several separate lower-level components, e.g. bucket
structures. This allows to query for moves with highest gain among moves with certain property
(e.g., a given source partition).

5.5.8 Gain container can be randomized by changing tie breaking in the prioritizer. The simplest and
safest randomization is achieved by populating gain container with move-gain pairs in random order.26

5.6 Repository Implementations

5.6.1 While this subsection primarily applies to the move structure of FM-type heuristics (i.e. single-
vertex partition-to-partition moves), similar implementation options (possibly, with di�erent preferences)
are available for some other move structures.
5.6.2 The two proposed implementations are:

� One or several linked lists of move/gain pairs that are not currently prioritized, and a N � k array
of pointers to them to provide fast lookup by move.

{ No embedded linked lists are required (simpler implementation).

25For cost functions where gains are not small integers and with look-ahead levels, a bucketing approach is not possible, and
a tree structure, hash-table or a priority queue is more appropriate.

26Randomized buckets have been considered in the literature which equiprobably return one of their elements. They may
con
ict with certain algorithmic details, e.g. CLIP FM, and typically do not provide convincing improvement.

7



{ Move/gain pairs are represented by arbitrarily and separately allocated nodes of linked lists.
This implies system memory overhead for allocation and usually does not provide good proces-
sor cache locality as move/gain pairs a�ected by the same moves are not necessarily neighbors
in memory.

� Implementation built with a N � k array of move/gain pairs.

{ Linked lists can be re-threaded through the 2-D array without requiring node-by-node alloca-
tion.

{ The vertexId can be removed from the move/gain pair in this scheme, lowering the memory
requirements. The vertexId can be calculated given the pair's address, the start address of the
container, N and k.

{ This implementation ensures the move/gain pair will only be allocated and de-allocated once,
without the need for maintaining a list of move/gain pairs not prioritized.27

{ No extra array of pointers is necessary for fast lookup of move/gain pairs by move.

{ Ordering the array well may improve processor cache locality (thus speed-up) by ensuring that
move/gain pairs corresponding to the same vertex28 are neighbors in memory.

5.6.3 Within an FM-speci�c implementation, our preference is for the latter option. It should provide
lower memory usage and overall faster access time. It may have problems for some move structures (i.e.,
KL has k2 moves, which we would not want to pre-allocate). We are not aware of a published account
of this structure. It does not appear in any of the source code we reviewed.

5.7 Prioritizer Implementation

5.7.1 In this section we assume that prioritizer is implemented in the context of FM algorithm with
several arrays of buckets of linked-lists of move/gain pairs.29 However, the implementation options are
likely to apply to other move structures as well, especially if they include single-vertex partition-to-
partition moves.
5.7.2 The prioritizer consists of k bucket arrays, one for each destination partition (a k-component
destination-centric prioritizer30).
5.7.3 The current maximum-gain move in each array is stored to enable e�cient �nding of the overall
maximum. We may wish to build a priority queue or similar structure for �nding �nding the overall
maximum.
5.7.4 Each of the above repository designs requires its own prioritizer implementation.
5.7.5 If the repository consists of linked lists of move/gain pairs:

� Prioritizer has k arrays of lists of move/gain pairs. This should be implemented using an array of
STL lists, templated by the move/gain pair class.

� Updating a move/gain pair's gain is implemented as:

{ Find the move/gain pair using the vector of pointers in the repository.

{ Remove the pair from the linked list (its bucket).

{ Add the move to the bucket (usually at the head) corresponding to the new gain in the array
for the destination of the move.

5.7.6 If the repository consists of an N � k array of node/gain pairs:

� Prioritizer has k arrays of pointers to move/gain pairs. This cannot be implemented as an array of
STL lists. Rather, the gain/node pairs have pointers to the next/previous pairs in their buckets.

� Updating a move/gain pair's gain is implemented as:

{ Find the move/gain pair by computing the o�set from the repository.

{ Remove the move from the linked list.

{ Add the move to the bucket (usually at the head) corresponding to the new gain in the array
for the destination of the move.

{ Note that the list functions must be built into the move/gain pairs, rather than being functions
of an STL list.

27Removing a move/gain pair from the lower-level container is slightly cheaper, as there is no need to add it to a linked lists.
28More generally, move/gain pairs whose updates are caused by the same moves.
29which assumes very discrete gains and, most likely, no higher gain levels.
30See Appendix B for a more detailed description of prioritizer implementation choices.

8



6 Move Manager

6.1 What it is/does

� A stand-alone component capable of choosing and applying the best move (typically, the best legal
move).

� Can perform undo/redo operations on request (mostly for pass-based partitioners).

� Must report relevant \status information" after each move (e.g. current cost and how each partition
is �lled).

� May be controlled by the caller with parameter updates before every move selection.

� Incrementally updates gain container after single moves.

� Is instantiated with one incremental evaluator and one gain container at once.

� Essentially, handles the move structure.

6.2 What it is not/does not do

� Does not evaluate cost of cost updates for individual nets (rather calls evaluator).

� Does not decide when to stop passes and perform undo/redo operations.

� Cannot be used with multiple gain containers or evaluators simultaneously.

6.3 Requirements

� Must use an incremental algorithm for gain update (the recommended algorithm is described below).

� Must e�ciently deal with move legality.

6.4 Interface

� Choose one move (e.g., the best feasible) and apply it. Ensure all necessary updates (gain container,
incremental evaluator). Return new \status info", e.g., total cost, partition balances, etc, and log
the move (to facilitate undo/redo operations).

� Undo a given number of moves.

� (Possibly) get the current \status info".

6.5 Implementation details

6.5.1 Before initializing gain containers, need to initialize the evaluator.
6.5.2Move manager will typically be parameterized (templated) by one gain container and one evaluator,
both compatible with its move structure.
6.5.3 Since move manager will be called by partitioner which will not be templated, there needs to be
an abstract base class de�ning all of the move manager's interface by pure virtual methods.
6.5.4 Before applying a move, must update gains in gain container \as incrementally as possible" and
only using incremental cost computations (not gain computations) by evaluators. The recommended
algorithm follows:

1. For each vertex actually moved (e.g. once for a single-vertex move)

2. For each net incident to the vertex actually moved

3. compute the old cost of the net

4. compute the cost of the net with the vertex actually moved

5. For each vertex incident to the net

6.
compute the hypothetical cost of the net for each possible move of the vertex,

with and without the other vertex actually moved

7. Use the 4 net costs for the net to update the gain of the vertex

Note: The gain of a vertex will be updated once for each net it shares with the vertex moved.
Note: Incrementally changing the internal state of the cost evaluator without computing the cost is

useful in 6. as well as to return the evaluator into the original state after 6.
6.5.5 To enable undo/redo operations, all moves applied need to be logged by the move manager. For
an undo request, some number of logged moves are reversed (most recent move �rst) and applied to the
current partitioning. When the number of undo moves is large, it is more economical to not update

9



the gain container and evaluator incrementally, but rather re-initialize them with the result of the undo
operation. A redo request may be issued when it is cheaper to replay some moves of the pass forward,
rather than undoing from the end of the pass.

7 Pass-Based Partitioner (Proper)

7.0.6 A pass-based partitioner applies incrementally improving passes to initial solutions (possibly, cho-
sen at random) and determines the best outcome.
7.0.7 A pass consists of moves, chosen and applied by move manager.
7.0.8 After a pass, a partitioner can request that move manager perform undo/redo operations.
7.0.9 Partitioner decides when to stop a pass and the details of undo/redo operations on the basis of its
control parameters and status information returned by move manager after each move.
7.0.10 Partitioner can have access to multiple combinations of incremental evaluators, move managers
and gain containers, and can use them at di�erent passes to solve a given partitioning problem. The
incremental cost evaluator, move manager and gain container are determined by partitioner's control
parameters.

7.1 What partitioner proper is not/does not do

� Is not required to support gain computation and update.

� Does not choose best moves or apply them.

� Does not perform undo/redo operations.

� Should not be parameterized (templated) by other classes.

� Is not aware of details of the move structure used (i.e., moves).31

7.2 Requirements

� Must work with standard solution bu�ers.

� Su�cient 
exibility in parameter processing to accommodate various combinations of incremental
evaluators, move managers and gain containers.

� Su�cient reporting of operating parameters, e.g., CPU time spent on various stages.

7.3 Interface

� Takes a PartitioningProblem and operational parameters on input.

� Writes solutions into PartitioningProblem and sets the number of the best solution.

� Prints operational parameters depending on verbosity value.

7.4 Implementation Details

7.4.1 The control parameters will need to use \registry classes"32 for incremental evaluators, gain con-
tainers and move managers. FM-partitioner will have several nested big switches to instantiate the
correct move combinations of incremental evaluators, gain containers and move managers (potentially a
few hundred lines, every third instantiating a template | will take ages to compile).

8 Simulated Annealing Partitioner and Supporting Move
Manager

8.0.2 Speci�cations very similar to those in Section 7. However, an SA partitioner does not necessarily use
improving passes with deterministically chosen moves. The simulated annealing algorithm �rst randomly
selects a move and accepts it with probability depending on the move's gain, moves are selected until
one is accepted. This process is repeated multiple times, possibly with variations in parameters a�ecting
move acceptance.

31It just needs to instantiate a relevant move manager with matching evaluator and gain container.
32Essentially, those are global enums conveniently wrapped into classes and having their values in their own namespaces. Will

need to be updated with every new evaluator class, gain container etc just as the code that switches on them. Backwards
compatibility is guaranteed if no values are removed from registry classes.

10



8.0.3 Since it is the move manager that selects and applies moves, the simulated annealing partitioner
will need a specially designed move manager.
8.0.4 Gains are computed only for a small number of randomly selected moves (from scratch), therefore
the move manager does not need a gain container to maintain and update gains of all possible moves.
8.0.5 Simulated annealing partitioner is not likely to request undo/redo operations, therefore the move
manager does not necessarily have to log all moves it applies.
8.0.6 Algorithms for determining random move selection (e.g. types of moves that are more likely to
be accepted) and initial values of parameters for acceptance probabilities (e.g., temperature) may be
encapsulated into a separate component, which is likely to call move manager.

8.1 Control Parameters

include, but are not limited to

� target acceptance scheme

� temperature schedule scheme

� initial temperature

� initial target accept rate

� �nal target accept rate

� total number of moves

� number of iterated descents

� kick move size (�xed)

� history window size (used to �nd the next temp)

9 Exhaustive Search (Small) Partitioner

9.0.1 A stand-alone component implementing common partitioning interface that solves partitioning
problems by exhaustive search over feasible solutions with specialized algorithms.
9.0.2 Strongly relies on incremental cost evaluation and e�cient enumeration of the solution space with,
e.g., Gray codes.
9.0.3 Only applicable to very small problem instances where other partitioners may not �nd the optimal
solutions (\combinatorial" instances).
9.0.4 The implementation of an exhaustive search partitioner is in
uenced by how much smaller the
subspace of feasible solutions Sf is compated to solution space S (i.e. whether it is faster to search for
feasible solutions among all or generate feasible solutions directly).
9.0.5 Branch-and-bound algorithms seem especially suited for exhaustive search partitioners. A good
solution produced by a heuristic partitioner can be used to reduce the search space from the very
beginning. Bounding on partition balances can also be performed.

The idea of the algorithm is to assign cells to partitions one by one (i.e. this is not an iterative
algorithm, as we do not have a complete partitioning most of the time). \Partial partitionings" are
evaluated by inducing hypergraph over modules already assigned, i.e. unassigned modules are ignored.
When more modules are placed, the cost and the partition �lls can only increase, hence the branch-and-
bound algorithm.
9.0.6 Initial solutions can be ignored by exhaustive search partitioner.
9.0.7 To comply with the output requirements of the common partitioning interface, exhaustive search
partitioner can attempt to return as many di�erent solutions with optimal cost, as initial solutions it
has been given. Remaining solution slots can be �lled by duplicating solutions.33

9.0.8 Since all solutions returned have the best cost, the \best solution number" required by common

partitioning interface can be the number of the last solution that was not duplicated.34

10 Dereplicating Partitioner

10.0.9 A stand-alone component implementing common partitioning interface that solves partitioning
problems by �rst assuming that every vertex can go into any partitioning and then greedily removing
the alternatives in order to achieve the best available solution costs. Ties can be broken arbitrarily.

33 This, for example, allows for one solution duplicated many times.
34 This assumes that all di�erent solutions are mentioned �rst, and then go duplicates.

11



10.0.10 The algorithm is driven by the need to \dereplicate" vertices, even if this increases solution
cost, and stops when each vertex is assigned to one partition.
10.0.11 There are no undo/redo operations, and there is essentially one pass.35

10.0.12 A specialized Move Manager is required to support the move structure of \dereplications", as
well as a specialized gain container.
10.0.13 Specialized cost evaluators can be constructed that correspond to classic cost functions, e.g. net-
cut. In fact, some implementations of classic cost function evaluators are directly usable in dereplicating
partitioner.
10.0.14 Initial solutions can be ignored by dereplicating partitioner.
10.0.15 To comply with the output requirements of the common partitioning interface, dereplicating
partitioner can attempt to return as many di�erent solutions with optimal cost, as initial solutions it
has been given. Remaining solution slots can be �lled by duplicating solutions.33

10.0.16 Since all solutions returned have the best cost, the \best solution number" required by common

partitioning interface can be the number of the last solution that was not duplicated.34

Appendix A: Class Hierarchy for Incremental Evaluators

� class NetCutWBits : public PartEvalInterface

� class NetTallies : public PartEvalInterface

{ class NetTalliesWCosts : public NetTallies

class NetTalliesWConfigIds : public NetTalliesWCosts

� class NetCutWConfigIds : public NetTalliesWConfigIds

� class NetVecGeneric : public NetTalliesWConfigIds

� class NetCutWNetVec : public NetVecGeneric

� class BBoxWNetVec : public NetVecGeneric

Appendix B: Prioritizer Implementation Options

There are 4 primary organization choices for arrays of buckets in the prioritizer:

� Single-component prioritizer

{ Advantage: easier (possibly faster) to �nd the vertex with the highest gain. Other options
require �nding the highest gain vertex from among multiple structures.

{ Disadvantage: does not easily allow specifying the source or destination of the move to be
selected.

{ Disadvantage: memory intensive. The move/gain pairs must each store the destination of the
move (but the need not store not the source, though our k-way partitioner does).

� k-component source-centric prioritizer

{ Advantage: easily allows for specifying the source of the move (useful for a \balancing phase").

{ Disadvantage: memory intensive. Each move/gain pair must store the destination of the move
(but not necessarily the source).

{ Disadvantage: does not easily allow specifying the destination of the move to be selected.

� k-component destination-centric prioritizer

{ Advantage: easily allows for specifying the destination of the move to be selected.

{ Advantage: less memory required. Does not require each move/gain pair to store the destina-
tion of the move (and the source is never required in each move/gain pair).

{ Disadvantage: does not easily allow specifying the source of the move to be selected.

� k(k � 1)-component isotropic prioritizer

{ Advantage: easily allows for specifying the source and/or destination of the move to be selected.

{ Advantage: less memory required. Does not require each move/gain pair to store the destina-
tion of the move (and the source is never required in each move/gain pair).

35Multiple solutions can be generated by randomly breaking ties or skipping the greedy option. The complexity of the
algorithm is comparable to that of �rst k�1 passes of typical pass-based partitioners; fair comparison of solution quality would
be against results of such k � 1 passes.

12



{ Disadvantage: requires choosing among k(k � 1) \bests" to �nd the best move out of k(k �
1) prioritizer components (can be beaten by maintaining max gain with a change to every
component's max gain).

What other people used:

� Original Laura Sanchis k-way partitioner used the k(k � 1) setup. Note that she does store both
the source and destination in the move/gain pair though (totally unnecessary...there's not even a
speed gain from doing this).

� QUAD used the same option as Laura Sanchis.

� Our k-way FM uses single-component prioritizer, apparently no other implementations do. It does
store both the source and destination in each move/gain pair.

� Various 2-way FM implementations all use k-component destination-centric prioritizer.

13


