
Large-scale Boolean Matching

Hadi Katebi and Igor L. Markov
University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109
{hadik, imarkov}@eecs.umich.edu

1 Chapter Overview

In this chapter, we propose a methodology for Boolean matching under permuta-
tions of inputs and outputs (PP-equivalence checking problem) — a key step in
incremental logic design that identifies large sections of anetlist that are not af-
fected by a change in specifications. When a design undergoesincremental changes,
large parts of the circuit may remain unmodified. In these cases, the original and the
slightly modified circuits share a number of functionally equivalent sub-circuits.
Finding and reutilizing the equivalent subcircuits reduces the amount of work in
each design iteration and accelerates design closure. In this chapter, we present
a combination of fast and effective techniques that can efficiently solve the PP-
equivalence checking problem in practice. Our approach integrates graph-based,
simulation-driven and SAT-based techniques to make Boolean matching feasible for
large circuits. We verify the validity of our approach on ITC’99 benchmarks. The
experimental results confirm scalability of our techniquesto circuits with hundreds
and even thousands of inputs and outputs.

The remainder of this chapter is organized as follows. Section 2 describes the mo-
tivation of this work. Section 3 provides relevant background and discusses previous
work on Boolean matching. Section 4 gives an overview of proposed signature-
based techniques. Section 5 describes our SAT-based matching approach. Section 6
validates our method in experiments on available benchmarks, and Section 7 sum-
marizes our work.

2 Introduction

Boolean matching is the problem of determining whether two Boolean functions are
functionally equivalent under the permutation and negation of inputs and outputs.

1

2

This formulation is usually referred to as thegeneralizedBoolean matching prob-
lem or PNPN-equivalence checking (PNPN stands for Permutation and Negation of
outputs and Permutation and Negation of inputs); however, different variants of the
problem have been introduced for different synthesis and verification applications.
The matching problem that we discuss in this chapter is PP-equivalence checking:
two Boolean functions are called PP-equivalent if they are equivalent under per-
mutation of inputs and permutation of outputs. The simplestmethod to determine
whether twon-input m-output Boolean functions are PP-equivalent is to explicitly
enumerate all them!n! possible matches and perform tautology checking on each.
However, this exhaustive search is computationally intractable.

PP-equivalence checking finds numerous applications in verification and logic
synthesis. In many cases, an existing design is modified incrementally leaving a
great portion of the design untouched. In these cases, largeisomorphic sub-circuits
exist in original and slightly modified circuits [15]. Identifying such sub-circuits
and reutilizing them whenever possible saves designers a great amount of money
and time. Due to the fact that modifications to the original circuit are introduced
by changing certain specifications and the fact that even a slight change in specifi-
cations can lead to large changes in implementation [9], PP-equivalence checking
helps designers identify isomorphic and other equivalent sub-circuits.

Specifically, PP-equivalence checking can be used to find theminimal set of
changes in logic, known aslogic difference, between the original design and the
design with modified specification. DeltaSyn [10] is a tool developed at IBM Re-
search that identifies and reports this logic difference. The current version of Delta-
Syn uses a relatively inefficient and unscalable Boolean matcher that only exploits
the symmetry of inputs to prune the search space.

Incremental Sequential Equivalence Checking (SEC) is another application of
PP-equivalence checking where isomorphic sub-circuits can be used to create a
number of highly-likely candidate equivalent nodes [15]. The current implementa-
tion of incremental SEC tires to find isomorphic subgraphs byperforming extended
simulation and finding structural similarities. Although the Boolean approach pre-
sented in our paper does not fully exploit the structural similarities between two
circuits, we believe that our techniques combined with structural verification tech-
niques create a much more powerful tool for detecting isomorphic subgraphs.

Motivated by the practical importance of PP-equivalence checking in many EDA
applications, we develop fast and scalable Boolean matching algorithms and imple-
ment them in the ABC package — an established system for synthesis and verifica-
tion of combinational and sequential logic circuits [12]. The collection of all these
techniques creates a powerful Boolean matching module thatcan be integrated into
Combinational Equivalence Checking (CEC) to enhance its functionality. To this
end, CEC requires two designs whose primary I/Os match by name. Our work al-
lows one to relax this requirement with the help of a Boolean matcher. We call the
new commandEnhanced CEC(ECEC). Figure 1 shows how our Boolean matcher
is integrated with CEC.

In general, algorithms for Boolean matching fall into two major categories:
signature-based and canonical form based. A signature is a property of an input

Large-scale Boolean Matching 3

ECEC

Network 2

Boolean Matcher

CEC

Network 1

CEC

Y/N

Network 2 Network 1

Y/N

Fig. 1 The CEC (pre-existing) and ECEC (our) flows.

or an output that is invariant under permutations and negation of inputs. The goal
of signature-based matching is to prune the Boolean matching space by filtering
out impossible I/O correspondences [4, 1]. On the other hand, in matching based
on canonical forms, first canonical representations of two Boolean functions are
computed and then compared against each other to find valid I/O matches [3, 2].
Here, our PP-equivalence checking method first prunes the search space using graph
algorithms and simulation signatures, then it invokes SAT-solving until exact I/O
matches are found (Figure 2).

Main contributions of our work include:

1. Analyzing functional dependency. In a Boolean network with multiple outputs,
some inputs affect only a fraction of the outputs, and different outputs are affected
in different ways. Hence, by analyzing the functional dependency of outputs on
inputs, we can distinguish the I/Os.

2. Exploiting input observability and output controllabilit y. We use the observ-
ability of inputs and the controllability of outputs as (1) effective matching sig-
natures, and (2) ordering heuristics for our SAT-based matching.

3. Building a SAT-tree. When information about controllability, observability,and
all simulation-based information are exhausted, we resortto SAT-solving and
optimize the efficiency of SAT calls. This is accomplished through the concept
of a SAT-tree, which is pruned in several ways.

4. Pruning SAT-tree using SAT counterexamples. In our SAT-based matching,
the SAT-solver returns a counterexample whenever it finds aninvalid match. The
information in these counterexamples is then used to prune the SAT-tree.

I/O match?

Signature-based

Matching

Exponential space of possible matches

Reduced

search space SAT-based

Matching

Fig. 2 Overview of our proposed Boolean matching approach.

4

3 Background and Previous Work

In this section, we first review some common definitions and notation. Then, we
explain theAnd-Inverterrepresentation of Boolean networks and we compare its
usage to that of conventionalBinary Decision Diagrams. Next, we discussBoolean
satisfiabiltyand explore its role in combinational equivalence checking. Relevant
work in Boolean matching is reviewed at the end of this section.

3.1 Definitions and Notation

In the following definitions, aninput setof a Boolean networkN refers to the set of
all the inputs ofN. Similarly, anoutput setof N refers to the set of all the outputs of
N. An I/O set is either an input set or an output set.

Definition 1. A partition Px = {X1, ...,Xk} of an I/O setX = {x1, ...,xn} is a collec-
tion of subsetsX1, ...,Xk of X such that∪k

i=1Xi = X andXi ∩Xj = /0 for all i 6= j.
Partition sizeof Px is the number of subsets inPx and is denoted by|Px|. EachXi in
Px is called an I/Oclusterof Px. Thecardinalityof Xi, denoted by|Xi |, is the number
of I/Os inXi .

Definition 2. A partition Px = {X1, ...,Xk} of set X is an ordered partitionif the
subsetsX1, ...,Xk aretotally ordered, i.e., for any two subsetsXi andXj , it is known
whetherXi < Xj or Xj < Xi .

Definition 3. Two ordered partitionsPx = {X1, ...,Xk} of setX andPy = {Y1, ...,Yk}
of setY areisomorphicif and only if |Px|= |Py|= k and|Xi |= |Yi | for all i, andnon-
isomorphicotherwise. Two isomorphic partitions are calledcompleteif and only if
|Xi | = |Yi | = 1 for all i.

Definition 4. The positive cofactorof function f (x1, ..,xn) with respect to vari-
able xi , denoted byfxi , is f (x1, ..,xi = 1, ...,xn). Similarly, thenegative cofactor
of f (x1, ..,xn) with respect to variablexi , denoted byfx′i , is f (x1, ..,xi = 0, ...,xn).

Definition 5. A function f (x1, ...,xn) is positive unatein variablexi if and only if
the negative cofactor off with respect toxi is covered by the positive cofactor off
with respect toxi , i.e., fx′i ⊆ fxi . Likewise, f is negative unatein variablexi if and
only if fxi ⊆ fx′i . f is calledbinatein xi if it is not unate in it.

3.2 And-Inverter Graphs (AIGs)

Recent tools for scalable logic synthesis, e.g., ABC, represent Boolean functions
using theAnd-Inverter Graph(AIG) data structure. An AIG is a Boolean network

Large-scale Boolean Matching 5

composed of two-input AND gates and inverters.Structural hashingof an AIG is a
transformation that reduces the AIG size by partially canonicalizing the AIG struc-
ture [13]. Representing a Boolean function in its AIG form ispreferable to itsBi-
nary Decision Diagram(BDD) form mainly because AIGs result in smaller space
complexity. Also, functional simulation can be performed much faster on AIGs, but
AIGs are only locally canonical.

3.3 Boolean Satisfiability and Equivalence-checking

Boolean Satisfiability(SAT) is the problem of determining whether there exists a
variable assignment to a Boolean formula that forces the entire formula evaluate to
true; if such an assignment exists, the formula is said to besatisfiableand otherwise
unsatisfiable. Pioneering techniques developed to solve the SAT problem were in-
troduced by Davis, Putnam, Logemann and Loveland in early 1960s. They are now
referred to as DPLL algorithm [7, 6]. Modern SAT solvers, such as MiniSAT [8],
have augmented DPLL search by adding efficientconflict analysis, clause learning,
back-jumpingandwatched literalsto the basic concepts of DPLL.

SAT is studied in a variety of theoretical and practical contexts, including those
arising in EDA. CEC is one of the main applications of SAT in EDA. If two single-
output Boolean functionsf andg are equivalent, thenf

⊕
g must always evaluate

to 0, and vice versa. Now, instead of simulating all input combinations, we take
advantage of SAT solvers: iff

⊕
g is unsatisfiable, then f

⊕
g is zero for all input

combinations and hencef andg are equivalent; and iff
⊕

g is satisfiable, then f
andg are not equivalent and the satisfying assignment found by the SAT-solver is
returned as a counterexample.f

⊕
g is called themiter of f andg [14]. If f andg

have more than one output, saym outputs f1, ..., fm andg1, ...,gm, Mi = fi
⊕

gi is
first computed for alli and thenM1+ ...+Mm is constructed as the miter off andg.
In our approach, instead of building one miter for the entirecircuit and handing it off
to the SAT solver, we try to find equivalent intermediate signals by simulation, and
use SAT to prove their equivalence. Counterexamples from SAT are used to refine
simulation.

3.4 Previous Work

Research in Boolean matching started in the early 1980s withmain focus on tech-
nology mapping (cell binding). A survey of Boolean matchingtechniques for library
binding is given in [4]. Until recently, Boolean matching techniques scaled only to
10-20 inputs and one output [5, 2], which is sufficient for technology mapping, but
not for applications considered in our work. In 2008, Abdollahi and Pedram pre-
sented algorithms based on canonical forms that can handle libraries with numerous
cells limited to approximately 20 inputs [2]. Their approach uses generalized sig-

6

natures (signatures of one or more variables) to find a canonicity-producing (CP)
phase assignment and ordering for variables.

A DAC 2009 paper by Wang, Chan and Liu [17] offers simulation-driven and
SAT-based algorithms for checking P-equivalence that scale beyond the needs of
technology mapping. Since our proposed techniques also usesimulation and SAT to
solve the PP-equivalence checking problem, we should articulate the similarities and
the differences. Firstly, we consider the more general problem of PP-equivalence
checking where permutation of outputs (beside permutationof inputs) is allowed.
In PP-equivalence, the construction of miters must be postponed until the outputs
are matched, which seems difficult without matching the inputs. To address this
challenge, we develop the concept of SAT-tree which is pruned to moderate the
overall runtime of PP-matching. In addition to our SAT-based approach, we also
use graph-based techniques in two different ways: to initially eliminate impossible
I/O correspondences and to prune our SAT-tree. Furthermore, we have implemented
three simulation types; two as signatures for outputs (type1 and type 3) and one as a
signature for inputs (type 2). While our type-2 simulation is loosely related to one of
the techniques described in [17], the other two simulationsare new. We additionally
introduce effective heuristics that accelerate SAT-basedmatching.

4 Signature-based Matching Techniques

We now formalize the PP-equivalence checking problem and outline our Boolean
matching approach for twon-inputm-output Boolean networks.

Definition 6. Consider two I/O setsX andY of two Boolean networksN1 andN2

with their two isomorphic ordered partitionsPx = {X1, ...,Xk} andPy = {Y1, ...,Yk}.
A cluster mappingof Xi toYi , denoted byXi 7→Yi , is defined as the mapping of I/Os
in Xi to all possible permutations of I/Os inYi . A mappingof X to Y with respect to
Px andPy, denoted byX 7→Y, is defined as mapping of all same-index clusters ofX
andY, i.e.,Xi 7→ Yi for all i. X 7→ Y is called a complete mapping ifPx andPy are
complete.

Given two input setsX andY and two outputs setsZ andW of two Boolean
networksN1 andN2, the goal of PP-equivalence checking is to find two complete
mappingsX 7→ Y andZ 7→ W such that those mappings makeN1 andN2 behave
functionally the same. In order to accomplish this, we first partition or refinethese
I/O sets based on some total ordering criteria. This so-called signature-based match-
ing allows us to identify and eliminate impossible I/O matches. After this phase, we
rely on SAT-solving to find the two complete mappings. Furthermore, Definition 6
implies the following lemma.

Lemma 1. If at any point in the refinement process of two I/O sets X and Y,Px and
Py become non-isomorphic, we conclude that N1 and N2 behave differently and we
stop the Boolean matching process.

Large-scale Boolean Matching 7

As mentioned earlier, refinement at each step requires a total ordering criterion,
tailored to the specific refinement technique used. Therefore, whenever we introduce
a new matching technique, we also explain its ordering criterion. Furthermore, the
following techniques are applied to the two input circuits one after another.

4.1 Computing I/O Support Variables

Definition 7. Input x is a support variableof outputz and outputz is a support
variableof inputx, if there exists an input vectorV such that flipping the value ofx
in V flips the value ofz.

Definition 8. Thesupportof input (or output)x, denoted bySupp(x), is the set of all
the support variables ofx. Thecardinalityof the support ofx, denoted by|Supp(x)|,
is the number of I/Os inSupp(x). Thedegreeof x, denoted byD(x), is defined as
the cardinality of its support.

The goal here is to find outputs that might be functionally affected by a particular
input and inputs that might functionally affect a particular output. Here, we contrast
functionallymatching withstructurallymatching in the sense that two structurally
different circuits with the same functionality should havethe same I/O support. In
general, the lack of structural dependency between an output and an input precludes
a functional dependency, and the presence of a structural dependency most often
indicates a functional dependency — this can usually be confirmed by random sim-
ulation, and in rare cases requires calling a SAT-solver [11].

Example 1.Consider a 4-bit adder with input setX = {Cin,A0, ...,A3,B0, ...,B3} and
output setZ = {S0, ...,S4}. The ripple-carry realization of this adder is shown in
Figure 3.

S4

A0 B0A1 B1A2 B2A3 B3

Cin

S0S1S2S3

FAFAFAFA

Fig. 3 4-bit ripple-carry adder.

It is evident from the above circuit thatA0 can affect the values ofS0, ...,S4 andA1

can affect the value ofS1, ...,S4. Hence,Supp(A0) = {S0, ...,S4} andSupp(A1) =
{S1, ...,S4}. Similarly, the value ofS0 is only affected by the value ofA0, B0 andCin.
Hence,Supp(S0) = {A0,B0,Cin}.

8

4.2 Initial refinement of I/O clusters

Lemma 2. Two inputs (outputs) can match only if they have the same degree.

Taking advantage of Lemma 2, we can initially refine the I/O sets by gathering
all I/Os of the same degree in one subcluster and then sort thesubclusters based on
the following ordering criterion:

Ordering criterion 1.Let i and j be two inputs (outputs) with different degrees and
assume thatD(i) < D(j). Then, the subcluster containingi precedes the subcluster
containingj.

Example 2.Consider the 4-bit adder of Example 1. The degree of each input and
output is given below:
D(A0) = D(B0) = D(Cin) = 5
D(A1) = D(B1) = 4
D(A2) = D(B2) = 3
D(A3) = D(B3) = 2
D(S0) = 3
D(S1) = 5
D(S2) = 7
D(S3) = D(S4) = 9
The ordered partitions of the I/O sets of the 4-bit adder after initial refinement are:
Px = {{A3,B3},{A2,B2},{A1,B1},{A0,B0,Cin}}
Pz = {{S0},{S1},{S2},{S3,S4}}

4.3 Refining Outputs by Minterm Count

Lemma 3. Two outputs can match only if their Boolean functions have the same
number of minterms.

Ordering criterion 2.Let i and j be two outputs in the same output cluster and let
M(i) andM(j) be the number of minterms ofi and j, respectively. IfM(i) < M(j),
then the subcluster containingi is smaller than the subcluster containingj.

Minterm count is another effective output signature which is only practical when
the circuit is represented in BDD form. In fact, the widely adopted way to count the
minterms of a Boolean network represented in AIG is to first convert it to a BDD,
but this approach is limited in scalability [16].

4.4 Refining I/O by Unateness

Lemma 4. Two outputs match only if they are unate in the same number of inputs.
Similarly, two inputs match only if the same number of outputs is unate in them.

Large-scale Boolean Matching 9

Ordering criterion 3.Let i and j be two outputs in the same output cluster. Assume
thatUnate(i) andUnate(j) are the number of unate variables ofi and j respectively,
and letUnate(i)<Unate(j). Then, the output subcluster containingi is smaller than
the subcluster containingj. Similarly, let i and j be two inputs in one input cluster.
Assume thatUnate(i) andUnate(j) are the number of outputs that are unate ini and
j respectively, and letUnate(i) < Unate(j). Then, the input subcluster containingi
is smaller than the subcluster containingj.

Although unateness generates powerful signatures for Boolean matching, com-
puting unateness in an AIG encounters the same limitation aswas discussed for
counting the number of minterms. Hence, refinement based on unateness is only
practical for small Boolean networks.

4.5 Scalable I/O Refinement by Dependency Analysis

We mentioned earlier that the degree of each I/O is an effective signature for initial
refinement of I/O sets. Here, we generalize this concept by not only considering the
number of support variables but also carefully analyzing I/O dependencies.

Definition 9. Let x be an input (output) and letSupp(x) = {z1, ...,zk}. We define a
sequenceS= (s1, ...,sk) of unsigned integers where eachsi is the index of the output
(input) cluster thatzi belongs to. After sortingS, we call it support signatureof x
and we denote it bySign(x).

Lemma 5. Two I/Os i and j in the same I/O cluster are distinguishable ifSign(i) 6=
Sign(j).

Ordering criterion 4.Let i and j be two I/Os in the same I/O cluster. Assume
thatSign(i) < Sign(j) meaning that the support signature ofi is lexicographically
smaller than the support signature ofj. Then, the subcluster containingi precedes
the subcluster containingj.

Example 3.Consider a circuit with input setX = {x1,x2,x3} and output setZ =
{z1,z2,z3} wherez1 = x1, z2 = x1 ·x2 andz3 = x2 ·x3. The I/O supports of the circuit
are:Supp(z1) = {x1}, Supp(z2) = {x1,x2}, Supp(z3) = {x2,x3} andSupp(x1) =
{z1,z2}, Supp(x2) = {z2,z3}, Supp(x3) = {z3}. Since D(z1) = 1 and D(z2) =
D(z3) = 2, andD(x3) = 1 andD(x1) = D(x2) = 2, we can initialize I/O clusters
as follows:Pz = {{z1},{z2,z3}}, Px = {{x3},{x1,x2}}. Now, we try refining based
on support signatures. The signatures forz1, z3, x1 andx2 are:Sign(z2) = (2,2),
Sign(z3) = (1,2), Sign(x1) = (1,2), Sign(x2) = (2,2). SinceSign(z3) < Sign(z2)
and Sign(x1) < Sign(x2), we can further partition{z2,z3} and {x1,x2}, hence
Pz = {{z1},{z3},{z2}} andPx = {{x3},{x1},{x2}}.

After each round of refinement based on I/O dependencies, we check if any I/O
cluster is further partitioned. If a new partition is added,the algorithm performs
another round of refinement. The procedure terminates when no new refinement
occurs after a certain number of iterations.

10

U=<u1,…,un>

V=<v1,…,vn>

Y, Py

X, Px Generate two

consistent random

input vectors

Simulate V

with N1

Simulate U

with N2

Partition Px

and Py using

simulation results

Fig. 4 Flow of the proposed I/O refinement by random simulation.

4.6 Scalable I/O Refinement by Random Simulation

Functional simulation holds the promise to quickly prune away unpromising branches
of search, but this seems to require a matching of outputs. Instead, we find pairs of
input vectors that sensitize comparable functional properties of the two circuits. Let
V =< v1, ...,vn > be an input vector of Boolean networkN. The result of simulating
V onN is called theoutput vectorof N underV and is denoted byRv =< r1, ..., rm >.

Definition 10. Let N be a Boolean network with input setX and letPx = {X1, ...,Xk}
be an ordered partition ofX. An input vectorV =< v1, ...,vn > is said to beproper
if it assigns the same value (0 or 1) to all the inputs ofN which are in the same input
cluster, i.e.,vi = v j if i, j ∈ Xl for somel . The input vectors consisting of all 0s or
all 1s are thetrivial proper input vectors.

Definition 11. Let X = {x1, ...,xn} andY = {y1, ...,yn} be the input sets of two
Boolean networksN1 andN2 and letPx = {X1, ...,Xk} andPy = {Y1, ...,Yk} be two or-
dered partitions defined on them. Two proper random input vectorsV =< v1, ...,vn >

andU =< u1, ...,un > of N1 andN2 are said to beconsistentif, for all 1 ≤ l ≤ k,
xi ∈ Xl andy j ∈Yl imply thatvi = u j .

Intuitively, two consistent random input vectors try to assign the same value to all
potentially matchable inputs of the two Boolean networks. In the next three subsec-
tions, we distinguish three types of simulation based on pairs of consistent random
input vectors that help us sensitize certain functional properties of the two circuits.
The flow of the I/O refinement by random simulation is shown in Figure 4.

4.6.1 Simulation type 1

Lemma 6. Let V be a proper random input vector and let Rv =< r1, ..., rm > be the
corresponding output vector under V. Two outputs i and j in one output cluster are
distinguishable if ri 6= r j .

The above lemma classifies outputs based on their values (0 or1) using the fol-
lowing ordering criterion.

Ordering criterion 5.The output subcluster of all 0s precedes the output subcluster
of all 1s.

Large-scale Boolean Matching 11

4.6.2 Simulation type 2

Definition 12. Let V be a proper random input vector and letRv =< r1, ..., rm > be
the corresponding output vector underV. LetV ′ be another input vector created by
flipping the value of inputx in V and letRv′ =< r ′1, ..., r

′
m > be the corresponding

output vector underV ′. Theobservabilityof input x with respect toV denoted by
Obs(x) is defined as the number of flips in the outputs caused byV ′, i.e., the number
of timesr i 6= r ′i .

Lemma 7. Two inputs i and j in one input cluster are distinguishable ifObs(i) 6=
Obs(j).

Ordering criterion 6.Let i and j be two inputs in one input cluster and letObs(i) <

Obs(j). Then, the input subcluster containingi precedes the input subcluster con-
taining j.

4.6.3 Simulation type 3

Definition 13. Consider a proper random input vectorV and its corresponding out-
put vectorRv =< r1, ..., rm >. Let V1, ...,Vn be n input vectors where vectorVi is
created by flipping the value ofr i in V. Also, letRv1 =< r1,1, ..., r1,m >,...,Rvn =<

rn,1, ..., r,m > be the corresponding output vectors underV1, ...,Vn. Thecontrollabil-
ity of outputzwith respect toV denoted byCtrl(z) is defined as the number of times
r i 6= r j ,i , for all 1≤ j ≤ n.

Lemma 8. Two outputs i and j in one output cluster are distinguishableif Ctrl (i) 6=
Ctrl(j).

Ordering criterion 7.Let i and j be two outputs in one output cluster and let
Ctrl(i) < Ctrl(j). Then, the output subcluster containingi precedes the output sub-
cluster containingj.

Example 4.Consider an 8-to-1 multiplexer with input setX = {a0, ...,a7,s0,s1,s2}
and outputzwherea0, ...,a7 denote data signals ands0,s1,s2 are control signals. Ini-
tially Px has only one partition, namelyX. Initial refinement and refinement by de-
pendency analysis do not partitionPx, hence we try random simulation. Here, we can
only use type 2 simulation since simulation of type 1 and 3 arefor refining output
clusters. First, we consider the trivial input vectorV of all 0s. We flip one input inV
at a time and we apply the resulting vectors to the multiplexer. Only flippinga0 flips
z; hence,Px = {{a1, ...,a7,s0,s1,s2},{a0}}. Then we try the trivial input vectorV of
all 1s. This time flippinga7 flips z; hence,Px = {{a1, ...,a6,s0,s1,s2},{a7},{a0}}.
Next, we puta0 to 1 and all the other inputs to 0. Now flippings0,s1,s2 flips z, hence
Px = {{a1, ...,a6},{s0,s1,s2},{a7},{a0}}. If we continue partitioning based on the
remaining proper input vectors no additional refinement will be gained.

After matching I/Os using random simulation, we check if anyprogress is
achieved in refining I/O clusters. If a new cluster is added, the algorithm continues

12

refining based on random simulation. The procedure terminates when no new refine-
ment occurs in input or output subclusters after a certain number of iterations. Here,
the number of iterations does not affect the correctness of the algorithm. However,
too few iterations might diminish the impact of matching by random simulation,
and excessive iterations offer no improvement. Our currentimplementation limits
iterations to 200.

5 SAT-based Search

The scalable methods we introduced so far typically reduce the number of possible
matches fromn!m! to hundreds or less, often making exhaustive search (with SAT-
based equivalence-checking) practical. However, this phase of Boolean matching
can be significantly improved, and the techniques we developfacilitate scaling to
even larger instances.

5.1 SAT-based Input Matching

The basic idea in our SAT-based matching approach is to builda tree data structure
calledSAT-treethat matches one input at a time from the remaining non-singleton
input clusters. Subsequently, after an input is matched, all the outputs in its support
which are not matched so far are also matched, one by one. In other words, we
build a dual-purpose tree that repeatedly matches inputs and outputs until exact I/O
matches are found. We take advantage of the following lemma to build our SAT-tree:

Lemma 9. Assume that two Boolean networks N1 and N2 with input sets X=
{x1, ...,xn} and Y= {y1, ...,yn} are functionally equivalent under two complete or-
dered partitions Px = {X1, ...,Xn} and Py = {Y1, ...,Yn}. Also, assume that Xl = {xi}
and Yl = {y j}. Let N′

1 be the positive (negative) cofactor of N1 with respect to xi
and N′

2 be the positive (negative) cofactor of N2 with respect to yj . N′
1 and N′

2 with
input sets X′ = X−{xi} and Y′ = Y−{y j} behave functionally the same under two
complete ordered partitions Px′ = Px−{Xl} and Py′ = Py−{Yl}.

The inputs to the SAT-based matching algorithm are two ordered input partitions
and two ordered output partitions. Here, we assume that someof the partitions are
incomplete because if all partitions are complete, an exactmatch is already found.
Without loss of generality, assume that in two ordered partitionsPx = {X1, ...,Xk}
andPy = {Y1, ...,Yk} of setsX andY, X1, ...,Xl−1 andY1, ...,Yl−1 are all singleton
clusters andXl , ...,Xk andYl , ...,Yk are non-singleton clusters. Repeatedly applying
Lemma 9 allows us to create two new Boolean networksN′

1 andN′
2 by setting all the

inputs inXl , ...,Xk andYl , ...,Yk to either constant 0 or constant 1. In other words, we
shrink input setsX to X′ = X−{x|x∈ {Xl , ...,Xk}} and input setY toY′ =Y−{y|y∈
{Yl , ...,Yk}} such thatX′ andY′ only contain the inputs that have exact match inN1

Large-scale Boolean Matching 13

andN2. Note that, by definition, the ordered partitionsP′
x = Px −{Xl , ...,Xk} and

P′
y = Py−{Yl , ...,Yk} are complete partitions ofX′ andY′. According to Lemma 9,

N′
1 andN′

2 must be functionally equivalent ifN1 andN2 are equivalent.N′
1 andN′

2
are called theSmallest Matching Sub-circuits(SMS) of N1 andN2.

After finding the SMS ofN1 andN2, we try to expandX′ andY′ back toX andY
by matching one input at a time. LetXl andYl be the first two non-singleton input
clusters ofPx andPy and letxi ∈ Xl . The goal here is to matchxi with one of the
|Yl | inputs inYl . Assume thaty j ∈Yl , and we picky j as the first candidate to match
xi . Now, in order to reflect our matching decision, we partitionXl andYl to make
{xi} and {y j} two singleton clusters; hence,Xl is partitioned toXl ,1 = {xi} and
Xl ,2 = Xl −{xi} andYl is partitioned toYl ,1 = {y j} andYl ,2 = Yl −{y j}. Complying
with our previous notation, nowXl ,2, ...,Xk andYl ,2, ...,Yk are the new non-singleton
clusters. We then build two Boolean networksN′′

1 andN′′
2 from N1 andN2 by setting

all the inputs in non-singleton clusters to either constant0 or constant 1, and we
pass the miter ofN′′

1 andN′′
2 to the SAT-solver. The SAT-solver may return either

satisfiableor unsatisfiable. If the result is:

• unsatisfiable: N′′
1 andN′′

2 are functionally equivalent. In other words,xi andy j

has been a valid match so far. Hence, first try to match the outputs in the supports
of xi andy j (only the outputs that have not been matched so far) and then match
the next two unmatched inputs inXl ,2 andYl ,2.

• satisfiable: N′′
1 andN′′

2 are not functionally equivalent. In other words,xi cannot
matchy j . Backtrack one level up and use the counterexample to prune the SAT-
tree.

In a case where the SAT-solver times out, we terminate the matching process,
and only report the I/Os matched by our signature-based techniques. Unlike early
prototypes, our most optimized implementation does not experience this situation
on the testcases used in our experiments.

5.2 Pruning Invalid Input Matches By SAT Counterexamples

Pruning the SAT-tree using counterexamples produced by SATis a key step in our
Boolean matching methodology. Continuing the scenario in Section 5.1, assume that
the miter ofN′′

1 andN′′
2 is satisfiable. Suppose that the SAT-solver returns an input

vectorV =< v1, ...,vl+1 > as the satisfying assignment. This input vector carries a
crucial piece of information: the matching attempt before matchingxi andy j was a
successful match; otherwise we would have backtracked in the previous level and
we would have never tried matchingxi andy j . Thus, the input vectorV sensitizes a
path fromxi andy j to the outputs of the miter.

According to Lemma 9, repeatedly computing negative and positive cofactors of
N1 andN2 with respect to the values ofv1, ...,vl in V results in two new Boolean
networksN̂1 andN̂2 that must be functionally equivalent under some ordered parti-
tion Px−{X1, ...,Xl} andPy−{Y1, ...,Yl}. In other words,N̂1 andN̂2 are two smaller

14

Boolean networks that only contain the inputs ofN1 andN2 that have not found ex-
act match so far. SincêN1 andN̂2 are computed with respect to the values ofv1, ...,vl

in V and sinceV is a vector that sensitizes a path formxi andy j to the output of the
miter, we conclude that there exists an output inN̂1 that is functionally dependent
onxi . The existence of such an output ensures thatD(xi) > 0. We can now apply our
simple filtering signature from Lemma 2 to prune the SAT-tree. Specifically,xi ∈ Xl

can match toyq ∈Yl (q 6= j) only if D(xi) = D(yq) in N̂1 andN̂2.

Example 5.Consider two 8-to-1 multiplexers with outputsz andz′ and input sets
X = {a0, ...,a7,s0,s1,s2} andX′ = {a′0, ...,a

′
7,s

′
0,s

′
1,s

′
2}. RefiningX andX′ based

on the techniques explained in Section 4 would result in two ordered partitionsPx =
{{a1, ...,a6},{s0,s1,s2},{a7},{a0}} andPx′ = {{a′1, ...,a

′
6},{s′0,s

′
1,s

′
2},{a′7},{a′0}}

(refer to Example 4). In order to find exact input matches, we build our SAT-
tree and we first try matchings2 and s′0. The SAT-solver confirms the valid-
ity of this match. Then,s1 matchess′1 and s0 matchess′2. These two matches
are also valid. So far,Px = {{a1, ...,a6},{s2},{s1},{s0},{a7},{a0}} and Px′ =
{{a′1, ...,a

′
6},{s′0},{s′1},{s′2},{a′7},{a′0}}. Now, we look at the next non-singleton

input cluster and we matcha1 anda′1. Our SAT-solver specifies that matchinga1 and
a′1 do not form a valid match and it returns vectorV in whichs′0 = s2 = 0,s′1 = s1 = 0,
s′2 = s0 = 1, a′7 = a7 = 0, a′0 = a0 = 0, a′1 = a1 = 1 as a counterexample. In order to
see whyV is a counterexample of matchinga1 anda′1, we look at the cofactors of the
two multiplexers,c andc′, where all the inputs in non-singleton clusters are set to 0:
c= a0s̄2s̄1s̄0+a1s̄2s̄1s0+a7s2s1s0 andc′ = a′0s̄′0s̄′1s̄′2+a′1s̄′0s̄′1s′2+a′7s′0s′1s′2. Applying
V to c andc′ would result inc= 1 andc′ = 0. Since we know thata1 does not match
a′1, we use the counterexample to prune the SAT-tree. Specifically, we compute co-
factors of the two multiplexers,d and d′, with respect to the values of matched
inputs inV. So,d = a1s̄2s̄1s0 andd′ = a′4s̄′0s̄′1s′2. In d andd′, D(a1) = D(a′4) = 1.
This means thata1 can only matcha′4. In other words, we have pruned SAT search
space by not matchinga1 to any of inputsa′2,a

′
3,a

′
5 anda′6. We continue matching

inputs until we find valid matches.

5.3 SAT-based Output Matching

Let Z and W be the output sets of two Boolean networksN1 and N2 and let
Pz = {Z1, ...,Zk} andPw = {W1, ...,Wk} be two ordered partitions defined on them.
Continuing the scenario in Section 5.1, assume thatzi ∈ Zl is a support variable of
xi , wj ∈Wl is a support variable ofy j , andZl andWl are two non-singleton output
clusters ofPz andPw. In order to verify ifzi andwj match under current input corre-
spondence, we addzi

⊕
wj to the current miter ofN′′

1 andN′′
2 and we call SAT-solver

once again. If SAT returnsunsatisfiable, i.e.,zi matcheswj , we continue matching
the remaining unmatched outputs in the support ofxi andy j . If the result issatis-
fiable, we once again use the counterexample returned by SAT to prune the search
space.

Large-scale Boolean Matching 15

Example 6.Consider two circuitsN1 andN2 with input setsX = {x0, ...,x3} and
Y = {y0, ...,y3}, and output setsZ = {z0,z1} andW = {w0,w1} wherez0 = x0 ·x1 ·
x2 ·x3, z1 = x0 ·x1 ·x2 ·x3, w0 = y0 ·y1 ·y2 ·y3, andw1 = y0 ·y1 ·y2 ·y3. For these two
circuits, signature-based matching (discussed in Section4) cannot distinguish any
I/Os. Hence, we resort to SAT-solving. Assume that SAT search starts by matching
x0 to y0. Since{z0,z1} ∈ Supp(x0) and{w0,w1} ∈ Supp(y0), the outputs of the
circuits must be matched next. Among all valid matches, our SAT-solver can match
z0 to w1 andz1 to w0. For the remaining space of the unmatched inputs, our SAT-
solver can validly matchx1 to y1, x2 to y3, andx3 to y2, and finish the search.

5.4 Pruning Invalid Output Matches By SAT Counterexamples

When outputzi ∈ Zl does not match outputwj ∈ Wl , the counterexample returned
by SAT is a vectorV that makeszi = 1 andwj = 0 or vice versa. This means thatzi

matches outputwq ∈Wl (q 6= j) only if zi = wq underV. This simple fact allows us
to drastically prune our SAT-tree whenever an invalid output match occurs.

5.5 Pruning Invalid I/O Matches Using Support Signatures

We demonstrated in Section 4.5 that support signatures of inputs and outputs can
be used to refine I/O subclusters of a Boolean network. In thissection, we show
that support signatures can also be used in our SAT-tree to eliminate impossible I/O
correspondences.

Lemma 10.Suppose that xi ∈ Xl and yj ∈ Yl are two unmatched inputs of N1 and
N2. Then, xi can match yj only if Sign(xi) = Sign(y j). Likewise, suppose that zi ∈ Zl

and wj ∈ Wl are two unmatched outputs of N1 and N2. Then, zi matches wj only if
Sign(zi) = Sign(wj).

As indicated in Section 5.1, matching two I/Os during SAT search introduces new
singleton cells. These new cells might change the support signature of the remaining
unmatched I/Os (the ones in the supports of the recently matched inputs or outputs).
According to Lemma 10, this change in the support signaturesmight preclude some
I/Os from matching. Taking advantage of this lemma, we can prune the unpromising
branches of the SAT tree in the remaining space of matches.

5.6 Pruning Invalid Input Matches Using Symmetries

Our SAT-tree can exploit the symmetries of inputs to prune 1)impossible output
matches, and 2) symmetric portions of the search space. Since computing the input

16

symmetries of a Boolean network is expensive, the techniques explained in this
section may in some cases hamper the matching process.

Definition 14. Let X = {x1, ...,xn} be an input set of a Boolean networkN. Let
xi ∼ x j (readxi is symmetricto x j) if and only if the functionality ofN stays invariant
under an exchange ofxi andx j . This defines an equivalence relation on setX, i.e.,∼
partitionsX into a number ofsymmetry classeswhere each symmetry class contains
all the inputs that are symmetric to each other. The partition resulting from∼ is
called thesymmetry partitionof X.

For multi-output functions, symmetries of inputs are reported independently for
each output. In other words, each output defines its own symmetry partition on in-
puts. Complying with the notion of symmetry in Definition 14,for a multi-output
function,xi is called symmetric tox j if 1) xi andx j have the same output support,
i.e.,Supp(xi) = Supp(x j), and 2)xi andx j are symmetric in all the outputs in their
support, i.e.,xi ∼ x j for all outputs inSupp(xi) (or equivalentlySupp(x j)).

Symmetries of inputs can serve as a signature for matching outputs in our SAT-
based search. The following lemma explains the role of symmetries in detecting
invalid output matches.

Lemma 11.Output zi ∈ Zl (from N1) matches output wj ∈Wl (from N2) only if sym-
metry partition of zi is isomorphic to the symmetry partition of wj for at least one
ordering of symmetry classes.

Input symmetries can also be used to prune symmetric parts ofthe search space
during SAT-based exploration. Specifically, assume that the miter of N′′

1 and N′′
2

from Section 5.1 issatisfiable, i.e., xi does not matchy j . Based on the notion of
input symmetries, ifxi does not matchy j , neither can it match another input inYl

that is symmetric toy j . In other words,xi cannot matchyq ∈ Yl , if y j andyq are
symmetric.

In practice, the use of symmetries in Boolean matching encounters two major
limitations: 1) finding symmetries of a large Boolean network usually takes a sig-
nificant amount of time, 2) in a case where a Boolean network does not have much
symmetry, a considerable amount of time can be wasted.

5.7 A Heuristic for Matching Candidates

In order to reduce the branching factor of our SAT-tree, we first match I/Os of
smaller I/O clusters. Also, within one I/O cluster, we exploit the observability of
the inputs and the controllability of the outputs, to make more accurate guesses
in our SAT-based matching approach. Heuristically, the probability that two I/Os
match is higher when their observability/controllabilityare similar. We observed
that, in many designs, the observability of control signalsis higher than that of data
signals. Therefore, we first match control signals. This simple heuristic can greatly
improve the runtime — experiments indicate that once control signals are matched,
data signals can be matched quickly.

Large-scale Boolean Matching 17

6 Empirical Validation

We have implemented the proposed approach in ABC and we have experimentally
evaluated its performance on a 2.67GHz Intel Xeon CPU running Windows Vista.
Table 1 and Table 2 show the runtime of our algorithms on ITC’99 benchmarks for
P-equivalence and PP-equivalence checking problems, respectively. In these two
tables, #I is the number of inputs, #O is the number of outputsand |AIG| is the
number of nodes in the AIG of each circuit. The last four columns demonstrate the
initialization time (computing I/O support variables, initially refining I/O cluster and
refining based on I/O dependencies), simulation time, SAT time, and overall time
for each testcase. In addition to the reported runtimes, (I%) and (I%,O%) show the
percentage of inputs and I/Os that are matched after each step. Note that, in these
experiments, we did not perform refinement using minterm counts and unateness,
and we did not account for input symmetries to prune our SAT-tree because these
techniques appear less scalable than the ones reported in Table 1 and Table 2. Also
note that for each testcase we generated 20 new circuits eachfalling into one of
the two following categories: (1) permuting inputs for verifying P-equivalence (2)
permuting both inputs and outputs for verifying PP-equivalence. The results given in
Table 1 and Table 2 are the average results over all the generated testcases for each
category. Furthermore, the AIGs of the new circuits are reconstructed using ABC’s
combinational synthesis commands to ensure that the new circuits are structurally
different from the original ones.

Table 1 P-equivalence runtime (sec.) and percentage of matched inputs for ITC’99 benchmarks

Circuit #I #O |AIG| Initialization Simulation SAT Overall

b01 6 7 48 0.30 (66%) 0 (100%) 0 (100%) 0.30
b02 4 5 28 0.28 (50%) 0 (100%) 0 (100%) 0.28
b03 33 34 157 0.36 (97%) 0 (97%) 0.04 (100%) 0.40
b04 76 74 727 0.41 (64%) 0.04 (100%) 0 (100%) 0.45
b05 34 70 998 0.52 (84%) 0.02 (100%) 0 (100%) 0.54
b06 10 15 55 0.37 (80%) 0 (100%) 0 (100%) 0.37
b07 49 57 441 0.41 (67%) 0.01 (100%) 0 (100%) 0.43
b08 29 25 175 0.36 (90%) 0 (100%) 0 (100%) 0.36
b09 28 29 170 0.40 (100%) 0 (100%) 0 (100%) 0.40
b10 27 23 196 0.34 (85%) 0 (100%) 0 (100%) 0.34
b11 37 37 764 0.40 (95%) 0.01 (100%) 0 (100%) 0.41
b12 125 127 1072 0.38 (60%) 0.25 (100%) 0 (100%) 0.63
b13 62 63 353 0.38 (71%) 0.01 (100%) 0 (100%) 0.39
b14 276 299 10067 6.89 (73%) 3.29 (100%) 0 (100%) 10.18
b15 484 519 8887 14.26 (57%) 5.82 (100%) 0 (100%) 20.08
b17 1451 1512 32290 246 (63%) 46.14 (99%) 1.41 (100%) 294
b18 3357 3343 74900 2840 (69%) 51.6 (99%) 2.96 (100%) 2895
b20 521 512 20195 52.8 (83%) 2.23 (100%) 0.01 (100%) 55
b21 521 512 20540 52.8 (83%) 2.30 (100%) 0.01 (100%) 55
b22 766 757 29920 150 (82%) 3.85 (100%) 0.32 (100%) 154

18

Table 2 PP-equivalence runtime (sec.) and percentage of matched I/Os for ITC’99 benchmarks

Circuit #I #O |AIG| Initialization Simulation SAT Overall

b01 6 7 48 0.37 (50%,43%) 0 (83%,85%) 0.02 (100%,100%) 0.39
b02 4 5 28 0.28 (50%,60%) 0 (100%,100%) 0 (100%,100%) 0.28
b03 33 34 157 0.38 (48%,38%) 0.01 (54%,47%) 0.43 (100%,100%) 0.82
b04 76 74 727 0.37 (16%,13%) 0.1 (100%,100%) 0 (100%,100%) 0.47
b05 34 70 998 0.51 (34%,24%) 0.03 (54%,47%) 0.33 (100%,100%) 0.87
b06 10 15 55 0.39 (30%,47%) 0 (50%,53%) 0.04 (100%,100%) 0.43
b07 49 57 441 0.43 (67%,70%) 0.03 (94%,95%) 0.19 (100%,100%) 0.65
b08 29 25 175 0.41 (27%,36%) 0.12 (100%,100%) 0 (100%,100%) 0.53
b09 28 29 170 0.41 (46%,48%) 0.01 (46%,48%) 0.20 (100%,100%) 0.62
b10 27 23 196 0.37 (88%,95%) 0 (100%,100%) 0 (100%,100%) 0.37
b11 37 37 764 0.41 (65%,65%) 0 (100%,100%) 0.02 (100%,100%) 0.43
b12 125 127 1072 0.38 (21%,25%) 1.05 (41%,41%) — —
b13 62 63 353 0.35 (43%,50%) 0.05 (97%,97%) 0.14 (100%,100%) 0.54
b14 276 299 100677.99 (72%,58%) 3.89 (89%,90%) 27 (100%,100%) 38.8
b15 484 519 8887 16.40 (62%,67%) 45.6 (94%94,%) 6.30 (100%,100%) 68.3
b17 1451 1512 32290249 (62%,65%) 229 (94%,94%) 148 (100%,100%) 626
b18 3357 3343 749002862 (65%,63%) 530 (93%,93%) — —
b20 521 512 2019553.3 (70%,51%) 13.82 (89%,89%) 146 (100%,100%) 213
b21 521 512 2054053.3 (70%,51%) 11.70 (89%,89%) 159 (100%,100%) 225
b22 766 757 29920151 (70%,50%) 26.28 (88%,88%) 473 (100%,100%) 650

— indicates runtime> 5000 sec.

In the ITC’99 benchmark suite, 18 circuits out of 20 have lessthan a thousand
I/Os. Checking P-equivalence and PP-equivalence for 12 outof these 18 circuits
takes less than a second. There is only one circuit (b12) for which our software
cannot match I/Os in 5000 seconds. The reason is that, for b12, 1033 out of 7750
input pairs (13%) are symmetric and since our implementation does not yet account
for symmetries, our SAT-tree repeatedly searches symmetric branches that do not
yield valid I/O matches. For b20, b21 and b22 and for b17 and b18 with more than
a thousand I/Os, computing functional dependency is the bottleneck of the overall
matching runtime. Note that checking PP-equivalence for b18 results in a very large
SAT-tree that cannot be resolved within 5000 seconds, although our refinement tech-
niques before invoking SAT find exact matches for 3123 out of 3357 inputs (93%)
and 3111 out of 3343 outputs (93%).

The results in Table 1 and Table 2 assume that target circuitsare equivalent. In
contrast, Table 3 considers cases where input circuits produce different output values
on at least some inputs. For this set of experiments, we construced 20 inequivalent
circuits for each testcase, using one of the following rules:

1. Wrong signals: outputs of two random gates were swapped.
2. Wrong polarity : an inverter was randomly added or removed.
3. Wrong gate: functionality of one random gate was altered.

In Table 3, columns Init, Sim, and SAT demonstrate the numberof testcases (out
of 20) for which our algorithms were able to prove inequivalence during initializa-
tion, simulation, and SAT search phases, respectively. Also, column Time shows

Large-scale Boolean Matching 19

Table 3 P-equivalence and PP-equivalence runtime (sec.) for ITC’99 benchmarks when mismatch
exists

Circuit #I #O |AIG| P-equivalence PP-equivalence
Init Sim SAT Time Init Sim SAT Time

b01 6 7 48 4 2 14 0.30 1 13 6 0.49
b02 4 5 28 0 10 10 0.27 2 12 6 0.33
b03 33 34 157 9 0 11 0.35 10 7 3 0.45
b04 76 74 727 8 2 10 0.42 13 4 3 0.39
b05 34 70 998 7 0 13 0.53 6 10 4 0.70
b06 10 15 55 3 3 14 0.31 14 5 1 0.46
b07 49 57 441 10 0 10 0.43 15 1 4 0.71
b08 29 25 175 9 2 9 0.36 12 6 2 0.46
b09 28 29 170 4 1 15 0.40 10 4 6 0.45
b10 27 23 196 10 5 5 0.33 11 3 6 0.31
b11 37 37 764 5 0 15 0.40 10 2 8 0.53
b12 125 127 1072 6 10 4 0.45 10 8 2 3.5
b13 62 63 353 6 9 5 0.38 7 7 6 0.55
b14 276 299 10067 3 0 17 9.89 10 3 7 10.65
b15 484 519 8887 4 2 14 20.03 8 4 8 38.2
b17 1451 1512 32290 11 0 9 260 3 7 10 373
b18 3357 3343 74900 2 0 18 2864 0 9 11 —a

b20 521 512 20195 7 0 13 54 1 4 15 75.4
b21 521 512 20540 2 0 18 54 5 11 4 59.4
b22 766 757 29920 7 1 12 154 0 4 16 181

— indicates runtime> 5000 sec.
a The average runtime excluding instances requiring SAT was 2902 sec.

the average runtime of our matcher for the P-equivalence andPP-equivalence prob-
lems. According to the results, our matcher resorts to SAT-solving in 45% of the
testcases which suggests that many of our instances are not particularly easy. More-
over, calling SAT is due to the fact that our mismatched instances were all generated
with minimal changes to the original circuits. Note that, even in the case of a slight
mismatch, our signature-based techniques alone could effectively discover inequiv-
alence for 55% of testcases. Furthermore, comparing the results in Table 2 and Table
3, PP-equivalence checking is up to 4 times faster when mismatch exists. In partic-
ular, for b12, our matcher could confirm inequivalence in less than 5 seconds, even
when SAT-solving was invoked. The reason is that in the case of a mismatch, our
SAT-tree usually encounters invalid I/O matches early in the tree, which results in a
vast pruning in the space of invalid matches.

In order to compare our work to that in [17], we have tested ouralgorithms on
circuits from [17] that have more than 150 inputs. Results are listed in Table 4.
For the results reported from [17], Orig, Unate and +Symm respectively show the
runtime when no functional property is used, only functional unatness is used and,
both unateness and symmetries are used. Note that experiments reported in [17]
used 3GHz Intel CPUs, while our runs were on a 2.67GHz Intel CPU. To make the
numerical comparisons entirely fair, our runtimes would need to be multiplied by
0.89. However, we omit this step, since our raw runtimes are already superior in

20

Table 4 P-equivalence runtime (sec.) compared to runtime (sec.) from [17]

Circuit #I #O P-equivalence Runtime (sec.) CPU Time (sec.) in [17]
Init Sim SAT Overall Orig +Unate+Sym

C2670 233 140 0.14 1.18 — — — — 7.96
C5315 178 123 0.33 0.11 0.06 0.5 6.31 2.86 3.29
C7552 207 108 0.51 3.76 4.83 9.10 — — 14.56
des 256 245 0.38 0.07 0 0.45 10.21 0.25 2.33
i10 257 224 0.43 1.03 1.23 2.69 25.63 15.16 17.56
i2 201 1 0.34 0.28 — — — — 1.02
i4 192 6 0.31 0.27 — — — — 0.22
i7 199 67 0.36 0.18 0 0.54 0.82 0.04 0.19
pair 173 137 0.32 0.14 0 0.46 0.84 0.64 2.44
s3384 226 209 0.10 0.25 0.47 0.82 4.79 2.14 4.02
s5378 199 213 0.11 0.53 0.63 1.27 1.31 3.38 2.42
s9234 247 250 3.11 0.53 2.85 6.49 3.41 5.84 7.82
s38584 1464 1730 58 1.66 1.54 61 76 210 458
s38417 1664 1742 50 9.46 30.9 90 91 324 999

— indicates runtime> 5000 sec.

many cases. According to Table 4, our matching algorithm times out in 5000 sec-
onds on C2670, i2 and i4. This is again due to the symmetries that are present in
the inputs of these circuits. Note that the approach in [17] cannot solve these three
circuits without symmetry search, either. For some other circuits, such as C7552,
our approach verifies P-equivalence in less than 10 seconds but the approach in [17]
cannot find a match without invoking symmetry finder. It is also evident from the re-
sults that checking P-equivalence for very large circuits,such as s38584 and s38417,
is 3.5-11 times slower when symmetry finding and unateness calculations are per-
formed during Boolean matching. This confirms our intuitionthat symmetry and
unateness are not essential to Boolean matching in many practical cases, although
they may occasionally be beneficial.

7 Chapter Summary

In this chapter, we proposed techniques for solving large-scale PP-equivalence
checking problem. Our approach integrates graph-based, simulation driven and
SAT-based techniques to efficiently solve the problem. Graph-based techniques limit
dependencies between inputs and outputs and are particularly useful with word-level
arithmetic circuits. Simulation quickly discovers inputson which inequivalent cir-
cuits differ. Equivalences are confirmed by invoking SAT, and these invocations are
combined with branching on possible matches. Empirical validation of our approach
on available benchmarks confirms its scalability to circuits with thousands of inputs
and outputs. Future advances in Boolean matching, as well asmany existing tech-
niques, can also be incorporated into our framework to improve its scalability.

Large-scale Boolean Matching 21

References

1. Abdollahi, A.: Signature based boolean matching in the presence of don’t cares. In: DAC ’08:
Proceedings of the 45th annual Design Automation Conference, pp. 642–647. ACM, New
York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1391469.1391635

2. Abdollahi, A., Pedram, M.: A new canonical form for fast boolean matching in logic
synthesis and verification. In: DAC ’05: Proceedings of the 42nd annual Design
Automation Conference, pp. 379–384. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1065579.1065681

3. Agosta, G., Bruschi, F., Pelosi, G., Sciuto, D.: A unified approach to canonical form-
based boolean matching. In: DAC ’07: Proceedings of the 44thannual Design Au-
tomation Conference, pp. 841–846. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1278480.1278689

4. Benini, L., Micheli, G.D.: A survey of boolean matching techniques for library binding. ACM
Transactions on Design Automation of Electronic Systems2, 193–226 (1997)

5. Chai, D., Kuehlmann, A.: Building a better boolean matcher and symmetry detector. In: DATE
’06: Proceedings of the conference on Design, automation and test in Europe, pp. 1079–1084.
European Design and Automation Association, 3001 Leuven, Belgium, Belgium (2006)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7), 394–397 (1962). DOI http://doi.acm.org/10.1145/368273.368557

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM7(3), 201–
215 (1960). DOI http://doi.acm.org/10.1145/321033.321034

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tacchella (eds.) SAT,
Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2003)

9. Goering, R.: Xilinx ISE handles incremental changes.
http://www.eetimes.com/showArticle.jhtml?articleID=196901122 (2007)

10. Krishnaswamy, S., Ren, H., Modi, N., Puri, R.: Deltasyn:an efficient logic difference op-
timizer for ECO synthesis. In: ICCAD ’09: Proceedings of the2009 International Confer-
ence on Computer-Aided Design, pp. 789–796. ACM, New York, NY, USA (2009). DOI
http://doi.acm.org/10.1145/1687399.1687546

11. Lee, C.C., Jiang, J.H.R., Huang, C.Y.R., Mishchenko, A.: Scalable exploration of functional
dependency by interpolation and incremental SAT solving. In: ICCAD ’07: Proceedings of
the 2007 IEEE/ACM international conference on Computer-aided design, pp. 227–233. IEEE
Press, Piscataway, NJ, USA (2007)

12. Mishchenko, A.: Logic synthesis and verification group.ABC: A system for sequential syn-
thesis and verification, release 70930. http://www.eecs.berkeley.edu/ãlanmi/abc/

13. Mishchenko, A., Chatterjee, S., Brayton, R.: FRAIGs: A unifying representation for logic
synthesis and verification. Tech. rep., UC Berekeley (2005)

14. Mishchenko, A., Chatterjee, S., Brayton, R., Een, N.: Improvements to combinational equiv-
alence checking. In: ICCAD ’06: Proceedings of the 2006 IEEE/ACM international confer-
ence on Computer-aided design, pp. 836–843. ACM, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1233501.1233679

15. Ray, S., Mishchenko, A., Brayton, R.: Incremental sequential equivalence checking and sub-
graph isomorphism. In: Proc. of the Intl. Workshop on Logic Synthesis, pp. 37–42 (2009)

16. S. Nocco, S.Q.: A probabilistic and approximated approach to circuit-based formal verifica-
tion. Journal of Satisfiability, Boolean Modeling and Computation5, 111–132 (2008)

17. Wang, K.H., Chan, C.M., Liu, J.C.: Simulation and SAT-based boolean matching for
large boolean networks. In: DAC ’09: Proceedings of the 46thAnnual Design Au-
tomation Conference, pp. 396–401. ACM, New York, NY, USA (2009). DOI
http://doi.acm.org/10.1145/1629911.1630016

Index

And-Inverter graph (AIG), 4

binate, 4
Boolean matching, 1
Boolean satisfiability, 5

canonical form based matching, 2
complete partitions, 4
consistent input vectors, 10
controllability, 11

enhanced CEC, 2

generalized Boolean matching, 1

I/O cluster, 4
I/O cluster mapping, 6
I/O degree, 7
I/O mapping, 6
I/O signature, 2
I/O support, 7
I/O support signature, 9
I/O support variable, 7
isomorphic partitions, 4

miter, 5

negative cofactor, 4

negative unate, 4

observability, 11
ordered partition, 4
output vector, 10

partition, 4
PNPN-equivalence checking, 2
positive cofactor, 4
positive unate, 4
PP-equivalence checking, 2, 6
proper input vector, 10

refinement, 6

SAT, 5
SAT-tree, 12
satisfiable assignment, 5
signature-based matching, 2
smallest matching sub-circuits, 13
structural hashing, 5
symmetry, 16
symmetry class, 16
symmetry partition, 16

trivial proper input vector, 10

unsatisfiable assignment, 5

23

