Large-scale Boolean Matching

Hadi Katebi and Igor L. Markov
University of Michigan, 2260 Hayward St., Ann Arbor, M1 4840
{hadik, imarkoy @eecs.umich.edu

1 Chapter Overview

In this chapter, we propose a methodology for Boolean magchinder permuta-
tions of inputs and outputs (PP-equivalence checking propl— a key step in
incremental logic design that identifies large sections ogtist that are not af-
fected by a change in specifications. When a design undeirgmesnental changes,
large parts of the circuit may remain unmodified. In thesesahe original and the
slightly modified circuits share a number of functionallyua@lent sub-circuits.
Finding and reutilizing the equivalent subcircuits reduitiee amount of work in
each design iteration and accelerates design closureidrchiapter, we present
a combination of fast and effective techniques that canieffity solve the PP-
equivalence checking problem in practice. Our approactgnates graph-based,
simulation-driven and SAT-based techniques to make Boateztching feasible for
large circuits. We verify the validity of our approach on 8@ benchmarks. The
experimental results confirm scalability of our technigteesircuits with hundreds
and even thousands of inputs and outputs.

The remainder of this chapter is organized as follows. 8e&@idescribes the mo-
tivation of this work. Section 3 provides relevant backgrdand discusses previous
work on Boolean matching. Section 4 gives an overview of psegl signature-
based techniques. Section 5 describes our SAT-based mgighproach. Section 6
validates our method in experiments on available benchsnarid Section 7 sum-
marizes our work.

2 Introduction

Boolean matching is the problem of determining whether twolBan functions are
functionally equivalent under the permutation and negatibinputs and outputs.

2

This formulation is usually referred to as theneralizedBoolean matching prob-
lem or PNPN-equivalence checking (PNPN stands for Perioatahd Negation of
outputs and Permutation and Negation of inputs); howeviéerent variants of the
problem have been introduced for different synthesis amificetion applications.
The matching problem that we discuss in this chapter is Riralgnce checking:
two Boolean functions are called PP-equivalent if they ayeialent under per-
mutation of inputs and permutation of outputs. The simpbesthod to determine
whether twon-input m-output Boolean functions are PP-equivalent is to expficit
enumerate all then!n! possible matches and perform tautology checking on each.
However, this exhaustive search is computationally indale.

PP-equivalence checking finds numerous applications iificagion and logic
synthesis. In many cases, an existing design is modifiecimnentally leaving a
great portion of the design untouched. In these cases, issg®rphic sub-circuits
exist in original and slightly modified circuits [15]. Idefying such sub-circuits
and reutilizing them whenever possible saves designersa gmount of money
and time. Due to the fact that modifications to the originatuit are introduced
by changing certain specifications and the fact that eveightsithange in specifi-
cations can lead to large changes in implementation [9le@valence checking
helps designers identify isomorphic and other equivalebtarcuits.

Specifically, PP-equivalence checking can be used to findrtimémal set of
changes in logic, known dsgic difference between the original design and the
design with modified specification. DeltaSyn [10] is a tooleleped at IBM Re-
search that identifies and reports this logic difference dirrent version of Delta-
Syn uses a relatively inefficient and unscalable Boolearcheatthat only exploits
the symmetry of inputs to prune the search space.

Incremental Sequential Equivalence Checking (SEC) ishamadpplication of
PP-equivalence checking where isomorphic sub-circuits @ used to create a
number of highly-likely candidate equivalent nodes [13jeTcurrent implementa-
tion of incremental SEC tires to find isomorphic subgraphpéxjorming extended
simulation and finding structural similarities. AlthoudietBoolean approach pre-
sented in our paper does not fully exploit the structuralilgirities between two
circuits, we believe that our techniques combined withcitmal verification tech-
niques create a much more powerful tool for detecting is@micrsubgraphs.

Motivated by the practical importance of PP-equivalenac&ing in many EDA
applications, we develop fast and scalable Boolean majdaigorithms and imple-
ment them in the ABC package — an established system for sgistand verifica-
tion of combinational and sequential logic circuits [12heTcollection of all these
techniques creates a powerful Boolean matching module#rebe integrated into
Combinational Equivalence Checking (CEC) to enhance it&tfanality. To this
end, CEC requires two designs whose primary 1/0Os match byen&ur work al-
lows one to relax this requirement with the help of a Booleatamer. We call the
new commandenhanced CEGECEQ). Figure 1 shows how our Boolean matcher
is integrated with CEC.

In general, algorithms for Boolean matching fall into two jaracategories:
signature-based and canonical form based. A signature re@egy of an input

Large-scale Boolean Matching 3

Network 1 Network 2

Network 1 Network 2) | | ‘
l l [Boolean Matcher]
[cEC
! ECEC | CEC
Y/N T
Y/N

Fig. 1 The CEC (pre-existing) and ECEC (our) flows.

or an output that is invariant under permutations and negatf inputs. The goal
of signature-based matching is to prune the Boolean majcpace by filtering
out impossible 1/0 correspondences [4, 1]. On the other hianohatching based
on canonical forms, first canonical representations of twol8an functions are
computed and then compared against each other to find v&lichHtches [3, 2].
Here, our PP-equivalence checking method first prunes #relsepace using graph
algorithms and simulation signatures, then it invokes S@&lling until exact 1/0
matches are found (Figure 2).
Main contributions of our work include:

1. Analyzing functional dependency In a Boolean network with multiple outputs,
some inputs affect only a fraction of the outputs, and défiféoutputs are affected
in different ways. Hence, by analyzing the functional defearcy of outputs on
inputs, we can distinguish the 1/Os.

2. Exploiting input observability and output controllabilit y. We use the observ-
ability of inputs and the controllability of outputs as (fjeetive matching sig-
natures, and (2) ordering heuristics for our SAT-based Iniadc

3. Building a SAT-tree. When information about controllability, observabilignd
all simulation-based information are exhausted, we re®oB8AT-solving and
optimize the efficiency of SAT calls. This is accomplishetbtigh the concept
of a SAT-tree, which is pruned in several ways.

4. Pruning SAT-tree using SAT counterexamplesin our SAT-based matching,
the SAT-solver returns a counterexample whenever it findswatid match. The
information in these counterexamples is then used to ptun&AT-tree.

Exponential space of possible matches

v Reduced
Signature-based | searchspace | SAT-based
Matching Matching
v
I/O match?

Fig. 2 Overview of our proposed Boolean matching approach.

4

3 Background and Previous Work

In this section, we first review some common definitions anthtian. Then, we
explain theAnd-Inverterrepresentation of Boolean networks and we compare its
usage to that of conventionBinary Decision DiagramsNext, we discusBoolean
satisfiabiltyand explore its role in combinational equivalence checkReglevant
work in Boolean matching is reviewed at the end of this sectio

3.1 Definitions and Notation

In the following definitions, ainput setof a Boolean network refers to the set of
all the inputs ofN. Similarly, anoutput sebf N refers to the set of all the outputs of
N. An I/O set is either an input set or an output set.

Definition 1. A partition B, = {Xy,..., X} of an I/O setX = {xq,...,x} is a collec-
tion of subsets{y, ..., Xk of X such thatu}‘:lxi =XandXiNXj =0 foralli# j.
Partition sizeof P is the number of subsets B and is denoted byP|. EachX; in
R is called an I/Cclusterof Ps. Thecardinality of X;, denoted byX;|, is the number
of I/0s in X;.

Definition 2. A partition Px = {Xy, ..., X} of setX is anordered patrtitionif the
subsets(y, ..., X aretotally ordered i.e., for any two subset$§ andX;, it is known
whetherX; < Xj or Xj < X;.

Definition 3. Two ordered partition8 = {Xy, ..., X} of setX andR, = {VY1,..., Yk}
of setY areisomorphidf and only if |P| = |R/| = kand|X| = |Y| for all i, andnon-
isomorphicotherwise. Two isomorphic partitions are calle@mpletaf and only if
|Xi| = 1Yi| = 1 for alli.

Definition 4. The positive cofactorof function f(xs,..,X,) with respect to vari-
ablex;, denoted byfy, is f(xq,..,Xx = 1,...,xn). Similarly, thenegative cofactor
of f(xg,..,Xn) With respect to variablg, denoted byf)(i, is f(X1,.,% = 0,...,%n).

Definition 5. A function f(xs,...,Xn) is positive unaten variablex; if and only if
the negative cofactor df with respect tog; is covered by the positive cofactor 6f
with respect tog, i.e., fy C fx. Likewise, f is negative unatén variablex; if and
only if fy, C fxil. f is calledbinatein x; if it is not unate in it.

3.2 And-Inverter Graphs (AIGs)

Recent tools for scalable logic synthesis, e.g., ABC, rggmeBoolean functions
using theAnd-Inverter Graph(AIG) data structure. An AlG is a Boolean network

Large-scale Boolean Matching 5

composed of two-input AND gates and invertedructural hashingf an AlG is a
transformation that reduces the AIG size by partially cacalizing the AIG struc-
ture [13]. Representing a Boolean function in its AIG fornpreferable to itBi-
nary Decision Diagran(BDD) form mainly because AIGs result in smaller space
complexity. Also, functional simulation can be performedah faster on AlGs, but
AIGs are only locally canonical.

3.3 Boolean Satisfiability and Equivalence-checking

Boolean SatisfiabilitfSAT) is the problem of determining whether there exists a
variable assignment to a Boolean formula that forces thieegiormula evaluate to
true; if such an assignment exists, the formula is said teelisfiableand otherwise
unsatisfiable Pioneering techniques developed to solve the SAT problene \n-
troduced by Davis, Putnam, Logemann and Loveland in ea®049They are now
referred to as DPLL algorithm [7, 6]. Modern SAT solvers, Bas MiniSAT [8],
have augmented DPLL search by adding efficmontflict analysisclause learning
back-jumpingandwatched literalgo the basic concepts of DPLL.

SAT is studied in a variety of theoretical and practical esits, including those
arising in EDA. CEC is one of the main applications of SAT in&Df two single-
output Boolean function$ andg are equivalent, thef @ g must always evaluate
to 0, and vice versa. Now, instead of simulating all input bomations, we take
advantage of SAT solvers: ffép g is unsatisfiablethenf @ g is zero for all input
combinations and henceandg are equivalent; and if @g is satisfiable then f
andg are not equivalent and the satisfying assignment found &ys#T-solver is
returned as a counterexampfed g is called themiter of f andg [14]. If f andg
have more than one output, sayoutputsfy,..., f, andgs,...,gm, Mi = fi@g; is
first computed for ali and therM1 + ... + My, is constructed as the miter dfandg.
In our approach, instead of building one miter for the erdireuit and handing it off
to the SAT solver, we try to find equivalent intermediate sigrby simulation, and
use SAT to prove their equivalence. Counterexamples fro &a used to refine
simulation.

3.4 Previous Work

Research in Boolean matching started in the early 1980smatim focus on tech-
nology mapping (cell binding). A survey of Boolean matchieghniques for library
binding is given in [4]. Until recently, Boolean matchingbmiques scaled only to
10-20 inputs and one output [5, 2], which is sufficient forieslogy mapping, but
not for applications considered in our work. In 2008, Abdblland Pedram pre-
sented algorithms based on canonical forms that can hahei¢s with numerous
cells limited to approximately 20 inputs [2]. Their apprbacses generalized sig-

6

natures (signatures of one or more variables) to find a caipigroducing (CP)
phase assignment and ordering for variables.

A DAC 2009 paper by Wang, Chan and Liu [17] offers simulattven and
SAT-based algorithms for checking P-equivalence thatesbaljond the needs of
technology mapping. Since our proposed techniques alssimsgation and SAT to
solve the PP-equivalence checking problem, we should#atiethe similarities and
the differences. Firstly, we consider the more general lpratof PP-equivalence
checking where permutation of outputs (beside permutaifanputs) is allowed.
In PP-equivalence, the construction of miters must be postg until the outputs
are matched, which seems difficult without matching the iaptlio address this
challenge, we develop the concept of SAT-tree which is piuoemoderate the
overall runtime of PP-matching. In addition to our SAT-bésg@proach, we also
use graph-based techniques in two different ways: to Ilyitediminate impossible
I/0 correspondences and to prune our SAT-tree. Furtherm@rbave implemented
three simulation types; two as signatures for outputs (lyaed type 3) and one as a
signature for inputs (type 2). While our type-2 simulatistdosely related to one of
the techniques described in [17], the other two simulataesiew. We additionally
introduce effective heuristics that accelerate SAT-basatthing.

4 Signature-based Matching Techniques

We now formalize the PP-equivalence checking problem ariéhewour Boolean
matching approach for twa-inputm-output Boolean networks.

Definition 6. Consider two I/O setX andY of two Boolean network®l; and N,
with their two isomorphic ordered partitios = {X1,..., X} andR, = {Y1,..., Y }.

A cluster mappin®f X toY;, denoted by — Y, is defined as the mapping of I/Os
in X to all possible permutations of 1/0s ¥. A mappingof X toY with respect to
Px andR,, denoted byX — Y, is defined as mapping of all same-index clusterX of
andY, i.e., X — Y foralli. X — Y is called a complete mapping# andP, are
complete.

Given two input setsX andY and two outputs setgd andW of two Boolean
networksN; andN,, the goal of PP-equivalence checking is to find two complete
mappingsX — Y andZ — W such that those mappings make andN, behave
functionally the same. In order to accomplish this, we fiagtition orrefinethese
I/0 sets based on some total ordering criteria. This sedalignature-based match-
ing allows us to identify and eliminate impossible /0O mashAfter this phase, we
rely on SAT-solving to find the two complete mappings. Funthere, Definition 6
implies the following lemma.

Lemma 1. If at any point in the refinement process of two I/O sets X angénd
R, become non-isomorphic, we conclude thatadd N behave differently and we
stop the Boolean matching process.

Large-scale Boolean Matching 7

As mentioned earlier, refinement at each step requires leot@taring criterion,
tailored to the specific refinement technique used. Thesgfdnenever we introduce
a new matching technique, we also explain its orderingrioite Furthermore, the
following techniques are applied to the two input circuite@fter another.

4.1 Computing I/O Support Variables

Definition 7. Input x is a support variableof outputz and outputz is a support
variableof inputx, if there exists an input vectd such that flipping the value of
inV flips the value otz

Definition 8. Thesupportof input (or outputk, denoted bysupx), is the set of all
the support variables of Thecardinality of the support ok, denoted bySupgx)],
is the number of I/Os iBupx). Thedegreeof x, denoted byD(x), is defined as
the cardinality of its support.

The goal here is to find outputs that might be functionallgetiéd by a particular
input and inputs that might functionally affect a particwatput. Here, we contrast
functionallymatching withstructurally matching in the sense that two structurally
different circuits with the same functionality should hake same 1/O support. In
general, the lack of structural dependency between an barlan input precludes
a functional dependency, and the presence of a structupaindiency most often
indicates a functional dependency — this can usually be coefl by random sim-
ulation, and in rare cases requires calling a SAT-solvel. [11

Example 1Consider a 4-bit adder with input 9ét= {Cin, Ao, ..., A3, Bo, ...,Bs} and
output setZ = {S,...,S}. The ripple-carry realization of this adder is shown in
Figure 3.

A3 B; A; B, A B, Ay By
) ! ! b
S¢«— FA [FA [~ FA [FA — G
' ! ! !

S3 S, S So

Fig. 3 4-bit ripple-carry adder.

It is evident from the above circuit tha}) can affect the values &, ...,S andA;
can affect the value dy,...,S. Hence,SupgAo) = {0, ...,S} andSupgAs) =
{S1,...,S}. Similarly, the value o is only affected by the value @, Bp andCi.
Hence SupdSy) = {Ao0,Bo,Cin}.

8

4.2 Initial refinement of I/O clusters

Lemma 2. Two inputs (outputs) can match only if they have the sameedegr

Taking advantage of Lemma 2, we can initially refine the I/@ $% gathering
all 1/0s of the same degree in one subcluster and then sosuthdusters based on
the following ordering criterion:

Ordering criterion 1.Leti and | be two inputs (outputs) with different degrees and
assume thab(i) < D(j). Then, the subcluster containingrecedes the subcluster
containingj.

Example 2Consider the 4-bit adder of Example 1. The degree of eaclt ipd
output is given below:

D(A) = D(Bo) = D(Cin) =5

D(A1) =D(B1) =4
D(Az2) =D(Bz) =3
D(As) =D(B3) =2
D(S) =3
D(S1) =5
D(S)=7
D(S) =D(&) =9

The ordered partitions of the 1/0 sets of the 4-bit adder afigal refinement are:
PX = {{A37 B3}7 {AZa 82}7 {Ala Bl}a {A07 BO7Cin}}
P = {{&)}’ {Sl}’ {82}7 {%v Sl}}

4.3 Refining Outputs by Minterm Count

Lemma 3. Two outputs can match only if their Boolean functions hawedame
number of minterms.

Ordering criterion 2.Leti and j be two outputs in the same output cluster and let
M(i) andM(j) be the number of minterms ofnd j, respectively. IIM(i) < M(j),
then the subcluster containing smaller than the subcluster containing

Minterm count is another effective output signature whichnly practical when
the circuit is represented in BDD form. In fact, the widelyatked way to count the
minterms of a Boolean network represented in AlG is to firstvest it to a BDD,
but this approach is limited in scalability [16].

4.4 Refining I/0O by Unateness

Lemma 4. Two outputs match only if they are unate in the same numbepofts.
Similarly, two inputs match only if the same number of owgjmitinate in them.

Large-scale Boolean Matching 9

Ordering criterion 3.Leti andj be two outputs in the same output cluster. Assume
thatUnate(i) andUnatgj) are the number of unate variabled ahdj respectively,
and letUnate(i) <Unatgj). Then, the output subcluster containirig smaller than
the subcluster containing Similarly, leti and j be two inputs in one input cluster.
Assume that) natgi) andUnatgj) are the number of outputs that are unategnd

j respectively, and ldt natg(i) < Unatgj). Then, the input subcluster containing

is smaller than the subcluster containing

Although unateness generates powerful signatures foredamainatching, com-
puting unateness in an AIG encounters the same limitatiowassdiscussed for
counting the number of minterms. Hence, refinement basechateness is only
practical for small Boolean networks.

4.5 Scalable 1/0 Refinement by Dependency Analysis

We mentioned earlier that the degree of each 1/O is an effestgnature for initial
refinement of 1/0 sets. Here, we generalize this concept bpmly considering the
number of support variables but also carefully analyzi@ydépendencies.

Definition 9. Let x be an input (output) and I8upfx) = {z,...,z}. We define a
sequenc&= (s, ...,%) of unsigned integers where eaglis the index of the output
(input) cluster that; belongs to. After sorting, we call it support signaturef x
and we denote it bgign(x).

Lemma 5. Two I/Os i and j in the same I/O cluster are distinguishab®ign(i) #
Sign(j).

Ordering criterion 4.Let i and j be two 1/Os in the same I/O cluster. Assume
that Sign(i) < Signj) meaning that the support signaturei @$ lexicographically
smaller than the support signature jofThen, the subcluster containingrecedes
the subcluster containing

Example 3Consider a circuit with input seX = {x1,X,X3} and output seZ =
{z1,22,23} wherez; = X7, z, = X1 - X2 andzz = Xz - x3. The I/O supports of the circuit
are:Supfz;) = {x1}, SUpfz) = {X1,%X2}, SUpPAZ3) = {X2,X3} andSuppx;) =
{z1,22}, Supfixe) = {z,z3}, Supfxs) = {zz}. SinceD(z1) =1 andD(z) =
D(z) = 2, andD(x3) = 1 andD(x1) = D(X2) = 2, we can initialize 1/O clusters
as follows:P, = {{z1},{z,z} }, B« = {{x3}, {x1,%2} }. Now, we try refining based
on support signatures. The signatures#grzs, x; andx, are:Signz) = (2,2),
Signzz) = (1,2), Sign(x1) = (1,2), Signxg) = (2,2). SinceSignz3) < Signz)
and Sign(x1) < Sign(xz), we can further partition{z,,z3} and {xq,X2}, hence
P.={{z}. {zs} {z}} andB = {{xa}, {x}, {x2} }.

After each round of refinement based on I/O dependencieshe&kdf any I/O
cluster is further partitioned. If a new partition is addétg algorithm performs
another round of refinement. The procedure terminates wbemew refinement
occurs after a certain number of iterations.

10

V=<vj,..,v,> | Simulate V'
X, P, —»| Generate two " with N, [L,| Partition P,
consistent random and P, using
Y, P, — input vectors | Simulate U | [simulation results
i U=<uy,...,u,> with N,

Fig. 4 Flow of the proposed I/O refinement by random simulation.

4.6 Scalable I/O Refinement by Random Simulation

Functional simulation holds the promise to quickly pruneagwnpromising branches
of search, but this seems to require a matching of outputtedd, we find pairs of
input vectors that sensitize comparable functional prisgeof the two circuits. Let
V =< vi,...,Vh > be an input vector of Boolean netwadxk The result of simulating
V onN is called theoutput vectoof N underV and is denoted bR, =< rq, ..., rm >.

Definition 10. LetN be a Boolean network with input s&tand letR, = {X, ..., Xk}
be an ordered partition of. An input vectolV =< va,...,vy > is said to bgroper

if it assigns the same value (0 or 1) to all the inputdlafhich are in the same input
cluster, i.e.yv; = vj if i,j € X, for somel. The input vectors consisting of all Os or
all 1s are thdrivial proper input vectors.

Definition 11. Let X = {Xg,...,xn} and¥ = {yi,...,Y¥n} be the input sets of two
Boolean networksl; andN, and letP = {X1,..., X} andR, = { Y1, ..., Yk} be two or-
dered partitions defined on them. Two proper random inputve¥ =< v, ...,Vn >
andU =< ug,...,up > of Ny andN, are said to beonsistenif, for all 1 <[<k,
X € X andy; € Y| imply thaty; = u;.

Intuitively, two consistent random input vectors try toigaghe same value to all
potentially matchable inputs of the two Boolean networkghk next three subsec-
tions, we distinguish three types of simulation based orspaiconsistent random
input vectors that help us sensitize certain functionapproes of the two circuits.
The flow of the 1/0O refinement by random simulation is showniguke 4.

4.6.1 Simulation type 1

Lemma 6. LetV be a proper random input vector and letR< ry,...,rnh, > be the
corresponding output vector under V. Two outputs i and j ie ontput cluster are
distinguishable ify # r.

The above lemma classifies outputs based on their valuesl(Qusing the fol-
lowing ordering criterion.

Ordering criterion 5.The output subcluster of all Os precedes the output suleclust
of all 1s.

Large-scale Boolean Matching 11

4.6.2 Simulation type 2

Definition 12. LetV be a proper random input vector andRt=<r1,....,rm > be
the corresponding output vector undlerLetV’ be another input vector created by
flipping the value of inpuk in V and letR, =< r/,...,r}, > be the corresponding
output vector unde¥’. The observabilityof input x with respect tdvV denoted by
Obgx) is defined as the number of flips in the outputs caused biye., the number
of timesr; # /.

Lemma 7. Two inputs i and j in one input cluster are distinguishabl©tigi) #
Obgj).

Ordering criterion 6.Leti andj be two inputs in one input cluster and @bgi) <
Obgj). Then, the input subcluster containingrecedes the input subcluster con-
taining j.

4.6.3 Simulation type 3

Definition 13. Consider a proper random input vectband its corresponding out-
put vectorR, =< ry,...,rm >. Let Vy,...,V; be n input vectors where vectof; is
created by flipping the value of in V. Also, letR,, =<r11,....,f1m>,...,Ry, =<
In1,..,I,m > be the corresponding output vectors undgt.., V. Thecontrollabil-
ity of outputz with respect t&/ denoted byCtrl (z) is defined as the number of times
ri#rji, forall1<j<n,

Lemma 8. Two outputs i and j in one output cluster are distinguishab@irl (i) #
Ctrl(j).

Ordering criterion 7.Let i and j be two outputs in one output cluster and let
Ctrl(i) < Ctrl(j). Then, the output subcluster containirrecedes the output sub-
cluster containing.

Example 4Consider an 8-to-1 multiplexer with input sét= {ay, ...,a7,%, 51,2}
and outpukz whereay, ..., a7 denote data signals asgl s, s, are control signals. Ini-
tially P has only one partition, namely. Initial refinement and refinement by de-
pendency analysis do not partitiBg) hence we try random simulation. Here, we can
only use type 2 simulation since simulation of type 1 and 3fareefining output
clusters. First, we consider the trivial input vectoof all 0s. We flip one input iv

at a time and we apply the resulting vectors to the multigleQaly flipping ag flips

z henceR = {{ay,...,a7,%,51,%}, {ao} }. Then we try the trivial input vectds of

all 1s. This time flippingay flips z; hence P = {{as, ..., 85, %, 51, %2}, {a7}, {ao} }-
Next, we puiag to 1 and all the other inputs to 0. Now flippisg s;, s, flips z, hence
R = {{a1,...,as},{%0, 51,2}, {ar},{ao}}. If we continue partitioning based on the
remaining proper input vectors no additional refinemenitlmélgained.

After matching 1/0Os using random simulation, we check if gmmpgress is
achieved in refining 1/O clusters. If a new cluster is addked dlgorithm continues

12

refining based on random simulation. The procedure teresnahen no new refine-
ment occurs in input or output subclusters after a certamber of iterations. Here,
the number of iterations does not affect the correctnedseoélgorithm. However,
too few iterations might diminish the impact of matching andom simulation,

and excessive iterations offer no improvement. Our curiraptementation limits

iterations to 200.

5 SAT-based Search

The scalable methods we introduced so far typically redoeentimber of possible
matches frorm!m! to hundreds or less, often making exhaustive search (WAl S
based equivalence-checking) practical. However, thisgltd Boolean matching
can be significantly improved, and the techniques we deviaoifitate scaling to

even larger instances.

5.1 SAT-based Input Matching

The basic idea in our SAT-based matching approach is to huilde data structure
called SAT-treethat matches one input at a time from the remaining non-stog|
input clusters. Subsequently, after an input is matchéth@lutputs in its support
which are not matched so far are also matched, one by onehér wtords, we
build a dual-purpose tree that repeatedly matches inpateatputs until exact I/0
matches are found. We take advantage of the following lenorbaitd our SAT-tree:

Lemma 9. Assume that two Boolean networkg Bnd N with input sets X=
{X1,...,%n} and Y= {yx,...,yn} are functionally equivalent under two complete or-
dered partitions P= {X1,...,Xn} and B = {Y1,...,Yn}. Also, assume that %= {x;}
and Y = {y;}. Let N, be the positive (negative) cofactor of Mith respect to x
and N, be the positive (negative) cofactor of With respect to y. N; and N, with
input sets X=X —{x} and Y =Y — {y; } behave functionally the same under two
complete ordered partitionsP= P — {X} and B, = R, — {V}.

The inputs to the SAT-based matching algorithm are two @dlerput partitions
and two ordered output partitions. Here, we assume that sditie partitions are
incomplete because if all partitions are complete, an exedth is already found.
Without loss of generality, assume that in two ordered panis B, = {Xy, ..., X}
andR, = {Y1,..., Yk} of setsX andY, Xi,...,X_1 andYi,...,Yj_1 are all singleton
clusters and;, ..., Xx andy, ..., Yy are non-singleton clusters. Repeatedly applying
Lemma 9 allows us to create two new Boolean netwdtkandN, by setting all the
inputs inX;, ..., Xx andy, ..., Yi to either constant O or constant 1. In other words, we
shrinkinput setX to X’ =X — {x|xe {X],...,Xc} } and inputse¥ toY’' =Y — {y|ly €
{M,...,Y}} such thaiX” andY’ only contain the inputs that have exact matciNin

Large-scale Boolean Matching 13

andN,. Note that, by definition, the ordered partitioRs= B, — {Xi,..., X} and
R =R —{M,...,Yk} are complete partitions of’ andY’. According to Lemma 9,
N; andN; must be functionally equivalent ; andN, are equivalentN; andN;
are called th&mallest Matching Sub-circui(SM§ of N; andN,.

After finding the SMS oN; andN,, we try to expan&’ andY’ back toX andY
by matching one input at a time. L¥t andY; be the first two non-singleton input
clusters ofP, andR, and letx; € X|. The goal here is to match with one of the
[Yi| inputs inY;. Assume thay; € Y;, and we picky; as the first candidate to match
Xi. Now, in order to reflect our matching decision, we partitthrandy; to make
{xi} and{y;} two singleton clusters; henck, is partitioned toX; ; = {x;} and
X2 =X —{x} andy is partitioned tov] 1 = {y;} and¥; > =Y — {y;}. Complying
with our previous notation, nov », ..., X andy , ..., Yk are the new non-singleton
clusters. We then build two Boolean netwoNksandN; from N; andN; by setting
all the inputs in non-singleton clusters to either constaot constant 1, and we
pass the miter oN; andNJ to the SAT-solver. The SAT-solver may return either
satisfiableor unsatisfiablelf the result is:

e unsatisfiable Ny andNJ are functionally equivalent. In other wordg,andy;
has been a valid match so far. Hence, first try to match theutsiip the supports
of x; andy; (only the outputs that have not been matched so far) and tlagchm
the next two unmatched inputs Xp; andy, ».

e satisfiable N; andN; are not functionally equivalent. In other wordscannot
matchy;. Backtrack one level up and use the counterexample to phen8SAT-
tree.

In a case where the SAT-solver times out, we terminate thehireg process,
and only report the I/Os matched by our signature-baseadhigabs. Unlike early
prototypes, our most optimized implementation does noesgpce this situation
on the testcases used in our experiments.

5.2 Pruning Invalid Input Matches By SAT Counterexamples

Pruning the SAT-tree using counterexamples produced byiSATkey step in our
Boolean matching methodology. Continuing the scenarieittiBn 5.1, assume that
the miter ofN; andN; is satisfiable Suppose that the SAT-solver returns an input
vectorV =< vy,...,Vj11 > as the satisfying assignment. This input vector carries a
crucial piece of information: the matching attempt beforehingx andy; was a
successful match; otherwise we would have backtrackedempthvious level and
we would have never tried matchimgandy;. Thus, the input vector sensitizes a
path fromx; andy; to the outputs of the miter.

According to Lemma 9, repeatedly computing negative andipegofactors of
N1 andN, with respect to the values of,...,v; in V results in two new Boolean
networksN; andN, that must be functionally equivalent under some ordereti-par
tion Pc— {X4,...,X } andR,— {Y1,..., Y }. In other wordsN; andNj are two smaller

14

Boolean networks that only contain the inputd\afandN, that have not found ex-
act match so far. Sindé; andN, are computed with respect to the valuesof.., v
inV and sinceV is a vector that sensitizes a path foxpandy; to the output of the
miter, we conclude that there exists an outpulinthat is functionally dependent
onx;. The existence of such an output ensuresi{at) > 0. We can now apply our
simple filtering signature from Lemma 2 to prune the SAT-t&gecificallyx; € X
can match tgq € Y (q# j) only if D(x) = D(yq) in Ny andNp.

Example 5Consider two 8-to-1 multiplexers with outputsandZ and input sets
X ={ao,...,a7,%, 51,9} and X’ = {&, ...,a,,%,5,,S,}. RefiningX and X’ based
on the techniques explained in Section 4 would result in trdeeed partition® =
{{as, .86} {0,510, %} {a7}, {a0} } andPy = {{a, ... 3G} {%, 5. %} {a}}. {ap}}
(refer to Example 4). In order to find exact input matches, w#édbour SAT-
tree and we first try matching, and s,. The SAT-solver confirms the valid-
ity of this match. Thens; matchess; and sy matchess,. These two matches
are also valid. So fark = {{a1,....,as}, {2}, {s1}, {0}, {ar},{a0}} and P, =
{{ay,....,a5}, {so}. {s1}. {s,}.{a}}. {a,} }. Now, we look at the next non-singleton
input cluster and we matceh anda). Our SAT-solver specifies that matchiagand

aj do not form a valid match and it returns vectbin whichsy =s, =0,s; =5, =0,
sSs=s%=1a=a=0,a,=ay=0,a; =a; =1 as a counterexample. In order to
see whyV is a counterexample of matchiaganda, we look at the cofactors of the
two multiplexersgc andc’, where all the inputs in non-singleton clusters are set to 0:

C= 09515 + K510 +arSS1S andc’ = aps)s; s, + a5, S + &%) Sb- Applying

V to c andc would result inc= 1 andc’ = 0. Since we know that; does not match
aj, we use the counterexample to prune the SAT-tree. Spedbjfios compute co-
factors of the two multiplexerg and d’, with respect to the values of matched
inputs inV. So,d = 195 andd’ = &s,8;s,. In d andd’, D(a;) = D(a,) = 1.
This means thad; can only matchaj. In other words, we have pruned SAT search
space by not matching; to any of inputsa,, a3, a; andag. We continue matching
inputs until we find valid matches.

5.3 SAT-based Output Matching

Let Z and W be the output sets of two Boolean networds and N, and let
P, ={Zi,....Z} andRy = {W,...,\W} be two ordered partitions defined on them.
Continuing the scenario in Section 5.1, assume zhatz, is a support variable of
Xi, Wj € W is a support variable ofj, andZ, andW are two non-singleton output
clusters of?; andR,. In order to verify ifz andw; match under current input corre-
spondence, we adgl w; to the current miter o’ andN5 and we call SAT-solver
once again. If SAT returngnsatisfiablei.e.,z matchesw;, we continue matching
the remaining unmatched outputs in the support gindy;. If the result issatis-
fiable, we once again use the counterexample returned by SAT tephensearch
space.

Large-scale Boolean Matching 15

Example 6 Consider two circuitdN; and N, with input setsX = {xo,...,x3} and

Y = {yo,...,y3}, and output set& = {7y, 2} andW = {wo,w; } wherezp = X - X -
X2-X3,21 =X0- X1 X2+ X3, Wo = Yo" Y1 Y2 Y3, andwy = Yo - y1-¥2 - Y3. For these two
circuits, signature-based matching (discussed in Sedjaannot distinguish any
I/Os. Hence, we resort to SAT-solving. Assume that SAT deatarts by matching

Xo t0 Yo. Since{z,z1} € Supfxo) and {wp,w1} € Supfyo), the outputs of the
circuits must be matched next. Among all valid matches, &Ir&lver can match

Zp tow; andz; to wg. For the remaining space of the unmatched inputs, our SAT-
solver can validly matcl to yi, X2 to ys, andxs to y,, and finish the search.

5.4 Pruning Invalid Output Matches By SAT Counterexamples

When outputz € 7, does not match outpwi; € W, the counterexample returned
by SAT is a vectoV that makes; = 1 andw; = 0 or vice versa. This means ttmt
matches outputg € W (g # j) only if z = wq underV. This simple fact allows us
to drastically prune our SAT-tree whenever an invalid ottpatch occurs.

5.5 Pruning Invalid I/O Matches Using Support Signatures

We demonstrated in Section 4.5 that support signaturespoftsrand outputs can
be used to refine 1/0 subclusters of a Boolean network. Ingbdion, we show
that support signatures can also be used in our SAT-treégniinelte impossible I/O
correspondences.

Lemma 10.Suppose thatjx X; and y; € Y| are two unmatched inputs of;Nind
N>. Then, xcan match yonly if Sigr(x) = Sign(y;). Likewise, suppose thate 7,
and wj € W are two unmatched outputs of ldnd Nb. Then, zmatches wonly if
Sigr(z;) = Signw;).

As indicated in Section 5.1, matching two I/Os during SATreRantroduces new
singleton cells. These new cells might change the supmprasire of the remaining
unmatched I/Os (the ones in the supports of the recentlylmradtinputs or outputs).
According to Lemma 10, this change in the support signatmight preclude some
I/0s from matching. Taking advantage of this lemma, we can@the unpromising
branches of the SAT tree in the remaining space of matches.

5.6 Pruning Invalid Input Matches Using Symmetries

Our SAT-tree can exploit the symmetries of inputs to prun@ijossible output
matches, and 2) symmetric portions of the search spacee 8armputing the input

16

symmetries of a Boolean network is expensive, the techsigx@lained in this
section may in some cases hamper the matching process.

Definition 14. Let X = {xq,...,Xn} be an input set of a Boolean netwokk Let

Xi ~ Xj (readx; is symmetrido x;) if and only if the functionality oN stays invariant
under an exchange &f andx;. This defines an equivalence relation onXgite.,~
partitionsX into a number oBymmetry classeghere each symmetry class contains
all the inputs that are symmetric to each other. The pantitesulting from~ is
called thesymmetry partitiorof X.

For multi-output functions, symmetries of inputs are répdindependently for
each output. In other words, each output defines its own syrgrpartition on in-
puts. Complying with the notion of symmetry in Definition ¥4y a multi-output
function, x; is called symmetric te; if 1) x; andx; have the same output support,
i.e., Supfx) = Supgx;), and 2)x; andx; are symmetric in all the outputs in their
support, i.e.x; ~ x; for all outputs inSupgx;) (or equivalentlySupgx;)).

Symmetries of inputs can serve as a signature for matchitgutain our SAT-
based search. The following lemma explains the role of sytriesein detecting
invalid output matches.

Lemma 11.Output z € Z; (from N;) matches output we W (from Np) only if sym-
metry partition of zis isomorphic to the symmetry partition of for at least one
ordering of symmetry classes.

Input symmetries can also be used to prune symmetric patteafearch space
during SAT-based exploration. Specifically, assume thatrttiter of Ny and Ny
from Section 5.1 isatisfiable i.e., x; does not matclyj. Based on the notion of
input symmetries, ik does not matcly;j, neither can it match another input¥n
that is symmetric tgyj. In other wordsx; cannot matclyg € ¥, if yj andyq are
symmetric.

In practice, the use of symmetries in Boolean matching emews two major
limitations: 1) finding symmetries of a large Boolean netiwasually takes a sig-
nificant amount of time, 2) in a case where a Boolean netwoes ¢t have much
symmetry, a considerable amount of time can be wasted.

5.7 A Heuristic for Matching Candidates

In order to reduce the branching factor of our SAT-tree, wst finatch I/Os of
smaller 1/O clusters. Also, within one I/O cluster, we exptbe observability of
the inputs and the controllability of the outputs, to makerenaccurate guesses
in our SAT-based matching approach. Heuristically, thebphility that two 1/Os
match is higher when their observability/controllabildye similar. We observed
that, in many designs, the observability of control sigmalsigher than that of data
signals. Therefore, we first match control signals. Thigoéeneuristic can greatly
improve the runtime — experiments indicate that once cdstgmals are matched,
data signals can be matched quickly.

Large-scale Boolean Matching 17

6 Empirical Validation

We have implemented the proposed approach in ABC and we kgezimentally
evaluated its performance on &2GHz Intel Xeon CPU running Windows Vista.
Table 1 and Table 2 show the runtime of our algorithms on I'B@&8nchmarks for
P-equivalence and PP-equivalence checking problemsectggly. In these two
tables, #l is the number of inputs, #0 is the number of outpats|AIG| is the
number of nodes in the AIG of each circuit. The last four calgrdemonstrate the
initialization time (computing I/O support variables,tially refining 1/0 cluster and
refining based on I/O dependencies), simulation time, SAk tiand overall time
for each testcase. In addition to the reported runtimes), &84d (1%,0%) show the
percentage of inputs and I/Os that are matched after eaghMtee that, in these
experiments, we did not perform refinement using minterrmtoand unateness,
and we did not account for input symmetries to prune our S&&-because these
techniques appear less scalable than the ones reportedienITand Table 2. Also
note that for each testcase we generated 20 new circuitsfaliolg into one of
the two following categories: (1) permuting inputs for ¥ging P-equivalence (2)
permuting both inputs and outputs for verifying PP-equinak. The results givenin
Table 1 and Table 2 are the average results over all the geddestcases for each
category. Furthermore, the AlGs of the new circuits aremstocted using ABC’s
combinational synthesis commands to ensure that the newitsirare structurally
different from the original ones.

Table 1 P-equivalence runtime (sec.) and percentage of matchedsifgr ITC'99 benchmarks

Circuit #l #0O |AIG| Initialization Simulation SAT Overall
b0o1 6 7 48 0.30 (66%) O (100%) 0 (100%) 0.30
bo2 4 5 28 0.28 (50%) O (100%) 0 (100%) 0.28
bo3 33 34 157 0.36 (97%) 0 (97%) 0.04 (100%) 0.40

bo4 76 74 727 041 (64%) 0.04 (100%)
bos 34 70 998 0.52 (84%) 0.02 (100%)
bo6 10 15 55 0.37 (80%) O (100%)
bo7 49 57 441 041 (67%) 0.01 (100%)
bos 29 25 175 0.36 (90%) 0O (100%)
bo9 28 29 170 0.40 (100%) O (100%)
b0 27 23 196 0.34 (85%) O (100%)
b1l 37 37 764 0.40 (95%) 0.01 (100%)
bl2 125 127 1072 0.38 (60%) 0.25 (100%)
b13 62 63 353 0.38 (71%) 0.01 (100%)
bl4 276 299 10067 6.89 (73%) 3.29 (100%) (100%) 10.18
bl5 484 519 8887 14.26 (57%) 5.82 (100%) (100%) 20.08
bl7 1451 1512 32290 246 (63%) 46.14 (99%) 1.41 (100%) 294
b18 3357 3343 74900 2840 (69%) 51.6 (99%) 2.96 (100%) 2895
b20 521 512 20195 52.8 (83%) 2.23 (100%) 0.01 (100%) 55
b2l 521 512 20540 52.8 (83%) 2.30 (100%) 0.01 (100%) 55
b22 766 757 29920 150 (82%) 3.85 (100%) 0.32 (100%) 154

(100%) 0.5
(100%) 0.54
(100%) 0.37
(100%) 0.43
(100%) 0.36
(100%) 0.40
(100%) 0.34
(100%) 0.41
(100%) 0.63
(100%) 0.39

[eNoNoNoNoNoNoNoNoNoNoNo]

18

Table 2 PP-equivalence runtime (sec.) and percentage of matobsddf ITC'99 benchmarks

Circuit #1 #O |AIG| Initialization Simulation SAT Overall
bol1 6 7 48 0.37 (509%,43%) 0 (83% 85%) 0.02 (100% 100%) 0.39
b02 4 5 28 0.28 (50%60%) O (100%100%) O (100%100%) 0.28
b03 33 34 157 0.38 (48%38%) 0.01 (54%47%) 0.43 (100% 100%) 0.82
b04 76 74 727 0.37 (169%13%) 0.1 (100% 100%) O (100% 100%) 0.47
b05 34 70 998 0.51 (34%24%) 0.03 (54%47%) 0.33 (100% 100%) 0.87
b06 10 15 55 0.39 (30%47%) 0 (50% 53%) 0.04 (100% 100%) 0.43
b07 49 57 441 0.43 (67%70%) 0.03 (94%95%) 0.19 (100% 100%) 0.65
b08 29 25 175 0.41(27%36%) 0.12 (100% 100%)0 (100% 100%) 0.53
b09 28 29 170 0.41 (46%48%) 0.01 (46% 48%) 0.20 (100% 100%) 0.62
b10 27 23 196 0.37 (88%95%) O (100%100%) O (100% 100%) 0.37
b1l 37 37 764 0.41 (65%65%) O (100% 100%) 0.02 (100% 100%) 0.43
b12 125 127 1072 0.38 (219%25%) 1.05 (41%41%) — —
b13 62 63 353 0.35(43%50%) 0.05(97%97%) 0.14 (100% 100%) 0.54
b14 276 299 100677.99 (72%58%) 3.89 (89%90%) 27 (100% 100%) 38.8
bl5 484 519 8887 16.40 (62% 67%) 45.6 (94%94%) 6.30 (100% 100%) 68.3
b17 1451 1512 32290249 (62%,65%) 229 (94%94%) 148 (100% 100%) 626
b18 3357 3343 749002862 (65% 63%) 530 (93%93%) — —
b20 521 512 2019553.3 (70%51%) 13.82 (89%89%) 146 (100% 100%) 213
b21 521 512 2054053.3 (70%51%) 11.70 (89%89%) 159 (100% 100%) 225
b22 766 757 29920151 (70%50%) 26.28 (88%88%) 473 (100% 100%) 650

— indicates runtime> 5000 sec.

In the ITC'99 benchmark suite, 18 circuits out of 20 have lgmss a thousand
I/Os. Checking P-equivalence and PP-equivalence for 12btliese 18 circuits
takes less than a second. There is only one circuit (b12) foclwour software
cannot match I/Os in 5000 seconds. The reason is that, forifi33 out of 7750
input pairs (13%) are symmetric and since our implememataes not yet account
for symmetries, our SAT-tree repeatedly searches symenatainches that do not
yield valid I/O matches. For b20, b21 and b22 and for b17 ar&ivith more than
a thousand 1/0Os, computing functional dependency is théelneick of the overall
matching runtime. Note that checking PP-equivalence f8re%ults in a very large
SAT-tree that cannot be resolved within 5000 seconds, adthour refinement tech-
niques before invoking SAT find exact matches for 3123 out3¥73inputs (93%)
and 3111 out of 3343 outputs (93%).

The results in Table 1 and Table 2 assume that target ciratétequivalent. In
contrast, Table 3 considers cases where input circuitajgedifferent output values
on at least some inputs. For this set of experiments, we carest 20 inequivalent
circuits for each testcase, using one of the following rules

1. Wrong signals outputs of two random gates were swapped.
2. Wrong polarity : an inverter was randomly added or removed.
3. Wrong gate: functionality of one random gate was altered.

In Table 3, columns Init, Sim, and SAT demonstrate the nunolb¢éestcases (out
of 20) for which our algorithms were able to prove inequivale during initializa-
tion, simulation, and SAT search phases, respectively,Adslumn Time shows

Large-scale Boolean Matching 19

Table 3 P-equivalence and PP-equivalence runtime (sec.) for I3G&hchmarks when mismatch
exists

Circuit #l #0O |AIG| P-equivalence PP-equivalence
Init Sim SAT Time Init Sim SAT Time

b01 6 7 48 4 2 14 0.30 1 13 6 0.49
b02 4 5 28 0 10 10 0.27 2 12 6 0.33
b03 33 34 157 9 0 11 0.35 10 7 3 0.45
b04 76 74 727 8 2 10 0.42 13 4 3 0.39
b05 34 70 998 7 0 13 0.53 6 10 4 0.70
b06 10 15 55 3 3 14 0.31 14 5 1 0.46
b07 49 57 441 10 0 10 0.43 15 1 4 0.71
b08 29 25 175 9 2 9 0.36 12 6 2 0.46
b09 28 29 170 4 1 15 0.40 10 4 6 0.45
b10 27 23 196 10 5 5 033 11 3 6 0.31
b1l 37 37 764 5 0 15 0.40 10 2 8 0.53
b12 125 127 1072 6 10 4 045 10 8 2 3.5
b13 62 63 353 6 9 5 0.38 7 7 6 0.55
b14 276 299 10067 3 0 17 9.89 10 3 7 10.65
b15 484 519 8887 4 2 14 20.03 8 4 8 38.2
b17 1451 1512 32290 11 0 9 260 3 7 10 373
b18 3357 3343 74900 2 0 18 2864 0 9 1 2
b20 521 512 20195 7 0 13 54 1 4 15 754
b21 521 512 20540 2 0 18 54 5 11 4 59.4
b22 766 757 29920 7 1 12 154 0 4 16 181

— indicates runtime> 5000 sec.
@ The average runtime excluding instances requiring SAT \882 2ec.

the average runtime of our matcher for the P-equivalencé&dquivalence prob-
lems. According to the results, our matcher resorts to SATHsg in 45% of the
testcases which suggests that many of our instances aranticuarly easy. More-
over, calling SAT is due to the fact that our mismatched imsts were all generated
with minimal changes to the original circuits. Note thaterin the case of a slight
mismatch, our signature-based techniques alone coulctie#y discover inequiv-
alence for 55% of testcases. Furthermore, comparing toéses Table 2 and Table
3, PP-equivalence checking is up to 4 times faster when nignexists. In partic-
ular, for b12, our matcher could confirm inequivalence irs lggn 5 seconds, even
when SAT-solving was invoked. The reason is that in the csemsismatch, our
SAT-tree usually encounters invalid I/O matches early ettee, which results in a
vast pruning in the space of invalid matches.

In order to compare our work to that in [17], we have testedagorithms on
circuits from [17] that have more than 150 inputs. Results leted in Table 4.
For the results reported from [17], Orig, Unate and +Symmeesvely show the
runtime when no functional property is used, only functiamaatness is used and,
both unateness and symmetries are used. Note that expé&sinegorted in [17]
used 3GHz Intel CPUs, while our runs were on a 2.67GHz Inté) C® make the
numerical comparisons entirely fair, our runtimes woul@aéo be multiplied by
0.89. However, we omit this step, since our raw runtimes &e=ady superior in

20

Table 4 P-equivalence runtime (sec.) compared to runtime (semn) fi.7]

Circuit #l #0O P-equivalence Runtime (sec.) CPU Time (sec[)7]
Init Sim SAT Overall Orig +Unate+Sym
C2670 233 140 0.14 118 — — — — 7.96
C5315 178 123 0.33 011 0.06 0.5 6.31 286 3.29
C7552 207 108 051 376 4.83 9.10 — — 14.56
des 256 245 038 007 O 0.45 10.21 025 2.33
i10 257 224 043 1.03 123 2.69 25.63 15.16 17.56
i2 201 1 034 028 — — — — 1.02
i4 192 6 031 027 — — — — 022
i7 199 67 036 018 O 0.54 0.82 004 0.19
pair 173 137 032 014 O 0.46 0.84 064 244
s3384 226 209 0.10 0.25 0.47 0.82 479 214 402
s5378 199 213 0.11 053 0.63 1.27 1.31 338 242
s9234 247 250 311 053 2.856.49 341 584 782
s38584 1464 1730 58 166 15461 76 210 458
s38417 1664 1742 50 9.46 30.9 90 91 324 999

— indicates runtime> 5000 sec.

many cases. According to Table 4, our matching algorithnesimut in 5000 sec-
onds on C2670, i2 and i4. This is again due to the symmetregsaite present in
the inputs of these circuits. Note that the approach in [AFfjhot solve these three
circuits without symmetry search, either. For some otherudis, such as C7552,
our approach verifies P-equivalence in less than 10 secandsdapproach in [17]
cannot find a match without invoking symmetry finder. It issedsident from the re-
sults that checking P-equivalence for very large circsiish as s38584 and s38417,
is 3.5-11 times slower when symmetry finding and unatendssledions are per-
formed during Boolean matching. This confirms our intuitibat symmetry and
unateness are not essential to Boolean matching in mangigalacases, although
they may occasionally be beneficial.

7 Chapter Summary

In this chapter, we proposed techniques for solving lagdesPP-equivalence
checking problem. Our approach integrates graph-baseujlation driven and
SAT-based techniques to efficiently solve the problem. G+iag@sed techniques limit
dependencies between inputs and outputs and are paryausdaful with word-level
arithmetic circuits. Simulation quickly discovers inpats which inequivalent cir-
cuits differ. Equivalences are confirmed by invoking SATJ émese invocations are
combined with branching on possible matches. Empiricadiatéibn of our approach
on available benchmarks confirms its scalability to cikuitth thousands of inputs
and outputs. Future advances in Boolean matching, as wellbay existing tech-
niques, can also be incorporated into our framework to ivgits scalability.

Large-scale Boolean Matching 21

References

10.

11.

12.

13.

14.

15.

16.

17.

. Abdollahi, A.: Signature based boolean matching in tles@nce of don'’t cares. In: DAC '08:

Proceedings of the 45th annual Design Automation Conferepp. 642—647. ACM, New
York, NY, USA (2008). DOI http://doi.acm.org/10.1145/11389.1391635

. Abdollahi, A., Pedram, M.: A new canonical form for fastobean matching in logic

synthesis and verification. In: DAC '05: Proceedings of th2ndl annual Design
Automation Conference, pp. 379-384. ACM, New York, NY, US20@5). DOl
http://doi.acm.org/10.1145/1065579.1065681

. Agosta, G., Bruschi, F., Pelosi, G., Sciuto, D.: A unifiggb@ach to canonical form-

based boolean matching. In: DAC ’'07: Proceedings of the 4fihual Design Au-
tomation Conference, pp. 841-846. ACM, New York, NY, USA @2 DOI
http://doi.acm.org/10.1145/1278480.1278689

. Benini, L., Micheli, G.D.: A survey of boolean matchingleiques for library binding. ACM

Transactions on Design Automation of Electronic Syst@nkd3—-226 (1997)

. Chai, D., Kuehlmann, A.: Building a better boolean materel symmetry detector. In: DATE

'06: Proceedings of the conference on Design, automatidriest in Europe, pp. 1079-1084.
European Design and Automation Association, 3001 LeuveigiBm, Belgium (2006)

. Davis, M., Logemann, G., Loveland, D.: A machine programttieorem-proving. Commun.

ACM 5(7), 394-397 (1962). DOI http://doi.acm.org/10.1145/3B8 368557

. Davis, M., Putnam, H.: A computing procedure for quardifien theory. J. ACM/(3), 201-

215 (1960). DOI http://doi.acm.org/10.1145/321033.310

. Eén, N., Sorensson, N.: An extensible SAT-solver. IrGEInchiglia, A. Tacchella (eds.) SAT,

Lecture Notes in Computer Sciengel. 2919, pp. 502-518. Springer (2003)

. Goering, R.: Xilinx ISE handles incremental changes.

http://www.eetimes.com/showAtrticle.jhtml?articlelD86901122 (2007)

Krishnaswamy, S., Ren, H., Modi, N., Puri, R.: Deltasgn: efficient logic difference op-
timizer for ECO synthesis. In: ICCAD ’'09: Proceedings of 2@09 International Confer-
ence on Computer-Aided Design, pp. 789-796. ACM, New York, NSA (2009). DOI
http://doi.acm.org/10.1145/1687399.1687546

Lee, C.C., Jiang, J.H.R., Huang, C.Y.R., MishchenkoS&alable exploration of functional
dependency by interpolation and incremental SAT solving. ICCAD '07: Proceedings of
the 2007 IEEE/ACM international conference on Computdedidesign, pp. 227-233. IEEE
Press, Piscataway, NJ, USA (2007)

Mishchenko, A.: Logic synthesis and verification grodBC: A system for sequential syn-
thesis and verification, release 70930. http://www.eeckebey.edu/alanmi/abc/
Mishchenko, A., Chatterjee, S., Brayton, R.: FRAIGs: iifying representation for logic
synthesis and verification. Tech. rep., UC Berekeley (2005)

Mishchenko, A., Chatterjee, S., Brayton, R., Een, Nprismements to combinational equiv-
alence checking. In: ICCAD '06: Proceedings of the 2006 |IEEEEM international confer-
ence on Computer-aided design, pp. 836-843. ACM, New Yok, BSA (2006). DOI
http://doi.acm.org/10.1145/1233501.1233679

Ray, S., Mishchenko, A., Brayton, R.: Incremental satjaeequivalence checking and sub-
graph isomorphism. In: Proc. of the Intl. Workshop on Logyntesis, pp. 37—42 (2009)

S. Nocco, S.Q.: A probabilistic and approximated apgtda circuit-based formal verifica-
tion. Journal of Satisfiability, Boolean Modeling and Cortgiion5, 111-132 (2008)

Wang, K.H., Chan, C.M., Liu, J.C.: Simulation and SAB&@& boolean matching for
large boolean networks. In: DAC '09: Proceedings of the 48tmual Design Au-
tomation Conference, pp. 396-401. ACM, New York, NY, USA @Qp DOI
http://doi.acm.org/10.1145/1629911.1630016

Index

And-Inverter graph (AIG), 4

binate, 4
Boolean matching, 1
Boolean satisfiability, 5

canonical form based matching, 2
complete partitions, 4

consistent input vectors, 10
controllability, 11

enhanced CEC, 2
generalized Boolean matching, 1

I/O cluster, 4

I/O cluster mapping, 6
I/O degree, 7

I/O mapping, 6

I/O signature, 2

I/O support, 7

I/0 support signature, 9
I/O support variable, 7
isomorphic partitions, 4

miter, 5

negative cofactor, 4

negative unate, 4

observability, 11
ordered partition, 4
output vector, 10

partition, 4

PNPN-equivalence checking, 2
positive cofactor, 4

positive unate, 4
PP-equivalence checking, 2, 6
proper input vector, 10

refinement, 6

SAT, 5

SAT-tree, 12

satisfiable assignment, 5
signature-based matching, 2
smallest matching sub-circuits, 13
structural hashing, 5

symmetry, 16

symmetry class, 16

symmetry partition, 16

trivial proper input vector, 10

unsatisfiable assignment, 5

23

