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Abstract

Symmetries of combinatorial objects are known to complicate search algorithms, but
such obstacles can often be removed by detecting symmetries early and discarding symmet-
ric subproblems. Canonical labeling of combinatorial objects facilitates easy equivalence
checking through quick matching. All existing canonical labeling software also finds sym-
metries, but the fastest symmetry-finding software does not perform canonical labeling. In
this work, we contrast the two problems and dissect typical algorithms to identify their
similarities and differences. We then develop a novel approach to canonical labeling where
symmetries are found first and then used to speed up the canonical labeling algorithms.
Empirical results show that this approach outperforms state-of-the-art canonical labelers.

1 Introduction

Combinatorial objects and structures in many applications are often represented by graphs.
Examples of such structures appear in domains like computer networks [20, 8, 13], electronic
circuits [31, 1], and even mathematical chemistry [6, 3]. The challenges that arise in those
areas are usually addressed by graph-theoretical problems. Two of those problems, with major
industrial significance, are graph symmetry (automorphism) detection and canonical labeling.
A symmetry is a permutation of the graph’s vertices that preserves the graph’s edge relation. A
canonical labeling is a labeling of the graph’s vertices that uniquely captures the structure of the
graph, and serves as a signature that is invariant under all labelings. In a common application,
the symmetries of molecules can be used to predict and explain chemical properties [14], and
the canonical labeling of chemical compounds can help build a database of chemicals [27].

Graph canonicalization and automorphism detection share similarities in both theory and
implementation. These two problems are poly-time equivalent; however, since they are not
believed solvable in worst-case polynomial time (unless P=NP), this says little about practical
algorithms for these problems. Given that these problems are also not believed to be NP-
complete (again, assuming P 6=NP), there is no a priori need to use the full computational
machinery developed within high-performance algorithms for Boolean satisfiability.

Although symmetry detection, canonical labeling and their poly-time equivalent problems,
such as graph isomorphism (two graphs are isomorphic if one can be mapped to the other by a
bijection on vertices), are not generally known to be in P or NP-complete, they can be solved
in polynomial time for special cases and with high probability for random graphs. Such special
cases include bounded-degree graphs [21]. Also, an approach from [2] solves canonical labeling
in linear time on average with the probability of 1− exp(−cn log n/ log log n) (for n vertices
and constant c > 0). For more information on graph isomorphism and its complexity, see [19].

Another remark is that the symmetries of a graph map each labeling to another labeling.
Therefore, if all symmetries are known, it may be sufficient to visit only one labeling from each
equivalence class. This is why all existing graph canonicalization tools also find automorphisms
along the way during the search.
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The first practical tool to canonically label graphs was nauty [22, 23], developed by McKay
in 1981. The nauty search tree is based on the branching and backtracking framework, which
is optimized by integrating group-theoretical1 techniques. The involvement of group theory in
the search for symmetries and a canonical labeling is due to the fact that the set of symmetries
of a graph forms a group under functional composition (called the graph’s symmetry group).
Other canonical labeling tools, such as bliss [15, 16], traces [26], and nishe [29], follow nauty’s
algorithms rather closely, but are designed to address possible shortcomings of nauty’s search
tree. In particular, bliss improves the handling of large and sparse graphs, traces incorporates
a breadth-first scan of branching choices at each level to identify and prune futile subtrees, and
nishe uses the notion of guide tree to make better branching choices.

Unlike nauty-based canonical labelers, another software package, called saucy [10, 11, 17],
was optimized to only find graph symmetries. The data structures and algorithms in saucy
take advantage of both the sparsity of input graphs and the sparsity of their symmetries to
attain scalability. The algorithmic advances in all versions of saucy have separated the search
for symmetries from the search for a canonical labeling. The experimental results in [18] confirm
that saucy is currently the most scalable symmetry-finding tool available.

In this work, we highlight the algorithmic differences between the search for symmetries and
the search for a canonical labeling. We particularly focus on the algorithms implemented in
saucy version 3.0 [28] and bliss version 0.72 [5], but our comparison (with minor changes) can
be extended to other nauty-based canonical labeling tools. Dissecting saucy and bliss, we
point out an intrinsic limitation of the canonical labeling tree, and illustrate how that limitation
is relaxed in the search for symmetries. Furthermore, we propose a novel graph canonicalization
approach that uses saucy’s efficiency in finding symmetries as a pre-processing step for bliss’s
canonical labeling algorithms. Our experimental results show that the combination of saucy
and bliss results in an exponentially faster canonical labeler for large and sparse graphs.

In the remainder, Section 2 reviews the necessary background and relevant preliminar-
ies. Section 3 compares the algorithms implemented in saucy and bliss for computing graph
symmetries and a canonical labeling. Section 4 explains our proposed graph canonicalization
approach that integrates saucy symmetry detection routines within bliss canonical labeling
procedure. Section 5 analyzes the run time complexity of saucy and bliss for an example
graph. Section 6 experimentally evaluates our canonicalization approach on a benchmark suite
consisting of very large sparse graphs. Finally, Section 7 discusses conclusions.

2 Preliminaries

We assume that the reader is familiar with basic notions of group theory, including such concepts
as subgroups, cosets, group generators, stabilizer subgroup, orbit partition, etc. We review most
of these concepts here, but additional details can be found in standard textbooks on abstract
algebra, e.g. [12]. In this paper, we focus on automorphisms and a canonical labeling of an n-
vertex undirected colored graph G with set of vertices V = {0, 1, ..., n− 1}. A permutation of V
is a bijection from V to V . We will use both tabular and cycle notation to express permutations.
Permutation γ, when applied to graph G, permutes G’s vertices, and produces graph Gγ .

Definition 1. An automorphism (a symmetry) of graph G is a permutation γ of G’s vertices
that preserves G’s edge relation, i.e., Gγ = G.

1Group theory is a branch of abstract algebra that studies the algebraic structures known as groups. A group
comprises a non-empty set of elements with a binary operation that is associative, admits an identity element,
and is invertible. For example, the set of integers with addition forms a group.
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Every graph has a trivial symmetry, called the identity (denoted by ι), that maps each
vertex to itself. Two graphs G1 and G2 are isomorphic if and only if there exists permutation
γ such that Gγ1 = G2.

Definition 2. A canonical labeling of graph G is an isomorphism-invariant labeling of G’s
vertices, i.e., two graphs G and H have the same canonical labeling if and only if they are
isomorphic to each other.

The set of symmetries of G forms a group under functional composition. This group is called
the symmetry group of G, and is denoted by Aut(G). A generating set of Aut(G) is a subset of
the symmetries of Aut(G) whose combinations under functional composition generate Aut(G).
Given graph G, a symmetry detection tool looks for a set of generators for the symmetry group
of G, and a canonical labeling tool seeks a canonical representation for G.

A subgroup of Aut(G) is a subset of the elements of Aut(G) that forms a group under
functional composition. Given Aut(G), the stabilizer subgroup of i ∈ V , denoted by Auti(G), is
a subgroup of Aut(G) that fixes vertex i, i.e., Auti(G) = {γ ∈ Aut(G)|γi = i}. In other words,
Auti(G) contains symmetries of G that map i to i.

Elements of Aut(G), when composed with elements of Auti(G), partition Aut(G) into
equally-sized cosets, i.e., divides Aut(G) into non-empty pair-wise disjoint subsets whose union
is Aut(G). The (right) coset of Auti(G) in Aut(G) containing permutation σ is the set
{γσ|γ ∈ Auti(G)}. Choosing one element from each coset yields a set of coset representa-
tives. Each coset representative composed with Auti(G) can generate the entire coset.

Given Aut(G), i ∼ j is defined for i, j ∈ V (read i and j share the same orbit), if and only
if there exists symmetry γ ∈ Aut(G) that maps i to j, i.e., γi = j. The ∼ operation imposes
an equivalence relation on V , which partitions V into a so-called orbit partition. The subsets
of V in the orbit partition are referred to as the orbits.

An ordered partition π = [W1|W2| · · · |Wm] of V is a partition of V in which the order of
subsets matters. The subsets Wi are called the cells of the partition. Ordered partition π is
unit if m = 1 (i.e., W1 = V ) and discrete if m = n (i.e., |Wi| = 1 for i = 1, · · · , n). Ordered
partition π is equitable with respect to graph G if, for all v1, v2 ∈Wi (1 ≤ i ≤ m), the number
of neighbors of v1 in Wj (1 ≤ j ≤ m) is equal to the number of neighbors of v2 in Wj .

An ordered partition pair (OPP) Π is specified as

Π =
[
πT
πB

]
=
[
T1 |T2 |· · · |Tm
B1 |B2 |· · · |Bk

]
with πT and πB referred to, respectively, as the top and bottom ordered partitions of Π. OPP
Π is isomorphic if m = k and |Ti| = |Bi| for i = 1, · · · ,m; otherwise it is non-isomorphic. In
other words, an OPP is isomorphic if its top and bottom partitions have the same number of
cells, and corresponding cells have the same cardinality. An isomorphic OPP is matching if its
corresponding non-singleton cells are identical. We refer to an OPP as discrete (resp. unit) if
its top and bottom partitions are discrete (resp. unit).

3 Symmetry Finding vs. Canonical Labeling

In this section, we highlight the similarities and differences between the search for symmetries
and a canonical labeling by focusing on the algorithms implemented in saucy 3.0 and bliss 0.72.
While we chose bliss as a reference, our comparison can be extended to other nauty-based
canonical labeling tools. In the following subsections, we distinguish the search nodes of the
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trees constructed by saucy and bliss, explain what they represent, and show that the search
trees used by these tools are fundamentally different. Furthermore, we discuss and compare
the pruning techniques and branching mechanisms in saucy and bliss. We also point out an
intrinsic limitation of the branching procedure in bliss, and show that this limitation does not
apply to saucy search for automorphisms. To better understand and compare saucy and bliss
baseline algorithms, an example graph (Figure 1) along with its search trees in saucy (Figure
2) and bliss (Figure 3) are provided. The nodes of the trees in Figures 2 and 3 are labeled in
the order they are traversed by the saucy and bliss depth-first permutation search algorithms.

3.1 Search Trees

The nodes of the search tree in saucy are ordered partition pairs, each encoding a set of
permutations. This set of permutations might be empty (non-isomorphic OPP), might have
only one permutation (discrete OPP), or might consist of up to n! permutations (unit OPP).
In general, an isomorphic OPP

Π =
[
T1

B1

∣∣∣∣ T2

B2

∣∣∣∣ · · ·· · ·
∣∣∣∣ Tm
Bm

]
represents

∏
1≤i≤n |Ti|! permutations. For example, the root of the tree in Figure 2 is a unit OPP

encoding all 7! = 5040 permutations on 7 elements, and the OPP at node (7) is an isomorphic
OPP representing the 4-element permutation set {(4, 5), (4, 5)(0, 2), (4, 6, 5), (4, 6, 5)(0, 2)}.

In contrast, the nodes of the search tree in bliss are single ordered partitions, each rep-
resenting a (partial) labeling. A labeling in bliss is obtained by renaming each vertex with
the position of that vertex in the ordered partition. The ordering of vertices in the parti-
tion suggests a permutation that, when applied to the graph, produces the labeling encoded
by that partition. For example, at node (19) of Figure 3, vertices 0,1,2,3,4,5,6 are at indices
3,2,0,1,6,5,4, respectively, and hence, node (19) represents the labeling obtained by the per-
mutation (0, 3, 1, 2)(4, 6). To compare labelings, each node is associated with a certificate. A
certificate is a function that assigns a certain value to an ordered partition according to the
graph’s connection. Node certificates in bliss are computed as follows. Given an equitable
partition (returned by partition refinement, see below), bliss first makes a list of edges that
connect singleton cells to other cells of the partition. For example, singleton cells {2} and {0}
of the partition at node (1) of Figure 3 are connected to cell {1, 3}, and hence, the list of edges
associated with node (1) is {{2, 1}, {2, 3}, {0, 1}, {0, 3}}. Then, bliss generates the certificate
by renaming each vertex in the list of edges with the index of that vertex in the partition. In
our example, vertices 0,1,2,3 are at indices 6,5,3,4 of the partition at node (1), respectively,
and hence, the certificate of node (1) is {{3, 5}, {3, 4}, {6, 5}, {6, 4}}. Two ordered partitions
produce the same certificate if they are isomorphic to each other. For example, nodes (1) and
(10) of Figure 3 have the same certificate, but the certificate of node (1) is different from that
of node (16).

To discard numerous impossible permutations and invalid labelings, saucy and bliss invoke
partition refinement after each branching decision. The goal of refinement is to propagate the
constraints of the graph, i.e., the graph’s vertex degrees, vertex colors, and edge relation, until
the partition becomes equitable. Partition refinements in both saucy and bliss are adapted
from nauty; however, saucy’s refinement benefits from simultaneous comparison of the top
and bottom partitions, a concept which is unique to the OPP representation of permutations.
Simultaneous refinement allows saucy to anticipate and avoid certain conflicts, which can lead
to an exponential speed-up in run time [18].
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Figure 1: A 7-vertex 7-edge graph with symmetry group of size 48.
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Figure 2: Permutation tree constructed by saucy 3.0 for the graph of Figure 1.
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Figure 3: Canonical labeling tree constructed by bliss 0.72 for the graph of Figure 1.
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The search for symmetries in saucy starts by constructing a unit OPP at the root, and
refining it. In the graph of Figure 1, all the vertices have the same color and degree, and
hence, partition refinement does not distinguish any of the vertices. To explore the space of
permutations, saucy chooses a (target) vertex from a non-singleton (target) cell of the top
partition and maps it to all the vertices of the corresponding cell of the bottom partition. For
example, the target vertex at level 2 (nodes (2), (7), and (9)) of Figure 2 is vertex 5, which is
mapped to vertices 5, 4, and 6. Partition refinement is invoked after each mapping to prune
away invalid permutations. The mapping procedure continues until the OPP becomes discrete,
matching, or non-isomorphic (e.g., nodes (5), (6), and (10) of Figure 2, respectively). A discrete
or matching OPP represents a symmetry. A non-isomorphic OPP, however, indicates a conflict.
The search ends when all possible mappings are exhausted.

The root of the canonical labeling tree in bliss is a unit ordered partition which is initially
refined. The depth-first traversal of permutation space starts by choosing a non-singleton cell,
and individualizing all the vertices in that cell one at a time. For example, at level 2 (nodes (2),
(7) and (9)) of Figure 3, all the vertices in the first non-singleton cell of the partition at node (1),
i.e., vertices 4, 5, and 6, are individualized one after the other. Each individualization is followed
by partition refinement to reflect the consequences of the branching decision. Individualization
continues until the partition becomes discrete, i.e., the first leaf node is reached (node (4) of
Figure 3). This leaf node is saved as a reference to compare certificates. A symmetry is found if
another node during the search produces the same certificate as the first leaf node2 (e.g., node
(13) of Figure 3). The symmetry associated with such a node is the permutation that maps
the partition at that node to the partition at the first leaf node. For example, the partition at
node (13) of Figure 3 encodes symmetry (0, 1)(2, 3), since it can be obtained from the partition
at node (4) by swapping vertex 0 with vertex 1 and vertex 2 with vertex 3. Furthermore, the
canonical certificate is initialized to the certificate of the first leaf node, and is updated whenever
a better certificate (based on any well-defined criterion, such as lexicographic ordering) is found
during the search (e.g., node (19) of Figure 3). The canonical labeling of the graph is returned
as the labeling of the node with the best certificate.

3.2 Pruning Techniques

The search algorithms in saucy and bliss exploit two group-theoretical pruning mechanisms:
coset pruning and orbit pruning. Coset pruning is based on the concept of coset representatives;
one generator per coset is sufficient to generate all symmetries in the coset. For example, the
symmetries found at node (8) of Figure 2 and (13) of Figure 3 are coset representatives of their
corresponding subtrees rooted at node (7) and (10), and hence, those subtrees are coset pruned.
Orbit pruning relies on orbit partition to eliminate redundant generators. For instance, node
(9) of Figure 2 is orbit pruned since vertices 5 and 6 share the same orbit. Similarly, node (9)
of Figure 3 is orbit pruned since vertices 4 and 6 share the same orbit. The algorithms for coset
and orbit pruning follow similar implementations in saucy and bliss.

To enable coset and orbit pruning, the left-most path of saucy and bliss search trees
corresponds to a sequence of subgroup stabilizers (a so-called subgroup decomposition). In
saucy, stabilizers are maintained by mapping each vertex to itself (fixing each vertex) until
the identity is reached. For example, the tree of Figure 2 fixes vertices 3, 5, 6 and 2 to reach
the identity at node (4). In bliss, subgroup decomposition individualizes vertices one at a time
until the partition is discrete. In the tree of Figure 3, stabilizer subgroups of 0, 4, 5 and 1 result
in a discrete partition at node (4).

2Obtaining symmetries at non-leaf nodes will be discussed in Section 3.2.
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In addition to these group-theoretic pruning techniques, the data structures in saucy and
bliss allow additional pruning mechanisms. One such pruning mechanism in saucy is non-
isomorphic OPP pruning. A non-isomorphic OPP contains permutations that do not form any
symmetry. Such an OPP might be returned by saucy’s partition refinement when a conflict is
detected. For instance, the OPP at node (10) of Figure 2 is non-isomorphic, which indicates
that the mapping of 3 to 4 is a conflict. Similarly, bliss identifies futile branches of the search by
comparing the certificates of search nodes. Specifically, bliss prunes a subtree if the certificate
of the root of the subtree 1) does not match the certificate of the node on the left-most path
of the tree at that level (i.e., the subtree does not yield any symmetry), and 2) is not better
than the current best certificate (i.e, the subtree does not include the canonical labeling). For
example, node (16) of Figure 3 produces a different certificate than node (1), but the partial
certificate associated with node (16) is better than the current best certificate (i.e, the certificate
of node (4)), and hence, the subtree rooted at node (16) is explored.

Another OPP-based pruning in saucy is matching OPP pruning. Recall that a matching
OPP is a non-discrete OPP in which corresponding non-singleton cells contain the same ele-
ments. The significance of this OPP is that it represents an early automorphism constructed
by mapping the vertices of non-singleton cells identically. This automorphism can be returned
as the coset representative of the current subtree, which exempts the search from exploring the
remaining permutations in that subtree. For example, the OPPs at nodes (6), (8) and (14)
of Figure 2 are found matching, and are returned as the coset representatives of the subtrees
rooted at nodes (6), (7) and (13), respectively. Until recently, no pruning mechanism in bliss
had the same effect as the matching OPP pruning. In fact, all symmetries in bliss were found
at leaf nodes. However, recent advances in bliss algorithms (version 0.72) exploit component
recursion to enable early detection of symmetries without reaching the leaves. This is accom-
plished by comparing the ordered partitions at each level to the left-most ordered partition
at the same level. For example, partitions (6) and (3) of Figure 3 both contain an identical
non-singleton cell {3, 1}. This suggests that node (6) represents the symmetry (5, 6), since
partition (6) can be obtained from partition (3) by swapping vertex 5 with vertex 6. Although
matching OPP and component recursion both aim to find symmetries early up in the tree, they
are conceptually two distinct mechanisms, and impact the search trees in different ways.

The bliss algorithms use additional heuristics to facilitate the search for a canonical labeling.
For example, bliss stores recently discovered symmetries to (partially) detect and prune fruitless
symmetric branches of the search. It also uses a methodology to propagate conflicts beyond the
most recent branching points, which helps it expedite automorphism search by pruning away
subtrees that yield the same conflict. These two pruning techniques are not implemented in
saucy 3.0, but our on-going research is investigating their possible incorporation.

3.3 Branching Decisions

Branching heuristics highly affect the performance of combinatorial search algorithms, including
symmetry detection and canonical labeling. In saucy, branching is performed by choosing a
target cell and a target vertex from the top partition. On the left-most tree path, saucy chooses
the first non-singleton cell as the target cell, and the first vertex in that cell as the target vertex
(see nodes (1) to (4) of Figure 2). In the remaining parts of the tree, saucy looks for swaps of
vertices, i.e., whenever it maps vertex v1 to vertex v2, it tries to map v2 to v1 right after. Note
that this is not always possible as partition refinement might preclude the mapping of v2 to v1.
In that case, saucy picks the first vertex of any non-singleton cell of the top partition which is
not identical to its corresponding cell of the bottom partition. The vertex-swap heuristic can
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Figure 4: Our proposed canonical labeling framework.

also be viewed as a mechanism to maximize the occurrence of matching OPPs. For example,
node (13) of Figure 2 maps 3 to 0, and right after, node (14) maps 0 to 3. This consequently
results in a matching OPP at node (14), representing the symmetry (0, 3)(1, 2). In practice,
this heuristic is most effective when symmetry generators are sparse.

The branching procedure in bliss consists of a cell-selector function. Given graph G and
partition π, cell-selector function S(G, π) returns a non-singleton cell of π such that S(G, π)γ =
S(Gγ , πγ) for all γ ∈ Aut(G). The cell selector’s latter condition ensures that the search trees
constructed for isomorphic graphs are also isomorphic. In implementation, bliss picks the same
sequence of cells in all the paths from the root to the leaves. For example, the search tree of
Figure 3 always individualizes the vertices in the first non-singleton cell of the partition. The
default branching heuristic in bliss selects the maximum nonuniformly joined cell, i.e., the first
non-singleton cell which is nonuniformly joined to the maximum number of cells (two cells are
nonuniformly joined if the vertices in one cell have both neighbors and non-neighbors in the
other cell). In the search tree of Figure 3, maximum nonuniformly joined cells happen to be
the first non-singleton cells of the partition.

Considering the structures of the search trees in saucy and bliss, saucy’s branching proce-
dure does not have the limitations of bliss’s cell-selector function, since it can choose any target
cell and target vertex at each step of the search. This consideration raises the possibility of
improving the branching heuristic in saucy. As mentioned, the default vertex-swap heuristic is
effective when the input graph produces sparse generators. Our experimental results show that
this is usually the case when the input graph is large and sparse. For other graphs, however, the
vertex-swap heuristic does not necessarily produce the best results. We plan to explore other
branching heuristics, and desirably, seek a methodology that adapts the branching heuristic to
the characteristics of the input graph in our future research.

4 New Canonical Labeling Procedure

In previous sections, we pointed out that saucy algorithms and data structures were optimized
to solve the graph automorphism problem, whereas, bliss routines are mainly focused on finding
a canonical representation. In this section, we propose a novel approach that takes advantage of
saucy’s efficiency in finding graph symmetries to speed up the search for a canonical labeling.
We show that once the symmetries are found, canonical labeling can be performed much faster
using this information by pruning the canonical labeling tree.

Our proposed graph canonicalization flow is depicted in Figure 4. It starts by launching
bliss to perform subgroup decomposition. Once decomposition is complete, it temporarily
interrupts the search, passes the sequence of stabilizers obtained from subgroup decomposition
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to saucy, and waits for saucy to compute and pass back the graph’s symmetry information. At
the other end, saucy’s decomposition routines use bliss’s sequence of stabilizers to generate the
subgroups. In other words, the left-most path of the tree in saucy is forced to match the one in
bliss. As saucy looks for symmetries, it records the orbit partition at each level (i.e., the orbit
partitions of the stabilizer subgroups). At the end of the search, it hands the computed orbit
partitions over to bliss. The canonical labeling algorithms in bliss then resume the search,
but incorporate two major modifications: 1) the level-by-level orbit partitions computed by
saucy are used to prune isomorphic subtrees, and 2) the search for symmetries is disabled in
all expanded subtrees. Another way to say this is that a subtree that contains a symmetry
will produce labelings that were previously examined, and hence, can be entirely pruned. On
the other hand, a subtree that does not include any symmetry might lead to a better labeling
(possibly, the canonical labeling), and hence, should be explored.

As elaborated above, our graph canonicalization approach divides the search into two phases:
the search for symmetries and the search for a canonical labeling. In practice, this approach
is effective when the input graph is highly symmetric, and the canonical labeling algorithms
spend a lot of time looking for symmetries (instead of a canonical labeling). Our experimental
results show that this logic applies when the input graph is large and sparse.

5 Case Study

This section analyzes and compares the run times of saucy and bliss in the search for the
symmetries of an example graph shown in Figure 5. This graph has n vertices, n/2 edges,
average degree of 1, and the symmetry group size of 2n/2(n/2)! The search trees generated by
saucy and bliss for this graph are demonstrated in Figures 6 and 7, respectively. The black
nodes in these two trees correspond to OPPs/permutations. It is evident that saucy explores
fewer nodes than bliss, as it finds symmetries up in the tree without reaching the leaves. A
detailed analysis of run time complexity of saucy and bliss for this graph is presented next.

The saucy search tree shown in Figure 6 produces n/2 levels after subgroup decomposition.
The number of OPPs explored by saucy at level l is 3 for 2 ≤ l ≤ (n/2), 2 for l = 1, and 1 for
l = 0 (root of the tree). The summation of all explored nodes over n/2 levels is:∑n/2

l=2 3 + 2 + 1 =
∑n/2
l=1 3 = 3n/2

The bliss search tree shown in Figure 7 produces n/2 levels after subgroup decomposition.
The number of permutations explored by bliss at level l is n for l = n/2, and 2l + 1 for
0 ≤ l < n/2. The summation of all explored nodes over n/2 levels is:

n+
∑n/2−1
l=0 (2l + 1) = n+ 2

∑n/2−1
l=0 l + n/2 = 3n/2 + (n/2− 1)(n/2) = n2/4 + n

The analysis above shows that saucy takes Θ(n) time to find the symmetries of the graph
of Figure 5, while bliss takes Θ(n2). The combination of saucy and bliss takes Θ(n) time to
canonically label the graph, due to the fact that all the n vertices of the graph share the same
orbit, and hence, all the subtrees encountered during bliss canonical labeling search can be
skipped. Our analysis discussed here matches empirical data presented next.

6 Empirical Validation

We tested the performance of our proposed canonical labeling approach on 432 very large sparse
graphs drawn from a wide variety of application domains. Our experiments were conducted on

9
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Figure 5: An n-vertex (n/2)-edge graph with symmetry group size of 2n/2 × (n/2)!
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Figure 6: Symmetry search tree constructed by saucy for the graph of Figure 5.
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Figure 7: Symmetry search tree constructed by bliss for the graph of Figure 5.

a SUN workstation equipped with a 3GHz Intel Dual-Core CPU, a 6MB cache and an 8GB
RAM, running the 64-bit version of Redhat Linux. A time-out of 1000 seconds was applied to
all experiments. Table 1 lists the families of the graph benchmarks in our suite. These families
are divided into three categories:
− saucy benchmarks: this set contains 92 very large and very sparse graphs first assembled

10
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Table 1: Benchmark families

Family Inst. Smallest Instance Largest Instance Description
vertices edges vertices edges

circuit [31, 1] 33 3,575 14,625 4,406,950 8,731,076 saucy graphs drawn from
router [8, 13] 3 112,969 181,639 284,805 428,624 place&route, verification,
roadnet [7] 56 1,158 1,008 1,679,418 2,073,394 routers and road networks

application
[9]

232 21,369 290,248 32,813,545 65,487,132 SAT 2011 application,

crafted [9] 11 46,164 365548 776,820 3,575,337 crafted and random CNFs
random [9] 70 93,000 5,375 310,000 680,000 with #vars > 10, 000

binnet [20, 4] 27 1,000 720 9,000,000 658,675 binary networks

to test saucy. This suite represents graphs from logic circuits and their physical layouts [31, 1],
internet routers [8, 13], and road networks in the US states and its territories [7].
− SAT 2011 benchmarks: this set includes a subset of the SAT 2011 competition CNFs [9]

that have more than 10,000 variables (of the 1200 CNF instances, 313 had more than 10,000
variables). The choice of 10,000 was based on our observation that the modeled graphs for CNF
benchmarks with that many variables tend to be very large and sparse.
− binary networks: this set consists of graph benchmarks proposed to test community-

detection algorithms [20]. We generated 27 undirected and unweighted binary networks using
the implementation of the procedure described in [20] (available at [4]). We set the number of
nodes to {1, ..., 9}× {103, 104, 105}, but fixed the average degree to 2, the max degree to 4, the
mixing parameter to 0.1, the minimum community size to 20, and the maximum community
size to 50 in all instances.

Our first set of experiments ran saucy 3.0 [28] on all graph benchmarks to find their sym-
metry group orders. Figure 8 depicts the base-10 logarithm of group order as a function of
graph size. In total, 268 out of 432 benchmarks exhibited non-trivial symmetry. These 268
benchmarks included all saucy graphs, all binary networks, and 149 out of 313 CNF instances.
The size of the largest symmetry group was 4 × 103232782 and the smallest was 2. The results
indicate that the majority of the graphs in our suite are highly symmetric. Of the 268 graphs
with at least one non-trivial symmetry, 203 (75%) had group order of larger than 1010.

To determine the amount of time that canonical labeling algorithms spend on finding auto-
morphisms, we ran bliss 0.72 [5] under two configurations; once, to just search for symmetries,
and once, to also look for a canonical labeling. Figure 9a depicts the results. It can be seen
that the extra cost imposed by looking for a canonical labeling is negligible. In other words, the
canonical labeling routines spend most of their time searching for symmetries.

To compare the performance of saucy 3.0 and bliss 0.72 in the search for automorphisms,
we disabled the search for a canonical labeling in bliss, and compared the results to those
obtained from saucy. This comparison is shown in Figure 9b. The reported saucy run times
are obtained from its modified version which performs subgroup decomposition according to
bliss’s stabilizers sequence3 (see Figure 4). It is evident that saucy outperforms bliss in the
search for automorphisms. There was only one benchmark from the saucy suite that was
processed by saucy in 0.56 seconds, but was solved by bliss in 0.03 seconds. Of the 432 total
benchmarks, saucy solved 431 in less than 5 seconds and processed one instance of SAT 2011
CNFs in 102 seconds, while bliss timed out on 27, and solved the remaining in 727 seconds. In

3For the run time comparison of the original saucy 3.0 vs. bliss 0.72, refer to [18].
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Figure 8: Log-10 logarithm of symmetry group order as a function of graph size.
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Figure 9: Run time comparison of (a) bliss 0.72 symmetry detection versus canonical labeling,
and (b) saucy 3.0 versus bliss 0.72 symmetry detection.

general, saucy benchmarks and binary networks seemed to be more challenging for bliss than
the SAT 2011 CNF instances.

To assess the performance of our proposed canonical labeling approach versus state-of-the-
art canonical labelers, we compared the results of our approach to that obtained from bliss 0.72
[5], nauty 2.4 (r2) [24], nishe 0.1 [25], and traces Nov09 [30]. Figure 10 depicts the results.
These results clearly state that the combination of saucy and bliss, denoted by saucy+bliss,
outperforms all the other four canonical labelers. Of the 432 total benchmarks, saucy+bliss
solved 417, while bliss solved 404, nauty solved 58, nishe solved 130, and traces solved only
18. Furthermore, of the 432 benchmarks, 388 were solved by saucy+bliss in less than 10
seconds, while this number was reported to be 319 for bliss, 18 for nauty, 38 for nishe, and
7 for traces. Note that the 164 benchmarks that exhibited only one trivial symmetry did
not benefit from our proposed canonical labeling approach. Nevertheless, the extra overhead
imposed by those benchmarks was insignificant, as they were all processed by saucy in less
than 4 seconds. The detailed comparison between saucy+bliss and each of the four mentioned
canonical labeling tools is presented next.
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Figure 10: Run time comparison of the proposed canonical labeling approach in Figure 4 versus
(a) bliss 0.72, (b) nauty 2.4 (r2), (c) nishe 0.1, and (d) traces Nov09.

Figure 10a compares the run time of saucy+bliss to bliss. In total, bliss timed out on 28
benchmarks. Of those 28, saucy+bliss managed to solve 13. The remaining 404 benchmarks
were solved by both bliss and saucy+bliss. Of those 404 benchmarks, 137 experienced a speed-
up by saucy+bliss, whereas, 223 went through a slow-down (slow-down for 164 benchmarks
with symmetry group of size 1 was expected). The highest speed-up was 1334x, which was
reported for the binary network with 50,000 vertices (run time was improved from 734 seconds
to 0.55 seconds). The largest slow-down was 9x, which was reported for a saucy graph.

Figure 10b compares the run time of saucy+bliss to nauty. In total, nauty processed 58
benchmark, but timed out or returned dynamic allocation failure on the remaining 374. All 58
benchmarks that were solved by nauty were also solved by saucy+bliss. The largest reported

13



Symmetry Detection and Canonical Labeling: Differences and Synergies Katebi, Sakallah and Markov

run time from nauty for those benchmarks was 956 seconds. This was while saucy+bliss
processed all those benchmarks in less than a second.

Figure 10c compares the run time of saucy+bliss to nishe. In total, nishe failed to process
302 benchmarks, on which it either timed out, or returned a segmentation fault. Of these 302
benchmarks, saucy+bliss solved 287. All the benchmarks that were solved by nishe were
also solved by saucy+bliss, but the run times of saucy+bliss were superior (speed-up of up
to 36650x was reported). There was only one benchmark from the saucy suite which was
processed by saucy+bliss in 0.93 seconds, but was completed by nishe in 0.38 seconds.

Figure 10d compares the run time of saucy+bliss to traces. Of the 432 benchmarks,
traces only solved 18, all from the saucy suite. The poor performance of traces was due to
the fact that it could not handle graphs with more than 18,000 vertices, and only 36 graphs
in our suite (26 from saucy benchmarks, and 10 from binary networks) exhibited less than
18,000 vertices. The 18 benchmarks that were processed by traces were also processed by
saucy+bliss, but a speed-up of up to 16025x was observed in saucy+bliss run times.

In summary, the number of instances solved by each of the discussed canonical labeling
tools suggests the following ordering of performance: saucy+bliss > bliss > nishe > nauty
> traces. This ordering is obtained by testing each tool on a considerable number of large and
sparse graphs. However, such an ordering is subject to a change if graphs with fewer vertices
and higher edge concentration are used for benchmarking.

7 Conclusions

Publications on graph automorphism and canonical labeling have typically focused on one of
these problems and neglected the other. Canonical labeling algorithms produce symmetries as
a byproduct, but are not as efficient as graph automorphism algorithms, which however, do
not produce canonical labelings. This paper offers comparative analysis of relevant algorithms,
highlighting the differences and exploring possible synergies. In particular, we show that canon-
ical labeling algorithms can be more effective when symmetries are found in one dedicated pass
and conveyed to these algorithms. We therefore develop an appropriate group-theoretic inter-
face between saucy — the fastest symmetry finder — and bliss — the fastest canonical labeler.
Extensive empirical results convincingly demonstrate the benefits of our approach.
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