
Quadratic Placement Revisited1

C. J. Alpert‡, T. Chan†, D. J.-H. Huang, I. Markov† and K. Yan
UCLA Computer Science Dept., Los Angeles, CA 90095-1596

† UCLA Mathematics Dept., Los Angeles, CA 90095-1555
‡ IBM Austin Research Laboratory, Austin, TX 78758

Abstract

The “quadratic placement” methodology is rooted in [6] [14] [16]
and is reputedly used in many commercial and in-house tools for
placement of standard-cell and gate-array designs. The methodol-
ogy iterates between two basic steps: solving sparse systems of
linear equations, and repartitioning. This work dissects the im-
plementation and motivations for quadratic placement. We first
show that (i) Krylov subspace engines for solving sparse systems
of linear equations are more effective than the traditional successive
over-relaxation (SOR) engine [15] and (ii)order convergencecri-
teria can maintain solution quality while using substantially fewer
solver iterations. We then discuss the motivations and relevance
of the quadratic placement approach, in the context of past and fu-
ture algorithmic technology, performance requirements, and design
methodology. We provide evidence that the use of numerical linear
systems solvers with quadratic wirelength objective may be due to
the pre-1990’s weakness of min-cut partitioners, i.e., numerical en-
gines wereneededto provide helpful hints to min-cut partitioners.
Finally, we note emerging methodology drivers in deep-submicron
design that may require new placement approaches to the place-
ment problem.

1 Introduction

In the physical implementation of deep-submicron ICs, row-based
placement, solution quality is a major determinant of whether tim-
ing correctness and routing completion will be achieved. In row-
based placement, the first-order objective has always been obvious:
place connected cells closer together so as to reduce total rout-
ing and lower bounds on signal delay. This implies a minimum-
wirelength placement objective. Because there are many layout it-
erations, and because fast (constructive) placement estimation is
needed in the floorplanner for design convergence, a placement
tool must be extremely fast. As instance sizes grow larger, move-
based (e.g., annealing) methods may be too slow except for detailed
placement improvement. Due to its speed and “global” perspec-
tive, the so-calledquadratic placementtechnique has received a
great deal of attention throughout its development by such authors
as Wipfler et al. [16], Fukunaga et al. [9], Cheng and Kuh [6],
Tsay and Kuh [15] and others. Indeed, quadratic placement is re-
putedly an approach that has been used within commercial tools for
placement of standard-cell and gate-array designs.

1This work was supported by a grant from Cadence Design Systems Inc.

Design Automation ConferenceR

Copyright c
 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

This work revisits the quadratic placement methodology and
addresses both its mode of implementation and its relevance to fu-
ture design automatization requirements. The remainder of our pa-
per is as follows. Section 2 develops notation and synthesizes a
generic model of quadratic placement. Section 3 briefly summa-
rizes our experiments comparing Krylov-subspace solvers and suc-
cessive over-relaxation (SOR) solvers. Section 4 proposes a new
order convergenceapproach for the quadratic solver. Section 5
analyzes the interaction between the linear system solver and the
coupled min-cut partitioning step. Finally, Section 6 discusses the
relevance of the quadratic placement approach in the context of
past and future algorithmic technology, as well as performance and
design methodology requirements.

2 The Quadratic Placement Methodology

2.1 Notation and Definitions

A VLSI circuit is represented for placement by a weighted hyper-
graph, withn vertices corresponding to modules (vertex weights
equal module areas), and hyperedges corresponding to signal nets
(hyperedge weights equal criticalities and/or multiplicities). The
two-dimensional layout region is represented as an array of legal
placement locations. Placement seeks to assign all cells of the de-
sign onto legal locations, such that no cells overlap and chip timing
and routability are optimized. The placement problem is a form of
quadratic assignment; most variants are NP-hard.

Since the numerical techniques used for “quadratic placement”
apply only to graphs (hypergraphs with all hyperedge sizes equal to
2), it is necessary to assume some transformation of hypergraphs to
graphs via anet model. Throughout we use the standard clique
model, but we have also obtained similar results for the clique
model of [15] as well as for a directed star model.1

Definition: Then�n LaplacianQ = (qi j) has entryqi j equal to
�ai j for i 6= j and diagonal entryqii equal to∑n

j=1 ai j , i.e., the sum
of edge weights incident to vertexvi .

“Pad” constraints fix the locations of certain vertices (typically,
due to the pre-placement of I/O pads or other terminals); all other
vertices aremovable. Theone-dimensional placement problemseeks
to placemovablevertices onto the real line so as to minimize an
objective function that depends on the edge weights and the vertex
coordinates. Then-dimensionalplacement vectorx = (xi) gives
physical locations of modulesv1; : : : ;vn on the real line, i.e.,xi is
the coordinate of vertexvi . The correspondingtwo-dimensional
placement problemis addressed by the means of independent hori-
zontal and vertical placements.
Squared Wirelength Formulation: Minimize the objective
Φ(x) = ∑i> j ai j (xi�xj)

2 subject to constraintsHx = b. This func-
tion can be rewritten asΦ(x) = 1

2xTQx.

1For a given multipin signal net, the graph edges that represent the net may be
constructed in several ways, e.g., a directed star model, an unoriented star model or
a clique model (see [2] for a review). The resulting weighted graph representation
G= (V;E) of the circuit topology has edge weightsai j derived by “superposing” all
derived edges in the obvious manner.

The vast majority of quadratic placers in the literature solve the
2-dimensional placement problem with a top-down approach, i.e.,
one-dimensional placement in the horizontal direction is used to
divide the circuit into left and right halves, after which a placement
in the vertical direction is used to subdivide the netlist into quarters,
etc.

2.2 Essential Structure of a Quadratic Placer

We now review essential components of the quadratic placement
paradigm to establish the historical couplings of numerical opti-
mizations with min-cut optimizations or other means of “spreading
out” a continuous force-directed placement. We will illustrate our
discussion by referring to the PROUD algorithm of Tsay et al. [15]
[14].

Like other works, PROUD considers the squared wirelength ob-
jectiveΦ(x) = 1

2xTQx. An unconstrained formulation is obtained
by considering the objective functionΦ(x) without discrete slot
constraints (i.e., a two-dimensional array of allowed locations) for
c movable modules, but considering the possibility off fixed pad
constraints. The function to minimize is then written as

Φ(x) =
1
2

�
xc x f

�� Qcc Qc f
Q f c Q f f

��
xc
x f

�

=
1
2
(xT

c Qccxc+xT
c Qc f x f +xT

f Q f cxc+xT
f Q f f x f)

wherex f denotes the vector offixedmodule positions andxc de-
notes the vector ofmovablemodule positions; the LaplacianQ is
partitioned into four corresponding partsQcc, Qc f , Q f c andQ f f

with QT
c f = Q f c.

Because the optimal positions of all movable modules in quadratic
placement are inside the convex hull spanned by the fixed modules
[15], we can consider the minimization problem forΦ(x) over this
convex hull. SinceΦ(x) is a strictly convex smooth function over a
compact set (inc-dimensional Euclidean space), the unique mini-
mal value is attained at the extremal or a boundary point; the nature
of the problem implies that it will be the extremal point. To find the
zero of the derivative of the objective functionΦ(x), we solve the
c�c linear system

∇Φ(x) = Qccxc+Qc f x f = 0

which can be rewritten as

Qccxc =�Qc fx f (1)

This development is similar to that of other “force-directed”
or “resistive network” analogies (see, e.g., [6] [9] [13] [16]). The
essential tradeoff relaxes discrete slot constraints and changes the
“true” linear wirelength objective into a squared wirelength objec-
tive, in order to obtain a continuous quadratic minimization for
which a global optimum can be found. However, the typical re-
sulting “global placement” concentrates modules in the center of
the layout region. The key question is how the “global placement”
(actually, a “continuous solution obtained using an incorrect objec-
tive”) should be mapped back to the original discrete problem.

Two approaches have been used to obtain a feasible placement
from a “global placement”. The first approach is based onassign-
ment, either in one step (to the entire 2-dimensional array of slots)
or in two steps (to rows, and then to slots within rows) [9]. The
second and more widely-used approach ispartitioning: the global
placement result is used to derive a horizontal or vertical cut in the
layout, and the continuous squared-wirelength optimization is re-
cursively applied to the resulting subproblems (see [6, 12, 13, 16]).

The main difficulty is making partitioning decisions on the ex-
tremely overlapped modules in the middle of the layout (see Figure
1). The obvious median-based partitioning (find the median mod-
ule and use it as a “pivot”) is sensitive to numerical convergence
criteria. Thus, iterative improvement is commonly used to refine
the resulting partitioning (see, e.g., [12]). A typical objective for
the iterative improvement is some form of minimum weighted cut.
Hence, quadratic placers can be quite similar in structure to top-
down min-cut placers, with initial cuts induced from placements
under the squared-wirelength objective.

3 Krylov-Subspace Solvers

Recall that quadratic placement solving a series of sparse systems
of linear equations. We now review experiments with iterative
solvers such as Successive Over-relaxation (SOR/SSOR), BiConju-
gate Gradient Stabilized (BiCGS) and others (see [4]) showing that
the commonly used SOR/SSOR methods (developed in the early
1950’s) are not the best available now.

The time complexity of an iterative solver depends on both the
cost of a single iteration (which is constant during the solution of
a given system) and the number of iterations needed until iterates
adequately reflect the true solution. The theory of iterative methods
shows that the number of iterations needed to obtain a good approx-
imation in norm depends on the spectrum of the matrix involved
[10]. Hence, the idea of a preconditioner – a way to transform the
original system to an equivalent one with “improved” spectrum.
Because most implementations of preconditioners entail additional
per-iteration cost, one must carefully examine the overall efficiency
of solver/preconditioner combinations on particular classes of in-
stances: more expensive iterations must be balanced against the
number of iterations saved. We have solved a number of test sys-
tems with multiple combinations of solvers and preconditioners,
and recorded number of iterations as well as CPU usage.2

We find that BiConjugate Gradient Stabilized (BiCGS) is among
the best solvers; though it does not guarantee convergence, the
method is good even for degenerate (not necessarily symmetric)
matrices and in our experience provides more robust convergence

2See [4] for pseudocodes of solvers and preconditioners that we used and their
efficiency comparisons; see [10] for theoretical analyses. A brief review of the rele-
vant numerical methods is as follows. Iterative methods for solving large systems of
linear equations can be classified asstationaryor non-stationary. Stationary meth-
ods include Jacobi, Gauss-Seidel, Successive Over-relaxation (SOR) and Symmetric
Successive Over-relaxation (SSOR). They are older, easier to implement and compu-
tationally cheaper per iteration. Non-stationary methods include Conjugate Gradient
(CG), Generalized Minimal Residual (GMRes) and numerous variations. These are
relatively newer and notably harder to implement and debug, but provide for much
faster convergence. Additional computational expense per iteration (sometimes by a
factor of 7) is normally justified by much smaller numbers of iterations. Jacobi method
solves once for every variable with respect to the other variables. Gauss-Seidel uses
updated values as soon as they are computed. SOR is a modification of Gauss-Seidel
which depends on the extrapolation parameterω (finding optimal values ofω is non-
trivial, and heuristics are typically applied). SSOR has no computational advantage
over SOR as a solver, but is useful as a preconditioner; one iteration is roughly twice
as expensive as an SOR iteration.

CG or GMRes will generate a sequence of orthogonal vectors which are residuals
of the iterates. CG is very effective when the matrix is symmetric and positive definite,
while GMRes is useful for general non-symmetric matrices. Particular modifications
of CG include BiConjugate Gradient (BiCG), Conjugate Gradient Squared (CGS),
Quasi-Minimal Residual (QMR) and BiConjugate Gradient Stabilized (BiCGS). In
BiCG, two sequences are generated which are only mutually orthogonal. The method
is useful for non-symmetric nonsingular matrices; convergence is irregular and the
method can break down. QMR applies a least-squares update to smoothen the irreg-
ularity of BiCG; it is more reliable but rarely faster. Further improvements are given
by two variations of Transpose-Free Quasi-Minimal Residual (TFQMR and TCQMR).
CGS is a fast method with even more irregular convergence than BiCG, while BiCGS
is just another way to smoothen convergence of BiCG. Finally, for positive definite
matrices, the Chebyshev iteration computes coefficients of a polynomial minimizing
the residual norm. Solvers which provide smooth convergence can be also used as
preconditioners. Direct solvers present a different source of preconditioners for itera-
tive methods, with examples being incomplete Cholesky (ICC), LU-factorization and
incomplete LU-factorization (ILU).

Preconditioners
Solvers None SOR/1.0 SSOR/1.0 SOR/1.95 SSOR/1.95 Jacobi ILU

CG Iter 245 — 106 — 316 245 97
CPU 39.69 — 37.24 — 110.50 40.74 34.31

GMRes Iter 378 180 125 220 380 378 107
CPU 134.40 79.22 67.43 96.09 206.05 133.12 57.15

BiCGS Iter 120 74 54 105 128 120 51
CPU 38.97 36.43 37.33 51.22 88.90 39.30 35.74

CGS Iter 172 97 50 110 152 172 58
CPU 55.52 47.57 34.68 53.83 104.91 55.55 40.24

TFQMR Iter 172 90 48 102 152 172 58
CPU 59.22 45.75 34.29 52.00 108.64 60.00 41.46

TCQMR Iter 206 185 94 178 231 206 86
CPU 115.23 149.47 104.67 143.40 257.37 116.29 93.60

Table 1: Study of solvers and preconditioners for an industry test
case with matrix dimension 29308. CPU times are in seconds for
a Pentium 150 running Linux 2.0.0; the g++ 2.7.2 compiler was
used with -O -m486 options. Dashes (—) indicate that more than
1000 iterations were made, at which point the solver was termi-
nated. The SSOR and SOR preconditioners were run with both
ω = 1:0 andω = 1:95. Identical convergence test and tolerances
were used for all runs.

than conjugate gradient (CG). For preconditioners, Incomplete LU-
factorization and the Successive Over-relaxation family (includ-
ing SSOR) are particularly successful. In many tests, the vacuous
preconditioner was surprisingly competitive with the best nontriv-
ial preconditioner (iteration count was worse, but iterations were
cheaper). At the same time, using the wrong preconditioner could
easily lead to a 3-fold loss in CPU time. The relative performance
depicted in Table 1 is representative of our results. Table 2 shows
the win of using BiCGS over SOR.

Test Size Nonzeros BiCGS/SOR,ω = 1:0 SOR,ω = 1:95
Case Iter # CPU(s) Iter # CPU(s)

avq large 25114 159128 29 10.05 191 29.59
case1 29308 619492 88 76.03 256 98.98
case2 39917 732329 108 115.62 1000+ 479.44

golem3 100281 371633 30 54.68 110 95.61

Table 2: Comparable implementations of the SOR and BiCGS
(with SOR /ω= 1:0 preconditioner) linear system solvers. tested
on a Pentium 150 running Linux 2.0.0. Benchmarks case1 and
case2 are matrices supplied from industry. The convergence test
and tolerance values are slightly different from those used to gen-
erate Table 1 .

4 Order Convergence Criteria

Any solver from the previous section builds a sequence of iterates
that converges to the solutionx of Equation (1). How soon the iter-
ation can be stopped determines performance. Typical convergence
tests are based on some norm of theresidualvector for an iterate3;
which is taken to represent error with respect to the true solution. In
practice, most norms are equivalent; heuristics (check convergence
every j iterations, check differences of iterates rather than residual
vectors, etc.) can reduce the time spent on convergence tests.

We observe that using a placement solution solely to construct
an initial min-cut partitioning solution wastes information: all that
is retained are memberships of vertices in “left” and “right” groups.
If the final iterate will be sorted and split to induce an initial solu-
tion for the min-cut partitioner, then the iteration should terminate
when further changes will be inessential to the partitioner. This
depends on the strength and stability of the partitioner, but the iter-
ation should at least stop when the left and right groups stabilize.
We now define several heuristic alternatives for what we callorder

3When solving the systemAx = b, the residual vector for a given iteratexk is
b�Axk .

convergencecriteria. Consider an iteratexk from some linear sys-
tem solver, whosei-th coordinatexk(i) gives the location of module
vi at this iteration. The placer relies on the relative sorted order of
the coordinates, rather than their absolute values, to assign mod-
ules to sub-blocks. We use adirect permutationπ+k to represent the
ordering induced by thek-th iterate. Ifvi is the j-th module in the
ordering induced byxk , thenπ+k (j) = i; π�k (i) = j defines the the
inverse permutationπ�k (see Table 3).

Index 0 1 2 3 4 5 6 7 8 9 10
Iter xk 20 16 12 1 -99 8 23 99 1 11 -3

Iter xk+1 20 16 12 1 99 8 23 -99 1 11 -3
Direct permutations

π+k 8 7 6 2 0 4 9 10 3 5 1
π+k+1 8 7 6 2 10 4 9 0 3 5 1

Inverse permutations
π�k 4 10 3 8 5 9 2 1 0 6 7

π�k+1 7 10 3 8 5 9 2 1 0 6 4

Table 3: Direct (π+k) and inverse (π�k) permutations for two 11-
dimensional iteratesxk andxk+1

In computation ofπ+k andπ�k , real values are considered equal if
they areε-close (for a predefinedε � 0). With this addition,π+k
andπ�k are not well-defined unless the sorting algorithm is stable.
A convergence measure based on permutations is convenient for
theoretical analysis, but we also seek linear-time implementations
(e.g. withkth-largest element finding). Some intuition is given by:
Order Convergence Theorem Given xk ! x, π+k andπ�k con-
verge if computed with sufficiently smallε > 0.
Proof Without loss of generality assume convergence in theL∞-
norm. Chooseε smaller than1

2 of the smallest distance between
two distinct limit values for coordinate slots. Then, starting with
someN-th iteration, each coordinate should beε

2-close to its limit
value. Consequently, the values in two coordinate slots will ei-
ther differ by more thanε or will be ε-close (if the limit values are
equal).

Note that if the distance between two limit coordinate values is
preciselyε, π+k andπ�k may never become constant. This shows
that it may be computationally difficult to reach complete order
stabilization if limit values of many coordinates are close (which is
the case with quadratic placement; see Figure 1). Rather than try to
circumvent this phenomena, we intend to use it (see below).

We have worked with several order convergence measures, which
include the following (due to space limitations, we do not give mo-
tivations, but only constructions of certain measures). An important
building block in our construction is the maximum change in sorted
index that any module experiences between iteratesxk andxk+1:

� maxD++= max0�i�Nfjπ+k (i)�π+k+1(i)jg

This is the maximal placewise difference between two direct
permutations, i.e., for each coordinate slot we compute the
two indices to which the values sort in consecutive iterates,
then take the maximum difference of these two indices over
all slots. In Table 3, maxD++ = 10 since coordinate slot 4
has value 99 (index 10) in one iterate and value -99 (index 0)
in the other iterate.

In practice, a min-cut partitioner may be biased by locking modules
that are at extreme indices in the sorted ordering. This decreases the
size of the solution space and reduces runtime. Alternatively, mod-
ules might be left unlocked, but the starting solution constructed to
capture extreme module coordinates (see the GORDIAN method-
ology, for example [12]). Hence,

� maxD++
10% =max0�i� N

10; 9N
10�i�Nfjπ

�
k(π

�
k (i))�π�k+1(π

�
k (i))jg

-200000

-150000

-100000

-50000

0

50000

100000

150000

-100000 0 100000

Y

X

A typical placement solution (case3)

Figure 1: Two-dimensional global placement obtained by min-
imizing squared wirelength separately in thex andy directions.
This example (case3) has 12146 cells and 711 I/O pads fixed
on four sides of the layout. Modules are concentrated in small
regions, and we use this feature to formulateorder convergence
tests.

One may compute maximal differences over only some per-
centage (in these examples, 20%) of the indices. In this ex-
ample, we identify places with 10% smallest and 10% largest
values and check how far these values “travel” (in terms of
ordering index).

Finally, we have studied the measures

� Flow%%
10% =

#fij(0� i� N
10 or 9N

10 � i�N) and N
10 � π+k+1(π

�
k (i))�

9N
10g

� FlowNum
10% = #fij(0� i � N

10 or 9N
10 � i � N)

and xk(π�k (N
10))+ ε � xk+1(π�k (i))� xk(π�k (9N

10))� εg
Here, we use %% to denote “percent”, andNum to denote
“number of”. The basic idea is to compute the “flow” of
coordinates through some “percentage barrier”. For exam-
ple, Flow%%

10% computes how many of the lowest 10% and
highest 10% of coordinates leave this range in the next iter-
ation. FlowNum

10% detects thenumericalrange of the lowest
10% and highest 10% in the iteratexk (i.e., two intervals
[min;a]; [b;max]) and computes how many coordinates leave
this numerical range in the next iteration. In this case, we
allow for absolute errorε.

Our intuition behind the use of such order convergence mea-
sures is as follows. During early iterations the order of coordinates
is expected to change because the initial guess has very little in
common with the true solution. These order changes will decrease
as the iterates approach the solution. However, when the iterates
arevery closeto the true solution, modules will become concen-
trated in small areas, and order changes willincreasedue to small
displacements of many closely located vertices, which should be
immaterial to a strong partitioner. Therefore, one should stop itera-
tions when order convergence measures start increasing, or earlier
if they become close enough to zero.

5 Experimental Results

We now present experimental data which yields insights regard-
ing the proper “solver-partitioner interface” (i.e., the point at which

solver iterations should be stopped, and an instance fed to the min-
cut partitioner). Our examples are derived from the benchmark
netlists avqlarge (25114 cells, 25144 nets and 87017 pins) and
from an industry-supplied test case, Case3 (12857 cells, 10880 nets
and 58874 pins).4 Matrices were obtained as described in Section
2.2 for the x-direction ordering problem with standard clique model
and thresholding of nets with> 99 pins. All iterates were saved
from both SOR and BiCGS runs with convergence criterion being
residual norm< 10�4.

5.1 Performance Gains

Figure 2 presents order convergence measures between consecutive
solver iterates for examplescase3 and avq large with respect
to a flow-based measure. One sees three5 distinct periods in the
convergence history, which we interpret as follows:

� Rapid Order Convergence The order of coordinates (equal
to each other in the initial guess) changes rapidly, approach-
ing that of the true solution.

� Coordinate Adjustment The order stabilizes while coordi-
nate values still change to approach those of the true solution

� Coordinate Refinement Vertices become clustered in small
regions, and small changes in their coordinates (immaterial
to partitioner) produce peaks of order convergence scores.

As seen in Figure 2, most of the gain from solving a linear sys-
tem is achieved during first 10-15 iterations. The remaining CPU
time (until convergence is signaled by traditional critera, based on
someresidual norm) can and should be used elsewhere.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45

F
lo

w
N

um
%

%
20

%

Iterations

Order Convergence Studies

avq_large
case3

golem3

Figure 2: Order convergence studies for examplescase3,
avq small andgolem3(scaled by 0.1) with SOR iterates. From
each 5 consecutive order convergence scores computed with
FlowNum%%20%, the best 3 have been averaged.FlowNum%%20% used
error tolerance 10�4 times the size of placement interval. The
plot shows that the order of coordinates stabilizes quickly.

4We also performed experiments with golem3 (103048 cells, 144949 nets and
339149 pins), but we can not include results due to space considerations. The be-
havior observed with golem3 is similar to that observed with case3 and avqlarge (see
[3] for the complete set of experiments). Both avqlarge and golem3 are available from
http://www.cbl.ncsu.edu (the CAD Benchmarking Laboratory). See also our website,
http://vlsicad.cs.ucla.edu/ .

5The Order Convergence Theoremabove suggests that for small enoughε > 0,
there will be a fourth period ofFinal Convergence in which the order becomes
constant.

5.2 Interaction with the Partitioner

We analyzed SOR iterates for each of our test cases by sorting
the coordinates and then inducing initial solutions for a Fiduccia-
Mattheyses (FM) [8] min-cut partitioner. Our experimental pro-
cedure was as follows. (1) Initial solutions were induced by pre-
seeding some percentage of leftmost and rightmost vertices in the
ordering into the initial left and right partitions, respectively. Re-
maining vertices were assigned randomly into the initial left and
right partitions. Three pre-seeding percentages of 0%, 20% and
50% were used. A pre-seeding of 0% corresponds to an initially
random solution, and 50% corresponds to the solution obtained by
splitting the iterate. (2) All vertices were free to move except for
fixed pads which were locked according to whether they were to the
left or right of the median coordinate. (3) For each iterate, we gen-
erated multiple pre-seeded initial solutions and ran FM from each,
using unit module areas and an exact bisection requirement.

350

400

450

500

550

600

650

700

750

800

0 5 10 15 20 25 30 35 40

B
es

t C
ut

Iterations

avq_large /FM partitioner

0% locked
20% locked
50% locked

400

420

440

460

480

500

520

540

560

0 5 10 15 20 25 30 35 40 45

B
es

t C
ut

Iterations

case3 /FM partitioner

0% locked
20% locked
50% locked

Figure 3: Iteration number versus minimum cut obtained over 30
runs of FM using the iterate as a pre-seed. Using 50% pre-seeded
modules yields large improvements.

Figure 3 shows the minimum cut obtained from 30 pre-seeded
solution as a function of the SOR iterate. It is clear that strong
(50%) pre-seeding enables FM to return better solutions than us-
ing initially random solutions (0%) or somewhat locked solutions
(20%). Note that the benefit of using a later iterate as opposed to a
relatively early iterate is marginal; there is indeed a potential gain
if we can apply order convergence criteria. We have also observed
that not only do the cutsizes remain similar from iterate to iterate,
but the solutions themselves do not vary significantly (see [3] for
more details, including data showing Hamming distances for vari-
ous pairs of partitioning solutions).

170

175

180

185

190

195

200

205

210

0 5 10 15 20 25 30 35 40

B
es

t C
ut

Iterations

avq_large / ML-FM partitioner

0% locked
50% locked

290

300

310

320

330

340

350

360

370

0 5 10 15 20 25 30 35 40 45

B
es

t C
ut

Iterations

case3 / ML-FM partitioner

0% locked
50% locked

Figure 4: Iteration number versus minimum cut obtained for 5
runs of ML-FM using the iterate as a pre-seed. The 0% locked
solutions clearly outperform the 50% solutions. 20% solutions
are not shown since they are significantly worse than both 0%
and 50% solutions.

5.3 Modern Partitioners Do Not Need Hints

The previous experiments confirm that a traditional FM min-cut
partitioner can certainly benefit from the hints contained in solver
iterates. We now propose an interesting notion; that the use of nu-
merical linear systems solvers with quadratic wirelength objective
is historically due to the pre-1990’s weakness of min-cut partition-
ers. In the past few years, significant improvements to FM have
been made, primarily in the areas of tie-breaking and multilevel
schemes (see [2] for a survey). The multilevel approach integrates
hierarchical clustering into FM, generalizing the early “two-phase”
approach (e.g., [5]). The recent work of [1] developed a multilevel
partitioner that reports outstanding solution quality with respect to
many other methods in the literature. We have obtained this parti-
tioning code and integrated it into our testbed.

We repeated the previous set of experiments using 5 runs of
multilevel (ML-FM) [1] instead of FM partitioning. Figure 4 shows
how ML-FM solution quality varies with convergence of SOR, and
with the amount of information retained from the iterate.6 The 20%
data was omitted for these plots since the cuts were much worse
than the 0% or 50% data (likely due to ML-FM’s inability to handle
pre-seeding in a natural way). The conclusions are clear: ML-FM
dramatically outperforms FM, and furthermore draws no benefit

6Given an initial bipartitioning solution and an 0.5 level of pre-assignment, ML-
FM determines a bottom-up clustering that is compatible with this solution throughout
the hierarchy. With an 0.0 level of pre-assignment, ML-FM has no constraints on
its bottom-up clustering. From the results in Figure 4, these constraints actually hurt
solution quality; other pre-seeding techniques for guiding ML-FM should be explored.

from using solver iterates. In fact, ML-FM solutions are generally
worse when constrained to follow the structure of an iterate in its
initial solution. We have also observed that the ML-FM solutions
for different iterates are extremely similar in terms of both structure
and cut cost, no matter what initial solution is chosen. Thus, that
if a minimum-cut solution is desired, a viable approach may be to
use ML-FM on a random initial solution, and not use any quadratic
placement techniques.

Our experimental data leads to the surprising hypothesis that
a linear system solver may be completely avoided in the quadratic
placement approach with no loss of placement quality. While strong
partitioners “ignore” hints from the linear system solver, it is certain
that a partitioner is needed to counteract the effects of clumping and
squared wirelength objective. We by no means suggest that place-
ment reduces to partitioningon one level, but rather that such is the
case in thetop-downcontext, where rich geometric information is
implicit in the partitioning instance.

6 Discussion and Futures

We have synthesized the motivations and structure for a generic
“quadratic placement” methodology, and given both performance
improvements and a historical context for the approach. We have
also shown that – possibly – an implementation of the approach
no longer requires an embedded linear systems solver, and indeed
can revert back to “min-cut placement” when armed with the latest
partitioning technology. We by no means claim that every existing
quadratic placer should discard its numerical engine, but – all else
being equal – we suspect that if a minimum weighted cut is the true
objective, ML-FM or other recent partitioners might be invoked
with no loss of solution quality.7

More generally, we believe that there are basic drivers that sug-
gest looking beyond “quadratic placement” technology. First, there
are well-known limitations to modeling capability within a quadratic
placer, e.g., path timing constraints, invariance of orderings to un-
equal horizontal and vertical routing, the requirement of pre-placed
pads to “anchor” the placement, etc. Second, a top-down, perfor-
mance- and HDL-driven design methodology will have relatively
smaller technology-mapped blocks in order to gain predictability;
these will not be large enough for a quadratic placer to show its
“global awareness” and runtime advantages. Third, the advent of
block-based design may mean fewer large, flat problem instances.
Synthesized glue logic will be spread out over disconnected, het-
erogeneous regions; the resulting chip planning - block building
- assembly flow harkens back to classic block packing and route
planning issues, and does not play to the strengths of quadratic
placement. Thus, while quadratic placers are the state of the art
today, it remains to be seen whether other approaches will more
effectively address future placement requirements.

REFERENCES
[1] C. J. Alpert, D. J.-H. Huang and A. B. Kahng, “Multilevel Circuit

Partitioning”, to appear inDAC, 1997.
7The reader may observe that we have used only “top-level” instances to test our

hypotheses. We chose to use these instances because they have the fewest “pad” con-
straints and thus the greatest leeway within which a partitioner might benefit from
solver hints. (One might argue that when there are relatively many “pad” constraints
due to terminal propagation and Rent’s rule, the benefits from a strong partitioner will
decrease. This is true, but the benefits from solver hints will also decrease correspond-
ingly in such a situation.) The reader may also observe that extremely good min-cuts
can under-utilize routing resources across the cut line. The fact remains that quadratic
placement approaches in the literature do attempt to minimize cut size when defin-
ing hierarchical subproblems. If a quadratic placer were tobenefitfrom having a bad
partitioner, this would of course bring into question both the objective and the role of
partitioning in quadratic placement.

[2] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partition-
ing: A Survey”, Integration, the VLSI Journal, 19(1-2) (1995), pp.
1-81.

[3] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov and K. Yan,
“Quadratic Placement Revisited”,Technical Report #970012, UCLA
Computer Science Dept., March 1997.

[4] R. Barret, M. Berry, T. Chan et al “Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods”,SIAM1995,
http://netlib2.cs.utk.edu/linalg/html templates/
Templates.html

[5] T. Bui, C. Heigham, C. Jones and T. Leighton, “Improving the Per-
formance of the Kernighan-Lin and Simulated Annealing Graph Bi-
section Algorithms”,DAC (1989) pp. 775-778.

[6] C. K. Cheng and E. S. Kuh. “Module Placement Based on Resistive
Network Optimization”,IEEE Trans. on CAD3 (1984), pp. 218–225.

[7] H. C. Elman, M. P. Chernesky, “Ordering Effects on Relaxation
Methods Applied to The Discrete One-Dimensional Convection-
Diffusion Equation”,SIAM J. Numer. Anal., 30(5) (1993), pp.1268-
1290.

[8] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions”,DAC (1982), pp. 175-181.

[9] K. Fukunaga, S. Yamada, H. S. Stone, and T. Kasai, “Placement
of Circuit Modules Using a Graph Space Approach”,Proc. 20th
ACM/IEEE Design Automation Conference, (1983), pp. 465–471.

[10] W. Hackbush, “Iterative Solution of Large Sparse Systems” Springer
Verlag, 1994.

[11] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng, “Quantified Subop-
timality of VLSI Layout Heuristics”,DAC (1995), pp. 216-221.

[12] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN:
VLSI Placement by Quadratic Programming and Slicing Optimiza-
tion”, IEEE Trans. on CAD.10(3) (1991) pp. 356-365.

[13] R. H. J. M. Otten, “Automatic Floorplan Design”,DAC (1982), pp.
261-267.

[14] R. S. Tsay, E. Kuh and C. P. Hsu, “Proud: A Sea-Of-Gate Placement
Algorithm”, IEEE Design & Test of Computers(1988), pp. 44-56.

[15] R. S. Tsay and E. Kuh, “A Unified Approach to Partitioning and
Placement”,IEEE Trans. on Circuits and Systems, 38(5) (1991), pp.
521-633.

[16] G. J. Wipfler, M. Wiesel and D. A. Mlynski, “A Combined Force and
Cut Algorithm for Hierarchical VLSI Layout,DAC (1983), pp. 124-
125.

