
Protecting Bus-based Hardware IP by Secret Sharing

Jarrod A. Roy†, Farinaz Koushanfar‡ and Igor L. Markov†
†The University of Michigan, Department of EECS, 2260 Hayward Ave., Ann Arbor, MI 48109

‡Rice University, ECE and CS Departments, 6100 South Main, Houston, TX 77005

ABSTRACT
Our work addresses protection of hardware IP at the mask
level with the goal of preventing unauthorized manufactur-
ing. The proposed protocol based on chip locking and acti-
vation is applicable to a broad category of electronic systems
with a primary bus. Such designs include (1) numerous IP
offerings for USB, PCI, PCI-E, AMBA and other bus stan-
dards typically used in system-on-a-chip designs and com-
puter peripherals, (2) SRAM-based FPGAs that are pro-
grammed through an input bus, (3) general-purpose and em-
bedded microprocessors, including soft cores, (4) DSPs, (5)
network processors, and (6) game consoles. Our key insight
is that such designs can be locked by scrambling the central
bus by controlled reversible bit-permutations and substitu-
tions. To securely establish a unique code per chip to control
bus scrambling, we employ true random number generators
and Diffie-Hellman cryptography during activation.

Categories and Subject Descriptors
K.5.1 [Hardware/Software Protection]: Proprietary
rights

General Terms Design, Security

Keywords Integrated circuits, Manufacturing, Computer
crime, Cryptography

1. INTRODUCTION
As designs become more complex and on-chip transistor

counts reach into the billions, the designer’s skills, method-
ologies, and tools are the invaluable assets of semiconductor
design houses. This is particularly true for the small- and
medium-sized fabless design companies. The soaring costs
of building and maintaining state-of-the-art semiconductor
manufacturing facilities and nano-scale masks is driving even
the large design houses to abandon their home manufactur-
ing and become fabless. For example, Texas Instruments
(TI) – the third largest semiconductor company in the world
– has announced a new foundry strategy in May 2007, in-
dicating that TSMC, UMC and a third vendor will split
the company’s 45-nm fabrication. The current trust mod-
els and royalty agreements do not fully protect the rights
of the designers. The hardware IP providers pay the ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

penses of masks for their designs, trusting that the foundry
would not make additional copies outside the contract. The
ready availability of masks, low cost of silicon, and lack of
IP owner’s control over the manufacturing flow facilitates
illegal copying of ICs. Furthermore, IC packaging obscures
chip internals and makes it difficult to trace the IP owner.

Large-scale integration of millions of nano-scale devices is
used in many ICs today, including microprocessors, DSPs ,
FPGAs, and dedicated graphic chips. A major research chal-
lenge is to develop IP protection techniques that are pow-
erful and general enough to handle all these categories. At
first, addressing the issue appears impossible because these
products have fundamentally different structures. For exam-
ple, memory-based products, such as flash and FPGA, are
so regular and flexible that locking only a small part of a
chip will not prevent an IP burglar from using the rest. But
locking all parts of the chip leads to unacceptable overhead.

A key insight in our work is that many of the modern IP
designs communicate through busses and/or rely on an in-
ternal bus to support their primary functions [3]. For exam-
ple, FPGAs are programmed through an input bus, CPUs
rely on several internal busses, GPUs stream pixels and tex-
els through a graphics bus, network processors communicate
through an Ethernet bus or antennae, and an entire class of
bus-based IP entirely depend on industry-standard busses,
such as USB, PCI, PCI-Express, AMBA, etc.1 While the
specific uses of busses and applications may have nothing in
common, the functionality of all devices critically depends
on a small number of busses. Our work uses this property
to lock and unlock the ICs by manipulating their busses.

We propose a novel bus-based IC protection method that
can authorize the activation of each individual chip and
hence can control the number of working chips that contain
the designer’s IP. The method leverages bit permutations
and substitutions that scramble the bus using a key unique
to each IC. The scrambling renders the IC unusable for any-
one who does not have the specific key for the chip. Only
the owner of IP rights with access to design details can com-
pute the shared key required to unlock (unscramble) the bus
and to make the IC usable. The key is calculated simulta-
neously by the designer and the chip using an asymmetric
Diffie-Hellman key sharing protocol that does not reveal the
key in communications to and from the IC. Thus, an eaves-
dropper who records all communications between the chip
and the unlocking authority cannot compute the key.

1A notable exception to this list is the class of ASIC designs.
Our techniques can still be adapted to many ASICs, but such
adaptations may have to be application-specific.

The highlights of this work include the following.

• First-of-a-kind research on IP protection for a broad
class of integrated circuits, by the novel bus-based pro-
tocol for chip locking and activation.

• The idea to leverage the Diffie-Hellman key exchange
protocol to lock and activate computing hardware.

• Review and comparative analysis of existing tech-
niques to encode bit permutations and word substi-
tutions.

• Analysis of possible attacks aimed at disrupting the
proposed protocols, providing countermeasures against
the attacks.

• A new application of chip locking — feature selection
— that is possible with our techniques.

• Empirical evaluations of the degree of resiliency
against the attacks and probability of success.

The remainder of the paper is organized as follows. In
Section 2 we review background in public key cryptography
and survey the literature on hardware IP protection. Sec-
tion 3 outlines the scope of applicability of our IP protection
techniques and describes a new application — feature selec-
tion. Section 4 introduces the global flow of the proposed
approach. In Section 5 we describe the bus-based locking
and activation mechanisms in detail. Attacks and counter-
measures are discussed in Section 6 followed by experimental
evaluations in Section 7. We conclude in Section 8.

2. PRELIMINARIES
Below we review a particular cryptographic public key

exchange scheme that is used in our work. Then we survey
related research in hardware IP protection, to which our
work can be contrasted.

2.1 Diffie-Hellman public key exchange
Public key cryptography protocols provide a way for shar-

ing secrets (keys) between two users such that the shared key
is never revealed during inter-user communications. More-
over, an eavesdropper who intercepts messages between the
users will be unable to re-construct the secret. The tech-
nique is referred to as asymmetric cryptography since the
information exchanged between the users to construct the
shared key is different. Asymmetric cryptography was intro-
duced by Diffie and Hellman (D-H) in 1976. The idea is to
use a mathematical “one-way” function that can be quickly
computed in polynomial time, but is hard to invert. In this
role, the D-H key sharing protocol uses modular exponen-

tiation, as we explain below. It considers a multiplicative
group of integers Cp modulo p, where p is prime and g is a
primitive root mod p. Using D-H, two users A and B can
share a key. First, A and B select an element g ∈ Cp; g
is not secure since it is transparent to the attackers. Next,
user A randomly selects a natural number a and sends ga

to user B.2 Likewise, B randomly chooses another number
b and sends gb to A. Both users can individually compute
the same key, that is calculated as (ga)b and (gb)a by user
A and user B respectively.

2Here all operations are performed within Cp, e.g., ga cor-
responds to (ga mod p) in terms of integers.

2.2 Related work
For many years, the only way designers could assert rights

to their IPs (outside the royalty agreement) was to embed
watermarks in the ASIC or FPGA design [5, 7]. In FPGAs,
encrypting the bitstream and exploiting the flexibility of the
programmable platform has enabled a number of additional
access control primitives [15].

Development of techniques for locking and activation of
ICs after manufacturing is a very recent topic. The idea
of unique activation of chips by exploiting design features
known only to the designer and not extractable at the
foundry was first proposed in [1]. In their scheme, the orig-
inal finite state machine (FSM) of the design is augmented
with many new states. The system is engineered so that the
power-up state of each chip is non-functional (locked) and
determined by the unique random variations of that IC. The
designer, having access to the transition function of the FSM
is the only entity that can unlock the chip and bring it to the
hidden original state. A newer method based on replicating
a few FSM states, controlling the sequence logic, and using
physically unclonable functions (PUFs) [2] was proposed:
the functionality is halted unless the unlocking sequence is
entered. Also, a new method based on combinational lock-
ing and public key cryptography [11] was introduced. In this
work we propose a high-level locking mechanism that radi-
cally departs from combinational/sequential logic locking.

3. APPLICATION DOMAINS
Our proposed techniques apply to a wide range of IC de-

signs and electronic systems that satisfy certain assump-
tions. Coarsely speaking, we require the design to have a
primary bus (or a small number of them) such that dis-
abling this bus disables the entire design. This is illus-
trated in Figure 1 using an SoC architecture as an exam-
ple. The chip can be locked by disabling the system bus,
or it can be cut off from the outside world by disabling its
I/O bus. It is also possible to lock specific features of the
chip by disabling feature-specific busses, such as the dedi-
cated MPEG bus in Figure 1. The Figure also illustrates
that the external bus (in this case a USB bus) can be dis-
abled by placing an external lock. Moreover, our techniques
are not restricted to single-chip IP protection, and can be
generalized to larger electronic systems. In many such ap-
plications, external busses are driven by software, e.g., to
program FPGAs, to support bus-based peripherals (USB,
PCI-X, Firewire, etc.) through device drivers. In this con-

DMA

DSP

CPU

I

O

Bridge

MEM
Contr.

MPEG

External
USB

System bus:

Peripheral bus:

Custom interfaces:

External bus:

Figure 1: Bus-based IP protection.

text, software plays an important role in hardware IP pro-
tection if the activation protocols require that cryptographic

keys possessed by the software and hardware match. Vice
versa, by securing hardware, one can improve the environ-
ment for securing software.

Placing locks on busses has several distinct advantages.
First, many current and pending designs contain busses, in-
cluding bus-based IP, FPGAs, microprocessors, and DSPs.
Second, busses are critical parts of the design, transferring
data, chip access information, priorities, clock, and power.
Third, in FPGAs and other reconfigurable devices, IP core
programming is done by placing an encrypted bitstream on
the busses. Fourth, connections to the memory are often
accomplished by address busses, creating an opportunity to
lock important features of the chips. For example, a mi-
croprocessor with a disabled memory interface can still be
tested by running carefully selected sequences of commands,
but is not commercially viable. Lastly, word-level processing
in microprocessor and DSP data-paths also requires an in-
dispensable data bus, which facilitates high-level synthesis,
structural layout and leading-edge performance.

More formally, our assumptions can be cast within
the communication-based design paradigm [10, 14] or the
platform-based design paradigm [6]. In large-scale embed-
ded systems, communication between independent compo-
nents is of prime concern. Let us denote the output and
input components as sender and receiver. Then the sender
is modeled as process S(Fs : Is ⇒ Os) and the receiver by
the process R(Fr : Ir ⇒ Or) [14]. The connection implies
that the input space of R is restricted to the intersection
Os ∩ Ir. If the sets S and R have mismatches, there will be
three possible scenarios: (1) R discards the inputs and treat
them as errors, i.e., a mechanism for error handling must be
added; (2) the outputs of S causing mismatches will be re-
moved from S; and (3) signals from S are mapped to signals
acceptable by R. In the latter case, an interface is utilized
to transform the S output to the domain of R. Such an in-
terface is typically split into two processes that encapsulate
S and R and permit communication between the modified
behavior over a connection. Connections are implemented
using physical channels, i.e., busses. In emerging large-scale
designs it is not surprising that the bus-based methodology
is gaining so much importance, e.g., in SoC designs [3].

4. THE OVERALL FLOW
Figure 2 shows the overall flow of the new IC locking and

activation approach using a timing diagram. There are two
parties involved, the design house (user A) and the foundry
(user B). The steps of the flow are shown using numbered
boxes and arrows that show the communicated messages
between the processes. User A employs the technology files
available to her and devises the details of the IC, including
the logic blocks, address lines, memory, component layouts,
pins, and the built-in test structures (Step 1). Next, the
GDSII electronic files containing the details of the IC design
are sent to the user B. User B builds a mask that fabricates
the received design files in silicon (Step 2). Multiple ICs will
be implemented using the same mask (Step 3). Each fab-
ricated IC would be powered up for testing (Step 4). Each
chip would generate a unique ID, that is random and differ-
ent from the other chips. The unique ID for the pertinent
chip under test would be used as the D-H component b.
Herein, we use the notation defined for the D-H protocol in

������� ���
	���
����
��
����������

�����
��
����������

��
�� �
! ���#"$��� !&% '()����� ���

��������� ! ��"$� ���
* ����+

�,�.-/��	�������(
��� ! �0��"���"�1

�,�.-/��	������)(
��� ! � ��"�� � % '

2�� ! � 3)4#"5,	��6��
��������7�#3
80����	���� ��(9+:��3#�

' � * 4)
�"0�&"$	��
80����	����0��(9+;��3��

��� ! � 3)4�"$� ���&"$	��
�)
����#�)�

� % ' � ! "$� <���"0� ���#�

=,��� ��"
80����	���� ��(9+:��3#�
���>"$	�� % '

% ' �
?A@BDC E

F G H
I J$K B C L

MON:P0Q#R)S
T UWV X T Y

Z [�\�]�^�_�`�acb ` d e

=f��gc���h� ���

�47��� ! 	 % '8 ����"0��� "$� ���

i

j

k

l
m

n�o n)p

q o q�p

r

s

Figure 2: The new IC activation protocol.

Section 2. The value gb mod p is then communicated to user
A, who has also generated a unique ID a corresponding to
the chip under test. In turn, A sends ga mod p to B.

Both users can now compute the D-H shared key without
needing to communicate it or any information that would
expose it (Steps 5a and 5b). User A holds a secret one-
way function f , which is implemented in hardware and is
included on the chip. User A would compute the shared key
in software (Step 6a). The shared key is the input to f ;
the output of f is used for scrambling the bus lines of the
chips (Step 6b). Since the function f(shared key) is one-way,
an attacker who does not know f or the shared key cannot
generate the unlocking sequence. If the activation authority
agrees to activate the chip, it then transmits the activation
key, or f(shared key), to user B who activates the chip (Step
7); B also encloses the activation code on the chip for sales
(Step 8). To prevent multiple attempts at chip activation,
we propose to “burn” random bits into irreversible fuses.
Depending on the desire of the IC designer, after activation,
the activation code can be used to unlock the IC for each
subsequent use of the chip or burned into fuses so that the IC
can be used without needing the code. The activation code
must be entered into vendor-supplied software for operating
the IC, as is the case with FPGAs and device drivers for PCs.
Alternatively, the code can be entered into the IC through a
dedicated activation pin, using a simple signaling protocol;
even an existing pin can be multiplexed for activation, given
that normal pins cannot be used before activation.

Figure 3: An 8-bit Benes network is made of two
components: (a) the butterfly network and (b) the
inverse butterfly network. In this network, bus wires
are the labeled inputs and outputs and four different
bus-key inputs per level (not shown) control the 2-
to-1 MUX gates, for a total of 24 key-bits. The
computation is pipelined so that one permutation
completes per cycle by applying (a) on the first cycle
and (b) on the second. Image from [8, Figure 3].

5. CHIP LOCKING AND ACTIVATION
FOR BUS-BASED DESIGNS

In order to implement the overall flow introduced above,
one uses a specific circuit-level bus-locking technique. In
other words, the bus is equipped with additional bus-key

inputs such that only a certain key combination activates the
bus, while other combinations scramble it. For example, this
can be accomplished by XORing key bits with bus lines, but
such a naive technique is too easy to circumvent in practice.

5.1 Classes of reversible transformations
We are looking for a reversible transformation on ad-

dress/data lines that can be efficiently controlled by a key
of sufficient length. The transformation must have small
hardware overhead and be easy to reverse in device drivers,
software used to program FPGAs, etc. To this end, we com-
pare the following categories of reversible transformations.
XOR with a key uses an n-bit key for an n-bit bus.
Arithmetic transformations can be implemented with
modular addition and subtraction. Key length is n for one
arithmetic operation.
Bit permutations can be implemented using Benes net-
works where key length is n log2 n bits. An example of an
8-bit Benes network is shown in Figure 3. The 8-bit network
consists of six levels of eight 2-to-1 MUX gates in a butter-
fly and inverse butterfly pattern. Each level is controlled
by four key bits for a total 24 bits per key. Efficient imple-
mentations produce arbitrary permutations in one cycle of
a high-performance microprocessor when pipelined [8].
Linear transformations over the field F2 can be im-
plemented using only NOT and XOR gates. The algorithm
from [9] generates near-optimal circuits for them where fan-
outs are limited to two, which can simplify layout. Key
length is n2/ log n due to [9, Lemma 1 and Theorem 1].
Arbitrary reversible transformations include all of the
transformations described above and rather than permute n
wires, they permute all possible combinations of functions
of n wires. There are 2n! such circuits, making key length
log2(2

n!) ≈ 2n(n ln n− 1) + 1 (using an integration by parts
approximation).

5.2 Selecting an adequate
reversible transformation

First, we describe drawbacks of some of the transforma-
tions described above. Both XOR locking and arithmetic
locking use n-bit keys, which may be too few for small
busses. XOR locking leaves many bits unmodified on av-
erage, which may make it easy to crack. Arithmetic locking
may succumb to some form of differential analysis. Also,
adding a small number to the current address combination
will not change the most significant bits. Key length for lin-
ear transformations and arbitrary reversible transformations
is too large, and will incur significant overhead. In addition,
optimal circuits to implement any reversible transformation
using NOT, XOR and AND gates have been studied in [13],
and are generally difficult to find.

Given the choices of a reversible transformation above,
bit permutations appear to be the most promising. They
have efficient circuit implementations and key lengths are
larger than the size of the bus, but not as large as for linear
transformations or arbitrary reversible transformations. In
Section 7.2, we show how these transformations are sufficient
to securely lock modern busses.

A possible concern about using bit permutations for lock-
ing is that permutations do not change the number of zeroes
in the data along the bus. We are currently unaware of any
exploits that could take advantage of this, but if one were
found, we propose to use bit permutations and arithmetic
locks together — common practice in cryptography.

6. ATTACKS AND COUNTERMEASURES
In this section, we discuss possible attacks and devise

countermeasures against them. We consider the following
attacks against the proposed bus-based hardware protection.
(i) Brute-force attack. The adversary aims to activate
the pertinent IC by applying multiple keys. The attackers’
hope is that he would randomly find the unlocking key. In
more sophisticated versions of this attack, the attacker may
attempt to find a pattern in the already unlocked ICs and
build a model that could help him in performing a more
efficient search for the unlocking sequence.
(ii) Replication attack. The attacker attempts to copy
(clone) the random unique sequence of an authorized IC and
then use the key received for the cloned IC to unlock it.
(iii) Read-only access to masks. An attacker who has
access to masks may attempt to obtain the secret integer
from the chip. The basic premise of the D-H cryptography
scheme is that the integers from the two users and the final
shared key are not revealed. Reading out the chip’s secret
facilitates breaking of the D-H secret sharing scheme.
(iv) Removal attack. The adversary may attempt to re-
move the bus locking circuitry so that the ICs will be un-
locked upon manufacturing.
(v) Man-in-the-middle attack. In this attack, the ad-
versary intercepts designer’s public value and transmits its
own public value to the IC. When the IC sends its public
value, the attacker substitutes it with it own and transmits
it to the designer. Therefore, the adversary and designer
agree on one shared key and IC and attacker agree on an-
other shared key. Now, the attacker can simply decrypt
messages transmitted by the designer and the IC, and can
read and potentially modify them before re-encrypting with
the proper key and sending them to the other party. This

vulnerability is possible because D-H key exchange protocol
does not authenticate the users.
(vi) Side-channel attack. Several cryptography pro-
tocols including D-H have been shown to be vulnerable
to side-channel attacks. An attacker with access to the
chip that runs these protocols can externally measure the
power/timing of the signals many times. The adversary can
use inference techniques on the IC’s power/timing data to
guess the key with a high probability.

The following countermeasures ensure the resiliency of the
proposed method against various attacks:
• Increasing the key length. An effective way to elimi-
nate the possibility of attack (i) is to add to the key length.
The longer the key, the lower the probability of randomly
guessing the correct combination. Note that the use of a
long key as a counter measure is not specific to our scheme;
all key-based security and cryptography methods, e.g., AES
and 3DES, assume that random guessing of the key is com-
putationally infeasible.
• Unclonability. A unique and unclonable identification
bit string extracted from the IC can be integrated into the
one-way function f [1]. Thus, attack (ii) will be ineffective
since the key used for unlocking one IC will be a function
of its unique variations and cannot be utilized for activating
the busses of other chips. The unique and unclonable ID
can be a part of the message communicated between the IC
and the IP rights owner who will then use it as input to
the one-way function. This countermeasure is also effective
against attack (iii), since the unclonable IDs are typically a
function of unique post-silicon manufacturing variability of
each IC that is not available at the mask level.
• Design complexity. Miniaturization of devices and
active integration of the locking/unlocking circuitry in the
bus and address encoding/decoding would impede reverse-
engineering. Thus, attack (iv) is not plausible since the at-
tacker cannot distinguish/disintegrate or remove the lock.
• One-way function. The use of the one-way function
that is integrated into our method deters the effectiveness
of attack (v). In other words, even if a man-in-the-middle
establishes two different channels one with the IC and one
with the designer, he will not be able to compute the key
specific to the IC or to use the key given for another chip.
• Randomization. To alleviate the correlation between
the power and timing signals and the computed key, ran-
dom timing and power activities can be added. Therefore,
the side-channel attack (vi) will not be effective. A number
of other methods that are commonly used for removing the
information from the side-channel can be adopted, for ex-
ample, one can equalize the D-H computation such that the
peak power or time is not extractable from the differential
external pin measurements.

7. VALIDATION
To ensure practicality of our proposed scheme, we demon-

strate its low overhead and key-strength.

7.1 Minimizing design overhead
The overhead of the proposed bus-locking scheme can be

traced to three components: (1) an implementation of the
Diffie-Hellman (D-H) protocol, (2) pins and communication
circuits, and (3) circuit-level bus locking. Two major factors
help ensuring small overhead. First, the proposed proto-
col exchanges very few bits (<1000) and therefore does not

require high speed. Second, most of the chip remains dis-
abled during activation. Therefore, on-chip resources can be
multiplexed and reused during activation. This particularly
involves I/O pins, as well as arithmetic and cryptographic
modules available on the chip.

Diffie-Hellman circuits. One of the reasons we chose
D-H rather than the more recent RSA cryptography is that
it is much easier to implement. While modern RSA cir-
cuits (e.g., the ones from OpenCores) require on the order
of 15,000 standard cells, D-H can be implemented using one
tenth of these resources [12]. In fact, D-H circuits are domi-
nated by modular exponentiation which can be implemented
efficiently by repeated squaring and modular multiplication.
Most textbook multiplication circuits are sufficient in terms
of speed, and no pipelining is necessary, because D-H circuits
do not lie on critical paths in an activated chip. Area can
be further minimized by using a half-sized multiplier with
an adder. Moreover, several modern processors, such as Ni-
agara1 and Niagara2 from Sun include support for cryptog-
raphy and particularly fast modular exponentiation (they
include RSA as well). Since the processor remains dormant
during activation, it may be possible to use its arithmetic
circuits for D-H. Alternatively, if a stand-alone D-H imple-
mentation is used, one can turn off (gate) its clock and power
trunks when they are not needed.

I/O pins. Given the small number of bits transferred
during activation, the entire exchange can be serialized
through a single I/O pin using a simple handshaking proto-
col. Moreover, given that the chip remains largely disabled
before activation, one of its existing pins can be multiplexed
to support activation. Such multiplexing, however, may en-
tail a small increase in latency during normal use. The com-
munication circuits required for serialization, deserialization
and handshaking implement very simple FSMs with only a
handful flip-flops each. These only operate during activation
and can be turned off during normal use.

Circuit-level bus locking. While circuit-level bus locks
do not require as many gates as modular exponentiation cir-
cuits for the D-H protocol, they cannot be turned off and
may slow down the host bus. Therefore, they are the main
source of overhead in the proposed bus-locking scheme. This
is why we use permutation circuits from [8] that have already
been optimized and implemented within microprocessor de-
signs. Such circuits require only 2n log2 n MUX gates which
is considerably smaller than an n-bit multiplier, for exam-
ple. Their logic depth, when pipelined, is log2 n, which is
comparable to an ALU for modern designs, producing per-
mutation every cycle [8]. Thus timing is not degraded and
only one cycle of latency is added for bus communications.

7.2 Key strength evaluation
The countermeasures described in Section 6 are sufficient

to completely defeat attacks (ii)-(vi). The countermeasure
for attack (i), brute-force key testing, is to increase key
length so as to make the attack infeasible for modern cir-
cuits. Thus we perform a comprehensive analysis of Benes
networks used in [8] to show that this method is secure.

The circuits described in [8] for arbitrary bit permutations
consist of 2 log2 n stages of n MUX gates each. n/2 bits
control each stage for a total of n log2 n key bits. As there
are n log2 n bits per key, this gives 2n log

2
n = nn possible

key combinations, which is much larger than the number
of permutations of n bits, n! ≈

√
2πn

`

n

e

´n
(by Stirling’s

Valid Total % Key
key combs # Perms key combs combs

128 × 8192 = 1048576 6.25%
256 × 14336 = 3670016 21.88%
512 × 12288 = 6291456 37.50%
640 × 2048 = 1310720 7.81%

1024 × 2816 = 2883584 17.19%
2048 × 512 = 1048576 6.25%
4096 × 128 = 524288 3.13%
Total 40320 16777216 100%

Table 1: Input collisions in an 8-bit Benes network.
The first column gives the number of equivalent key
combinations for a permutation. The second column
counts permutations with that number of equivalent
keys. The third column aggregates key combina-
tions (out of 224) that the row covers.

approximation). If key combinations were mapped to per-

mutations by the circuit uniformly, approximately en

√

2πn
key

combinations would map to each permutation. Even though
the number of keys that map to a permutation grows nearly
exponentially, the probability of guessing a valid key com-
bination at random is 1 in

√
2πn

`

n

e

´n ≈ n!. Thus a brute-
force attacker would need to test n! key combinations on
average to find a working key.

Unfortunately, permutation circuits do not map keys to
permutations uniformly. We fully analyze an 8-bit Benes
network, shown in Figure 3, to see how non-uniform the
mapping of keys to permutations is and what ramifica-
tions this has on the effective bit-length of permutation
keys. To completely analyze the behavior of the circuit,
we use ROBDD-based equivalence checking [4] for each of
the 8! = 40320 permutations of 8 bits. We construct a miter

circuit for each permutation which produces a 1 as output
when the circuit produces the correct permutation, univer-
sally quantify out all of the non-key inputs, and count the
number of key combinations that make the miter evaluate
to 1 using standard ROBDD operations.

Table 1 shows complete statistics for an 8-bit Benes net-
work. The degree of non-uniformity in mapping key com-
binations to permutations is somewhat surprising. In the
best case, there are 8192 permutations where only 128 key
combinations map to that permutation, which makes for an
effective key length of log2(2

24/128) = 17. In the worst
case, there are 128 permutations for which 4096 key combi-
nations map to the permutation. These permutations, one
being the identity permutation, have an effective key length
of log2(2

24/4096) = 12. If we extrapolate the worst case to
larger circuits, such that the worse case effective key length is
half the total key length, 32-bit busses would be protected by
80-bit keys, and 64-bit busses by 192-bit keys. To crack a 32-
bit permutation, an attacker would need to check 280 ≈ 1024

keys. If the attacker had access to one thousand 5GHz pro-
cessors that can check one key per cycle, it would take over
7000 years to crack a 32-bit permutation; cracking a 64-bit
permutation would take over 1037 years.

We have also considered extensions of brute-force attacks,
such as the use of rainbow tables and birthday paradoxes,
but space limitations preclude detailed analysis in this pa-
per. In brief, rainbow tables can be defeated using the stan-
dard “salting” technique used to store Linux passwords, and
birthday paradoxes provide at most a square-root speed-up
over brute-force, which would be insufficient to crack 64-bit
permutations according to our calculations.

8. CONCLUSIONS
We propose the first bus-based IC locking and activation

scheme, that works by uniquely locking each chip at the
manufacturing site. The locking is performed by unique ran-
dom IDs on each chip and D-H key sharing between the IP
rights owner and the chip. We demonstrate the flow of the
new scheme, discuss its wide range of applications, devise an
implementation based on permutations and one-way func-
tions, and present the attacks and countermeasures. Evalu-
ation results confirm that the locking scheme has a very low
overhead while it is highly resilient against attacks.

9. REFERENCES
[1] Y. Alkabani and F. Koushanfar, “Active hardware

metering for intellectual property protection and
security”, USENIX Security, pp. 291-306, 2007.

[2] Y. Alkabani, F. Koushanfar and M. Potkonjak,
“Remote activation of ICs for piracy prevention and
digital right management”, ICCAD, pp. 674-677, 2007.

[3] L. Benini and G. De Micheli, “Networks on Chips: A
New SoC Paradigm”, Computer 35(1), pp. 70-78, 2002.

[4] G. D. Hachtel and F. Somenzi. Logic Synthesis And

Verification Algorithms. Kluwer, 2000.

[5] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I.
Markov, M. Potkonjak, P. Tucker, H. Wang and G.
Wolfe, “Watermarking Techniques for Intellectual
Property Protection”, DAC, pp. 776-781, 1998.

[6] K. Keutzer, S. Malik, R. Newton, J. Rabaey and A.
Sangiovanni-Vincentelli, “System Level Design:
Orthogonalization of Concerns and Platform-Based
Design”, IEEE TCAD, 19(12), pp. 1523-1543, 2000.

[7] J. Lach, W. Mangione-Smith and M. Potkonjak,
“Signature hiding techniques for FPGA intellectual
property protection”, ICCAD, pp. 186-189, 1998.

[8] R. B. Lee et al., “Single-Cycle Bit Permutations with
MOMR Execution,” J. Comp. Sci. Tech. 20(5), 2005.

[9] K. N. Patel, I. L. Markov and J. P. Hayes, “Efficient
Synthesis of Linear Reversible Circuits”, IWLS, pp.
470-477, 2004.

[10] J. Rabaey, K. Keutzer, M. Sheets, S. Malik, A. Mihal,
A. Sangiovanni-Vincentelli and M. Sgroi, “Addressing
the System-on-a-Chip Interconnect Woes Through
Communication-Based Design”, DAC’01, pp. 667-672.

[11] J. A. Roy, F. Koushanfar and I. L. Markov, “EPIC:
Ending Piracy of Integrated Circuits,” DATE, pp.
1069-1074, 2008.

[12] B. Schneier, Applied Cryptography. John Wiley &
Sons, 1996.

[13] V. V. Shende, A. K. Prasad, I. L. Markov and J. P.
Hayes, “Synthesis of Reversible Logic Circuits”, IEEE

TCAD 22(6), pp. 710-722, 2003.

[14] M. Sgroi, L. Lavagno and A. Sangiovanni-Vincentelli,
“Formal Models for Embedded System Design”, IEEE

Design and Test of Computers 17(2), pp. 14-27, 2000.

[15] S. Trimberger, “Trusted Design in FPGAs”, DAC, pp.
5-8, 2007.

