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Abstract

With the end of clock-frequency scaling, parallelism has
emerged as the key driver of chip-performance growth. Yet,
several factors undermine efficient simultaneous use of on-
chip resources, which continue scaling with Moore’s law.
These factors are often due to sequential dependencies, as
illustrated by Amdahl’s law.

Quantifying achievable parallelism can help prevent fu-
tile programming efforts and guide innovation toward the
most significant challenges. To complement Amdahl’s law,
we focus on stream processing and quantify performance
losses due to stochastic runtimes. Using spectral theory of
random matrices, we derive new analytical results and vali-
date them by numerical simulations. These results allow us
to explore unique benefits of stochasticity and show that they
outweigh the costs for software streams.

Categories and Subject Descriptors: B.8.2 [Performance
and Reliability] Performance Analysis and Design Aids
General terms: Algorithms, Design, Performance, Theory
Keywords: Stream computing, latency, stochasticity

1 Introduction

Numerous studies and industry practice show that paral-
lel processing can significantly improve power-performance
trade-offs and boost chip performance beyond clock-
frequency limitations. Some applications naturally exhibit
parallelism, but most resist it. Achieving efficient paral-
lelism through hardware engineering and improved software
stack is a key challenge in electronic system design [3].

Past experience with attempts at greater parallelism sug-
gests a recurring pattern — diminishing returns — exem-
plified by Amdahl’s law [2]. This law assumes a chain of
tasks and upper-bounds the expected overall performance
improvement when only one task is improved. It was gen-
eralized for multiple active tasks in [1]. A key result is
that narrow focus on component improvement usually gives
a smaller benefit than intuitively expected. Amdahl’s law
also shows that each new processor contributes less usable
power than the previous processor. Applied to software pro-
grams with sequential dependencies, Amdahl’s law helps
determine where speed-ups would be most beneficial.

Single-chip and full-system performance can be scaled
significantly through streaming — a form of parallelism
achieved by processing several dependent tasks simultane-
ously on unrelated data, such that job k + 1 can commence
before job k is finished. Streaming is effective in reconfig-
urable systems [11] and when each processing stage is im-
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plemented in dedicated hardware [24], e.g., 200 specialized
stages in modern GPU pipelines. Wireless communications,
cryptography, and video decoding are processed by deep
pipelines with such dedicated stages as FFT, DCT, convo-
lution, Viterbi coding, AES, motion estimation. Dedicated
circuits and task-specific CPUs with ISA extensions offer
greater performance and lower power than generic CPUs.

To limit idle time and power consumption of streams,
stage execution times must be balanced. For example, an in-
order pipeline with execution times 1,2,3 is 33% idle. Per-
fect balance can be impossible with irregular input [8, 11,
24], e.g., audio frames with a busy signal decode faster than
normal voice frames; some video frames exhibit less motion
than others. The performance of GPGPU programs process-
ing irregular data is greatly affected by stochasticity due to
(i) long graphics pipelines and (ii) increasing user-hardware
separation encouraged by CUDA programming. Stochastic
processing rates for the IBM/Sony/Toshiba Cell processor
[8] can be traced to data dependencies, nonuniform mem-
ory access, cache misses, etc. Additionally, randomized al-
gorithms (simulated annealing, Fiduccia-Mattheyses netlist
partitioning and Boolean SAT solvers with random restarts)
exhibit stochastic runtimes.

Our work quantifies losses in stream processing effi-
ciency due to stochastic execution times. We analytically
derive new trends and observe very good fits to numeri-
cal simulations. One remarkable trend is observed in an
Amdahl-like setting with a single bottleneck in a sequen-
tial chain of processing stages, except that all stages can be
active at once when processing streaming data. Here, we
analytically derive and numerically confirm an unexpected
phase-transition — speeding up a bottleneck (by allocating
greater CPU resources) brings (i) diminishing returns until
the threshold is reached and (ii) no returns past the thresh-
old, even when the bottleneck is improved. These trends hold
for a broad range of stage-time distributions.

In addition to the costs of stochasticity in stream pro-
cessing, its benefits should be quantified as well. To this
end, stochastic runtimes of randomized algorithms offer a
unique opportunity for parallelism — mean latencies can be
reduced by launching independent runs, waiting for the first
run to complete, and terminating remaining runs. Our ana-
lytical results enable a comparison of costs and benefits of
stochasticity in improving bottlenecks of software streams.

The remaining material is organized as follows. Basic
concepts and terminology are reviewed in Section 2 along
with relevant literature. Section 3 shows how to calculate
end-to-end latency of deterministic streams and contrasts the
use of queuing theory and random-matrix theory in the anal-
ysis of stochastic streams. Sections 4 and 5 derive the cost of
stochasticity for balanced and unbalanced streams, resp. The
assumption of exponential distributions made to derive key
results is overcome in Section 6. In Section 7, we quantify
the benefits of stochasticity for software streams and com-
pare them to the costs. Conclusions are given in Section 8.



2 End-to-end Latency Analysis

Given a stream with n simultaneously active stages shown
in Figure 1, we evaluate its performance on a batch of m in-
dependent jobs (audio or video frames, network traffic, etc).
Each job starts at the first stage and advances sequentially
through the remaining stages — once job k has been pro-
cessed by stage j, it is queued up for stage j + 1 and pro-
cessed once job k−1 clears that stage (this is formalized in
Section 3). Executions occur in-order, and inter-stage FIFOs
are assumed sufficiently large (in practice, buffer contents
can be spilled to secondary storage [11, Section 4.5]). Our
key performance metric is end-to-end latency (EEL) l(m,n)
— the completion time of the last (m-th) job at the last (n-
th) stage. Figure 1 illustrates a three-stage stream and the
emergence of idle periods between jobs. Unlike in [10], (i)
no end-to-end latency deadlines are imposed and, (ii) our
FIFO inter-stage queuing model does not provision for ex-
plicit communication, simplifying EEL computations.
Stochastic stage completion times arise in several con-
texts [8, 11, 24]: (i) sensitivity of runtime to the complex-
ity of input data, (ii) non-determinism due to randomized
algorithms, shared resources, interrupts, and cache misses,
as well as (iii) the lack of accurate information about (pos-
sibly deterministic) stage completion times. These diverse
circumstances are analytically modeled by random varibles
for stage completion times, making EEL a random variable.

The main objective in this work is to quantify the impact
of the probability distributions of individual stage times on
the end-to-end latency statistic. We seek to characterize the
mean end-to-end latency (MEEL), the variance, and when-
ever possible provide a complete analytical description of
EEL via its probability distribution.
Closest related work by Rajsbaum and Sidi [25] and, more
recently, by Lipman and Stout [20], studied the impact of
random processing times and transmission delays on the av-
erage number of computational steps executed by a proces-
sor in the network per unit time when attempting to syn-
chronize over a distributed network. Our work differs in two
notable ways. First, instead of bounds, we obtain exact an-
swers. Second, while we start off our exposition in terms of
exponential probability distributions, we later conclude that
the specific form of the probability distributions matters less
than anticipated. In particular, the new scaling phenomena
we discover for the EEL statistic hold for a broad class of
stage-time probability distributions.
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Figure 1: A timing diagram of a stream processor. Idle peri-
ods are indicated with red crosses.

Performance bottlenecks are of particular interest in our
work, for the same reasons as they are in Amdahl’s law.
However, in the context of stream processing with balanced
stages and stochastic stage times, the time distribution of a
bottleneck stage may exhibit a greater variance or longer
tail. This observation motivates designers to collect run-
time statistics as in [7] so that such bottleneck stages can
be identified and their impact mitigated, e.g., by allocating
additional compute resources.1 In practice, each stage may
exhibit a different runtime distribution, whereas hardware
designers, compiler experts and software developers have no
simple way to locate bottlenecks. Even with existing profil-
ing tools, pinpointing the “features” of runtime distribution
(large variance, long tail) that affect end-to-end latency most
remains difficult. Indeed, bottleneck identification and mit-
igation in stochastic streams have so far been more art than
science. Design trade-offs to satisfy power constraints and
resource limitations have been performed by trial and error.

3 Mathematical Background

Deterministic processing streams. Let ∆(k,n) be the stage
time and l(k,n) the end-to-end latency (EEL) for job k ≥ 1
at stage n≥ 1. In-order execution (Section 2) means that job
k can only be active at stage n after (k−1,n) and (k,n−1)
complete. These constraints suggest an O(nk)-time dynamic
programming algorithm for computing l(k,n), based on the
following recursion and straightforward memoization.

l(k,n) = max{l(k−1,n), l(k,n−1)}+∆(k,n) (1)

with l(k,0) = l(0,n) = 0. To solve this recursion, consider
the lattice {(i, j) ∈ Z2|1≤ i≤ k,1≤ j ≤ n}. The following
solution can be proven by induction [16, Section 2],

l(k,n) = max
π(k,n)

∑
(i, j)∈π

∆(i, j) (2)

Here, π(k,n) is the set of all monotonic lattice paths of
length k + n− 1 from (1,1) to (k,n), as shown in Figure
2. These monotonic paths capture all possible critical paths
during stream’s execution. We give closed-form expressions
for l(k,n) for two cases in discussions after Formulas 6 and
12, and contrast them with results for the stochastic case.

1If stage times are independent, then processing the same data at the same
stage on multiple processors (and using the first available result) can reduce
variance and shorten the tail of the resulting time distribution.
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Figure 2: Monotonic paths (1,1)→ (m,n) used to model
end-to-end latency from Figure 1 by Formula 2 with k = m.



Stochastic queuing theory [16] studies the statistics of For-
mula 2 when m� n and vice versa. For stream process-
ing, this assumption can be justified in the traditional set-
ting where the number of stream stages remains limited, i.e.,
n = O(1), but the number of jobs is large. Under these as-
sumptions EEL is normally distributed via the law of large
numbers [16]. Consequently, the asymptotic scaling of the
mean is straightforward, and the impact of a small num-
ber of bottlenecks is what one would intuitively expect. We
note that the “interacting-particle system” interpretation [26]
used by queuing theory simplifies the analysis by neglect-
ing the interaction between stages — this is a reasonable
assumption when m� n or n� m, but not when n and m
are both small or when both are large.

Numerous parallel cores can be useful in deep streams
when the number of streaming jobs is sufficiently high. To
this end, the RAMP project at Berkeley is developing a
massive FPGA-based emulator to study large-scale behav-
ior of many-core systems [11], recently reaching the 1008-
processor milestone [6]. However, current supercomputers
integrate 300,000 cores, and “supercomputers with 100 mil-
lion cores are coming by 2018” [28]. This motivates our
focus on analytical estimates. When both n and m are large
in the stream model of Section 2, the interactions between
stochastic stage-time distributions accumulate, and the as-
sumptions made in queuing theory are no longer valid (see
discussion after Formula 6). The Gaussian distribution pre-
dicted by queuing theory transitions into the type-2 Tracy-
Widom distribution studied in the spectral theory of random
matrices [18, 19], and the asymptotic scaling of variance
changes as well. Figure 3 contrasts the two distributions.
The type-2 Tracy-Widom distribution (TW2) describes
the largest eigenvalue of random Hermitian matrices [15]
and arises in combinatorics. If π is a random n-element
permutation, then the length of the longest increasing sub-
sequence of π converges (with appropriate scaling and re-
centering) to the TW2 distribution as n → ∞ [4]. For
exponentially-distributed stage times, Formula 2 is related
to the LONGEST INCREASING SUBSEQUENCE PROBLEM.
Empirical evidence in [12, 14] suggests viewing the TW2
distribution as a nonlinear variant of the law of large num-
bers for EEL. Thus, we use TW2 and related mathematics to
perform accurate analysis of stochastic streams.
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Figure 3: The Tracy-Widom and normal distributions.

4 Analysis of Balanced Stochastic Streams

The research strategy pursued in this work is to initiate
analysis in terms of balanced exponentially distributed stage
times. For λ > 0, we consider the distribution with the pdf

f (t;λ) = (1/λ)exp(−t/λ), t ≥ 0, (3)

where the mean and standard deviation are λ. We extend
key results to a broader class of probability distributions in
Section 6, but note here that exponential distributions are the
worst from an information-theoretic perspective.

In a practical setting, we might not know the entire
stage-time distribution, but we can usually estimate its mean.
From the many probability distributions with a given mean,
we distinguish the unique distribution that maximizes the
Shannon entropy2 because it offers the most random proba-
bilistic model subject to what is known. Among all proba-
bility distributions supported on t ≥ 0 with mean λ, the ex-
ponential distribution exhibits maximum entropy [9, Chap-
ter 11]. This worst-case information-theoretic argument was
previously used by Rajsbaum and Sidi [25] to motivate the
focus on exponential distributions in a setting related to ours.
The cost of stochasticity. Assume n stages with times that
are independent and exponentially distributed with parame-
ter λ > 0. Let Gn,m be an n×m complex-valued matrix with
independent, normally distributed entries with mean 0 and
variance 1. Let Sn,m = Gn,mG∗n,m. Johansson [18] shows that
l(m,n) and the largest eigenvalue λmax of Sn,m have the same
distribution:

l(m,n)∼ λmax(Sn,m) ∀m,n. (4)

Since the TW2 distribution asymptotically describes λmax
[19], we are able to highlight the important qualitative trends
of l(m,n) (derivation omitted due to page limitation).

E [l(n,m)] = λ(
√

n+
√

m)2−1.7711λ
(
√

m+
√

n)4/3

(mn)1/6

(5)

Var [l(n,m)] = 0.8132λ
2

(
(
√

m+
√

n)4/3

(mn)1/6

)2

(6)

Figure 4 illustrates predicted scaling behavior. To
this end, note that m identical jobs streamed through
n stages with identical deterministic latencies λ take
λ(n + m) time. But MEEL in the stochastic case scales as
λ(
√

n+
√

m)2 = λ(n+m+2
√

nm).

Hence, the cost of stochasticity scales as 2λ
√

nm.

Observe that for n� m or m� n, the term 2λ
√

nm is
asymptotically negligible because 2

√
nm = o(n + m), but it

may contribute up to 50% of EEL when n = Θ(m). This
first-order result is alluded to in the seminal paper on queu-
ing theory by Glynn and Whitt [16]. However, the law of
vanishing returns stated next is new and exploits results from
random-matrix theory [5].

2A single number that is commonly used to measure the amount of uncer-
tainty contained in a probability distribution [9].

MEAN VARIANCE
n m Experiment Theory Experiment Theory
5 5 13.1024 12.3685 9.4351 15.0981
10 10 30.9954 30.3849 18.6033 23.9668
20 20 68.3172 67.8858 33.0268 38.0449
40 40 145.0274 144.7371 55.1251 60.3926
80 80 300.9902 300.7699 90.0644 95.8673

160 160 615.9515 615.7717 148.8302 152.1799
320 320 1249.4124 1249.4742 236.0294 241.5705
480 480 1885.7545 1885.0567 311.7331 316.5469
640 640 2521.6221 2521.5399 374.6064 383.4693
1000 1000 3955.4348 3955.3710 506.5496 516.3498

Table 1: Empirical mean and variance of end-to-end latency,
computed over 1000 Monte-Carlo trials, compared to theo-
retical predictions in Formulas 5 and 6, respectively.



20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

n = # stages

E
nd

−
to

−
en

d 
la

te
nc

y

 

 
Stoch.: m = 25
Determ.: m = 25
Stoch.: m = 100
Determ.: m = 100

Figure 4: Theoretical scaling of mean end-to-end latency
with the number of stages for exponentially distributed stage
times. Solid lines illustrate Formula 5, and error bars give
standard deviation according to Equation 6. For comparison,
dashed lines show latencies in a deterministic stream.

A law of vanishing returns. Suppose that n−1 stage times
are independent and exponentially distributed with param-
eter λ = 1, but the one remaining bottleneck stage exhibits
exponentially distributed stage-time with λ1 > 1. Equation
4 still holds, except that results from [5] imply a phase tran-
sition (derivation omitted):

E
[

l(m,n)
n

]
≈


(1+

√m
n ) if λ1 ≤ 1+

√ n
m

λ1
m
n

(
1+ n/m

λ1−1

)
otherwise.

(7)

Var
[

l(m,n)
n

]
≈


0.8132

n2

(
(
√

m+
√

n)4/3

(mn)1/6

)2
λ1 ≤ 1+

√ n
m

λ2
1

m
n2

(
1− n/m

(λ1−1)2

)
otherwise.

(8)
Here, we have normalized the mean and variance per stage,
so that distribution-dependent higher-order terms can be ne-
glected. Figure 5 illustrates this emergent scaling behavior:
when the mean of the bottleneck-stage time is below the crit-
ical threshold τ = 1+

√
n/m, then, surprisingly, the end-to-

end latency of the system becomes insensitive to changes in
λ1. The same holds for o(n) bottlenecks. This result can
be interpreted as an analog of Amdahl’s law, for stream pro-
cessing with stochastic runtime distributions.
Numerical validation of the formulas presented so far was
performed by extensive Monte-Carlo simulations in Mat-
lab. Table 1 shows excellent agreement between analyt-
ical results and numerical simulations. Figure 6 graphi-
cally illustrates empirical accuracy of our bottleneck predic-
tions. Notice that the errors decrease as parameters grow —
this is expected for asymptotic estimates. The variances in
Table 1 are always over-estimated, betraying (distribution-
dependent) higher-order terms missing from our estimates.

5 Analysis of Unbalanced Stochastic Streams

We now generalize the previous setting by assuming that the
n stage times are independent and exponentially distributed
with different parameters λ1, . . . ,λn. In Section 6, we show
how these results provide insight for the setting where the
streams have balanced means but unbalanced variances.
The cost of stochasticity. As in the context of Relation 4,
let X = Gn,mG∗n,m but now let Σ be a diagonal matrix with
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7 exhibits a phase transition at the critical value τ = 1 +√ n

m . Error bars show standard deviation as per Formula 6.
Dashed lines give a deterministic baseline as in Figure 4.

entries λ1, . . . ,λn (parameters of exponential stage-time dis-
tributions). Let Sn,m = Σ1/2XΣ1/2. Applying the random-
matrix theory [15] to Sn,m we obtain

λmax(Sn,m)−mµn,m
3
√

m σn,m

D−→ TW2, (9)

where D−→ denotes almost sure convergence and TW2 is the
type-2 Tracy-Widom distribution from Section 3. Here, µn,m
and σn,m are given by

µn,m =
1
c

(
1+

1
m

n

∑
i=1

λic
1−λic

)
(10)

σn,m =
1
c3

(
1+

1
m

n

∑
i=1

(
λic

1−λic

)3
)

, (11)

where c is the unique solution in [0,1/max(λ1, . . . ,λn)] of
the equation

1
m

n

∑
i=1

(
λic

1−λic

)2
= 1. (12)

We are able to prove (derivation omitted due to page lim-
itation) that Relation 4 also holds for unbalanced stochas-
tic streams, facilitating accurate analysis of the distribution
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Figure 7: The law of vanishing returns for an unbal-
anced stochastic stream with normally-distributed stage-
times. Empirical datapoints are overlaid against theoretical
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(right axis) of end-to-end latency.

of l(m,n). To this end, note that m identical jobs streamed
through n stages with deterministic latencies λ1≥ λ2≥ . . .≥
λn take ∑

n
i=1 λi + mλ1 time. In contrast, in the stochastic

case, MEEL scales with mµn,m as given by Formula 10, and
the cost of stochasticity scales as

1
c

(
m+

n

∑
i=1

λic
1−λic

)
−

(
n

∑
i=1

λi +mλ1

)
> 0 (13)

where c is the solution of Equation 12.
A law of vanishing returns. Suppose that n−1 stage-times
are independent and exponentially distributed with param-
eters λ1, . . . ,λn−1, while the bottleneck stage time is expo-
nentially distributed with parameter λn > max{λi}. To de-
scribe the bottleneck’s impact on end-to-end latency, we re-
call a very recent result in random-matrix theory [22]. It es-
tablishes that the largest eigenvalue λmax(Sn,m) of Sn,m, con-
structed above, experiences a phase transition at the thresh-
old τ > 0 that is a solution of the equation [15]

n
m

=
1
n

n−1

∑
i=1

(
λi

τ−λi

)2
. (14)

When λn > τ,

E
[

l(m,n)
n

]
≈ 1

n

(
1+

1
m

n−1

∑
i=1

λi

λn−λi

)
(15)

The variance can be similarly computed, but we omit it here.
To translate the results of random-matrix theory into the con-
text of unbalanced streams, we build on sophisticated math-
ematical techniques from [5] (details omitted due to page
limitations) generalized from [18]. We are able to prove
that the above threshold applies to the end-to-end latency
of an unbalanced stochastic stream. Specifically, if the mean
bottleneck-stage time is below the critical threshold τ, then
MEEL of the full system is insensitive to changes in λn. This
result also covers the case of o(n) bottlenecks in an unbal-
anced stream. We have extended all stated results to accom-
modate time-varying λi parameters.

6 Extension to a Broader Class of Distributions

So far, our results assume exponential stage-time distribu-
tions. We now offer several types of evidence suggesting
that these results hold for a broader class of distributions.
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Figure 8: Theoretical predictions for MEEL with exponen-
tially distributed stages and a single bottleneck (λ) compared
to simulation results averaged over 1000 independent trials
for log-normally distributed stages. Equally good fits were
produced up to n = 1000 (not shown).

Theoretical considerations. Similar generalizations have
been extensively studied in random-matrix theory and are
exemplified by the well-known universality conjecture [12].
This conjecture considers matrix Sn,m in Relation 4 and re-
places the Gaussian distribution by an arbitrary distribution
fδ with the same mean and variance. The claim is that the
largest eigenvalue will be described by the same TW2 distri-
bution, as long as the fourth moment of fδ is bounded. This
conjecture is supported by numerical data [12, 14], is com-
monly viewed as a nonlinear law of large numbers for max-
eigenvalues, and mirrors what has been recently proven for
min-eigenvalues by Tao and Vu [27]. We state an analogous
nonlinear law of large numbers for MEEL.
Conjecture: Consider two n-stage stochastic streams where
stage-time distributions are in stochastic order.3 The first
stream exhibits arbitrary stage distributions with means µi,
variances σ2

i and bounded fourth moments. The second
stream exhibits exponential stage-time distributions with pa-
rameters λi = σi and additional linear shifts to adjust their
means to match µi. Then the two streams exhibit the same
cost of stochasticity and the same threshold τ below which
improvements to MEEL latency vanish.4
Empirical evidence for normal distributions. Assume
n− 1 stages with mean µ = 1 and variance i/(n− 1) at the
i-th stage. Let the bottleneck occur at the n-th stage, nor-
mally distributed with mean µ = 1 and variance λ2. The
cost of stochasticity can be computed using Formula 13 with
λi = i/(n−1) and predicts experimental results with 5% ac-
curacy. The phase-transition threshold predicted by Equa-
tion 14 matches empirical results, as shown in Figure 7.
Empirical evidence for log-normal distributions with pdf

f (t;µ,σ) =
1

tσ
√

2π
exp
(
− (log t−µ)2

2σ2

)
, t > 0. (16)

We set µ = log(λ/
√

2), σ =
√

log2 to match the mean and
variance of the exponential distribution with parameter λ.
Our earlier predictions are validated in this case by simula-
tion data shown in Figure 8.
Empirical evidence for truncated power-law distributions
(not shown here) also confirms phase transitions. However,
as the amount of truncation grows, the stochastic phase tran-
sition converges to the deterministic phase transition.

3For real random variables A and B, A≤ B when Pr[A > x]≤ Pr[B > x] ∀x.
4Asymptotic equality neglects distribution-dependent higher-order terms.



7 Comparing Costs to Benefits of Stochasticity

Recall that conclusions can be drawn from Amdahl’s law
that are relevant to both hardware design and software op-
timization. In a similar spirit, we now consider software
streams with stage-times that are randomized even for iden-
tical input data. In commercial EDA tool-chains, exam-
ples include (i) random restarts in leading DPLL-style SAT-
solvers, (ii) the Fiduccia-Mattheyses heuristic for netlist par-
titioning used with randomized initial partitions, and (iii) the
framework of simulated annealing, used in circuit placement
and chip floorplanning, where move selection during local
search is randomized. Additionally, numerical EDA algo-
rithms often exhibit very different convergence for alterna-
tive settings and algorithms, and trying multiple settings on
identical inputs in parallel was shown useful [13].

Using additional computational cores can reduce the
means of the stochastic stage-times without reworking the
algorithms. This is achieved by running multiple indepen-
dent jobs on identical inputs. Due to stochasticity, some jobs
will finish earlier, at which point the other equivalent jobs
can be terminated. Here we observe that the minimum of
s independent, exponentially-distributed random variables
with parameters λ1 . . .λs (as in Formula 3) is also exponen-
tially distributed, with parameter 1/(1/λ1 + ...+1/λs). For
s independent identical distributions, the mean is λ/s.

In the setting of Section 5, consider an exponentially dis-
tributed bottleneck stage with mean λn. By the law of van-
ishing returns, only dλn/τe< dλn/max(λ1, . . . ,λn−1)e iden-
tical cores achieve the maximum possible gain, and no ad-
ditional independent starts can improve MEEL, despite im-
proving the bottleneck.5 In Figure 9, this technique is greed-
ily applied to two bottlenecks (λ1 = 15, λ2 = 30). A more
effective balanced allocation splits s available processors
among k bottlenecks as Σk

i si = s so as to minimize Σk
i (λi/si).

The benefits of stochasticity in software streams can be
contrasted with its costs. For example, in Figure 5 at λ = 5
the costs (gaps between solid and dashed lines) are small,
but the benefits can produce a net 2× reduction in MEEL.

8 Conclusions

Our work establishes a far-reaching connection between (i)
the performance evaluation of stream processing and (ii) the
spectral theory of random matrices [12, 14, 18, 19, 27]. The
analytical models we derived for the costs of stochasticity in
stream processing are confirmed by numerical simulations
with high accuracy and exhibit previously unknown scaling
trends, such as a a law of vanishing returns. To the best
of our knowledge, relevant results from queuing theory [16]
only cover the case of balanced streams, and only to the
first order. In contrast, our analytical predictions agree with
empirical data for both balanced and unbalanced stochastic
streams with several types of stage-time distributions, where
only the mean and the variance seem to affect key param-
eters of interest. In the random-matrix setting [22], it has
been theoretically established that correlations only affect
(negligible) higher-order terms.

We have produced specific guidelines on how to allocate
parallel cores to speed-up bottlenecks in stochastic software
streams. In this context, we illustrate how the benefits of
stochastic runtimes may outweigh their adverse impact on
end-to-end latency of stream processors.

5Our analysis neglects higher-order terms. Empirically, a very small im-
provement may be observed, as in Figures 6 and 8.
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