ComPLx: A Competitive Primal-dual Lagrange
Optimization for Global Placement

Myung-Chul Kim and Igor L. Markov
University of Michigan, EECS Department, Ann Arbor, Ml 48109-2121
mckima@umich.edu, imarkov@eecs.umich.edu

ABSTRACT

We develop a projected-subgradient primal-dual Lagrange
optimization for global placement, that can be instantiated
with a variety of interconnect models. It decomposes the

original non-convex problem into “more convex” sub-problems.

It generalizes the recent SimPL, SimPLR and Ripple algo-
rithms and extends them. Empirically, ComPLx outper-
forms all published placers in runtime and performance on
ISPD 2005 and 2006 benchmarks.

Categories and Subject Descriptors

B.7.2 [Hardware, Integrated Circuits]: Design Aids—
Placement and routing

General Terms

Algorithms, Design, Performance

Keywords

Algorithms, optimization, physical design, placement

1. INTRODUCTION

The success of global placement determines all aspects of
modern IC layout and physical synthesis [5] because it con-
trols the amount of interconnect, which increasingly domi-
nates on-chip resources and circuit performance [22]. How-
ever, the diverse algorithmic challenges posed by global place-
ment and its complexity continue to surprise researchers [26].
Current algorithms still lag behind manual layout on circuits
with structured components [34], do not always scale to ex-
tremely large circuits and are inconsistent in their handling
of objective functions and various constraints. Analysis and
comparisons of placement algorithms have been mostly em-
pirical [26], with little formal justification.

A recent approach to global placement promises to sup-
port a variety of discrete and continuous constraints and
was extended to handle routability-driven placement. Rep-
resented by the SimPL [23] and SimPLR [24] algorithms,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2012, June 3-7, 2012, San Francisco, California, USA.

Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

this approach consistently outperforms previous state of the
art in speed and solution quality, is amenable to thread-
level and instruction-level parallelism, requires only a mod-
est amount of code, and was successfully re-implemented by
independent researchers (Ripple [18]). SimPL was extended
to power-aware placement with integrated clock-network syn-
thesis in [25]. However, a convincing mathematical founda-
tion for this empirical success was lacking. While the SimPL
approach is based on quadratic placement, the significance
of this connection has remained unclear vis-a-vis techniques
based on the log-sum-exp interconnect model [29].

Our contributions can be summarized as follows

e A projected subgradient primal-dual Lagrange opti-
mization (ComPLx) for global placement compatible
with a variety of interconnect models, including lin-
earized quadratic, log-sum-exp, etc.

e Convergence analysis and ensuing enhancements.

e Casting existing algorithms SimPL [23], SimPLR [24]
and Ripple [18] as special cases of ComPLx. In partic-
ular, ComPLx inherits their competitiveness and lends
them mathematical substantiation.

e Algorithmic extensions for mixed-size, as well as tim-
ing and power-driven placement.

e Empirical validation of the theoretical framework un-
derlying ComPLx. On ISPD 2005 benchmarks, Com-
PLx is 10% faster than FastPlace [32] (including de-
tailed placement runtime). It outperforms SimPL and
RQL (the best published placers) by 1%. On ISPD
2006 benchmarks, ComPLx outperforms the leading
placer RQL [33] by 1% in terms of scaled HPWL while
running 2.5x faster.

In the remainder of the paper, Section 2 reviews neces-
sary background. Section 3 introduces our primal-dual La-
grangian relaxation ComPLx, whose convergence is discussed
in Section 4. Section 5 points out that the SimPL, Sim-
PLR and Ripple algorithms are special cases of ComPLx.
It then extends ComPLx to mixed-size and timing-driven
placement. Section 6 presents empirical studies with im-
provements over these algorithms. Conclusions are given
in Section 7. Comparisons to other primal-dual Lagrange
optimizations are discussed in Section S4.

2. BACKGROUND

Global placement [22] of a netlist N' = (E,V) with nets
E and n nodes (cells) V seeks a set of planar node loca-
tions (Z,%) € [Tmin, Tmaz]|" X [Ymin, Ymaz]" that minimize

the weighted Half-Perimeter WireLength (wWHPWL). For lo-
cations ¥ = {x;}, ¥ = {y:} and net weights & = {w;},
wHPWLN (Z, ¥)= wHPWLx (£)+wHPWLA (%), where

wHPW Ly (%) = EeeEwe[meax x; — mein Z4] (1)

This piecewise-linear function lends itself to linear program-
ming (LP) and min-cost max-flows, but these techniques
have been successful only for smaller netlists. In large-
scale placement, HPWL is approximated by convex twice-
differentiable functions ® (&%, %) and optimized numerically
by linear or nonlinear Conjugate Gradient.

Quadratic approximations are used in many placers

Do(Z,7) = & QuT + fo + 7 Qui + f47 (2)

with matrices Qz, @y derived from the netlist and vectors

f;, fy that reflect connections to fixed objects. When suffi-
ciently many nodes in a connected netlist are fixed, ®¢ is
strictly convex and can be optimized quickly. To approx-
imate the HPWL by quadratic functions, one uses a lin-
earization technique [30], adjusting the approximations at
every global placement iteration. In particular, single-edge
2 wij(zi—z;)*
|x;—ac;\+s
where the primed values are constants based on the result
of the last iteration (a.k.a. the last iterate). Multipin nets
are decomposed into sets of edges using stars, cliques or the
Bound2Bound model [31]. Other differentiable approxima-
tions to the HPWL objective are outlined in supplementary
material (Section S1).

terms of the form w;;(x; — x;)° are changed to

Constraints in placement include legality, target utilization,
routability, resource-type constraints, etc.

(#,9)eC

which prohibit multiple pairs (z;,y;) from concentrating in
small regions. The demands for physical on-chip resources
(gate area or number of routes in a region) must not ex-
ceed available supplies/design constraint (area for placing
logic gates, target utilization, number of routing tracks) [22].
This is typically expressed by inequalities, e.g., allowing at
most Cj , placeable objects in grid-cell (4, k). These inequal-
ities are easy to satisfy when no optimization is performed.
Unlike @, the constraints are noncovex, as illustrated by
constraints on locations of two non-overlapping rectangles.
Another type of constraints — routability of modern IC
layouts — is NP-hard to evaluate with sufficient accuracy
[22]. Some layout regions may be blocked by fixed obsta-
cles and unavailable to (z;,y;), leading to discrete choices,
such as placing an object on one side of an obstacle. This
inhibits smooth convex optimization and, historically, mo-
tivated specialized global-placement techniques tailored to
variant objective functions and constraints [26].

3. APRIMAL-DUAL LAGRANGE METHOD

We propose a general method for handling constraints
in global placement with a variety of possible interconnect
models, and show how to decompose the original non-convex
problem into “more convex” sub-problems.

A Lagrangian relaxation of global placement can be con-
structed if constraints are specified as equalities II(Z, §) = 0.
Since supply-demand inequalities are usually given instead,
the more general Karush-Kuhn-Tucker conditions may at

first seem more relevant.! However, working with supply-
demand inequalities directly is difficult because they are
specified algorithmically, not as closed-form expressions in
(Z,7). Without derivatives, one resorts to subgradient op-
timization [6], while the nature of the constraints calls for
approximation. Placement techniques based on non-convex
optimization [20, 9, 12] fit demand distribution to smooth
functions using kernel-density estimation, and this facilitates
gradient estimation. Each such step is laborious, and many
steps may be required because, after moving in the gradi-
ent direction, one may need to “make turns” (as illustrated
by moving around a rectangular obstacle). The reliance on
local subgradient information in [20, 12] is common in ana-
lytical placement and with possible exceptions of Kraftwerk
[31] and mPL6 [9] which estimate subgradients by solving
second-order linear elliptic PDEs with global supply-demand
information. Solutions of these PDEs can be written as
convolutions of the density function with a fixed Green’s
function G(s,t) (dependent on boundary conditions), which
sometimes vanishes away from s = ¢t. Further, local subgra-
dient computations leave undefined the trade-off between
demand-distribution subgradients and the gradients of the
objective function. This force modulation problem was artic-
ulated in [33], but addressed there with ad hoc thresholding.
In contrast to other methods, our subgradients point to a
closest C-feasible solution, and their magnitude is modulated
by respective distance. Thus, we define Il¢(Z,) as the Li-
distance from (Z, %) to a closest C-feasible solution.

He(@) = _min_[I2,5) — (@, 7.)ls

T Y

= min (||& - @l + 17— Flh) (3)

(&, 7%)

Clearly, Il¢(Z,9) =0 < (&,9) € C. Therefore, in addition
to primary variables (&,%), we introduce one dual variable
(multiplier) A > 0, and establish the following Lagrangian

Lac(Z,7,A) = O(Z,) + X (T,) (4)

We use Li-norms so that costs and penalties are expressed
in meters and can be compared. Hence, A is dimensionless.

Primal-dual Lagrangian relaxation [3] alternates mini-
mization over the primal variables with maximization over
the dual variable(s). min ®(Z, %) subject to (Z,%) € C can
be found by sequential unconstrained optimization

max min Lo c(Z, 7, \) (5)
A (3,9)

Starting with Ao = 0, the first primal iterate is produced
by minimization of ®(Z, ¥) (using quadratic optimization or
non-linear Conjugate Gradient, depending on the function).
At subsequent iterations, primal optimization must also ac-
count for the penalty term. A straightforward argument by
contradiction shows that for A\ < Ag41
min Lo .c(Z, §, Ak) < min Lo ¢(Z, §, Ae+1) (6)
(Z,9) (Z,9)
As X increases, so does the sensitivity of Lo ¢ to II. There-
fore, the minimization of L& ¢ affects the II term more, and
this term decreases. However, since the minimized value of

nequalities can also be converted into equations by adding
slack variables, but we avoid this common technique, to limit
computational complexity.

Ly ¢ increases (per Formula 6), ® must increase. Eventu-
ally, (%, %) become C-feasible (or very close to), making the
Lagrangian insensitive to A and indicating that an optimum
is near. The following weak duality bounds hold for any C-
feasible solution (Z°,¢°) and any iterate (&, %) after primal
optimization.

(Z,) < Loc(Z,7,N) < Lac(@,§°,A) = 2(&°,§°) (7)

The first < is due to A > 0 in Formula 4. The second < is
due to (%, %) being argmin from Formula 5 and the third =
is due to II(Z°, §°) = 0 (C-feasible). The second inequality is
strict unless (Z, §) is C-infeasible, hence ®(Z, 7)) < ®(Z°,7°).
The duality gap is

Aq’ :¢(f07g@)7¢(f7g) (8)
minimized over best available primal feasible (Z°,4°) and
(Z,7) at a given point during optimization.
Approximating the penalty term allows us to replace

the nonconvex Lagrangian by a convex one. Here we use the
feasibility projection

Pe(Z,9) = argmingg_ g)ecll(@9) = (Ze,)l (9)

that finds a closest C-feasible approximation (performs pseudo-

legalization) of (Z,%).% Since Pe (&, §') is C-feasible, ®(Z,) <
@ (Pe(&,7')) by Inequalities 7. Given that @ is continuous,
I(Z,9) — Pe(Z,9)|l1 — 0 would necessitate ®(Pe(Z,7)) —
®(Z,9) — 0. Hence, ®(Pc(Z,7)) must generally decrease,
providing upper bounds on final placement cost.

After finding C-feasible anchor locations (2°,9°) = Pc(Z,),
we establish the simplified Lagrangian

‘C?I)(f?gv)‘):(b(fag)+)‘||(‘f?g)i(‘fovgo)”l (10)

To minimize it with respect to fixed (Z°,%°) and A, the L;-
term can be approximated by the same type of function as
® (see Section 5). Thus, for quadratic ®, the optimality
condition VLG (Z,9,A) = 0 turns into a system of linear
equations. For other functional forms, such as the log-sum-
exp expressions, one can minimize £g(Z, ¥, A) using the non-
linear Conjugate Gradient method or other known alterna-
tives.® In addition to being (strictly) convex, £%(Z, 7, \) is
usually separable into its and y components which can be
optimized independently. One can verify Inequalities 6 and
7 for L& (Z, Y, A) subject to (Z°,7°) = Pe(Z, 7).

The ComPLx framework re-solves VLG (Z,%,\) = 0 and
Pe(#,9) = 0 until convergence. The result of global place-
ment can be read from the last iterate (&%) or the last
C-feasible iterate (Z°,%°) as discussed in Section 4.

4. CONVERGENCE ANALYSIS

It is sufficient for P to find a C-feasible solution that is
reasonably close, rather than closest, to a given (Z,%).* Such
approximate projected subgradient methods are relatively re-
cent in the operations-research literature [16, Section 1] but

are proven to converge as long as P¢ does not increase the

20ne can additionally require breaking ties toward smaller
values of ® (or even some trade-off with ®), but this does
not seem necessary for practical success (Section 6).

3Techniques such as Newton’s method that approximate the
objective f by quadratic functions based on Hessian(f) es-
sentially perform sequential quadratic optimization.

4Section S2 points out that this is a “more convex” problem.

8.5e8 6.0e9
8.0e8 5.0e9 _
c
(0]
3 :Ze: | 4000 &
.0e
5 3069 o
3 6.5e8 S
< 6.0e8] 2.0e9 %
K [
5.568. "x,‘* / 1.0e9
.”m
5.0e8 : ! 0.0e0
0 10 20 30 40 50
lterations

Figure 1: Progressions of £ (the total Lagrangian),
® (netlist interconnect), and II (L;-distance to legal)
over ComPLx iterations on BIGBLUE4. L increases
steeply in the early placement iterations, as)\ in-
creases. Il decreases while ® gradually increases.

distance to the set C and typically reduces it during itera-
tions [7, Sections 2 and 3]. In particular, Pc should return
its input when the input is C-feasible. Convergence can be
improved if Pe exhibits reasonable fidelity with respect to
the exact feasibility projection, and is self-consistent

(@, 9) — Pe(@, 7))l > I(Z,7) — Pe(@ gl (11)

In other words, if (&,¢’) is closer to P¢(%,%) than (,7),
then it should also be closer to Pc(#,7’). The ComPLx
implementation of Pe reviewed in Section 5 handles both
standard cells and macros. It is self-consistent through al-
most all iterations, as shown in Section S2. Figure 1 illus-
trates changes in L, Pk, and I1x over ComPLx iterations on
BIGBLUE4. The same trends show on all other benchmarks,
validating the discussion in Section 3.

Global placement iterations stop when a C-feasible value
is reached, which must happen when A\ exceeds its optimal
value. But the resulting solution may be far from opti-
mal. To avoid this, we propose to improve the efficiency
of the first few iterations, since the first iterates are crucial
to the overall success (given that we are solving a noncon-
vex problem overall). The earliest non-zero value of A must
be sufficiently small so that ®(Z,7) > AMI(Z,7), to make
sure that Lo ¢(Z, 7, A) is dominated by the convex cost term
rather than the penalty term. Hence, we initially select
A1 = ®/100II. This calculation is supported by the fact
that II and ® are expressed in the same units (meters). To
avoid premature progress, a maximum increase in A can be
imposed, say 100% per iteration.

A1 = min{?)\k, Ak + (HiﬁLl/Hk)h} (12)

where h is a scaling constant. A increases proportionally to
II changes to ensure that IT decreases by a sufficient amount,
as ® increases. Considering the number of iterations until A
reaches its optimal value, there is no explicit dependency on
the number of variables. In practice, the maximal A values
and the iteration count do not grow with the size of the
problem instance as shown in Section S3.

Convergence criteria can be defined in terms of (&, §) =
[|(Z,9) — Pc(Z, 4)||1, rather than £ — when the placement is
close to C-feasible, a detailed placer can produce optimized
site-aligned legal locations. Given that pseudo-legalization
(Z°,9°) = Pe(Z,7) is performed at every iteration, one can
run detailed placement on (Z°,%°) rather than on (Z,7).
This would allow an even more aggressive convergence crite-
rion in terms of the duality gap As = ®(2°,7°) — ®(&, 7).°
To substantiate this idea, we observe that performing de-
tailed placement on a feasible solution (Z°,%°) should not
increase costs (rather the opposite), whereas performing de-
tailed placement on (&, %) is likely to (as observed in prac-
tice). This observation upper-bounds the difference in final
costs between these two scenarios by Ag.

S. SPECIAL CASES AND EXTENSIONS

We now point out that the SimPL [23], SimPLR [24]
and Ripple [18] algorithms are special cases of the proposed
primal-dual Lagrangian relaxation. They implement ® as a
quadratic approximation ®g of HPWL, adjusted at every it-
eration through the linearized Bound2Bound net model [31].
Linearization is also applied to represent the Li-norm in the
penalty term II. To model this term, each movable object is
connected to its anchor location by a pseudonet, contributing
w;(z; —2)? to the overall objective (and a similar y-term),
where w; = ﬁ is based on the last iterate. € > 0 is
used to bound the denominator away from zero and make
the objective function strictly convex. In SimPL and Sim-
PLR, ¢ is calculated as 1.5 times row height.® This matches
Formula 10 if the Li-distance term is approximated by a
linearized quadratic function (Section 2). SimPL, SimPLR
and Ripple maintain a lower and an upper-bound placement
at each iteration, and these placement satisfy conditions in
Formula 7 as seen in [23, Figure 6], [24, Figure 4].

The SimPL [23], SimPLR [24] and Ripple [18] algo-
rithms differ in how they define and implement the feasi-
bility projection P¢. In practice, to identify overfilled bins
with respect to a target utilization/density limit 0 < v < 1
[23, Section 4], a uniform grid is superimposed over the en-
tire layout. Then the feasibility projection seeks to satisfy
the given target utilization/density limit within each grid-
cell. To this end, the SimPL Fe first localizes the changes in
(Z,7) to the smallest rectangular grid-cell sub-arrays that
satisfy a given target utilization/density limit, and then
processes each region by a top-down geometric-partitioning
framework. SimPL alternates (i) piecewise-linear scaling in
z and y directions with (i) spreading locations in each di-
mension to even out density, while preserving the relative
order (determined by sorting). This pseudo-legalization is
discussed in more detail in Section S2 and can be seen as
solving a convex problem in terms of (always-positive) dis-
tances between meighboring x locations (y locations). As a
runtime trade-off, SimPL gradually increases the accuracy of
Pc as the grid-cell size decreases, and we use this feature in
Section 6 to show that Pe does not need to be implemented
precisely. SimPLR and Ripple generally follow the SimPL
techniques, but are concerned with routability in addition to
HPWL. Therefore, they estimate congestion after placement

®As @ is Lipschitz, r(Z, %) — 0 implies Ag — 0.
®In [30], a lower bound on the distance between two modules
is defined as the average module width.

12000

10000

8000

6000

4000

2000

0 A T, T D Y D oo
0 2000 4000 6000 BOOO 10000 12000

Figure 2: Macro shredding for feasibility projection
Pc on NEWBLUEL (an intermediate placement). Red
boxes show the locations of macro cells at the centers
of gravity of constituent cells (shown as green dots).
Standard cells are shown as blue dots.

iterations (SimPLR calls a global router, whereas Ripple es-
timates congestion directly) and modify Pc to produce low-
congestion placements. SimPLR preprocesses Pc by tem-
porarily increasing the dimensions of some movable objects,
so as to enhance geometric separation between them. Rip-
ple distinguishes congestion maps for horizontal and vertical
wiring, and scales minimal-sized rectangular regions differ-
ently each direction. Despite the technical differences, all
these variants compute P¢ by a series of convex optimiza-
tions. The use of feasibility projections is not only common
between SimPL [23], SimPLR [24] and Ripple [18], but also
distinguishes them from other placement algorithms. This
is why SimPL, SimPLR and Ripple are particularly good at
handling nonlinear, nonconvex layout constraints, such as
numerous fixed obstacles present in modern SoC layouts.

Mixed-size placement requires careful accounting for pin
offsets during quadratic optimization (since pin-offsets can
be large in macros), as well as an approximate feasibility
projection P which can handle macros and standard cells.
We have therefore revised and extended the macro shred-
ding technique from [2]. Macro cells are divided into equal-
sized cells (2x2 standard-cell height), but unlike prior work,
ComPLx does not connect constituent cells (shreds) with
fake nets and thus does not modify the linear systems it
solves. The conventional Pc [23] is applied to the shreds,
after which the action of P¢ on the original macro is inter-
polated by averaging the displacement of the shreds. Given
that the conventional Pe [23] mostly preserves the relative
placement of cells and is approximately locally isometric,
the arrays of shreds are transformed into shapes similar to
arrays, as seen in Figure 2. As P¢ seeks to satisfy the given
target utilization (0 < v < 1), additional whitespace is in-
serted among constituent cells. Then the bounding box of
projected locations of shreds outgrows the original macro
cell, creating a halo around the macro, where other cells
cannot be placed. To compensate, we multiply the widths
and heights of constituent cells by /7. Stabilizing macro
positions early is important, as they greatly impact adja-

BENCHMARKS BEST PUBLISHED CoMPLX

as of 02/27/2011 FINEST GRID Pc+=FASTPLACE-DP | DEFAULT CONFIG.
size (# of modules) HPWL (placer) HPWL | Runtime | HPWL Runtime HPWL | Runtime
ADAPTEC1 211K 77.82 (RQL 78.95 3.86 78.39 93.52 77.75 3.09
ADAPTEC2 255K 88.51 (RQL) 89.81 5.23 91.09 162.07 88.76 4.31
ADAPTEC3 452K 207.67 (SimPL) 207.07 11.54 203.70 323.04 206.57 10.75
ADAPTEC4 496K 186.80 (SimPL) 185.13 10.90 188.37 252.40 184.07 9.57
BIGBLUEL 278K 94.98 (RQL) 96.15 7.22 94.78 140.27 95.30 7.00
BIGBLUE2 558K || 145.47 (SimPL) | 144.59 9.91 146.32 200.56 145.87 8.53
BIGBLUE3 1.10M 323.09 (RQL) 352.33 32.52 327.49 629.23 330.74 24.80
BIGBLUE4 2.18M 797.66 (RQL) 787.11 47.87 792.26 961.25 789.45 41.89

| Geomean I T.00x [T0Ix | 1.16x | 1.00x | 26.56x | 1.00x | 1.00x |

Table 1: Legal HPWL (x10e6) and total runtime (in min.) comparison on ISPD 2005 benchmarks. Each run
uses a single thread on a 2.8GHz workstation. Best-published numbers are annotated with the placers that
produced them — SimPL [23] or RQL [33]. mPL6 and NTUPlace3 were also considered in this comparison.
We regenerated placements of SimPL without a cell-orientation optimization.

cent standard cells. To accelerate the convergence of macro
cells and decrease their displacement during legalization, we
extend Formulae 4 and 10 with separate, larger A values for
each macro, computed as the default A times the ratio of the
size of macro cell to the average standard-cell size. As seen in
Figure 2, our mixed-size feasibility projection Pc may leave
small overlaps between macros. Rather than force complete
legalization, we let multiple global placement iterations (in-
cluding Pr) gradually decrease these overlaps. We observe
that as P¢ displaces cells and macros less, the changes in the
shapes of shredded macros also decrease, and this increases
the precision of legalization for macros during Pc. Even if
slight overlaps remain at the end of global placement, they
can be fixed by the detailed placer without undermining
the overall performance. While less sophisticated than algo-
rithms in [10, 11, 35], our mixed-size approximate feasibility
projection Pc is easy to implement and produces very good
results, motivating additional studies.

Extensions for timing- and power-driven placement
traditionally rely on net weights computed from activity
factors and timing slacks [22, Chapter 8]. Net-weighting
schemes in the literature include rigorous, provably conver-
gent methods [8]. Since our mathematical formulation for
global placement in Section 3 accounts for net weights in
®, existing techniques [8] and their provable properties ap-
ply directly. An extension of SimPL with power-driven net
weights is reported in [25]. However, we observe that the
impact of the feasibility projection and detailed placement
suggests revising the penalty term in the Lagrangian. Mini-
mizing L;-distance to C may leave some cells far from their
legal positions, forcing Pc or the detailed placer to displace
them. This may stretch out incident nets, which is unde-
sirable for timing- and power-critical standard cells. Hence,
in the simplified Lagrangian of Formula 10 we weigh the
penalty term by timing/power criticality and replace

M@ §) — @, 5°)|h by MT-[(&9) — (2, 57)])

where | | represents the vector of pointwise distances and ¥
represents the vector of cell-criticalities. Initially, 4 is pop-
ulated with switching activity factors (no cells are critical).
When static timing analysis, performed between placement
iterations, indicates that cell ¢ lies on a critical path (violates
a timing constraint), the cell’s criticality must be increased
~vi = 7i(146), (along with the weights of critical nets in ®).

(13)

6. EMPIRICAL VALIDATION

Our implementation of ComPLx inherits the performance
and runtime advantages of SimPL [23]. Experiments ran on
a 2.8GHz Intel Core-i7 860 Linux server with 8GB RAM, us-
ing one CPU core. Detailed placement was done by FastPlace-
DP [28]. All settings were the same for all benchmarks.

Given that quadratic optimization in SimPL and ComPLx
is optimal, we tried to improve the feasibility projection Pe.
One such attempt used the finest grid during all global place-
ment iterations. In a second attempt, we post-processed the
result of Pc by the detailed placer [28] at each iteration. Our
data in Table 1 show only a marginal improvement, but at
a runtime cost. Vice versa, coarsening the grid speeds up
Pe without undermining solution quality. Thus, no inter-
connect optimization during P¢ is required. While surpris-
ing, this is consistent with the discussion in Section 4 and
can be explained by the known convergence properties of
Primal-dual Lagrange optimization [6, 3]. In practice this
decreases the risk of incorrect implementation. On ISPD
2005 benchmarks, ComPLx outperforms SimPL, sometimes
by a small amount, sometimes significantly. The similarities
are not surprising because ComPLx generalizes SimPL. The
improvements are due to the refined convergence criterion
(Section 4) and improved scheduling of A (A corresponds to
the pseudonet weight in [23]). ComPLx outperforms SimPL
and RQL (the best published placers) by 1%. ComPLx
produces best results on more benchmarks than any prior
placer, while running 10% faster than FastPlace (including
FastPlace-DP runtime in both cases).

Table 2 covers ISPD 2006 benchmarks, which include den-
sity constraints and movable macros, not handled by SimPL.
ComPLx outperforms the best-published placer RQL [33]
by 1% in terms of scaled HPWL (the official contest met-
ric). ComPLx is about 12% faster than FastPlace (including
FastPlace-DP runtime in both cases), as well as 6.88x and
8.47x faster than NTUPlace3 and mPL6, respectively. RQL
is 3.1x faster than mPL6 [33], hence > 2.5x as slow as Com-
PLx (including detailed placement by FastPlace-DP).

The SimPL placer (generalized in this work) was extended
to a routability-driven placer SimPLR in [24] with strong
results on ISPD 2011 benchmarks. Section S5 demonstrates
that ComPLx naturally supports region constraints (Figure
4). Section S6 illustrates timing-driven placement.

Benchmarks [| NTUPL3 | MPL6 RQL CoMPLx
(Ttarget) [12} [9] [33]
ADAPTECH 451.22 431.27 | 443.28 432.60
(0.5) (21.0) (1.09) (9.25) (3.09)
NEWBLUEL 62.65 68.08 64.43 64.71
(0.8) (1.09) (0.14) (0.34) (0.18)
NEWBLUE2 205.45 201.85 199.60 197.24
(0.9) (2.53) (1.52) (1.45) (1.04)
NEWBLUEJ3 277.87 284.11 | 269.33 272.87
(0.8) (0.00) (0.59) (0.07) (0.69)
NEWBLUE4 306.56 300.58 | 308.75 306.00
(0.5) (13.1) (1.63) (15.2) (3.00)
NEWBLUED 509.71 537.14 537.49 540.29
(0.5) (9.56) (1.42) (13.6) (2.58)
NEWBLUEGO 520.31 522.54 515.69 501.90
(0.8) (8.40) (1.40) (4.33) (1.06)
NEWBLUET 1109.6 1084.4 1057.8 1042.2
(0.8) (5.32) (1.14) (2.57) (1.27)
Geomean 1.01x 1.03x 1.01x 1.00x
(2.40) (1.22) (2.30) (1.61)

Table 2: Comparison of scaled HPWL (x10e6) on
ISPD 2006 benchmarks. Overflow penalties are re-
ported in parentheses. RQL results are from [33].

7. CONCLUSIONS

We developed a global placement algorithm ComPLx based
on subgradient projected primal-dual Lagrange optimization.
In its basic form, it consists of (i) interconnect optimiza-
tion, (ii) a feasibility projection Pe that represents place-
ment constraints, (i¢7) a penalty term that includes the La-
grange multiplier A. Our extensions for mixed-size place-
ment handle macros through the feasibility projection Pe
and establish a separate, larger A parameter for each macro.
Timing-driven extensions track separate A for timing-critical
cells and increase A based on criticality (slack). Our baseline
algorithm generalizes recent SimPL [23], SimPLR [24] and
Ripple [18] algorithms and inherits their empirical success.
Vice versa, ComPLx provides mathematical substantiation
and convergence analysis for SimPL, SimPL and Ripple, sug-
gesting improvements and algorithmic extensions.

A key difference from most prior analytical frameworks is
in the spreading mechanism — rather than estimate den-
sity gradients based on local information,” we use a global
feasibility projection Pc. Consequently, the handling of re-
gion, alignment and other types of constraints requires only
the modification of the feasibility projection (Section S5).
Avoiding local gradients also improves runtime (compared
to APlace and NTUPlace3), and so does our avoidance of
optimization by local search (compared to FastPlace and
RQL). The tradeoff between spreading and interconnect op-
timization is controlled by Lagrange multipliers A.

A key difference from analytical placement based on non-
convex optimization [20, 9, 12] is the emphasis on decom-
posing the original problem into a series of convex optimiza-
tions, which enables duality and accelerates convergence.
Unlike prior works limited to a single interconnect model,
our technique can be used with quadratic, log-sum-exp and
other models (Section S1). The closest published primal-
dual Lagrangian optimizations are discussed in Section S4.

"mPL6 and Kraftwerk2 are the only competitive prior plac-
ers with a global view of supply-demand trade-offs. We are
exploring theoretical comparisons to them in ongoing work.

8. REFERENCES

[1] S. N. Adya, I. L. Markov, P. G. Villarrubia, “On
Whitespace and Stability in Physical Synthesis,”
Integration, the VLSI Journal vol. 39/4, 2006, pp. 340-362.

[2] S. N. Adya, I. L. Markov, “Combinatorial techniques for
Mixed-size Placement,” ACM Trans. Design Autom.
Electr. Syst. 10(1), 2005, pp. 58-90.

[3] R. K. Ahuja, T. L. Magnati, J. B. Orlin, “Network Flows:
Theory, Algorithms, and Applications,” Prentice Hall 1993.

[4] C. J. Alpert, T. F. Chan, A. B. Kahng, I. L. Markov, P.
Mulet, “Faster Minimization of Linear Wirelength for
Global Placement,” IEEE Trans. on CAD of Integrated
Circuits and Systems 17(1), 1998, pp. 3-13.

[5] C. J. Alpert et al., “Techniques for Fast Physical
Synthesis,” Proc. IEEE 95(3), 2007, pp. 573-599.

[6] D. P. Bertsekas, “Nonlinear Programming,” 2nd ed.,
Athena Scientific 1999.

[7] S. Boyd, L. Xiao, A. Mutapcic, “Subgradient Methods,”
Notes for EE3920, Stanford University 2003. http:
//www.stanford.edu/class/ee3920/subgrad_method.pdf

[8] T. F. Chan, J. Cong, E. Radke, “A Rigorous Framework
for Convergent Net-weighting Schemes in Timing-driven
Placement,” ICCAD 2009, pp. 288-294.

[9] T. F. Chan, J. Cong, J. Shinnerl, K. Sze, M. Xie, “mPL6:
Enhanced Multilevel Mixed-Size Placement,” ISPD 2006,
pp. 212-214.

[10] H.-C. Chen et al., “Constraint Graph-based Macro
Placement for Modern Mixed-size Circuit Designs,” ICCAD
2008, pp. 218-223.

[11] T.-C. Chen et al.,“MP-trees: A Packing-based Macro
Placement Algorithm for Mixed-size Designs,”

IEEE TCAD 27(9) 2008, pp. 1621-1634.

[12] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, Y.-W.
Chang, “NTUPlace3: An Analytical Placer for Large-Scale
Mixed-Size Designs With Preplaced Blocks and Density
Constraints,” IEEE TCAD 27(7) 2008, pp.1228-1240.

[13] Y.-L. Chuang et al., “Design-hierarchy Aware Mixed-size
Placement for Routability Optimization,” ICCAD 2010,
pp. 663-668.

[14] J. Cong, M. Romesis, J. Shinnerl, “Robust Mixed-Size
Placement Under Tight White-Space Constraints,” ICCAD
2005, pp. 165-172.

[15] P. E. Gill, D. P. Robinson, “A Primal-Dual Augmented
Lagrangian,” Computational Optimization and
Applications 2010, DOI: 10.1007/s10589-010-9339-1.

[16] K. C. Kiwiel, T. Larsson, P. O. Lindberg,“Lagrangian
Relaxation via Ballstep Subgradient Methods,” Mathematics
of Operations Research 32(3), 2007, pp. 669-686.
http://mor.journal.informs.org/content/32/3/669

[17] C. Li, C.-K. Koh, “Recursive Function Smoothing of
Half-Perimeter Wirelength for Analytical Placement,”
ISQED 2007, pp. 829-834.

[18] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, E. F. Y Young,
“Ripple: An Effective Routability-Driven Placer by
Tterative Cell Movement,” ICCAD 2011, pp. 74-79.

[19] M.-K. Hsu, Y.-W. Chang, V. Balabanov, “TSV-aware Anal-
ytical Placement for 3D IC Designs,” DAC*11, pp. 664-669.

[20] A. B. Kahng, Q. Wang, “A Faster Implementation of
APlace,” ISPD 2006, pp. 218-220.

[21] A. A. Kennings, I. L. Markov, “Smoothening Max-terms
and Analytical Minimization of Half-Perimeter
Wirelength,” VLSI Design 2002, 14(3), pp. 229-237.

[22] A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, “VLSI
Physical Design: from Graph Partitioning to Timing
Closure,” Springer 2011, 312 pages.

[23] M.-C. Kim, D.-J. Lee, I. L. Markov, “SimPL: An Effective
Placement Algorithm,” IEEE TCAD 31(1), 2012, pp. 50-60.

[24] M.-C. Kim, J. Hu, D.-J. Lee, I. L. Markov, “A SimPLR
method for Routability-driven Placement” ICCAD 2011.

[25] D.-J. Lee, L. L. Markov, “Obstacle-Aware Clock-tree
Shaping During Placement,” ISPD 2011, pp. 123-130.

[26] G.-J. Nam, J. Cong, “Modern Circuit Placement: Best
Practices and Results,” Springer 2007.

[27] A. N. Ng et al., “Solving Hard Instances of
Floorplacement,” ISPD 2006, pp. 78-85.

[28] M. Pan, N. Viswanathan, C. Chu, “An Efficient & Effective
Detailed Placement Algorithm,” ICCAD 2005, pp. 48-55.

[29] A. E. Ruehli, P. K. Wolff, and G. Goertzel, “Analytical
Power/Timing Optimization Technique for Digital
Systems,” DAC 1977, pp. 142-146.

[30] G.Sigl, K.Doll, F.Johannes,“Analytical Placement:A Linear
or a Quadratic Objective Function?” DAC*91, pp. 427-432.

[31] P. Spindler, U. Schlichtmann, F. M. Johannes, “Kraftwerk2
- A Fast Force-Directed Quadratic Placement Approach
Using an Accurate Net Model,” IEEE TCAD 27(8) 2008,
pp. 1398-1411.

[32] N. Viswanathan, M. Pan, C. Chu, “FastPlace 3.0: A Fast
Multilevel Quadratic Placement Algorithm with Placement
Congestion Control,” ASPDAC 2007, pp. 135-140.

[33] N. Viswanathan et al., “RQL: Global Placement via
Relaxed Quadratic Spreading and Linearization,” DAC
2007, pp. 453-458.

[34] S. I. Ward et al., “Quantifying Academic Placer
Performance on Custom Designs, ” ISPD 2011, pp. 91-98.

[35] J. Z. Yan et al., “Handling Complexities in Modern
Large-scale Mixed-size Circuit Designs,” DAC 2009.

S1. APPROXIMATIONS OF INTERCONNECT
OBJECTIVE FUNCTIONS

Alternatives to quadratic approximations to the HPWL ob-
jective (Section 2) include the g-regularization [4]

B —0,
the p, 3-regularization for a net e € A/, with p — oo [21]

(i —x;)? = B — |20 — a5l

Sijee(|zi —z;|P +8)"? — max|z; — z;] = [max z; —min z;]
1,J€e 1€e i€e

and the log-sum-exp technique with v — 0 [29]
v10g Zhee (exp(zn/v) + exp(—ax /7)) — [maxw; —mina]

Other such techniques are surveyed and compared in [17, 19].
Any one of these approximations can be used in ComPLx.

S2. ADDITIONAL DISCUSSION OF THE
FEASIBILITY PROJECTION in ComPLx

The feasibility projection Pe is defined in this work for a vari-
ety of placement constraints C and illustrated for (a) density
constraints, (b) region constraints. The former is related to
look-ahead legalization (LAL) in the original SimPL placer
[23] and routability-driven variants in SimPLR and Ripple.

Comparision to prior work. Look-ahead legalization
(LAL) was earlier used for macro placement in PolarBear
[14] and SCAMPI [27]. In both cases, the main issue was
the feasibility of macro packing within a given fixed out-
line. Both algorithms use top-down min-cut partitioning to
minimize interconnect and need to check if each geometric
partition is feasible. The result of this check is binary —
a positive result for both partitions allows top-down parti-
tioning to proceed, while a negative result for one of par-
titions triggers backtracking or end-case processing. The
locations of macro blocks in a feasible placement are typi-
cally not used directly, therefore the LAL algorithm in Po-
larBear does not seek to optimize any objective. In contrast,
SimPL does not deal with movable macros, and the main

concern for LAL in SimPL is to minimize total displacement
from an initial solution, which has not been considered in
PolarBear and SCAMPI. Since relevant algorithms in Po-
larBear and SCAMPI do not work with an initial solution,
they cannot be considered feasibility projections. In other
words, Pec in ComPLx and LAL in SimPL differ from prior
work in that they pursue different goals — finding a clos-
est feasible solution, rather than check packing feasibility.
They are used in a different context (analytic placement vs.
top-down min-cut placement), employ entirely different al-
gorithms, and their results are interpretted differently (as
anchors that influence the next iteration of analytic global
placement). Whereas PolarBear and SCAMPI did not antic-
ipate primal-dual Lagrange optimization in placement, the
feasibility projection in ComPLx is a key element of the pro-
posed primal-dual Lagrange formulation.

ComPLx also differs from PolarBear and SCAMPI in how
it handles movable macros. Whereas prior work seeks to
ensure the feasibility of macro placements at every step
and sometimes sacrifices interconnect optimization for this,
ComPLx pursues a different strategy based on macro shred-
ding — it allows for temporarily overlapping macro place-
ments and focuses on interconnect optimization.

Implementation details and analysis of properties.
As pointed out in Section 5, the feasibility projection in
ComPLx generalizeslook-ahead legalization (LAL) in SimPL,
SimPLR and Ripple to deal with macros and broader place-
ment constraints. Here we restructure LAL so as to check
its convexity and self-consistency.

Whereas LAL was defined recursively in [23, Section 4], the
top-level structure of Pe in our description is that of alter-
nating horizontal and vertical spreading passes. Each pass
operates over a slicing floorpan, which gets refined between
the passes. Specifically, spreading occurs only inside the
rooms of the floorplan. For example, at the very first itera-
tion, there is only one room, and one-dimensional spreading
evens out the density. To formalize the problem solved by
one-dimensional spreading from [23, Section 4], we note that
relative placements are preserved. This justifies a change of
variables: initial cell locations z; (or y;) are sorted, and the
new variables d; > 0 represent distances between neighbor-
ing z (y) locations, subject to ¥;0; < W, (or Wy) for a
W, x Wy floorplan room (a convex constraint). This linear
change of variables preserves the convexity of the optimiza-
tion objective (Li-distance from given locations). The den-
sity constraint requires that for (some m and) all k, X6,
is sufficiently large (based on cell sizes). This constraint

k:+m6_

min{Z;1"6; — (1 /) ZEE width(cell)} > 0

is convex since the minimum of downward convex (linear)
functions is also downward convex (the > sign is important).

As pointed out in [23, Section 4], after one-dimensional
spreading, the median location should divide cell area evenly.
Since this equalizes average densities on both sides, this
new median location indicates a fixed point of the spreading
transform. Hence, the walls of the slicing floorplan built by
alternating one-dimensional spreading steps represent fixed
lines. As slicing floorplan is gradually refined, the displace-
ment affected by later steps of Pc rapidly decreases.

Self-consistency (Formula 11). To establish the self-
consistency of P¢ it suffices to independently establish the
self-consistency of each horizontal and vertical pass [23, Sec-
tion 4] in each room of the floorplan (see below). While the
overall algorithm described above using alternating passes
differs from LAL in [23], the results produced are essentially
the same. The argument for self-consistency remains valid
when the algorithm is applied multiple times.

The self-consistency of our P¢ seems related to convexity,
but in this work we only test it empirically on ISPD 2005
and 2006 benchmarks. Since the self-consistency condition
of Formula 11 is transitive, we checked it between every
two consecutive ComPLx iterations. Our implementation of
the approximate feasibility projection Pe was self-consistent
96.0% and inconsistent 0.6% of the time, while the sufficient
condition [|(Z,7) — Pe(@)lli > II(&,7) — Pe(@ 7)lx for
successive iterations was not satisfied only 3.3% of the time.
Thus, the approximate feasibility projection Pc used by our
implementation is approximately self-consistent. The con-
vergence plots in Figure 1 do not show any disruptions that
one would expect with a seriously inconsistent Pc. Inconsis-
tencies mostly occur in the early global placement iterations
(< 5) where projected feasible placements can differ signifi-
cantly between consecutive iterations.

S3. THE SCALABILITY OF COMPLX

Figure 3 plots the final values of A (solid red line) and the
number of global placement iterations of ComPLx (dotted
blue line with a greater range) on ISPD 2005 and 2006
benchmarks. The number of iterations correlates with the
final A value because each iteration increases A by a limited
amount until the final value is reached. All final values in our
experiments are well below 1.0, and the iteration counts do
not grow systematically with the size of the input. This phe-
nomenon is consistent with the rapid convergence for which
primal-dual Lagrange optimization is known. Given that
ComPLx spends near-linear time O(n(logn)?) per iteration
[23], the overall runtime is near-linear as well. In compari-
son, the runtime of FastPlace is estimated as ©(n'3®).

0.62 50
06 | w
0.58 | 148 &
0.56 g
] 8
< 054 46 =
g T
i 0.52 | 44 &
05 | 8
0.48 |-] kS
42 2

0.46 - ;
0.44 - : : : 40
0.0e0 5.0e5 1.0e6 1.566 2.0e6 2.5e6 3.0e6

of nets

Figure 3: The final A and total number of ComPLx
iterations performed, against the number of nets.

S4. COMPARISONS TO RELATED PRIMAL-
DUAL LAGRANGIAN OPTIMIZATIONS

Primal-dual optimization was used once in global placement
in [4], where it was limited to explicit center-of-gravity (CoG)
“spreading” constraints. These constraints appear in GOR-
DIAN and GORDIAN-L algorithms [30], but not in mod-
ern placers — being convex and linear, they are insufficient
to handle modern IC layouts (the 1997 implementation re-
ported in [4] is not a full-fledged global placer). To deal
with CoG constraints, [4] introduced slack variables, as is
common in linearly-constrained primal-dual Lagrange opti-
mization [15]. Instead, we deal with more general nonlinear,
nonconvex constraints (such as fixed obstacles) by means of
approximate projected subgradient optimization. Our primal-
dual Lagrangian relaxation, in its basic form, requires only a
single real-valued multiplier, making optimization very effi-
cient. Unlike in [4, 15], we use the linear Conjugate Gradient
method rather than the non-linear Newton’s method.

Recent operations research work (unrelated to EDA) by Ki-
wiel et al [16] discusses approzimate subgradient projected
optimization, focusing on step-size selection and convergence
analysis. Unlike prior projected subgradient methods, the
Lagrangian relaxation in [16] finds both primal and dual
solutions. This is also a key feature of our methods. How-
ever, [16] is not solving global placement and lacks numerous
domain-specific details we described. Vice versa, we are not
using their hallmark ballstep strategy that bundles multiple
subgradient iterations.

SS. HANDLING REGION CONSTRAINTS
IN THE FEASIBILITY PROJECTION

Chip designers often impose a region constraint on a sub-
set of cells to express logic hierarchy and clock domains, to
keep clock sinks close to clock drivers, or to assist the placer
in dealing with challenging critical paths. Traditional plac-
ers convert the hard region constraints to soft constraints,
which can be addressed by heavily-weighted fake nets [1, Fig-
ure 5] or modification of the objective function [13]. While
ComPLx supports such techniques, it also allows for a more
straightforward and robust implementation of region con-
straints by enforcing them as part of the feasibility projec-
tion at every global placement iteration — each cell is snapped
to the constraining region after feasibility projection for den-
sity constraints. Figure 4 illustrates the enforcement of

Figure 4: A hard region constraint imposed on 50
cells that were initially placed unconstrained (left).
The resulting ComPLx placement (right) satisfies
the constraint. HPWL drops from 143.55 to 142.70.

Net weights = 20 (HPWL=94.15¢6)

Net weights = 40 (HPWL=94.13¢6)

Figure 5: In a ComPLx placement of BIGBLUE] (upper left), three critical signal paths between registers are
chosen. Subsequent ComPLx runs are performed with progressively larger net weights on those paths, which
straightens the paths and reduces their lengths. Legal HPWL values are reported in parentheses.

region constraints by “before” and “after” pictures. The lo-
cations from the modified feasibility projection are then used
as anchors to influence the subsequent iteration of analytic
global placement. Rather than degrade, HPWL actually
improves — a surprising phenomenon often observed with
industry placers.

S6. HANDLING TIMING-CRITICAL NETS

To demonstrate effective timing optimization, we show that
timing-critical paths can be shortened and straightened by
manipulating net weights without adverse effects on total
HPWL. Working with the standard benchmark BIGBLUEIL,
we performed 30 global iterations to obtain an unbiased, sta-
ble intermediate placement that allowed us to estimate net
lengths. We then selected several critical paths, increased

the weights of nets comprising these paths, and ran our
placer to completion in three configurations with different
net weights. Figure 5 shows that the desired outcome was
achieved. With sufficiently large net weights, selected paths
notably shrunk. Given that only a small fraction of net
weights were modified, the overall placement and its wire-
length were largely unaffected. Essential for these results
was our scheduling of A in Formula 12. While not a full-
fledged demonstration of timing-driven placement, this ex-
periment confirms that our proposed core placement algo-
rithm is capable of controlling critical paths without tan-
gible overhead in HPWL. Specific formulas for provably-
good timing-driven net weighting can be found in [8]. As
a side-effect, this experiment also demonstrates the stability
of ComPLx to small netlist changes, which is important in
the context of physical synthesis [1].

