
RTL Analysis and Modifications

for Improving At-speed Test

Kai-Hui Chang

Avery Design Systems, Inc.

Andover, MA, USA

changkh@avery-design.com

Hong-Zu Chou

Avery Design Systems, Inc.

Andover, MA, USA

hzchou@hotmail.com

Igor L. Markov

University of Michigan,

EECS Department

Ann Arbor, MI, USA

imarkov@umich.edu

Abstract—At-speed testing is increasingly important at recent
technology nodes due to growing uncertainty in chip manu-
facturing. However, at-speed fault coverage and test-efficacy
suffer when tests are not robust. Since Automatic Test Pattern
Generation (ATPG) is typically performed at late design stages,
fixing robustness problems found during ATPG can be costly.
To address this challenge, we propose a methodology that
identifies robustness problems at the Register Transfer Level
(RTL) and fixes them. Empirically, this improves final at-speed
fault coverage and test-efficacy.

I. INTRODUCTION

The increase in chip manufacturing variations necessitates

at-speed testing in addition to the traditional stuck-at fault

testing. Otherwise, a chip free of stuck-at failures may still fail

to work normally at the intended operating frequency due to

delay faults [5], [10]. One commonly used fault model for at-

speed testing is the transition delay model. In this model, slow-

to-rise and slow-to-fall faults are analyzed for each node. One

major limitation of this model is that Automatic Test Pattern

Generation (ATPG) tools typically only try to find one tran-

sition that sensitizes and propagates a given fault, but such a

transition may not sensitize any critical paths through the fault

in question. As a result, even if the patterns for transition faults

did not detect any problem during testing, critical paths may

still experience delay issues. One solution to this problem is

to increase the safety margin of operating frequency; however,

doing so can significantly reduce parametric yield. Instead,

path-delay fault models can be used. Path-delay models target

critical paths directly and can detect delay-related problems

more accurately. Recently, Small Delay Defect (SDD) testing

methods that target transition delay faults in near-critical paths

have become popular.

To effectively test path-delay and SDD faults, it is essential

to propagate faults along critical paths without the interference

from transitions at non-critical paths. The term robustness

is used to indicate the severity of inference from such side

transitions. To improve at-speed ATPG fault coverage and

delay effectiveness, it is important to improve test robustness.

We observe that most robustness problems are byproducts of

the logic in a design. For example, to create a transition at the

second bit of a counter, the first bit must toggle. If both bits

are in the fan-in cone of a register and the second bit is on

the critical path, then the path may not be robustly testable

unless the transition at the side-input can be masked. Based

on this observation, we propose a new methodology to find

and repair robustness problems at the Register Transfer Level

(RTL). The main reason for working at the RTL is that it

allows the fixes to be optimized by logic and physical design

tools, which can aid timing closure [1]. RTL fixes can also

be used throughout the design process or even across multiple

designs, while gate-level fixes may need to be redone every

time the design is resynthesized. Thirdly, a single RTL fix may

spawn several gate-level fixes.

To improve test robustness at the RTL, we propose an RTL

path-delay fault model for predicting robust test coverage.

When coverage is low, our novel algorithm can flag robustness

problems. It identifies pairs of registers where one always

toggles the other. We then use the same RTL path-delay

fault model to evaluate the severity of each problem and

rank possible fixes. The fixes are implemented with register

reuse to improve design robustness. Another contribution in

this work is an effective method that can efficiently remove

most false paths to reduce false alarms and unnecessary

analysis. Our empirical results show that fixing the found

robustness problems at the RTL can significantly enhance

delay effectiveness and test coverage for ATPG, and our false-

path reduction technique can considerably reduce the number

of false paths.

The rest of the paper is organized as follows. Section

II provides necessary background, and Section III describes

our robustness repair methodology. Experimental results are

provided in Section IV, and Section V concludes this paper.

II. BACKGROUND

In this section, we first review the basics of at-speed testing

and then survey current Design for Testability (DFT) solutions

at the RTL. We also briefly describe and-inverter graphs.

A. At-speed Testing

At-speed testing detects delay faults when the circuit is

operating at the normal system speed. It is typically performed

in four stages: scan-in, launch, capture, and scan-out. The

purpose of scan-in and scan-out stages is to set/read register

values. There are two different test launch types: Launch-

Off-Shift (LOS) and Launch-Off-Capture (LOC) [10]. Due to

the limitations of test equipment, LOC is more common. In

addition, LOC reduces the chance of over-testing because

the tested paths are mostly functional [9]. Therefore, it is978-3-9810801-8-6/DATE12/ c©2012 EDAA



Fig. 1. At-speed testing timing diagram using launch-off-capture method.
SE is scan enable and is active high. Launch and capture edges are at-speed.

employed in this work. The timing diagram of a LOC test

is shown in Fig. 1 [10].

Transition fault and path-delay fault are two prevalent fault

models used in at-speed testing. A transition fault models

large delay defects at a node. A slow-to-rise transition fault

represents an unusually slow 0-1 transition, while a slow-to-

fall transition fault represents a slow 1-0 transition. The path-

delay fault model is used to test distributed delays along a

path. If an anomaly causes the signal transition delay along

the path to exceed a threshold, the circuit is said to experience

a path-delay fault. In the path-delay model, the register that

creates the value transition is called the launch register, and

the register to undergo a value change due to the transition is

called the capture register. Following the terminology in [5],

the side inputs of the path with respect to the launch register

are the registers in the fan-in cone of the capture register

excluding the launch register itself.

Small Delay Defect (SDD) testing is a variant of the

transition-delay model in that it only targets nodes with small

timing slacks. To detect small delay problems effectively,

the faults need to be sensitized and propagated through the

longest timing paths, which is similar to path-delay testing.

SDD testing has recently become popular because timing

optimization makes numerous paths near-critical, as illustrated

by the so-called timing wall in the slack histogram. Path-delay

testing is unable to cover all necessary paths. SDD testing

effectively addresses the path-explosion problem when many

near-critical paths pass through the same node. The delay

effectiveness metric captures the quality of SDD tests [15].

This metric is based on how close the slacks for fault-detection

paths came to the minimum slacks. If all faults are detected

on their minimum slack paths, the number would be 100%.

Test robustness measures whether a fault can be uniquely

identified if the captured pattern shows mismatches. With

stuck-at-faults, robustness is mainly used for fault diagnosis.

With at-speed testing, however, robustness plays a much more

important role because, lacking robustness, the fault may not

propagate along the critical path, which can considerably

reduce delay effectiveness of the tests. To improve test ro-

bustness, the side inputs should remain unchanged during the

launch cycle so that they do not create unnecessary transitions

that affect fault propagation.

B. Related Work

To improve test robustness, Eggersglüβ [5] proposed a

method to generate more robust test patterns using pseudo-

Boolean methods. Unlike their work, our focus is to fix the

RTL code that causes the robustness problems in the first

place. Iwata et al. [6] presented non-scan DFT methods for

RTL time-expansion models. Another work that fixes DFT

problems at the RTL is by Ko et al. [7]. However, it improves

LOS testability instead of LOC.

C. And-inverter Graphs

An And-Inverter Graph (AIG) is a directed, acyclic graph

that represents logic functions in the form of two-input AND

gates and inverters. Compared to the most commonly used rep-

resentations, sum-of-products and Binary Decision Diagrams

(BDDs), AIG’s multi-level structure is more efficient for ma-

nipulating Boolean functions. However, equivalence checking

with AIGs is less efficient because AIGs are not canonical. To

address such problems, Mishchenko et al. proposed a “semi-

canonical” representation called Functionally Reduced AIGs

(FRAIGs) [8] which ensures that each FRAIG node has a

unique functionality in a FRAIG structure. In this work, we

utilize FRAIGs to reduce the number of false paths.

III. OUR ROBUSTNESS IMPROVEMENT METHODOLOGY

Fig. 2 illustrates how fixing robustness problems at the

RTL can improve the efficacy of gate-level at-speed test. In

(a), suppose that there are paths between {r1, r2, r3} and

r4, and we found that paths r1 to r4 and r2 to r4 are not

robustly testable because r3 cannot be held stable. Now in

Fig. 2(b), to test the SDD fault at node1, the fault should be

sensitized through a path from either r1 or r2. However, since

there is a fast path from r3 to node1 and r3 always toggles

when r1 or r2 toggle, the defect at node1 can be masked

by this fast path, making the fault robustly untestable. Such a

situation is common in practice because some registers always

toggle simultaneously. For example, to create a transition at

the second bit of a counter, the first bit of the counter must

also toggle.

(a) (b)
Fig. 2. An illustration of SDD testability problems. (a) At our RTL analysis
it is found that path-delay faults from r1 or r2 to r4 are untestable due to r3

cannot be held stable. (b) At the gate level, if r3 to node1 is a short timing
path, the small delay fault at node1 becomes untestable because the transition
from r3 can mask the fault. By fixing the stability problem of r3 at the RTL,
the problem at the gate level can be prevented.

Our solution to the problem is presented in this section,

starting with our methodology for improving robustness. We

then describe its components in detail: (1) a fault model that

aggregates gate-level faults in two faults at the RTL for robust

testability estimation; (2) an effective false-path reduction

method; (3) a novel algorithm to detect robustness problems;

and (4) techniques to repair robustness problems. Finally, we

provide insights that we gained during the implementation of

our system.



A. Overall Methodology

A high-level overview of our robustness improvement

methodology is shown in Fig. 3. The first step is coverage

estimation to determine how severe the robustness problems

are. To measure robust testability, we calculate a coverage

number that will be described in the next subsection. If the

coverage is low, robustness problems should be diagnosed

and fixed. The coverage of the repaired design should be

estimated again and the repair process can be repeated. This

methodology should be applied to each RTL block at its

early design phase to avoid problems at the ATPG stage. By

focusing on smaller blocks, scalability problems due to the

underlying formal algorithms can also be alleviated.

Fig. 3. Our overall robustness improvement methodology.

B. Robust Test Coverage Estimation

Since no gate-level representation is available at the RTL, it

is difficult to precisely estimate either path-delay or SDD fault

coverage. In our flow, testability estimation reveals the sensi-

tivity of final coverage to the robustness problems. It is also

used to evaluate the impact of robustness fixes. To serve these

purposes, we propose a new fault model that only involves

the launch and the capture registers, as illustrated in Fig. 4. In

our fault model, we test whether slow-to-rise (01) and slow-

to-fall (10) transitions at the launch register can affect the

capture register. Robustness problems can then be identified

when trying to stabilize the values of non-launch registers

during the at-speed cycle while inducing the transitions. In

this paper, we mark a path as untestable if such transitions

cannot be induced. Given that our techniques in Section III-C

eliminate most false paths prior to this analysis, the untestable

paths are mostly due to the robustness constraints and should

be fixed. Note that our analysis is different from traditional

fault coverage analysis because we only check whether the

fault can be sensitized and propagated robustly. We do not

check whether a pattern exists for the fault. However, the

former often prevents the existence of the latter.

Fig. 4. Our RTL fault model for robust testability analysis. Gate-level faults
between Reg1 and Reg2 are aggregated into two faults at the RTL: slow-to-rise
and slow-to-fall. For multi-bit variables, we consider each bit separately.

In our fault model, one RTL path contains two faults (slow-

to-rise and slow-to-fall) and aggregates all the path-delay and

transition faults at the gate level that have the same launch and

capture registers. Based on the fault model, Fig. 5 shows our

testability estimation flow. The inputs to the flow are an RTL

design (design) and scannable registers (sreg). The outputs

of the flow are the testability of each path and the estimated

coverage of the design. This flow relies on symbolic simulation

and SAT solving, but other Boolean reasoning techniques can

also be used.

flow TestEst(design,sreg)
1 sym traces← in ject symbol(sreg);
2 t0← collect sym traces(registers,sym traces);
3 sym traces← symbolic simulate one cycle;
4 t1← collect sym traces(registers,sym traces);
5 paths← path extract(registers,sym traces);
6 paths← f alse path reduction(paths);
7 sym traces← symbolic simulate one cycle;
8 t2← collect sym traces(registers,sym traces);
9 foreach path ∈ paths
10 foreach edge ∈ {01,10};
11 prob inst← build testability instance(path,t0,t1,t2,

edge);
12 if (solve(prob inst) = SAT)
13 path.edge.testable← true;
14 else
15 path.edge.testable← false;
16 coverage← coverage estimate(paths);
17 return paths,coverage;

Fig. 5. Flow for testability estimation.

In TestEst, symbols are injected to scannable registers to

represent the scan-in values. Line 3 performs one cycle of

symbolic simulation to obtain new register values at launch.

Paths between registers are extracted in line 5 using symbolic

traces as follows. For each register rt, we traverse its symbolic

trace to extract the symbols used in the trace and identify

the registers where those symbols were originally injected —

there is a logic path between each of the registers and rt. For

example, suppose that symbols injected into r1 and r2 are in

the symbolic trace of rt, then there are logic paths between

(r1, rt) and (r2, rt). We also perform false-path reduction in

line 6 (see Section III-C).

After the paths are extracted, we perform symbolic sim-

ulation for another cycle in line 7 to model the at-speed

testing cycle1. At this point, we have the scan-in symbols for

each register in t0, symbolic traces at launch cycle in t1, and

symbolic traces at capture cycle in t2. Starting from line 9,

we check the testability of each path. To achieve this goal, we

produce a SAT instance based on the fault model described

in Section III-B using the build testability instance function,

and then use a SAT solver to determine whether the instance

for the testability problem is satisfiable (lines 11-12). If the

instance is satisfiable, then the path is testable. Otherwise, the

path is untestable. We then estimate path-delay fault coverage

on line 16 and then return the results.

1If the path being tested is a multi-cycle path, more cycles of symbolic
simulation should be performed here.



Function build testability instance is shown in Fig. 6.

Suppose that the launch register in path is rl, the capture

register is rc, and r1..rn are in the fan-in cone of rc. We

use subscript sn to represent the symbolic trace collected in

tn, n ∈ {0,1,2}. In the function, lines 2-5 initiate the value

transition at the launch register, which can be either 01 or 10

(slow-to-rise or fall). Line 6 ensures that the capture register

can detect the signal change, and lines 7-8 make sure all other

registers do not toggle during the at-speed cycle.

function build testability instance(path,t0,t1,t2,edge)
1 (rl, rc) ← extract reg(path);
2 if (edge is 01)

3 instance← rls0 & rls1;
4 else

5 instance← rls0 & rls1;
6 instance← instance & (rcs1 6= rcs2);
7 foreach r ∈ {r1..rn}, r 6= rl
8 instance← instance & (rs0 = rs1);
9 return instance;

Fig. 6. Function build testability instance that builds a SAT instance for
checking robust testability. Symbolic traces are saved in t0, t1 and t2. Their
retrieval is omitted in the figure.

C. False-path Reduction

False paths are untestable and excluding them improves the

accuracy of analysis [2]. At the RTL our goal is to remove

paths from fan-in registers of a capture register that are not in

its functional support. However, finding all false paths can be

time-consuming [4]. Since we want to eliminate as many false

paths as possible but not necessarily all of them, we propose

a new structural FRAIG-based technique.

1) Represent the Boolean function by an AIG.

2) Build a FRAIG from the AIG by SAT-based node

merging while distinguishing nodes using simulation.

3) Traverse the FRAIG from its output to identify all the

primary inputs that still connect to the output.

FRAIGs work well in our application because their compact

size reduces the likelihood of false paths. Our experience

shows that FRAIGing can eliminate most false paths and scales

well in practice.

D. Robustness Analysis

Most robustness problems are caused by controllability

issues involving three registers: the launch register rl, the cap-

ture register rc, and a side-input register r in the fan-in cone of

rc. More specifically, a problem arises when initiating a transi-

tion at rl and observing the resulting transition at rc requires

register r to toggle unconditionally. When this happens and

r1 is on the critical path, the fault may not be sensitized and

propagated through the critical path due to the transition from

r. Based on this observation, we propose a new algorithm to

directly detect such configurations. The algorithm is based on

flow TestEst in Fig. 5 with two changes. First, in line 11, the

call to function build testability instance should be replaced

with a call to the new function, check robustness problem,

shown in Fig 7. Second, lines 12-17 are not necessary because

the problems are directly reported by the new function.

function check robustness problem(path,t0,t1,t2,edge)
1 (rl, rc) ← extract reg(path);
2 if (edge is 01)

3 cond← rls0 & rls1;
4 else

5 cond← rls0 & rls1;
6 cond← cond & (rcs1 6= rcs2);
7 if (solve(cond)) = UNSAT)
8 return;
9 foreach r ∈ {r1..rn}, r 6= rl

10 instance← (cond⇒ (rs0 6= rs1));
11 if (solve(instance)) = UNSAT)
12 report robustness problem (r);

Fig. 7. Function check robustness problem that checks robustness issues.
Symbolic traces are saved in t0, t1 and t2. Their retrieval is omitted.

In Fig. 7, cond represents the Boolean condition for both

the launch and capture registers to toggle. If this condition is

judged impossible (line 7), the path is false, and no further

checking is necessary. In lines 9-12 we iterate through each

register (r) in the fan-in cone of rc and check if cond implies

that r must also toggle. If the solver proves that the implication

always holds, then it may not be possible to sensitize and

propagate faults from the launch register rl to the capture

register rc because of the transition in r. If the critical paths

happen to involve rl and rc, then the faults on those paths will

be potentially untestable. We report register r as a potential

cause of robustness problems in line 12.

In our use model, we count the number of times that a

register r causes problems and then rank the fixes accordingly

— registers ranked high should be repaired first because they

affect more paths. To reduce runtime, one can also remove the

transition at the capture register from the problem formulation

and check robustness issues only at the launch cycle. Even

though this formulation only considers fault sensitization, it

provides almost the same information as the original formu-

lation. The reason is that robustness is mostly associated with

fault sensitization, making the transition at the capture cycle

less relevant. In this formulation, symbolic simulation only

needs to be performed for one cycle instead of two, which

can considerably reduce analysis time.

Given a path, the algorithm checks stability between the

launch register and each side input, which can be time-

consuming. We observe that sometimes only a few side inputs

cause robustness problems. To accelerate the analysis, we

perform binary search — when only a few side inputs are

problematic, runtime can be dramatically improved. However,

runtime may increase otherwise. In practice, one can determine

which mode is faster by sampling a small percentage of paths

before performing full analysis.

E. Repairing Robustness Problems

To stabilize a register, we insert one multiplexer (MUX)

and two scannable registers, mode select and new value. The

MUX then selects between the original output of the register,

reg, and the new launch value register, new value, as follows:

original output = mode select ? new value : reg



Register mode select is set to 1 only in test mode. This

allows us to change the launch value of a register. To reduce

the amount of inserted logic, existing scannable registers can

be reused. To this end, we identify the side inputs of reg

and select a register which is not part of those inputs as the

new value register. To insert fewer mode select registers, we

analyze the side inputs of each fix and group the fixes whose

side inputs are independent — the mode select register can be

shared by the fixes in the same group. If the newly-introduced

timing path is judged critical, the inserted MUX can be retimed

to the input of reg. Our MUX insertion can be compared to

partial enhanced-scan in [3], but our selection of registers for

repair is quite different.

IV. EXPERIMENTAL RESULTS

We applied our robustness improvement methodology to

several designs to estimate their robust test coverage and

measure their robustness improvement after repair. The charac-

teristics of the designs are summarized in Table I. In the table,

“#Cells” is the number of standard cells in the design mapped

with the TSMC 0.13µm library. DLX is from Michigan [12],

and the rest of the designs are from OpenCores [14]. We

implemented our methodology using a commercial symbolic

simulator [11] and the ABC package from Berkeley [13]. Our

machine was a Dell PowerEdge 2900 (2GHz Quad-Core Xeon,

48 Gbytes main memory) running Linux. Three mainstream

commercial tools, labeled SY, TA and PG (license agreements

prevent us from naming them), were used for synthesis,

critical path extraction and path-delay/SDD fault coverage

comparison, respectively. Note that PG was configured so that

the path-delay faults were robustly testable.

TABLE I
CHARACTERISTICS OF BENCHMARKS.

Design #Cells #Reg. Description

DLX 6075 1543 MIPS-lite 5-stage CPU

CPU8080 1420 242 8080 compatible CPU

TV80 1010 358 Z-80 compatible CPU

AES core 10657 530 AES encoder

USB funct 7688 1745 USB function IP core

USB phy 157 98 USB physical layer

A. Robust Test Coverage Estimation

The results of our testability estimation are summarized

in Table II. To obtain fault coverage in a traditional flow,

we first synthesized the design with SY, extracted up to 200

critical paths using TA, and then used PG to calculate fault

coverage of the paths. In addition, we used PG to calculate

SDD fault coverage and delay effectiveness. The results of

our testability estimation methodology are reported under

“our methodology”, and the results of the traditional flow

are reported under “traditional flow”. We report our per-path

runtime based on the total runtime divided by the number

of paths before reduction. This represents the estimated time

to check one path that is structurally connected in the RTL

code. Memory usage of our methodology was under 2G for

the benchmarks.

Coverage comparison shows a difference between estimated

and final coverage after ATPG. This is not surprising because

the RTL code we analyze lacks most of the information

required to obtain accurate coverage numbers. In addition, our

formulation only considers untestability caused by robustness

problems. Nevertheless, our coverage estimation for path-

delay faults is accurate to 15% for most benchmarks. One

exception is DLX, where our coverage was 21.94% and the

final coverage was 43.00%. We analyzed the difference and

found that SY decomposed the register array into individual

registers, while our flow modeled the array as a memory. After

manually changing the design to match the output of SY,

our estimated coverage increased to 43.92% — an exception

that proves the rule. As expected, this considerably increased

runtime due to the extra overhead to handle the large number

of registers. The comparison between “TA paths” under the

traditional and our flow shows that our coverage was typically

higher. This is because the fault in our model is testable if

any of the aggregated gate-level paths are testable, making

our model optimistic. This observation can also explain the

large difference between the estimated coverage and the final

coverage for AES core, where our estimation was 92.02%

and the ATPG coverage was 67.50%. The special structure of

encoders creates numerous gate-level paths between registers

and makes more RTL paths testable because each RTL path

requires only a single testable gate-level path to be testable.

From the results, we also observe that the SDD fault coverage

is much higher than path-delay fault coverage. This is also

expected because many of the SDD faults are on simple short

paths that can be detected easily. However, the results show

that there is correlation between our predicted coverage and

the SDD fault coverage. For the cases where the predicted

coverage were low, such as DLX, CPU8080 and TV80, the

SDD coverage was also lower compared with other cases. This

result shows that our coverage estimation can also be useful

for predicting SDD fault coverage problems due to robustness.

To evaluate the effectiveness of our false-path reduction

method, we report the number of extracted paths with and

without reduction under “#Paths”. Without reduction, the paths

were extracted based on the logic structure of the design. From

the results, we found that the use of FRAIG significantly

reduced the number of false paths. We also found that the

time used to build FRAIG for false-path reduction was well-

spent because it reduced the number of paths that need

to be checked, thus reducing the total SAT solving time.

SAT solving was further accelerated because SAT instances

produced from FRAIG structures were more compact. As a

result, false-path reduction paid off by considerably reducing

overall runtime.

B. Robustness Repair

For a given netlist, critical paths are often determined

by physical layout. Therefore, we evaluate our robustness-

repair methodology using SDD fault coverage and the delay

effectiveness metric [15]. We chose CPU8080 and TV80 for

repair because they had the lowest predicted coverage.



TABLE II
ROBUST TEST COVERAGE ESTIMATION. “SDD (COV/EFF)” IS SMALL DELAY DEFECT COVERAGE AND DELAY EFFECTIVENESS. “TA PATH COVERAGE” IS

CALCULATED USING CRITICAL PATHS EXTRACTED BY TA. RUNTIME UNDER “OUR METHODOLOGY” IS PER-PATH RUNTIME.

Design Traditional flow Our methodology
coverage #Paths Predicted Coverage Runtime

Path SDD(cov/eff) w/o reduction w/ reduction coverage (TA path) (pp, sec)

DLX 43.00% 96.76%/90.56% 99230 70324 21.94% 46.49% 0.1107

CPU8080 0.00% 72.31%/68.31% 17028 7420 11.68% 11.94% 0.0099

TV80 0.00% 89.01%/83.43% 24846 15684 9.02% 29.03% 0.0063

AES core 67.50% 96.54%/99.10% 49800 11710 92.02% 100% 0.0170

USB funct 45.09% 88.38%/96.16% 197386 49468 50.85% 71.90% 0.0248

USB phy 40.57% 86.62%95.12% 1196 928 34.96% 67.07% 0.0008

For CPU8080, test coverage was 72.31% with delay ef-

fectiveness 68.31%. We first applied the algorithm shown in

Fig. 7. It was found that 35 variables could cause robustness

problems, and runtime was 48m25s. We then applied the

modified algorithm which only considers the robustness at

the launch cycle. The same 35 variables were found but

runtime was reduced to 2m37s. The only difference was the

minor reordering in the ranking of the variables. Due to its

superior performance, the modified algorithm is used from

now on. An analysis based on the number of registers affecting

each path shows that 90% of the robustness problems involve

≤ 3 registers, making them easy to fix. We repaired the

highest-ranking word-level variable, state[6:0], at the RTL,

and the area overhead was 1.1%. The test coverage after repair

was 92.87% with delay effectiveness 88.62%, improved from

72.31% and 68.31%, respectively. This result shows that by

performing robustness analysis and repair at the RTL, the SDD

fault coverage can be improved effectively at the ATPG stage.

In addition, ATPG runtime decreased from 1m6s before repair

to 25s after repair. This shows another benefit of applying

DFT analysis and repair at the RTL — by fixing problems

in advance, ATPG runtime can be reduced by not looking for

impossible-to-generate patterns.

To evaluate the effectiveness of our repair ranking method,

we performed another experiment by repairing the lowest-

ranking variable, waddrhold[15:0]. The highest-ranking vari-

able (state[5:0]) affected 3875 paths, while waddrhold only

affected 136 paths. The test coverage after repair was 72.27%

with delay effectiveness 68.17%, showing little change in

both numbers. This result shows that our ranking method is

effective in pointing out problems that should be fixed first.

For TV80, we found that 195 out of 242 registers can cause

robustness problems. Runtime was 11m14s for the analysis.

We repaired 25 bit-level registers, and the area overhead was

5.0%. Test coverage improved from 89.01% to 90.40%, and

delay effectiveness improved from 83.43% to 83.72%. The

improvement is not as impressive as for CPU8080 because

352 out of the total 368 paths involve more than 10 robust-

ness problems, making the problems more difficult to repair.

Considering such grouping during repair ranking is our on-

going work.

Runtime of our robustness analysis increases with the

number of paths to analyze. The above results suggest that

repairing problems affecting more paths is more effective.

Therefore, a sampling scheme that only analyzes a percentage

of all paths can be used to improve the scalability of our

methods. Since problems affecting more paths will be sampled

more often, important problems will not be missed.

V. CONCLUSION

Due to the increase in process variations, at-speed testing

is becoming more important. Robustness is one important

factor that impacts delay effectiveness of the tests. However,

repairing robustness problems at the ATPG stage can be

costly; therefore, it is desirable to have a DFT solution

to find an fix robustness problems at the RTL. This work

proposed a methodology to achieve this goal. To support this

methodology we designed an RTL fault model consistent with

the gate-level path-delay and SDD fault models for robust

test coverage estimation, developed an effective and efficient

false-path reduction method, devised a robustness analysis

technique, and illustrated how to repair the robustness issues.

Empirically, these techniques are informative at early design

stages and effective in improving test robustness.

Acknowledgment: The authors want to thank Zahi

Abuhamdeh (SiliconDFx) for motivating this work.

REFERENCES

[1] E. Alpaslan, Y. Huang, X. Lin, W.-T. Cheng, J. Dworak, “Reducing
Scan Shift Power at RTL”, VTS’08, pp.139-146.

[2] D. Blaauw, R. Panda, A. Das, “Removing user specified false paths from
timing graphs”, DAC’00, pp. 270-273.

[3] K.-T. Cheng, S. Devadas and K. Keutzer, “A Partial Enhanced-Scan Ap-
proach to Robust Delay-Fault Test Generation for Sequential Circuits”,
ITC’91, pp. 403-410.

[4] O. Coudert, “An Efficient Algorithm to Verify Generalized False Paths”,
DAC’10, pp. 188-193.

[5] S. Eggersglüβ and R. Drechsler, “As-Robust-As-Possible Test Gener-
ation in the Presence of Small Delay Defects using Pseudo-Boolean
Optimization”, DATE’11, pp. 1291-1296.

[6] H. Iwata, T. Yoneda, and H. Fujiwara, ”A DFT Method for Time
Expansion Model at Register Transfer Level”, DAC’07, pp. 682-687.

[7] H. F. Ko and N. Nicolici, “Functional Scan Chain Design at RTL for
Skewed-load Delay Fault Testing”, ATS’04, pp. 454-459.

[8] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton, “FRAIGs: A
Unifying Representation for Logic Synthesis and Verification”, ERL
Technical Report, EECS Dept., U. C. Berkeley, March 2005.

[9] J. Rearick, “Too Much Delay Fault Coverage is a Bad Thing”, ITC’01,
pp. 624-633.

[10] B. Swanson and M. Lange, “At-Speed Testing Made Easy”, EE Times,
Jun. 3, 2004.

[11] Avery Design Systems Inc., http://www.avery-design.com
[12] Bug UnderGround, University of Michigan, http://bug.eecs.umich.edu
[13] Berkeley Logic Synthesis and Verification Group, ABC:

A System for Sequential Synthesis and Verification,
http://www.eecs.berkeley.edu/∼alanmi/abc/abc.htm

[14] OpenCores, http://www.opencores.org
[15] “TetraMAX ATPG User Guide”, Synopsys, Dec. 2008.


