Constructive Benchmarking for Placement

David. A. Papa
The University of Michigan
Department of EECS
Ann Arbor, MI, 48109-2122

lamyou@eecs.umich.edu

ABSTRACT

In the last 20 years, mainstream research in VLSI placement has
been driven by formal optimization and the ad hoc requirement that
downstream tools, particularly routers, work. Progress is currently
measured by improving routed wirelength and place-and-route run-
time on large benchmarks. However, these results now appear ques-
tionable as (i) major placers were shown to be tuned to particular
benchmark suites, and (ii) some reported improvements could not
be replicated on full-fledged industrial circuits.

Instead of blind wirelength minimization, our work seeks a bet-
ter understanding of what a good placer should produce and what
existing placers actually produce. We abstract away details from
various circuit patterns into separate “constructive benchmarks” and
perform a detailed study of leading placers. Unlike the randomized
PEKO benchmarks, ours are highly structured and easy to visual-
ize. We know all of their wirelength-optimal solutions, and in many
cases there is only one per benchmark. By comparing actual solu-
tions to optimal ones, we reason about the underlying placer algo-
rithms and their possible improvements.

In a new development, we show that the (wirelength) sub-optimality
ratio of several existing placers quickly grows with the size of the
netlist. Some of the reasons for such poor performance are obvious
from our visualizations. While it seems easy to coerce a given placer
to improve wirelength on any particular constructive benchmark,
improving the overall performance is more difficult. \We improve the
performance of Capo placer on several constructive benchmarks and
a proprietary 72K-cell circuit from IBM, without wirelength penalty
on commonly used benchmarks.
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1. INTRODUCTION

Problems solved by modern placement tools are often computa-
tionally intractable from the worst-case perspective, and algorithm
developers have to resort to heuristics because finding optimal solu-
tions is not necessary. However, even the best implementations are
sometimes over 40% away from optima [11], and commercial tools
often place regular datapath-like circuits much worse than human
circuit designers [12].

In placement literature, empirical comparisons are typically per-
formed on large irregular circuits, where it is difficult to visually dis-
tinguish good placements from poor ones. In order to estimate pos-
sible future improvements, several authors propose to evaluate the
optimality of existing placers on artificial benchmarks with known
solutions or known scaling of optimal wirelength [16, 11]. Sub-
optimality gaps have been shown ranging from 40% to over 100%
in terms of half-perimeter wirelength [11]. Since artificial bench-
marks are not limited by size and can be scaled up astronomically,
it is possible to show that currently-achievable placements of larger
circuits exhibit growing sub-optimality. However, for some placers
sub-optimality increases slowly and is much less than 3x even on
benchmarks with millions of movable objects.

Needless to say, good performance on artificial benchmarks does
not guarantee good performance on industrial circuits. However, we
show that the artificial benchmarks presented in this work can be
thought of as benchmarks constructed, by abstracting away some of
the details of actual circuit elements found in many circuits today.
Improving performance on these constructive benchmarks with ab-
stract features can certainly lead to improvements on fully detailed
industrial circuits.

To this end the work in [11] suggests using PEKO benchmarks
(“Placement Examples with Known Optima”). The optima for these
are not necessarily unique, but they do independently minimize the
length of each net. These benchmarks are more realistic as they
match the net-degree distribution of well-known ISPD 98 net lists
released by IBM, but there is no simple expression for exact optimal
wirelength of PEKO benchmarks. Furthermore no clusters of logic
exist in these benchmarks, and they are unaffected by global place-
ment. Grid netlists [2] and the PEKO benchmarks are publicly avail-
able through the GSRC Bookshelf [9], and no existing placer comes
close to optimal solutions on PEKO benchmarks. Moreover, it is
unclear how to constructively improve the performance of a given
placer on those benchmarks. In contrast, due to easy visual analysis
of placer behavior on grids, such constructive improvements have
been made in Capo [2]. We continue this work by giving a method
to construct benchmarks amenable to such analysis.

A serious problem with performance evaluation on large, hard-to-
interpret benchmarks is brought up in [1]. The authors empirically
show that most of the major academic placers have been tuned to
particular benchmarks, often released by the same group. They also



observe that many reported improvements cannot be succinctly ex-
plained in general terms and do not immediately carry over to real-
world benchmarks — sometimes because of feature-limited parsers,
sometimes because academic implementations do not support vital
layout features, and sometimes for unknown reasons. The authors
of [1] advocate (i) placer evaluation on multiple benchmark suites,
and (ii) the release of new benchmarks reflecting the sophistication
of modern layouts. Indeed, an industry-sponsored group is currently
working on such a new benchmark release, but this may not con-
tribute to a better understanding of how good placements of large
net lists differ from poor placements. Thus, it will be still difficult
to describe and improve the performance of existing placers.

The main contribution of our work is a method for construct-
ing artificial scalable benchmarks by abstracting away details from
realistic circuit examples. For these benchmarks all optimal solu-
tions should be known and be visually comparable to actual place-
ments produced by existing tools. We show that on example bench-
marks constructed using this method, all existing placers exhibit
sub-optimality ratios that grow linearly with the number of mov-
able objects and associate the most extreme cases with a popular
placement strategy. We point out that decision-based placers (e.g.,
min-cut) can be improved through visual analysis of individual de-
cisions — if a decision does not lead to an optimal placement, the
decision-making process should be refined. This process is vali-
dated by improving the Capo placer [6] on our benchmarks. Our
changes do not significantly affect Capo’s performance on popular
open benchmarks, but improve wirelength on a 72K-cell fixed-die
benchmark with a large amount of whitespace that we received from
IBM.

The remainder of this paper is organized as follows. New bench-
marks are described in Section 2, and empirical performance of ex-
isting placers is reported in Section 3. In Section 4 we improve the
Capo placer by comparing its actual placements with optimal ones,
conclusions are drawn in Section 5.

2. BENCHMARK CONSTRUCTION

Traditional placement research focuses on high-utilization (low-
whitespace) designs, e.g., IBMv1, IBMv2, and PEKO benchmarks
have on the order of 15% whitespace. However, many designs today
have surprisingly high amounts of whitespace, as illustrated and ex-
plained in [4, 2]. In this new context, global positioning of cells is
as important as their relative placement, and [4] proposes such tech-
niques by means of analytical constraint generation (ACG) during
top-down min-cut partitioning. To capture industrial trends in VLSI
design, many of our benchmarks have large amounts of whitespace.

Our benchmarks are constructed by considering |
tightly connected circuit elements and clustering x—%
them together. The nets within these clusters are x|
ignored because we assume a good placement of
the individual cells will shorten these nets as much
as possible. We do, however, consider the nets
which run between the clusters, as they will be af-
fected by the global placement. These nets may be |X|EE|:|—
numerous — efficiently modeled by edge weights
in a hypergraph. The ultimate goal, however, Figure 2:
is to capture key features of the original circuit. We
can simply scale heavy weights down, and ignore &__D
nets with negligible weight, as well as completely
disconnected components. Thus realistic features
of actual circuits can be extracted from rest of the
low-level details. Figure 1 gives an example of how tightly con-

Figure 1:

Figure 3:

INote that popular benchmarks from the placement literature are not
entirely real-world layout instances. They often make unrealistic
simplifying assumptions to make them easier to place.

nected circuit elements can be tied to peripheral 1/0 pads. By plac-
ing and visualizing the result, we can learn a great deal about the
quality of a placer and the algorithms it uses.

Each benchmark type seeks to test a particular capability of cir-
cuit placers rather than provide a complete design example. A hu-
man layout engineer can easily find optimal solutions of all bench-
marks, but many academic placers we tried produced unexpectedly
poor placements in many cases. We additionally hope to make it
visually clear that if a placer performs poorly on some of our bench-
marks, it may be vulnerable on some realistic designs as well (but
not necessarily the other way around). Given that the performance
of some existing academic placers is visibly upset by the presence of
differently-sized cells, most of our constructive benchmarks use 1x1
cells only. We test for performance with differently sized cells sep-
arately. Figure 4 illustrates scalable benchmarks considered in our
work. Each benchmark type is described in more detail below, with
all of its optimal placements discussed (in many cases the optima
are unique).

Peripheral 1/0O (a): fixed terminals are placed on the periphery
of the core area. A movable cell is tied via a two-pin edge to each
fixed terminal along the boundaries of the core area. This design
emulates a circuit with tightly connected logic tied strongly to the
1/0 pins. The unique optimal solution entails placing each movable
cell adjacent to the terminal it is tied to. This optimal solution is
unique because every net achieves minimum possible wirelength,
and one end of the net is fixed. The simple strategy of placing every
cell, one by one, so as to minimize the total length (linear or squared)
of adjacent nets will find the optimal placement in one linear-time
pass. However, we are going to show that existing VVLSI placers
are less successful. In principle, a poor global placement of this
benchmark may be vastly improved by a detail placer that moves one
cell at a time, but the success depends on the given global placement.
This benchmark is parameterized by the height and width of the core
area, and optimal wirelength is given by 2 x (height + width).

Area Array 1/O (b): is constructed similarly to (a), with fixed 1/0
pads arranged in an array throughout the core area. Non-trivial pin
offsets force a unique optimal solution in which each net achieves
minimum possible wirelength. This benchmark checks placers for
compatibility with flip-chip packaging and clusters of logic con-
nected to 1/O pins (weaker connections are abstracted away). It is
parameterized by the height and the width of the 1/O array, the opti-
mal wirelength is given by 1.5 x height «width, due to pin offsets.

Cross (c): is a large cross connecting four groups of fixed periph-
eral terminals. The cells are arranged and connected as a grid. This
design typically has a great deal of whitespace, optimally placed in
the corners of the core area. This benchmark represents a datap-
ath like circuit on a timing critical path. Every net in this design
achieves minimum possible wirelength, making the placement op-
timal. Uniqueness can be proven by considering lower bounds for
paths or nets that are entirely vertical or entirely horizontal in this
optimal placement — any other placement would not match some
of these lower bounds. This design is parameterized by the height
and width of the core area, the height and width of the arms of the
cross, and the horizontal and vertical offset for the arms of the cross.
The optimal wirelength is given by cross_height « (width+ 1) +
cross_width= (height +1) + (height — cross_height) = (cross_width—
1) + (width — cross_width)  (cross_height — 1).

Blob (d): is similar to the cross, but now we only keep the in-
tersection of the two arms of the cross. The movable cells are tied
to the boundaries of the core area in the center by long nets. This
grid-like structure could be some dense piece of logic such as a mul-
tiplier. The cells in the center are placed optimally, because every
net in the center has minimum possible wirelength. In both the ver-
tical and horizontal directions paths of nets connect top to bottom,
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Figure 4: Benchmark types used in our experiments. Fixed cells are shown with double lines. Horizontal connections are intentionally
drawn with broken lines. All cells are 1x1 except in (f). The four disconnected corner pads in some benchmarks are used as a

visualization aid and do not affect movable cells. A better placement of (e) is possible, if wires are allowed to cross the obstacle.

and left to right. In any other placement, a path is no shorter than the
distance between fixed end-terminals of the path. A placement that

achieves all these lower bounds must be optimal, observe that there S WD [ O T
is only one such placement. This design is parameterized by height B 3
and width of the core area, height and width of the blob, and vertical %B a
and horizontal offset for the blob. The optimal wirelength can be E;a E]
given by (height + 1) +blob_width + (width + 1) + bl ob_height. EhnnnoAnnniinninnnlinnr

BlobObstacle (e): is a combination of dense logic from (d) and
a large immovable obstacle, representing a large macro, where the
obstacle forces the blob to be placed off the center. This bench-
mark challenges the placer to find legal sites without losing much
wirelength. Optimal solutions are in a central vertical band, with
smallest offsets from the center. Depending on whether the obsta-
cle is interpreted as porous or not (i.e., allowing transit wires to be
routed through it), some placements may incur a greater wirelength
after routing. If the porous case, the blob may be split vertically and
placed above and below the obstacle. The optimal wirelength is then
given by (height 4- 1) bl ob_width.

Brickwall (f): is constructed from a 0%-whitespace regular grid
shown in the Introduction by merging random pairs of neighboring
cells and removing connecting wires. This produces cells of vary-
ing sizes, but a more controlled construction produces regular brick-
walls with identical 1 x n bricks. We use irregular brickwalls (see
Figure 4) in which two-pin nets connect neighboring bricks hori-
zontally and vertically. These benchmarks test the placement of
densely-packed layouts where cells are not 1x1 (as assumed by early
versions of several academic placers). Additionally, irregular brick-
walls drastically reduce the possibility of permuting cells to improve
wire-lengths — a straightforward optimization technique that does
not apply to realistic net lists. Brickwalls have unique solutions up
to symmetry (because fixed pads are disconnected). While the opti-
mality of constructed placements is due to each net’s achieving op-
timal length, our randomized construction prevents exact analytical
formulas for optimal wirelength.

3. PERFORMANCE OF EXISTING TOOLS

In this section we examine empirical performance of existing aca-
demic placement tools, first by placer and then by benchmark. We
also study how sub-optimality grows in the number of movable cells.

Capo8.7 [6, 2] On Cross benchmarks spiral patterns are seen
(Figure 5(b)), potentially due to how cells are clustered. On AAIO
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(a) Capo8.7 placement of PIO. (b) Capo8.7 placed Cross.
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Figure 5: Capo8.7 placements.
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Figure 6: mPL2 placements.

and Blob benchmarks, even distribution of whitespace causes highly
sub-optimal results. On the P1O benchmark Capo produces reason-
able results (Figure 5(a)), but sub-optimality grows with the size
of benchmarks. Capo has trouble finding legal solutions on Brick-
wall benchmarks due to zero whitespace. Capo and FengShui2.1
are the only placers tested so far that produce legal solutions on the
BlobObstacle benchmark. From the AAIO benchmarks, it is clear
that improvements can be made to the partitioner used in Capo, be-
cause some movables are placed very far from their fixed terminal.

mPL2 [10] This placer packs everything to the left as seen in
Figure 6(a) and produces overlapping cells on Brickwall (Figure
6(b)), and BlobObstacle benchmarks. Left-packing causes highly
sub-optimal solutions for the Cross, AAIO and PIO suites, — indeed
this strategy dominates the performance of mPL2.

mPL3 [8] This newer version of the mPL series has a strong ten-
dency to place cells in columns that span the entire core area —
see Figure 7(a)(b). While this is an improvement over the previous
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Figure 10: FengShui2.1 Placements.
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Figure 9: Placements produced by Dragon3.01.

strategy of packing everything to the left, it still produces highly sub-
optimal solutions in the same benchmarks as before. Cell overlaps
are observed on all except Cross benchmarks.

Dragon2.23 [19, 20] We were forced to run this version of the
Dragon placer in variable-die mode [19], because it aborts without
diagnostics in fixed-die mode [20]. Unfortunately this caused it to
pack everything to the left (Figure 8(b)), with wirelength problems
as seen previously. However, this placer is the only one to produce
legal solutions on the Brickwall benchmark — see Figure 8(a).

Dragon3.01 This newer version of the Dragon series of placers
does work in fixed die mode as shown in Figure 9(b). It now takes
the strategy of packing most cells to the right, see Figure 9(a)(b). On
some benchmarks it leaves islands of cells that are not packed, which
improves over Dragon2.23. On at least one Brickwall benchmark,
Dragon placed some cells far beyond the boundaries of the core area.

FengShui2.1 [3] This placer tends to pack cell to the left, as seen
in Figure 10(a). It places Brickwall without overlaps Figure 10(c),
but some cells end up beyond the core area. This placer also seems
to avoid placing cells in the first column (Figure 10(a)) for several
benchmark types.

Kraftwerk [14] with Domino [13] Kraftwerk is a global placer
that spreads cells around the available area evenly. In order to le-
galize its placements, one post-processes them with Domino. Illegal
Kraftwerk placements are observed in P10, AAIO, MPIO, Cross,
BlobObstacle (Figure 11(b)) and Brickwall benchmarks. In some
cases it produces very good results, as in the Cross benchmark in

Figure 11: Kraftwerk and Kraftwerk+Domino Placements.

(Figure 11(a)). This placement maintains a cross-like shape akin to
its optimal placement. The BlobObstacle benchmark also maintains
some semblance of its optimal placement, as seen in Figure 11(b).
Domino typically packs all cells to the left (11(c)(d)). We have seen
before that this strategy often increases wirelength, but it helps in
the case of the Cross, as seen in Figure 11(c).

Asymptotic Growth of Sub-Optimality For all placers tested,
the sub-optimality ratio is always greater for larger benchmarks of
the same type. Increasing sub-optimality indicates fundamental al-
gorithmic problems, rather than minor implementation oversights.
On PEKO benchmarks, sub-optimality grows slowly and is often
within 2.5x for benchmarks with a million cells. Yet, in our ex-
periments all placers show a linear growth of sub-optimality in the
size of the benchmark, for some benchmark types. The rate varies
by placer from 0.006x/cell to 0.200x/cell. Figure 12 shows each
placer’s sub-optimality and how it grows with benchmark size. Sub-
optimality ratios for various benchmarks with = 250 cells are given
in Table 1. Earlier pictures suggest that the placers with faster-
growing sub-optimality ratios employ a variant of the one-sided pack-
ing strategy.

4. IMPROVEMENTSTO CAPO

Results in Section 3 allow us to improve the performance of Capo
8.7 on constructive benchmarks. Since most of these benchmarks
are fairly regular, with easily visualizable optimal placements, they
are a great aid in debugging a complex placement tool.

Capo applies a top-down, divide-and-conquer approach to find a
global placement. This approach decomposes a given placement in-
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Figure 13: Performance of Capo8.8 on all constructive benchmarks. (e) is optimal. (f) is illegal due to overlaps, but much better
than Capo8.7 placements. In several cases, all cells are at or near their optimal locations, and a straightforward detail placer
would achieve optimal wirelength. Such a detail placer will be added to Capo in the near future.

Benchmarks — PIO T AAIO | Cross | Blob | Blob- | Brick-
Obstacle | wall

[ Placers | 1 Sub-optimality Ratios (times) |
Capo8.7 6.02 6.56 24371 1.34 146 ] 271
Capo8.8 2.90 3.74 208 1.14 113 ] 8093
Dragon2.23 3821 | 64.22 222 | 1.81 | Abort | 651
Dragon3.01 38.46 | 57.40 | Abort | 2.74 | Abort | 6.89
FengShui2.1 37.37 | 63.64 8.34 | 5.80 7.60 | 3.0e8
Kraftwerk 16.33 2.39 1.85 | 1.36 1451 245
mPL2 3787 64.24 8.34 | 5.80 6.49 | 7.26
mPL3 16.79 448 203 | 147 149 ] 6.43

Table 1: Sub-optimality as a ratio of Actual-WL/Optimal-WL. All
benchmarks have 250 4+ 3% movable cells. Legal placements are
shown in bold-face print. Nearly all illegal placements are due to
overlaps. Capo8.8 loses to Capo8.7 by wirelength on Brickwall be-
cause it produces nearly-legal solutions.

100 Sub-optimality Ratios on Peripheral I/O (PeriflO) Benchmarks

©
8

®
8

70

Suboptimality as a Ratio(Actual WL/Optimal WL)

300 350 400
Number of Movable Cells

mPL2
Capos.7

—=— Dragon2.23

—— Dra%0n3.01 —— FengShui2.1
—e— mPL3 —— Kraftwerk Capo8.7.5

Figure 12: The growth of sub-optimality as a ratio of Actual-
WL/Optimal-WL achieved by several placers, as the bench-
mark size grows — all show a linear growth rate. Placers
are mentioned in the order of decreasing sub-optimality ratio.
Dragon2.23, FengShui2.1, and mPL2 produce nearly identical
results as they all pack cells to the left. A point is missing on the
Kraftwerk line because the algorithm did not converge.

stance into smaller instances by subdividing the placement region
and assigning cells to sub-regions such that good solutions to sub-
instances combine into good solutions of the original instance. The
concept of a placement block is pivotal. A block represents: 1) a

placement region with allowed locations; 2) a collection of cells to
be placed in this region; 3) all nets incident to the cells; and 4) lo-
cations of all cells beyond the given region that are adjacent to the
cells to be placed in the region; such external cells are considered
to be terminals, and their locations are fixed. In a min-cut placer
like Capo, every placement block yields a hypergraph partitioning
instance which is split through min-cut hypergraph bisection with
FM-type move-based heuristics. In low-utilization designs often
there are only single cells in a placement block during the process of
recursive bi-partitioning. Capo8.7 would place this cell at the lower
left corner. To improve this behavior, we find the optimal location
for the single cell in the placement block which minimizes HPWL.

In the following sub-sections we detail the improvements we made
to Capo 8.7 motivated by the constructive benchmarks.

4.1 Whitespace Allocation

First, we explain in brief the whitespace allocation strategy [7]
implemented in Capo8.7. Let a placement block have site area
S cdl area C, absolute whitespace W = maxS—C, 0, and relative
whitespace w = W/S. A hypergraph bipartitioning solution im-
plies cell areas Cqo and C; in child blocks, such that Cy+Cy = C,
0 < Cp,0 < Cy. The input to the hypergraph bipartitioner must spec-
ify both the netlist and the allowed ranges for Cp and Cy, i.e., bounds
Ci"" < Co < CF*,CMM < Cy < C™*. These bounds establish ab-
solute tolerance T; = CI™ — C" and relative tolerance Tj = T; /C.
Capo8.7 uses a mix of %ixed toierances and hierarchical whitespace
allocation during top-down placement [7]. The placer chooses ver-
tical or horizontal block splits depending on the blocks” aspect ratio
to always cut along the longest side of a block. Vertical partitioning
is performed with a fixed 20% tolerance. After partitioning, when
the actual total cell area in each partition is available, the vertical
cut-line determining the block boundaries is shifted to equalize rel-
ative whitespace in the blocks. A different strategy is employed for
allocating whitespace for blocks split by horizontal cut-line. During
a horizontal split, the partitioning tolerances are calculated based
on the relative whitespace of the block and the number of rows in
the block. A precise mathematical model of hierarchical whitespace
allocation in placement is proposed in [7]. Partitioning tolerances
increase as the placer descends to lower levels, and relative whites-
pace in all blocks is limited from below, thus preventing overlaps.



This facilitates good use of whitespace, when it is scarce and pre-
vents dense regions when large amounts of whitespace are available.

Capo8.7 uses the hierarchical whitespace tolerance calculation
only while splitting a block horizontally. The tolerance during the
vertical split, is fixed and the vertical cut-line is allowed to move
after partitioning to balance the relative whitespace in the two child
blocks. This strategy works well for low whitespace designs. How-
ever for high whitespace designs, it results in lower tolerances dur-
ing vertical partitioning and results in excessive wirelength. After
studying the behavior of Capo8.7 on the PIO constructive bench-
mark we added the option -nonUniformWS to Capo8.8. This causes
Capo to use the same hierarchical tolerance computation for both
horizontal and vertical splits. Since, during the top-down placement
process, the aspect ratio of most of the blocks is close to 1.0, we
can approximate the number of recursively applied parallel vertical
block splits to n = logoR, where R is the number of rows in the
block. With this assumption, the partition tolerances are calculated
in the same manner for horizontal and vertical splits. This change
allows Capo8.8 to transparently handle designs with a large amount
of whitespace. We also test the effect of this change on the “qor” test
case from IBM which has 73095 cells ,73155 nets and 74 % whites-
pace in the design. Capo8.7 distributes the whitespace uniformly
around the chip and produces a placement with HPWL of 15.85e6.
Capo8.8 allows more tolerance during the initial cuts having the ef-
fect of compacting the placement. The final HPWL of the place-
ment produced by Capo8.8 is 10.0e6. The performance of Capo8.8
on the IBMv1 and IBMv2 benchmarks remains unchanged with re-
spect to Capo8.8. This is to be expected as these benchmarks have
artificially-created layout regions with a relatively small amount of
whitespace.

4.2 Repartitioning with Small Whitespace

While processing the Brickwalls benchmark with 0% whitespace,
we realized that Capo8.7 would often produce illegal and overlap-
ping solutions. Accidentally, the built-in naive legalizer of Capo was
turned off. Turning the legalizer on after Capo improved the results
but Capo was still producing substantial overlaps. In an attempt to
reduce the number of overlaps, we revise partitioning in Capo8.8.
When a placement block is partitioned, the tolerance is first calcu-
lated using the hierarchical tolerance computation described above.
If the block is being split vertically, then the vertical cutline is de-
termined to balance the relative whitespace in the two partitions.
Furthermore, if the block has very little relative whitespace (< 2%)
we then repartition it with a smaller tolerance around the previously
determined cut-line. The initial solution to the partitioner is the one
obtained from the first partition. This technique was also explored
in [2], but caused wirelength degradation on the IBM v1 and v2
benchmarks and was not enabled in Capo8.7 by default.

5. CONCLUSIONS

Our work attempts to complement traditional placement research
where improvements are quantified by better routed wirelength on
large, hard-to-interpret netlists. While such a metric is certainly nec-
essary for real-world placement hand-off, it is ill-suited for analyz-
ing and improving placement software. We propose a series of arti-
ficial, scalable benchmarks each of which captures a particular fea-
ture occurring in modern netlists. All optimal placements for each
benchmark are known and can be easily visualized. Visual com-
parisons of actual placements to optimal ones often lead to sugges-
tions for improvement in placement algorithms. To this end, we (i)
observe quickly-growing sub-optimalities in solutions produced by
Dragon, FengShui, mPL2 and Domino placers, and (ii) trace them
to the strategy of packing cells in rows to the left or to the right.
Further empirical studies of major academic placers on constructive

benchmarks reveal two major approaches to handling whitespace —
(i) packing cells in rows, and (ii) distributing whitespace uniformly
through the core area. Capo, Kraftwerk and a major industrial placer
take the second approach, and tend to produce better wirelengths in
our tests. To our knowledge, Capo and Kraftwerk are currently used
in industrial EDA tools. We also observe that mPL3 distributes cells
in equally-spaced columns, which is certainly closer to uniform dis-
tribution than one-sided packing — a departure from mPL2.

Our constructive benchmarks are particularly convenient for de-
bugging placers that perform deterministic and irreversible deci-
sions, e.g., min-cut placers. Indeed, we can track each decision,
identify those leading to poor results and refine the decision-making
process. In comparison, it may be harder to debug stochastic placers
based on reversible iterations with good expected behavior because
individual moves bear little responsibility for the final results.

In the course of our work, the Capo placer has been considerably
improved by the process described above. Wirelengths on construc-
tive benchmarks decreased, with no penalty on existing benchmarks
(we observed small improvements in some cases). The benchmarks
are available online [15] on the GSRC bookshelf. Ongoing work in-
cludes evaluation of industrial placers on constructive benchmarks
and several new constructive benchmark families.
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