
Extended Abstract: Circuit CAD Tools
as a Security Threat

Jarrod A. Roy†, Farinaz Koushanfar‡ and Igor L. Markov†
†The University of Michigan, Department of EECS, 2260 Hayward Ave., Ann Arbor, MI 48109

‡Rice University, ECE and CS Departments, 6100 South Main, Houston, TX 77005

The demand for trusted and tamper-resistant computing
platforms has placed security at the leading edge of research
and industrial practice. Reported hardware-security breaches
have already led to loss of confidential information, identity
theft, intercepted cellular communications, and IP burglary.
Our work demonstrates that ICs can be easily compromised
by tampering with CAD tools or scripts that run these tools,
suggesting that developing effective countermeasures against
such attacks is a major research challenge. Our work is
especially relevant to industrial uses of open-source EDA.

Introduction. Breaches of hardware security facilitate nu-
merous attacks on electronic systems that imperil important
and ubiquitous applications. For example, in theGreek cell-
phone tapping caseof 2004-2005 [6], a still-unknown entity
tapped personal cell phones of many top Greek government
officials. In another system break-in, a New York City res-
ident installed software key loggers at public computers at
Kinko’s to steal credit card numbers [5]. The key loggers
went undetected for nearly two years, but eventually the crook
was caught red-handed and pleaded guilty to computer fraud.
Insertion and avoidance of such software-basedTrojan horses
has been an active area of research for many years [8]. While
software exploits can be often caught by anti-virus programs
and can be purged by reinstalling the OS, hardware exploits
are more difficult to detect and remove. Recent work, in
collaboration with IBM, focuses on detecting Trojan horses
inserted by manufacturers into IC masks [1].

A major concern raised by our work is that similar key
loggers and Trojan horses can beplanted in integrated circuits
during the design flowand remain undetectable. They may be
activated by secret combinations through the network without
risk to the perpetrator, or through physical contact between
the adversary and smartcards, RFIDs, e-cash, etc.

We demonstrate how Trojan horses can be planted into
ICs by maliciously altered logic CAD tools and simple pre-
/postprocessing scripts. Concerns about sabotaged tools be-
come more relevant as the industry embraces open-source
EDA initiatives. As pointed out by Ken Thompson [8], open-
source software can make it easy to alter any given tool
(using its original source code) and surreptitiously replace the
binary used at a particular site. We outline several variants of
such attacks and discuss countermeasures, mostly short-term
patches, with the purpose of articulating this arduous challenge
to the research community.

To better blend into the host system, Trojan horses must be
much smaller in size and power profile than genuine compo-
nents. This can be achieved by tailoring exploits to a specific
host system, as was done in most documented cases. If the host
system is an IC, then atrigger can be implemented as a digital
logic circuit, memory can be implemented using sequential
logic, and the payload would depend on the application. In
particular, some parts of the host system can be altered using
multiplexer gates, or turned off (gated).

Avoiding Detection. Trojan horses in ICs may be viewed
as design errors that alter observable behavior, and at the first
sight appear detectable by standard design verification andtest
procedures. However, such detection is surprisingly easy to
avoid by using a hidden binary counter that would keep the
Trojan horse inactive for long enough to survive manufacturing
test. A threshold of several hours to several weeks is sufficient
to fool even extremely rigorous testing procedures. The same
technique would prevent many sequential verification tech-
niques, such as Bounded Model Checking (BMC) and even
simulation, from catching altered behavior. In particular, BMC
is limited to a small number of clock cycles, and simulation
is orders of magnitude slower than the actual IC.

To prevent accidental triggering of a Trojan horse in a
working system, an additional secret combination can be used
that is unlikely to occur in normal circumstances. Without
such a combination, the device will operate normally and no
evidence of the Trojan horse will be present in the IC’s outputs.

One may think that tools and methods that examine the
circuit might detect exploits. And yet a Trojan horse may be
unobservable to design for test (DFT) constructs such as scan
chains. A better alternative is to inject the Trojan horse into
the design before ATPG, so that the generated input patterns
test the Trojan horse for faults as well. Carefully checking
the generated patterns against the intended function of theIC
after manufacturing might reveal the Trojan, but this is usually
impractical for large circuits, and test compression makesit
impossible to analyze expected responses.

Injecting Trojan Horses. We point out that Trojan horses
can be injected at nearly any point in the design flow from
logic synthesis to design for test (DFT) — either (1) by the
CAD tools themselves, or (2) by the scripts that run them. The
latter technique can be used with commercial tools, but cannot
invoke the primitives available during optimization.1 Scripts
can plant Trojan horses during preprocessing — by editing
Verilog — or during postprocessing — by altering the gate-



level netlist. Preprocessing appears easier because it primarily
involves editing ASCII text, and allows the injected Trojans to
better blend into the synthesized netlist and circuit technology.
In all cases, downstream back-end optimizations will treatthe
Trojan horse as a regular circuit module, making it particularly
difficult to detect by inspection.

To inject a Trojan horse, one first detects a target circuit
such as a particular cryptography or communication primitive
that can be compromised. Detection can be accomplished

• by pattern-matching in Verilog (discussed below),
• by matching unusual sub-circuits,

such as bit permutations between registers,
• by combinational equivalence checking.1

An identified pattern or subcircuit can then be replaced with
a compromised copy. We illustrate these concepts for stan-
dard cryptography circuits, which are among the hardest to
compromise.

Case Study: Crypto Circuits. Cryptographic circuits use
numerous XOR gates, bit shifts, bit permutations, and distinc-
tive, well-known constants. These are easy to detect and alter,
compromising the original functionality.

• “Magic” numbers used in standard pseudo-random num-
ber generators (PRNGs), cryptographic hashes and ci-
phers are easy targets for alteration. PRNGs are of
particular interest to security because randomization is
used to defeat many types of attacks, such as Differential
Power Analysis [7]. Depriving a PRNG of randomness
would re-enable those attacks [2]. For example, a linear
congruential PRNG relies on the fact that its constants are
relatively prime to produce a pseudo-random sequence
with a long period. Changing one digit can reduce this
period by 10x, while zeroing out all digits removes
randomness entirely.

• Bit permutations are used by many cryptographic ciphers
to rearrange bits in keys and ciphertext. The Data Encryp-
tion Standard (DES) utilizes at least six distinctive 32-bit
permutations, which make up a significant portion of DES
implementations. Such gateless subcircuits, connecting
pairs of 32-bit registers, are easy to detect, but critical
to repealing known attacks (as of Fall 2007, triple-DES
is considered cryptographically secure). Once a malicious
tool identifies DES, it can compromise permutation cir-
cuits and hide the exploit by conditioning it on the state
of a trigger, using a small number of MUX gates.

• Substitution functions taken bits as input and returnn
bits as output so that no two input combinations map to
the same output combination (bijection). Such functions
are used by may ciphers and are called S-boxes in
the Advanced Encryption Standard (AES). 8-bit S-boxes
used by AES (one each for encryption and decryption)
perform well-known operations over the field GF(2

8).
They are often implemented as look-up tables with

1Synthesis tools often use ROBDD packages which can check equivalence
of small circuits. SAT-based equivalence checking with theopen-source
MiniSAT tool requires only 1000 lines in C.

“magic” numbers, but can also be implemented strictly
with bit manipulations, as illustrated by the IWLS 2005
OpenCores benchmarksaes core andsystemcaes.
An implementation of S-boxes can be detected using
combinational equivalence checking, although for 8-bit
circuits, bit-parallel exhaustive enumeration will do. Once
detected, S-boxes in AES can be compromised by using
published fault-injection methods [3], [4].

Countermeasures & Summary. As we have demonstrated,
Trojan horses can be easily injected into IC designs during
the design flow. By remaining inactive for a long time,
they become practically undetectable. Therefore, we suggest
countermeasures based on thedynamic verificationparadigm
from [9], with the key insight that checking the results of a
computation can be easier than performing the computation.
The work in [9] shows that the results produced by a micro-
processor can be checked at full speed by a small module.
When a discrepancy is detected, the main processor falls back
on a slow but surely-correct implementation, thus tolerating
rare miscalculations. We adapt dynamic verification to harden
IC designs against Trojan horse injection by checking vital
statistics of the primary IC, e.g., sufficient randomness of
PRNGs. When an anomaly is detected, the main IC should
be shut down until further investigation. While this technique
does not prevent sabotage, it may prevent subtle eavesdropping
and leakage of keys. To enhance security, the checkers must
be synthesized using different tools, or be simple enough not
to be designed by hand.

In conclusion, we realize that our techniques may only slow
down, but not stop a resourceful attacker. Thus the described
research challenge remains open.

Acknowledgments. Prof. Koushanfar’s work is partially
supported by the DARPA/MTO Trust in Integrated Cir-
cuits/Young Faculty Award (YFA) under grant award
W911NF-07-1-0198, and by the NSF ITR-CYBERTRUST
under grant number 0716674. Prof. Markov’s work is partially
supported by the Microsoft Breakthrough Research Award.

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,
“Trojan Detection using IC Fingerprinting,”IEEE Symp. on Security &
Privacy’07, pp. 296–310.

[2] L. Dorrendorf et al., “Cryptanalysis of the Random Number Generator
of the Windows Operating System,”ACM CCS’07.

[3] O. Faurax and T. Muntean, “Security Analysis and Fault Injection
Experiment on AES,”SARSSI’07.

[4] M. Karpovsky, K. J. Kulikowski and A. Taubin, “Robust Protection
Against Fault-injection Attacks on Smart Cards Implementing the Ad-
vanced Encryption Standard,”DSN’04, pp. 93–101.

[5] K. Poulsen, “Guilty Plea in Kinko’s Keystroke Caper,” SecurityFocus,
July 18, 2003,
http://www.securityfocus.com/news/6447

[6] V. Prevelakis and D. Spinellis, “The Athens Affair”,IEEE Spectrum, vol.
44, no. 7, pp. 26-33, July 2007.

[7] F.-X. Standaert, S. B. Ors and B. Preneel, “Power Analysis of an FPGA
- Implementation of Rijndael: Is Pipelining a DPA Countermeasure?”,
LNCS 3156, pp. 30–44, 2004.

[8] K. Thompson, “Reflections on trusting trust”,Comm. of ACM, vol. 27,
no. 8, pp. 761-763, Aug. 1984.

[9] C. Weaver and T. Austin, “A Fault Tolerant Approach to Microprocessor
Design,” DSN’01, pp. 411-420.


