
Checking Equivalence of Quantum Circuits and States

George F. Viamontes,∗ Igor L. Markov,§ and John P. Hayes§

∗Lockheed Martin ATL §University of Michigan
3 Executive Campus Advanced Computer Architecture Lab.
Cherry Hill, NJ 08002 2260 Hayward St.
gviamont@atl.lmco.com Ann Arbor, MI 48109-2121

{imarkov, jhayes}@eecs.umich.edu

Abstract

Among the post-CMOS technologies currently under inves-
tigation, quantum computing (QC) holds a special place.
QC offers not only extremely small size and low power,
but also exponential speed-ups for important simulation and
optimization problems. It also poses new CAD problems
that are similar to, but more challenging, than the related
problems in classical (non-quantum) CAD, such as deter-
mining if two states or circuits are functionally equivalent.
While differences in classical states are easy to detect, quan-
tum states, which are represented by complex-valued vec-
tors, exhibit subtle differences leading to several notions of
equivalence. This provides flexibility in optimizing quan-
tum circuits, but leads to difficult new equivalence-checking
issues for simulation and synthesis. We identify several
different equivalence-checking problems and present algo-
rithms for practical benchmarks, including quantum com-
munication and search circuits, which are shown to be very
fast and robust for hundreds of qubits.

1 Introduction

Quantum computing (QC) is a recently discovered alter-
native to conventional computer technology that offers not
only miniaturization, but massive performance speed-ups
for certain tasks [11, 17, 10] and new levels of protection
in secure communications [4, 5]. Practical implementations
of these devices are quickly becoming a reality. This year,
D-Wave Systems unveiled a 16-qubit quantum computer
which can be fabricated using existing semiconductor tech-
nology [1]. D-Wave plans to release a 512- and a 1024-qubit
computer in 2008. Large quantum computing systems may
therefore require deeper consideration by the CAD commu-
nity sooner than previously expected.

In a quantum computer, information is stored in parti-
cle states and processed using quantum-mechanical oper-
ations referred to as quantum gates. The analogue of the
classical bit, the qubit, has two basic states denoted |0〉 and
|1〉, but can also exist in a superposition of these states
|φ〉 = α |0〉 + β |1〉, where |α|2 + |β|2 = 1. A composite
system consisting of n such qubits requires 2n parameters
(amplitudes) α j, which are complex numbers that can be
indexed by n-bit binary numbers thus: |Φ〉 = Σ2n

j=1α j | j〉,
where Σ|α j|2 = 1. Like any complex number, each α j can
be written in the form eiθ j |α j|, where eiθ j is the phase and
|α j| is the magnitude of α j . Both θ j and |α j| are real num-

bers, and i =
√−1. Quantum gates transform qubits by ap-

plying unitary matrices to them. Measurement of a quantum
state produces classical bits with probabilities dependent on
the magnitudes |αi|. Combining several gates, as in Figure
1, yields quantum circuits [13] which compactly describe
more sophisticated transformations that implement quantum
algorithms.

Based on the success of CAD for classical logic circuits,
new algorithms have been proposed for synthesis and simu-
lation of quantum circuits [3, 15, 18, 9, 21, 23]. In particu-
lar, Maslov et al. [12] describe what amounts to placement
and physical synthesis for quantum circuits — “adapting the
circuit to particulars of the physical environment which re-
stricts/complicates the establishment of certain direct inter-
actions between qubits.” Traditionally, such transformations
must be verified by equivalence-checking, but the quantum
context is more difficult because qubits and quantum gates
may differ by global and relative phase (defined below),
yet be equivalent upon measurement [13]. To this end, our
work is the first to develop techniques for quantum phase-
equivalence checking.

Consider two quantum states |ψ〉 = Σ jα j | j〉 and |ϕ〉 =
Σ jβ j | j〉. They are obviously equivalent if α j = β j for all j.
If |α j| = |β j| for all j but some α j and β j differ in phase,
then |ψ〉 and |ϕ〉 are said to be equivalent up to relative
phase. This implies that for each j there is a phase angle
θ j such that α j = eiθ j β j . In the special case where all the
θ j’s have the same value θ, we can write |ϕ〉 = eiθ |ψ〉, and
the two states are said to be equivalent up to global phase.
When the states are only equivalent up to relative phase, a
unitary diagonal matrix can be used to transform one state
into the other thus:

|ϕ〉 = diag(eiθ0 ,eiθ1 , . . . ,eiθN−1) |ψ〉 . (1)

For example, |ψ〉 = α |0〉+ β |1〉 and |ϕ〉 = −α |0〉 − β |1〉
are equivalent up to global phase, but |ψ〉 = α |0〉+ β |1〉
and |ϕ〉 = α |0〉−β |1〉 are equivalent up to relative phase.

When operators are applied, the probability amplitudes
of a state U |ψ〉 will in general differ by more than rela-
tive phase from those of U |ϕ〉, but the measurement out-
comes may be equivalent. One can consider a hierarchy in
which exact equivalence implies global-phase equivalence,
which implies relative-phase equivalence, which in turn im-
plies measurement outcome equivalence. The equivalence
checking problem is also extensible to quantum operators
with applications to quantum-circuit synthesis and verifica-
tion, which involves computer-aided generation of minimal



•
• •

Ry( π
4 ) �������� Ry( π

4 ) �������� Ry(−π
4 ) �������� Ry(−π

4 )

Figure 1: Margolus’ circuit is equivalent up to relative phase
to the Toffoli gate, which otherwise requires six CNOT and
eight 1-qubit gates to implement.

quantum circuits with correct functionality. Extended no-
tions of equivalence create several design opportunities. For
example, the well-known three-qubit Toffoli gate can be im-
plemented with fewer controlled-NOT (CNOT) and 1-qubit
gates up to relative phase [3, 18] as shown in Figure 1. The
relative-phase differences can be canceled out if every pair
of these gates in the circuit is strategically placed [18]. Since
circuit minimization is being pursued for a number of key
quantum arithmetic circuits with many Toffoli gates, such
as modular exponentiation [20, 8, 16, 15], this optimization
could reduce the number of gates even further.

The inner product and matrix product may be used to de-
termine such equivalences, but in this work, we present new
decision-diagram (DD) algorithms to accomplish the task
more efficiently. In particular, we make use of the quantum
information decision diagram (QuIDD) [22, 21], a datas-
tructure with unique properties that are exploited to solve
this problem asymptotically faster in practical cases.

Empirical results confirm the algorithms’ effectiveness
and show that the improvements are more significant for
the operators than for the states. Interestingly, solving the
equivalence problems for the benchmarks considered re-
quires significantly less time than creating the DD represen-
tations, which indicates that such problems can be reason-
ably solved in practice using quantum-circuit CAD tools.

2 Background

The QuIDD is a variant of the reduced ordered binary deci-
sion diagram (ROBDD or BDD) datastructure [7] applied to
quantum circuit simulation [22, 21]. Like other DD variants,
it has all of the key properties of BDDs as well as a few other
application-specific attributes (see Figure 2 for examples).

• It is a directed acyclic graph with internal nodes whose
edges represent assignments to binary variables

• The leaf or terminal nodes refer to complex values
• Each path from the root to a terminal node is a func-

tional mapping of row and column indices to complex-
valued matrix elements ( f : {0,1}n → C)

• Nodes are unique and shared, meaning that nodes v
and v′ with isomorphic subgraphs do not exist

• Variables whose values do not affect the function out-
put for a particular path (not in the support) are absent

• Binary row (Ri) and column (Ci) index variables have
evaluation order R0 ≺C0 ≺ . . .Rn−1 ≺Cn−1

Maintaining these properties makes many DDs such as
QuIDDs canonical. Thus, exact equivalence checking may
be performed in O(1) time by comparing the root nodes,
a technique which has been long exploited in the classical
domain [19]. Quantum state and operator equivalence is less
trivial as we show.

The algorithms which manipulate DDs are just as impor-
tant as the properties of the DDs. In particular, the Apply

 R1 

  (a)  

fa

-0.707107 + 0i 0.707107 + 0i

↔

R0R1
0 0
0 1
1 0
1 1




0.707107
−0.707107
0.707107
−0.707107




↔

C0C1
R0R1 00 01 10 11
0 0
0 1
1 0
1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Figure 2: Sample QuIDDs of (top) a 2-qubit equal superpo-
sition with relative phases and (bottom) the CNOT operator.
Internal nodes (circles) have a unique hex ID depends on a
variable to the left (dashed (solid) edge is 0 (1) assignment).

algorithm performs recursive traversals on DD operands to
build new DDs using any desired unary or binary function
[7]. Although originally intended for digital logic opera-
tions, Apply has been extended to linear-algebraic oper-
ations such as matrix addition and multiplication [2], as
well as quantum-mechanical operations such as measure-
ment and partial trace [22, 21]. The runtime and memory
complexity of Apply is O(|A||B|), where |A| and |B| are the
sizes in number of nodes of the DDs A and B, respectively
[7].1 Thus, the complexity of DD-based algorithms is tied
to the compression achieved by the datastructure.

3 Checking Equivalence up to Global Phase

This section describes algorithms that check global-phase
equivalence of two quantum states or operators. The first
two algorithms are known QuIDD-based linear-algebraic
operations, while the remaining algorithms are new ones
that exploit DD properties explicitly. The section concludes
with experiments comparing all algorithms.

3.1 Product-based Checks
Since the quantum-circuit formalism models an arbitrary
quantum state |ψ〉 as a unit vector, the inner product
〈ψ | ψ〉 = 1. In the case of a global-phase difference be-
tween two states |ψ〉 and |ϕ〉, the inner product is the global-
phase factor, 〈ϕ | ψ〉 = eiθ〈ψ | ψ〉 = eiθ. Since |eiθ| = 1 for
any θ, checking if the complex modulus of the inner prod-
uct is 1 suffices to check global-phase equivalence for states.
A QuIDD-based implementation of the inner product is de-
rived based on previously defined QuIDD operations [22].
Since the operations are based on Apply, computing the
global-phase difference in this way requires O(|A||B|) time

1The runtime and memory complexity of the unary version acting on one
DD A is O(|A|) [7].



and memory for two QuIDDs A and B with sizes in nodes
|A| and |B|, respectively.

The matrix product can be used for checking global-
phase equivalence between operators. In particular, since
all quantum operators are unitary, the adjoint of each oper-
ator is its inverse. Thus, if two operators U and V differ by
a global phase, then UV † = eiθI. As with the inner prod-
uct, this operation is based on previously defined QuIDD
operations including matrix multiplication. This technique
therefore requires O((|U ||V |)2) time and memory.

3.2 Node-Count Check
The previous algorithms merely translate linear-algebraic
operations to QuIDDs, but exploiting the following QuIDD
property leads to faster checks.

Lemma 1 The QuIDD A′ = Apply(A,c,∗), where c ∈ C

and c 
= 0, is isomorphic to A, hence |A′| = |A|.
Proof. In creating A′, Apply expands all of the internal
nodes of A since c is a scalar, and the new terminals are the
terminals of A multiplied by c. All terminal values ti of A
are unique by definition of a QuIDD [22]. Thus, cti 
= ct j for
all i, j such that i 
= j. As a result, the number of terminals
in A′ is the same as in A. �

Lemma 1 states that two QuIDD states or operators that
differ by a non-zero scalar factor, such as global phase,
have the same number of nodes. Thus, equal node counts
in QuIDDs are a necessary but not sufficient condition for
global-phase equivalence. To see why it is not sufficient,
consider two state vectors |ψ〉 and |ϕ〉 with elements w j and
vk, respectively, where j,k = 0,1, . . .N − 1. If some w j =
vk = 0 such that j 
= k, then |ϕ〉 
= eiθ |ψ〉. The QuIDD rep-
resentations of these states can have the same node counts.
Despite this drawback, this check requires only O(1) time
since Apply is easily augmented to sum the number of dis-
tinct nodes as a QuIDD is created.

3.3 Recursive Check
Lemma 1 implies that a QuIDD-based algorithm can im-
plement a sufficient condition for global-phase equivalence
by accounting for terminal value differences. The algorithm
is a modified version of Apply. In each recursive step, the
variable depended upon in a node in one QuIDD must be the
same as the variable depended upon in the other QuIDD’s
node. If it is not, then the two QuIDDs are not isomorphic
and hence not equivalent up to global phase (early termina-
tion). When terminal values are reached in both QuIDDs,
the magnitude of the ratio is computed. If it is not equal to
1, then the difference is not a phase factor. Also, if the ra-
tio is not equal to previously computed terminal ratios, the
difference is not a global phase factor.

In the worst case, both QuIDDs are isomorphic and all
nodes are visited. Thus, the overall runtime and memory
complexity of GPRC for states or operators is O(|A|+ |B|).
Also, the node-count check can be run before GPRC to
quickly eliminate many nonequivalences.

3.4 Empirical Results

The first benchmark considered is the logic associated with a
single iteration of Grover’s quantum search algorithm [10],
which is depicted in Figure 3. One iteration is sufficient

|0〉 H H

CPS

H •
|0〉 H H H •

...
...

...
...

|1〉 H �������� H

� � � � � � ��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � � � � �

Figure 3: An iteration of Grover’s algorithm, where the
boxed part is the Grover iteration operator.

to test the effectiveness of the equivalence-checking algo-
rithms since the state vector QuIDD remains isomorphic
across all iterations [22].

Figure 4a shows the runtime results for the inner product
and GPRC algorithms (no results are given for the node-
count check algorithm since it runs in O(1) time). The
results confirm the asymptotic complexity differences be-
tween the algorithms. The number of nodes in the QuIDD
state vector after a Grover iteration is O(n) [22], which is
confirmed in Figure 4b. As a result, the runtime complexity
of the inner product should be O(n2), which is confirmed by
a regression plot within 1% error. By contrast, the runtime
complexity of the GPRC algorithm should be O(n), which
is also confirmed by another regression plot within 1% error.
The matrix product and GPRC exhibited the same asymp-
totic behavior for checking the Grover operator.

The next benchmark compares states in Shor’s inte-
ger factorization algorithm [17]. Specifically, we consider
the states created by the modular exponentiation sub-circuit
that represent all possible combinations of x and f (x,N) =
axmodN, where N is the integer to be factored [17] (see Fig-
ure 5). Each of the O(2n) paths to a non-0 terminal repre-
sents a binary value for x and f (x,N). Thus, this benchmark
tests performance with exponentially-growing QuIDDs.

We applied the inner product and GPRC algorithms
to this benchmark for values of N that ranged from 12 to
19 qubits in size, and each N was composed of two non-
trivial prime factors.2 Interestingly, both algorithms ex-
hibited nearly the same performance with runtimes under
10 seconds for the 19-qubit value. However, experiments
in which the first, middle, and last qubits are acted upon
by Hadamard gates that destroy global phase equivalence,
GPRC outperforms the inner product by factors ranging
from 1.5x to 10x. This improvement comes from the node
count early termination condition.

In almost every case, both algorithms represent far less
than 1% of the total runtime. Thus, checking for global-
phase equivalence among QuIDD states appears to be an
easily achievable task once the representations are created.
An interesting side note is that some modular exponenti-
ation QuIDD states with more qubits can have more ex-
ploitable structure than those with fewer qubits. For in-
stance, the N = 387929 (19 qubits) QuIDD has fewer than
half the nodes of the N = 163507 (18 qubits) QuIDD.

Table 1 contains results for the matrix product and
GPRC algorithm checking the inverse Quantum Fourier

2Such integers are likely to be the ones input to Shor’s algorithm since
they play a key role in modern public key cryptography [17].



(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  100  200  300  400  500  600

R
un

tim
e 

(s
)

No. of qubits

Inner Product
GPRC

3.90824e-06x^2
2.91557e-05x + 0.01

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 0  100  200  300  400  500  600

N
o.

 o
f n

od
es

No. of qubits

Nodes in state
x

Figure 4: (a) Runtime results and regressions for the inner product and GPRC on checking global-phase equivalence of states
generated by a Grover iteration. (b) Size in node count and regression of the QuIDD state vector.

No. of Matrix Product GPRC
Qubits Time (s) Mem (MB) Time (s) Mem (MB)

5 2.53 1.41 0.064 0.25
6 22.55 6.90 0.24 0.66
7 271.62 46.14 0.98 2.03
8 3637.14 306.69 4.97 7.02
9 22717 1800.42 17.19 26.48

Table 1: Performance results for the matrix product
and GPRC algorithms on checking global-phase equiv-
alence of the QFT operator.

x




7xmod15




 R0 

 R1 

 R2 

 R3 

 R4 

 R5 

 R6 

 R7 

  7^x mod 15  

6b3db

6b3da 6b3d2

6b3d9

6b3d4 6b3cd 6b3d1

6b3d8

6b3d7

0 + 0i

6b3cc 6b3d06b3d36b3d6

6b3cb6b3cf6b3d5

6b3ce 6b3ca

0.258199 + 0i

Figure 5: A QuIDD state combining x and 7xmod15 in bi-
nary. The first qubit of each partition is least-significant.

Transform (QFT) operator. The inverse QFT is a key
operator in Shor’s algorithm [17], and it has been previ-
ously shown that its n-qubit QuIDD representation grows as
O(22n) [22]. In this case, the asymptotic differences in the
matrix product and GPRC are very noticeable. Also, the
memory usage indicates that the matrix product may need
asymptotically more intermediate memory despite operat-
ing on QuIDDs with the same number of nodes as GPRC.

4 Checking Equivalence up to Relative Phase

The relative-phase checking problem can also be solved in
many ways. The first three algorithms are adapted from lin-
ear algebra to QuIDDs, while the last two exploit DD prop-
erties directly, offering asymptotic improvements.

4.1 Modulus and Products

Consider two state vectors |ψ〉 and |ϕ〉 that are equiva-
lent up to relative phase and have complex-valued ele-
ments w j and vk , respectively, where j,k = 0,1, . . . ,N − 1.
Computing |ϕ′〉 = ΣN−1

i=0 |v j| | j〉 and |ψ′〉 = ΣN−1
k=0 |wk| |k〉 =

ΣN−1
k=0 |eiθk vk| |k〉 sets each phase factor to a 1, allowing the

inner product to be applied as in Subsection 3.1. The com-
plex modulus operations are computed as C = Apply(A, | · |)
and D = Apply(B, | · |) with runtime and memory complex-
ity O(|A|+ |B|), which is dominated by the O(|A||B|) inner-
product complexity.

For operator equivalence up to relative phase, two cases
are considered, namely the diagonal relative-phase matrix
appearing on the left or right side of one of the operators.
Consider two operators U and V with elements u j,k and
v j,k, respectively, where j,k = 0, . . .N−1. The two cases in
which the relative-phase factors appear on either side of V
are described as u j,k = eiθ j v j,k (left side) and u j,k = eiθk v j,k
(right side). In either case, the the matrix product check dis-
cussed in Subsection 3.1 may be extended by computing the
complex modulus without increasing the overall complex-
ity. Note that neither this algorithm nor the modulus and
inner product algorithm calculate the relative-phase factors.

4.2 Element-wise Division

Given the states discussed in Subsection 4.1, wk = eiθk vk,
the operation wk/v j for each j = k is a relative-phase factor,
eiθk . The condition |wk/v j|= 1 is used to check if each divi-
sion yields a relative phase. If this condition is satisfied for
all divisions, the states are equivalent up to relative phase.

The QuIDD implementation for states is simply C =
Apply(A,B,/), where Apply is augmented to avoid division
by 0 and instead return 1 when two terminal values being
compared equal 0, and return 0 otherwise. Apply can be
further augmented to terminate early when |w j/vi| 
= 1. C is
a QuIDD vector containing the relative-phase factors. If C
contains a terminal value of 0, then A and B do not differ by
relative phase. Since a call to Apply implements this algo-
rithm, the runtime and memory complexity are O(|A||B|).

Element-wise division for operators is more compli-
cated. For QuIDD operators U and V , W = Apply(U,V,/)
is a QuIDD matrix with the relative-phase factor eiθ j along
row j in the case of phases appearing on the left side and
along column j in the case of phases appearing on the right
side. In the first case, all rows of W are identical, meaning



that the support of W does not contain any row variables.
Similarly, in the second case the support of W does not con-
tain any column variables. A complication arises when 0
values appear in either operator. In such cases, the support
of W may contain both variable types, but the operators may
in fact be equivalent up to relative phase. We implement
an algorithm which accounts for these cases by recursively
marking valid 0 entries with a sentinel value. Since the algo-
rithm is a variant of Apply, the runtime and memory com-
plexity are O(|U ||V |).
4.3 Non-0 Terminal Merge

A necessary condition for relative-phase equivalence is that
zero-valued elements of each state vector appear in the same
locations, as expressed by the following lemma.

Lemma 2 A necessary but not sufficient condition for two
states |ϕ〉 = ΣN−1

j=0 v j | j〉 and |ψ〉 = ΣN−1
k=0 wk |k〉 to be equiva-

lent up to relative phase is that ∀v j = wk = 0, j = k.

Proof. If |ψ〉 = |ϕ〉 up to relative phase, |ψ〉 =
ΣN−1

k=0 eiθk vk |k〉. Since eiθk 
= 0 for any θ, if any wk = 0, then
v j = 0 must also be true where j = k. A counter-example
proving insufficiency is |ψ〉 = (0,1/

√
3,1/

√
3,1/

√
3)T and

|ϕ〉 = (0,1/2,1/
√

2,1/2)T . �

QuIDD canonicity may now be exploited. Let A and
B be the QuIDD representations of the states |ψ〉 and |ϕ〉,
respectively. First compute C = Apply(A,�| · |) and D =
Apply(B,�| · |), which converts every non-zero terminal
value of A and B into a 1. Since C and D have only two
terminal values, 0 and 1, checking if C = D satisfies Lemma
2. Canonicity ensures this check requires O(1) time and
memory. The overall runtime and memory complexity of
this algorithm is O(|A|+ |B|) due to the unary Apply opera-
tions. This algorithm also applies to operators since Lemma
2 also applies to u j,k = eiθ j v j,k (phases on the left) and
u j,k = eiθk v j,k (phases on the right) for operators U and V .

4.4 Modulus and DD Compare

A variant of the algorithm presented in Subsection 4.1,
which also exploits canonicity, provides an asymptotic im-
provement for checking a necessary and sufficient condi-
tion for relative-phase equivalence of states and operators.
As in Subsection 4.1, compute C = Apply(A, | · |) and D =
Apply(B, | · |). If A and B are equivalent up to relative phase,
then C = D since each phase factor becomes a 1. This check
requires O(1) time and memory due to canonicity. Thus, the
runtime and memory complexity is dominated by the unary
Apply operations, giving O(|A|+ |B|).
4.5 Empirical Results

The first benchmark for the relative-phase equivalence
checking algorithms creates a remote EPR pair, which
is an EPR pair between the first and last qubits, via
nearest-neighbor interactions [6]. The circuit is shown
in Figure 6. Specifically, it transforms the initial state
|00 . . .0〉 into (1/

√
2)(|00 . . .0〉 + |10 . . .1〉). The circuit

size is varied, and the final state is compared to the state
(e0.345i/

√
2) |00 . . .0〉+(e0.457i/

√
2) |10 . . .1〉.

|0〉 H •
|0〉 �������� • ��������

|0〉 �������� •
...|0〉 • ��������

|0〉 �������� •

Figure 6: Remote EPR-pair creation between the first
and last qubits via nearest-neighbor interactions.

The results in Figure 7a show that all algorithms run
quickly. The inner product is the slowest, yet it runs in ap-
proximately 0.2 seconds at 1000 qubits, a small fraction of
the 7.6 seconds required to create the QuIDD state vectors.
Regressions of the runtime and memory data reveal linear
complexity for all algorithms to within 1% error. This is not
unexpected since the QuIDD representations of the states
grow linearly with the number of qubits (see Figure 7b), and
the complex modulus reduces the number of different ter-
minals prior to computing the inner product. These results
illustrate that in practice, the inner product and element-
wise division algorithms can perform better than their worst-
case complexity. Element-wise division should be preferred
when QuIDD states are compact since unlike the other al-
gorithms, it computes the relative-phase factors.

The Hamiltonian simulation circuit shown in Figure 8
is taken from [13, Figure 4.19, p. 210]. When its one-
qubit gate (boxed) varies with ∆t, it produces a variety of
diagonal operators, all of which are equivalent up to rela-
tive phase. Empirical results for such equivalence checking
were similar to the remote EPR pair results and exhibited the
same asymptotic trends. As before, the matrix product and
element-wise division algorithms perform better than their
worst-case bounds, indicating that element-wise division is
the best choice for compact QuIDDs.

5 Conclusions

We have shown that various DD properties can be exploited
to develop efficient algorithms for the difficult problem of
equivalence checking up to global and relative phase. The
recursive check and element-wise division algorithms effi-
ciently determine equivalence of states and operators up to
global and relative phase, and compute the phases. They
outperform QuIDD matrix and inner products, which do not
compute relative-phase factors. Other QuIDD algorithms
presented, such as the node-count check, non-0 terminal
merge, and modulus and DD compare, provide even faster
checks but only satisfy necessary equivalence conditions.
Thus, they should be used to aid the more robust algorithms.
A summary of the theoretical results is provided in Table 2.

• •

...
...

• •
• •

|0〉 �������� �������� �������� e−i∆tZ �������� �������� �������� |0〉

Figure 8: A quantum-circuit realization of a Hamilto-
nian consisting of Pauli operators.



(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  100  200  300  400  500  600  700  800  900  1000

R
un

tim
e 

(s
)

No. qubits

0.000193944x
Inner Product
1.5501e-05x

Element-wise Division
9.82249e-05x

Mod. DD Compare
1.50249e-05x

Non-0 Term. Merge

(b)

 0

 500

 1000

 1500

 2000

 2500

 0  100  200  300  400  500  600  700  800  900  1000

N
o.

 o
f n

od
es

No. of qubits

2.1x
State

State with RP

Figure 7: (a) Runtime results and (b) size in nodes plotted with regressions for inner product, element-wise division, modulus
and DD compare, and non-0 terminal merge checking relative-phase equivalence of the remote EPR pair circuit.

O(·) time O(·) time
Algorithm

Phase Finds Necessary &
complexity: complexity:type phases? sufficient?

best-case worst-case

Inner
Product

Global Yes N. & S. |A||B| |A||B|
Matrix
Product

Global Yes N. & S. (|A||B|)2 (|A||B|)2

Node-Count Global No N. only 1 1
Recursive

Check
Global Yes N. & S. 1 |A|+ |B|

Modulus and
Inner Product

Relative No N. & S. |A||B| |A||B|
Element-wise

Division
Relative Yes N. & S. |A||B| |A||B|

Non-0
Terminal Merge

Relative No N. only |A|+ |B| |A|+ |B|
Modulus and
DD Compare

Relative No N. & S. |A|+ |B| |A|+ |B|

Table 2: Key properties of the QuIDD-based phase-
equivalence checking algorithms.

A fair amount of work has been done on optimal and
heuristic synthesis for quantum circuits [14, 15]. Equiv-
alence checking in particular plays a key role in some of
these techniques since it is often necessary to verify the cor-
rectness of heuristic transformations. Future work will de-
termine how these equivalence checking algorithms may be
used as primitives to enhance such heuristics.

Acknowledgements. This work was sponsored in part
by the Air Force Research Laboratory under Agreement No.
FA8750-05-1-0282.

References

[1] M. H. S. Amin et al., “Superconducting quantum storage and
processing,” Digest ISSCC, pp. 296-299, Feb. 2004.

[2] R. I. Bahar et al., “Algebraic decision diagrams and their appli-
cations,” Journal of Formal Methods in System Design, 10 (2/3),
1997.

[3] A. Barenco et al., “Elementary gates for quantum computa-
tion,” Phys. Rev. A, 52, 3457-3467, 1995.

[4] C. H. Bennett and G. Brassard, “Quantum cryptography: pub-
lic key distribution and coin tossing”, In Proc. of IEEE Intl.
Conf. on Computers, Systems, and Signal Processing, pp. 175-
179, 1984.

[5] C.H. Bennett, “Quantum cryptography using any two
nonorthogonal states”, Phys. Rev. Lett. 68, 3121, 1992.

[6] G. P. Berman, G. V. López, and V. I. Tsifrinovich, “Telepor-
tation in a nuclear spin quantum computer,” Phys. Rev. A 66,
042312, 2002.

[7] R. Bryant, “Graph-based algorithms for Boolean function ma-
nipulation,” IEEE Trans. on Computers, C35, pp. 677-691,
1986.

[8] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P.
Moulton, “A new quantum ripple-carry addition circuit,”
quant-ph/0410184, 2004.

[9] D. Gottesman, “The Heisenberg representation of quan-
tum computers,” Plenary speech at the 1998 Interna-
tional Conference on Group Theoretic Methods in Physics,
quant-ph/9807006, 1998.

[10] L. Grover, “Quantum mechanics helps in searching for a nee-
dle in a haystack,” Phys. Rev. Lett. 79, 325, 1997.

[11] A. J. G. Hey, ed., Feynman and Computation: Exploring the
Limits of Computers, Perseus Books, 1999.

[12] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum Cir-
cuit Placement: Optimizing Qubit-to-qubit Interactions through
Mapping Quantum Circuits into a Physical Experiment,” Proc.
DAC, pp. 962-965, June 2007.

[13] M. A. Nielsen, I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[14] A. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov, and
J. P. Hayes, “Algorithms and data structures for simplifying re-
versible circuits”, to appear in ACM J. of Emerging Technologies
in Computing, 2007.

[15] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis
of quantum logic circuits,” IEEE Trans. on CAD 25, pp. 1000-
1010, 2006.

[16] V. V. Shende and I. L. Markov, “Quantum circuits for in-
completely specified two-qubit operators,” Quantum Informa-
tion and Computation 5 (1), pp. 49-57, 2005.

[17] P. W. Shor, “Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer,” SIAM J.
of Computing 26, p. 1484, 1997.

[18] G. Song and A. Klappenecker, “Optimal realizations of sim-
plified Toffoli gates,” Quantum Information and Computation 4,
pp. 361-372, 2004.

[19] R. T. Stanion, D. Bhattacharya, and C. Sechen, “An efficient
method for generating exhaustive test sets,” IEEE Trans. on
CAD 14, pp. 1516-1525, 1995.

[20] R. Van Meter and K. M. Itoh, “Fast quantum modular expo-
nentiation,” Phys. Rev. A 71, 052320, 2005.

[21] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Graph-based
simulation of quantum computation in the density matrix rep-
resentation,” Quantum Information and Computation 5 (2), pp.
113-130, 2005.

[22] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Improving
gate-level simulation of quantum circuits,” Quantum Informa-
tion Processing 2, pp. 347-380, 2003.

[23] G. Vidal, “Efficient classical simulation of slightly entangled
quantum computations,” Phys. Rev. Lett. 91, 147902, 2003.

[24] J. Yepez, “A quantum lattice-gas model for computational
fluid dynamics,” Phys. Rev. E 63, 046702, 2001.


