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Abstract—Clock networks contribute a significant fraction of
dynamic power and can be a limiting factor in high-performance
CPUs and SoCs. The need for multi-objective optimization over a
large parameter space and the increasing impact of process vari-
ation make clock network synthesis particularly challenging. In
this work, we develop new modeling techniques and algorithms,
as well as a methodology, for clock power optimization subject to
tight skew constraints in the presence of process variations. Key
contributions include a new time-budgeting step for clock-tree
tuning, accurate optimizations that satisfy budgets, modeling and
optimization of variational skew. Our implementation, Contango
2.0, outperforms the winners of the ISPD 2010 clock-network
synthesis contest on 45nm benchmarks from Intel and IBM.

I. INTRODUCTION

Processor-based systems fueled the development of elec-

tronics since the 1960s. PCs were the main driver of growth

in electronics in the 1990s, and in the 2000s mobile phones and

other battery-powered consumer devices became a significant

market segment, followed by automotive electronics. The

emphasis in CPU design has shifted from high performance

to power-performance-cost trade-offs, including the advent of

multicore CPUs and the growing popularity of low-power

ARM CPUs. In the netbook market, the low-power 1.6GHz

Atom CPU from Intel is currently competing with ARM’s

multicore 2GHz Cortex-A9 CPUs and the 1GHz Cortex-

A8, but 98% of world’s mobile phones rely on ARM-based

CPUs [13] which currently offer better power-performance-

cost trade-offs than Intel CPUs [24].

ARM cores often drive system-on-chip (SoC) designs, laid

out using low-power ASIC methodologies. Such methodolo-

gies perform automated clock-tree synthesis after placement,

whereas traditional high-performance CPU methodologies pre-

design clock networks and use active deskewing to lower clock

skew and susceptibility to process variations [19]. Clock trees

are more susceptible to variations than meshes (common in

CPUs), but are 2-4 times more power-efficient. This is signif-

icant because clock distribution networks and corresponding

sequential elements consume up to 70% of CPU power and can

affect power-performance comparisons between CPUs [20].

Recent developments in embedded CPU design stress the

need for low-power clock trees, yet also impose stringent

skew limits, especially in the presence of process, voltage and

temperature (PVT) variation for sub-45nm CMOS technology.

Previous clock-tree methodologies rely on symmetric and reg-

ular tree topologies, such as H-trees and fishbones [1, chapter

43], which do not require sophisticated design algorithms (see

Section II). However, these topologies experience difficulties

with layout obstacles, non-uniform sink distributions, and

varied sink capacitances. Fully-automated clock-tree synthesis

supported by commercial EDA tools offers clear advantages in

terms of capacitance, but may not be able to ensure sufficiently

low skew for use in a 2GHz CPU. For example, the authors of

[17] report clock trees generated by Cadence tools with skew

that is orders of magnitude higher than the single-ps skew

provided by clock meshes.

In this paper, we pursue the following research questions.

• How far can the skew of a high-performance clock tree

be optimized?

• How can one minimize the impact of PVT variations in

a clock tree?

• Given a single-picosecond skew requirement, how com-

petitive are clock trees with clock meshes?

Our approach to answering these questions is inspired by the

ISPD 2010 clock-network synthesis contest, which used sev-

eral 2GHz CPU benchmarks from IBM and Intel to compare

tools submitted by 10 teams across the world (downselected

from 20 initial registrants). To evaluate the quality of the clock

networks, difficult slew and skew constraints were checked

against 45nm Monte-Carlo SPICE simulations that modeled

PVT variations. Clock networks that cleared all constraints

were compared by their total capacitance — a proxy for

dynamic power. In this context, we developed a suite of algo-

rithms for the design and thorough optimization of clock trees.

The results of the ISPD 2010 contest offer a rare opportunity

to compare multiple strategies for clock-network synthesis —

the third-place team used symmetric trees [23], the second-

place team used clock meshes, and our team won the contest

by optimizing clock trees built by the DME algorithm [2], [6].

Specific innovations in our comprehensive methodology for

clock-network synthesis include

• The notion of local-skew slack for clock trees.

• A tabular technique to estimate the impact of variations

on skew between two sinks.

• A path-based technique to enhance the robustness of a

clock tree to PVT variations.

• A time-budgeting algorithm for clock-tree tuning that

distributes delay targets to individual edges of the tree so

as to improve skew with minimal power resources. This

algorithm can be used in the context of PVT variations

and is not specific to our methodology.

• Fine tuning of optimized clock trees by gentle wire

snaking, sufficiently accurate to satisfy delay budgets.



Processors Year Node, Freq., Clock Deskew Skew,
nm MHz Topology ps

IBM S/390 1997 200 400 tree — 30
IBM Power4 2002 180 1300 tree+grid — 25
Alpha 21264 1998 350 600 grid — 65
Pentium 2 1997 350 300 spine — 140
Pentium 3 1999 250 650 spine active 15
Pentium 4 2001 180 2000 spine active 16
Itanium 2000 180 800 tree+grid active 28
Itanium 2 2003 130 1500 tree+grid fuse 24

ISPD 2010 2010 45 2000 tree — 7.5
TABLE I

CLOCK NETWORKS IN INDUSTRY CPUS [1, CHAPTER 43] AND

ISPD 2010 BENCHMARKS FROM INTEL AND IBM (TABLE II).

Our empirical results are compared to those of the winners

of the ISPD 2010 clock-network contest, where each team

violated prescribed skew constraints (7.5 ps in most cases)

on at least some benchmarks in the presence of variations.

However, results reported in this paper satisfy skew constraints

on every benchmark. Our clock trees have 4.2× smaller

capacitance than clock meshes produced by CNSrouter [25],

while exhibiting smaller skew.

The remainder of this paper is organized as follows. Section

II covers background and prior work. Section III describes

optimization objectives and variation modeling. Section IV

explains initial tree construction with buffering. In Section V

details the techniques for robustness improvements. Section

VI outlines our skew optimization techniques. Our empirical

results are described in Section VII. Conclusions are given in

Section VIII.

II. BACKGROUND AND PRIOR WORK

Clock networks in microprocessors. A variety of clock

network topologies and deskewing techniques were developed

for microprocessors. Table I shows key parameters of clock

networks in the microprocessors designed by IBM and Intel

from the late 1990s to early 2000s [1, Chapter 43]. All those

clock networks are regular, and only minimally adapt to sink

locations.

Algorithms for clock tree construction. Theoretical develop-

ments in the 1990s suggested improvements over H-trees and

spines using zero-skew trees (ZST) with minimum total length.

To build a min-length ZST, the Deferred Merge Embedding

ISPD‘10 Pro- Area, Num. Obsta- ∆, Ω∆,

Bench. vider mm2 sinks cles µm ps

CNS01 IBM 64 1107 4 600 7.5
CNS02 IBM 91 2249 1 600 7.5
CNS03 IBM 1.51 1200 2 370 4.999
CNS04 IBM 5.73 1845 2 600 7.5
CNS05 IBM 5.9 1016 1 600 7.5
CNS06 Intel 1.74 981 0 600 7.5
CNS07 Intel 3.67 1915 0 600 7.5
CNS08 Intel 2.99 1134 0 600 7.5

TABLE II
ISPD 2010 BENCHMARKS BASED ON 45 NM MICROPROCESSOR

DESIGNS. Ω∆ IS THE local skew limit, AND ∆ IS THE local skew
distance limit RESPECTIVELY (SEE SECTION III-A). NOMINAL

VOLTAGE IS 1.0V AND ON-CHIP VARIATIONS (ν) ARE ACCOUNTED

BY 15% VOLTAGE VARIATION AND 10% VARIATION OF WIRE

PARASITICS FOR ALL BENCHMARKS [25].

(DME) algorithm was proposed in [2], [6] based on the

concept of merging segments. Timing optimization based on

Elmore delay was also incorporated into DME algorithms.

DME algorithms assume a binary clustering of clock sinks.

Such clustering can be found by a recursive horizontal-vertical

partitioning algorithm called the method of means and medians

(MMM) in [11] or the geometric matching algorithm (GMA)

in [5]. Other simple algorithms for clock-tree synthesis are

discussed in [1, Chapter 42].

Several methodologies for clock-tree tuning have recently

been developed for the ISPD 2009 clock-network synthesis

contest which focused on ASIC and SoC designs. A clock-

synthesis methodology for SPICE-accurate skew optimization

with tolerance to voltage variations called Contango was

proposed in [14]. Dynamic Nearest-Neighbor Algorithm to

generate tree topology and Walk-Segment Breadth First Search

for routing and buffering were proposed in [22]. A three-stage

CLR-driven CTS flow based on an obstacle-avoiding balanced

clock-tree routing algorithm, monotonic buffer insertion, as

well as wire-sizing and wire-snaking is proposed in [15]. A

Dual-MST geometric matching approach is proposed in [16]

for topology construction, along with recursive buffer insertion

and a way to handle blockages. SoC methodologies often

spend significant effort dealing with hundreds of layout obsta-

cles, while CPU layouts include very few obstacles. However,

skew constraints are more difficult in CPU clock synthesis.

Because of these differences and due to the incorporation of

process variation into the ISPD 2010 contest, most of the

above techniques were not adopted by the contestants.

III. MODELING AND OBJECTIVES

Before introducing our clock-tree synthesis methodology

and specific optimizations in Sections IV—VI, we review key

optimization objectives (global and local skew), define the

notion of local-skew slack, and propose a simple yet effective

model of process variation.

A. Global and local skew

Common terminology and notation are introduced next.

Definition 1: Given a clock tree Ψ, let λ(si) be the clock

latency (insertion delay) at sink si ∈ Ψ. Then the skew

between two sinks si and sj ∈ Ψ is defined as

skewΨ(si, sj) = |(λ(si) − λ(sj)| (1)

Global skew is defined as

ωΨ = max
si,sj∈Ψ

skewΨ(si, sj) = max
i∈Ψ

λ(si) − min
i∈Ψ

λ(si) (2)

Nominal values of skewΨ(si, sj) and ωΨ are computed ne-

glecting the impact of variations.

Global skew can be improved by decreasing maxi∈Ψ λ(si)
(speeding up the slowest sinks) or increasing mini∈Ψ λ(si)
(delaying the fastest sinks). Previous publications on clock

network synthesis were focused on reducing global skew with

or without the presence of variations [2], [3], [10], [12], [14]–

[16], [22], [26]. However, in a large clock network, skew
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Fig. 1. Local-skew slack for sinks and edges when Ω∆ = 5ps. (a) Sink pairs within distance ∆ are enclosed by dashed lines. ω∆ = 12ps
based on sink latencies and ∆. (b) Local skew-slack for sinks are computed by Algorithm 1. The algorithm for edge-slack computation is
described in [14, Section 3]. (c) ω∆ is reduced to 5ps after optimizations, which satisfies the local skew constraints.

between adjacent and connected sinks is a more meaningful

optimization objective [8], [18]. Local skew is defined by

restricting eligible sink pairs to be within distance ∆ > 0,
which is determined for a given circuit after timing-driven

placement.

Definition 2: Given a clock tree Ψ and a local skew distance

bound ∆ > 0, let dist(si, sj) be the Manhattan distance

between sinks si and sj ∈ Ψ. Then the worst local skew [25]

is defined as

ωΨ
∆ = max

dist(si,sj)<∆
skewΨ(si, sj) (3)

Reducing skew down to single picoseconds in the presence

of variations may require a significant increase in power

consumption. Since more than 30% of total power in modern

microprocessors is consumed by clock networks, minimizing

clock-network capacitance is as important as skew minimiza-

tion. Therefore modern circuit designs can tolerate a certain

amount of clock skew, and power can be reduced provided

that the clock network remains below a given skew bound,

even in the presence of variations.

Definition 3: Consider a clock tree Ψ, a local skew distance

bound ∆ > 0, variation model ν and target yield 0 < y ≤ 1.
Let Ψν be the clock tree Ψ with variation ν and f(t) be the

cumulative distribution function of ωΨν

∆ . Then the worst local

skew with variation is defined as

ωΨ
∆,ν,y = f−1(y) (4)

Viewing the local skew limit Ω∆ as a design constraint (see

Table II), we pursue the following goals.

1) Building variation-tolerant clock networks with

ω∆,ν,y < Ω∆, subject to slew constraints.

2) Minimizing clock-tree power.

B. Local-skew slack

Given a clock tree with known sink latencies, one can

optimize it using delay budgets derived from the sink- and

edge-slack calculation [14, Section 3], followed by global

skew optimization to reduce global skew below Ω∆. This

strategy is sound because local skew ω∆ cannot exceed global

skew. However, global skew optimizations attempt to reduce

skew between sinks more distant than ∆, which may require

unnecessary increase in power.

To tune the clock tree on a tight power budget, we propose

the concept of local-skew slack.

Definition 4: Given a clock tree Ψ and local-skew con-

straints Ω∆, the local-skew slack σ(s) for a sink s ∈ Ψ is

the minimum amount of additional delay in picoseconds for

s, so that the tree satisfies ωΨ
∆ < Ω∆.

The ∆-neighborhood of sink si is N (si) = { s ∈
Ψ | dist(s, si) < ∆}. It is used in Algorithm 1 to calculate

σ(s) for every sink. This algorithm uses varEst(si, sj) = 0
in the absence of variations, and otherwise the definition in

Section III-C.

Once local-skew slacks σ(s) are computed for all sinks, we

define local-skew slack of tree edge e as the smallest slack

of a downstream sink. Edge slacks in the entire tree can be

computed by one recursive tree traversal in linear time, giving

the optimal amount of tuning to improve worst local skew [14,

Section 3]. Figure 1 illustrates the computation of local-skew

slack for sinks and edges.

C. Modeling process variation

Designing low-capacitance low-skew clock trees without

considering process, voltage and temperature variations often

results in significant skew in each chip. However, variation-

aware optimization has not been explored until recently and

requires reliable estimation techniques. Monte-Carlo simula-

tions are slow and not suitable to clock network optimization.

Instead, we develop a tabular technique to account for variation

in single-shot timing analysis.

When two sinks can be connected by a short path in the

tree, variation of skew between them is small. On the other

hand, variational skew between sinks that are geometrically

close can be significant if the unique tree-path between them

is long. This is illustrated in Figure 2.

Our key insight is that the impact of variations on skew

between two sinks is closely correlated with tree path length

and how the tree path is buffered. Therefore, for a given

technology node, buffer library, wires and variation model,

we propose to build a look-up table with comprehensive

information regarding the worst-case variation on skew for

various paths between pairs of sinks.



Algorithm 1 Computing local-skew slack for sinks

σ = 0; //Set of minimum local slack

SinkQ = ∅; //Sinks to be optimized

for each sink si do

for each sj in N (si) do

if ( λ(si) < λ(sj) and

skew(si, sj) + varEst(si, sj) > Ω∆) then

SinkQ.enqueue( si );

end if

end for

end for

while size(SinkQ) 6= 0 do

si = SinkQ.dequeue(); MaxSlack=0;
for each sj in N (si) do

if (MaxSlack < skew(si, sj)+varEst(si, sj)−Ω∆)

then

MaxSlack = skew(si, sj) + varEst(si, sj) − Ω∆;

end if

end for

σsi
= MaxSlack;

for each sj in Ni do

if ( sj /∈ SinkQ and λ(sj) + σsj
< λ(si) + σsi

and

|(λ(sj) + σsj
- (λ(si) + σsi

)|+ varEst(si, sj) > Ω∆)

then

SinkQ.enqueue( sj );

end if

end for

end while

Definition 5: Given a technology node T , buffer and wire

library B, variation model ν and desired yield 0 < y ≤ 1, let
ΞT ,B,ν,y[w, b, t] be the variation-estimation table which returns

the worst-case increase in skew (with probability y) between
two sinks connected by a tree path of length w with b buffers

and the buffer type t. When multiple buffer types are used in

the tree path, t is the smallest type in the tree path, so as to

avoid under-estimation of variation.

To build the table, we generated a large number of test

trees on public CNS benchmarks and randomly generated

benchmarks. The initial tree-construction method explained

in Section IV with various buffer types is utilized for the

test trees. The number of Monte-Carlo SPICE simulations is

determined based on the given variation model ν. Variational
skew between any two sinks during the simulations is recorded

in the table with classification by w, b and t. The table is later
restructured to represent a probability density function for each

(w, b, t) entry in order to look up with yield y. Building
the variation-estimation table requires extensive simulations,

but once the table is built, it can be used for many clock

trees. To determine the impact of variation on skew between

sinks in a clock tree, a function varEst(si, sj) is defined as

follows. Given a clock tree Ψ and a variation table ΞT ,B,ν ,

let L(si, sj) be the total length of wires, bn(si, sj) be the

total number of buffers and bt(si, sj) be the largest buffer

type in the tree path between two sinks si and sj ∈ Ψ. The

A(764ps)

B(766ps)

C(767ps)

D(765ps)

  

A(762ps)

B(766ps)

C(771ps)

D(773ps)

(a) Nominal sink latencies (b) Latencies with variation

Fig. 2. The impact of variations on local skew. Sinks are indicated
by crosses, the clock source is indicated by a solid triangle. Nominal
skew of 3 ps is shown in (a). Full skew of 11 ps is shown in (b),
where some tree edges are delayed (thick red) and some are sped up
(dotted green) by random variations. Only sink A is within the local
skew distance from sinks B, C and D.

variation table is accessed by the function varEst(si, sj) =

ΞT ,B,ν [L(si, sj), bn(si, sj), bt(si, sj)].
To estimate the impact of variations when optimizing clock

trees we utilize varEst() when computing local-skew slack for

each sink (Algorithm 1). Without considering variations, it is

sufficient to satisfy skew(si, sj) < Ω∆ for all pairs of sinks

within ∆. However, in the presence of variations, we have the

following result.

Theorem 1: ωΨ
∆,ν,y < Ω∆ only if

skew(si, sj) + varEst(si, sj) < Ω∆ ∀si, sj ∈ Ψ (5)

IV. INITIAL TREE CONSTRUCTION

AND BUFFER INSERTION

We invoke the unmodified ZST-DME algorithm [4], [10]

and perform initial buffer insertion to minimize source-to-

sink Elmore delay, rather than skew or capacitance [7], [21].

Elmore delay is too inaccurate for skew optimization, but our

approach creates significant room for tuning the clock tree by

delaying fast paths [14]. In the presence of layout obstacles,

proper obstacle-handling is required to avoid violations due

to obstacles. The ISPD 2010 benchmarks include obstacles

over which wire-routing is possible but buffer insertion is

not allowed. We adapted a simple and robust technique for

obstacle avoidance in clock trees from [14] which repairs

obstacle violations in the trees obtained by the ZST-DME

algorithm.

When multiple wire types are available, the choice of

wires affects both total power and susceptibility to variations.

Under tight skew constraints in high-performance CPU de-

signs, thicker wires (on a given metal layer) are preferable

because they limit the impact of variations and still allow for

future power-performance trade-offs by wire sizing. In less

aggressive ASIC and SoC designs, power optimization may

motivate thinner wires. But upsizing wires in a reasonably

tuned clock tree may be of limited use because it increases

capacitance, potentially leading to slew violations.

Selecting buffer types for initial buffer insertion is also

important. Given an initial tree without buffers Ψ0, let t(si, sj)



be the type of a buffer required for the tree path between two

sinks si and sj ∈ Ψ0 to satisfy varEst(si, sj) < Ω∆. t(si, sj)
can be found from the variation-estimation table ΞT ,B,ν with

L(si, sj). Since bn(si, sj) is not available at this step, it is

difficult to find the exact required t(si, sj). However, because
bn(si, sj) and L(si, sj) are highly correlated with each other,

bn(si, sj) can be estimated by modeling it with the average

number of buffers corresponding to L(si, sj). Once bn(si, sj)
is estimated, t(si, sj) can be computed as described in Section

V. The initial buffer type (t0) for a given initial tree is

computed as

t0 = Avgsi,sj∈Ψ0
t(si, sj) (6)

Once t0 is determined, we adopt the fast variant of van

Ginneken’s algorithm from [21] for initial buffer insertion.

bn(si, sj) ∀si, sj ∈ Ψ is determined after initial buffer

insertion and more accurate t(si, sj) can be obtained. For sink

pairs that do not satisfy varEst(si, sj) < Ω∆, we use the

robustness-improvement algorithm from Section V to ensure

that the tree eventually satisfies ωΨ
∆ < Ω∆.

V. ROBUSTNESS IMPROVEMENTS

The initial buffer insertion algorithm cannot accurately

estimate buffer types required for local-skew constraints for

a given initial tree. Therefore robustness-improvement must

follow after initial buffer insertion so that ωΨ
∆,ν,y < Ω∆ holds

after all the skew optimization techniques are applied.

In an ideal situation in which we can reduce all the skew

down to 0, varEst(si, sj) < Ω∆ ∀si, sj ∈ Ψ is sufficient to

satisfy ωΨ
∆,ν,y < Ω∆. In practice we must estimate nominal

local skew skewΨ
est after accurate optimizations, which we

upper-bound by 5ps based on experience.

Theorem 2: If skewΨ
est is an upper bound of ωΨ

∆ and
skewΨ

est+varEst(si, sj) < Ω∆ for all si and sj then

ωΨ
∆,ν,y < Ω∆ (7)

The target buffer type for the tree-path between sink si and

sj , t(si, sj) can be computed as the smallest t such that

ΞT ,B,ν [L(si, sj), bn(si, sj), t] < Ω∆ − skewΨ
est (8)

From the above method, the minimum size of buffer type

which satisfies varEst(si, sj) < Ω∆ - skewΨ
est is selected to

reduce capacitance. Once t(si, sj) is determined, the buffers

in the tree path between sink si and sj are substituted with

type t(si, sj) buffers. This step is repeated for all eligible pairs

of sinks within distance ∆.

VI. SKEW OPTIMIZATIONS

In this section, several local skew optimization techniques

are described. Each technique is designed to reduce skew

under different circumstances, but the primary objective is to

optimize the skew of given tree to below the local skew limit

in the presence of variations. The target tuning amount for

each edge of the tree can be determined by local-skew slack

including variation modeling described in Section III.

A. Wire snaking

Wire sizing and wire snaking are popular techniques for

skew optimization and are often able to reduce global or local

skew down to the practical skew limit. In this context, however,

we exclude wire sizing because narrowing down a wire in the

middle of a clock tree is risky due to the impact of variations.

We extend the wire snaking technique from [14] to improve its

speed and accuracy, while limiting its use of routing resources.

The optimal tuning amount for each edge can be obtained

by the top-down slack computation explained in Section III-B.

Let Ttarget(e) be the amount of time in ps by which the

edge e must be delayed to achieve legal ω∆ under local

skew constraints. Lsn(e) denotes the length of the wire de-

termined by the wire snaking algorithm to delay the edge e

by Ttarget(e). Let Tactual(e) be the amount of time in ps
which the edge e is actually delayed by Lsn(e) of a wire.

Ideally, the wire snaking algorithm can estimate Lsn(e) so that
Ttarget(e) = Tactual(e). Lideal(e) is the length which satisfies

Ttarget(e) = Tactual(e). The total additional capacitance from
wire snaking TotalCapsn is

TotalCapsn =
∑

ei∈E

κ(Lsn(ei)) (9)

where κ(w) denotes the capacitance of a wire w, and the ideal

total additional capacitance TotalCapideal is

TotalCapideal =
∑

ei∈E

κ(Lideal(ei)) (10)

Practically, Tactual(e) 6= Ttarget(e) unless extensive SPICE

simulations are performed for finding Lsn(e), which is unre-

alistic in terms of runtime for a clock network synthesis flow.

When Tactual(e) < Ttarget(e), another round of wire snaking

is required to bring Tactual(e) closer to Ttarget(e). Li
sn(e)

denotes the length of the wire determined at ith iteration of

the wire snaking algorithm to delay the edge e. T i
actual(e)

is the amount of time in ps by which the edge e is actually

delayed by Li
sn(e) of a wire. T i

target(e) is Ttarget(e) when

i = 1 and otherwise, it is T i−1
target(e) − T i−1

actual(e). After N
iterations of wire snaking,

Tactual(e) =
N

∑

i=1

T i
actual(e), Lsn(e) =

N
∑

i=1

Li
sn(e) (11)

Theorem 3: Tactual(e) ≤ Ttarget(e) if and only if

Lsn(e) ≤ Lideal(e)

Theorem 4: If Tactual(e) ≤ Ttarget(e) for every e in the

clock tree, then

TotalCapsn ≤ TotalCapideal

If the wire snaking algorithm over-estimates Li
sn(e) and

results in T i
actual(e) > T i

target(e) for any edge e in any i-

th iteration, then TotalCapsn exceeds TotalCapideal after

all the iterations of the wire snaking algorithm because it

means there exists excessive delay of a wire which results



in excessive delay of some sinks and possibly increases local

skew around the sinks. Therefore the wire snaking algorithm

must produce Li
sn(e) which satisfies T i

actual(e) ≤ T i
target(e)

for optimized power consumption by the clock tree. However,

if the gap between T i
actual(e) and T i

target(e) is too big, more

iterations will be needed for Tactual(e) to approach Ttarget(e).
We improve the accuracy of wire snaking in two ways.

Delay model for wire snaking. To keep T i
actual(e) ≤

T i
target(e) with optimal quality, we define α where,

α ≤
T i

actual(e)

T i
target(e)

≤ 1.0 (12)

Wire snaking algorithm aims for T i
actual(e) to satisfy the above

inequality with the highest α possible. When α is specified,

the required worst-case number of iterations of wire snaking

N to make Tactual(e) to Ttarget(e) within error rate ε is

N =
⌈ log (ε)

log (1 − α)

⌉

(13)

Closed-form delay models like Elmore delay are not accu-

rate enough to keep T i
actual(e) ≤ T i

target(e) and α high.

To enhance the quality of estimation by the wire snaking

algorithm, look-up tables for Li
sn(e) are built by performing

a set of SPICE simulations for each technology environment

which includes technology model, types of buffers and wires,

variation specification. In the simulations, T i
actual(e) is tested

with different snaking lengths on various locations of nodes

in various types of clock trees. The results of simulations are

stored in a look-up table, used by wire snaking during local

skew optimization. We achieved α values between 60% and

70%, therefore 4 ≤ N ≤ 6. Only one technology environment

was used at the ISPD 2010 CNS contest, requiring a single

set of simulations.

Optimal node selection for wire snaking. Figure 3 compares

two different styles of wire snaking. Figure 3(b) illustrates

undesired delay of sinks after wire snaking on non-buffer-

output nodes. The increased capacitance and resistance by wire

snaking affects the driving buffer which results in additional

delay of slow sinks. Wire snaking at buffer output nodes, as in

Figure 3(c), is much more accurate than wire snaking at any

branch. Limiting wire snaking to buffer output nodes reduces

the number of SPICE calls required for clock-tree tuning.

This also reduces the number of simulations for building the

look-up table by limiting the number of target nodes to be

tested. Wire snaking usually increases slew rate of input nodes

of downstream buffers. To prevent slew violation, slew rate

numbers of downstream buffers are checked and if the worst

slew rate is more than 70% of the given slew limit, the target

node is excluded from wire snaking.

B. Delay buffer insertion

The local skew of a sink cluster driven by the same final

buffer is often negligible. However, highly unbalanced sink

capacitances or layout obstacles in those clusters can result

in significant local skew. An alternative technique is needed

because wire snaking in Section VI-A is inapplicable. In this
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Fig. 3. Comparison of different wire snaking strategies to satisfy Ω∆

= 10ps. (a) Unoptimized sink latencies are shown. 20ps of additional
delay is required for the left sink. (b) Wire snaking at non-buffer
output nodes results in undesired delay at the right sink. (c) The
snaked wire is isolated from the right sink by the left buffer, therefore
only the left sink is delayed and ω∆ satisfies local skew constraints.

case, inserting a buffer at the target node is very efficient for

two reasons. First, skew can be reduced by the delay of the

inserted buffer. Second, further precise wire snaking is possible

because the inserted buffer isolates the target node from the

remainder of the cluster.

Let W(B) be the set of sinks driven by a final buffer B
and d(B) be the delay of the buffer B. Delay buffer insertion

is required if there exists si, sj ∈ W(b) where skew(si, sj) +

varEst(si, sj) - Ω∆ > d(B).

For each path from the buffer to the sinks, inserting at

most one buffer is sufficient since the wire snaking algorithm

in Section VI-A can be invoked again at the output node

of inserted buffers. Figure 4 illustrates delay buffer insertion

algorithm followed by wire snaking. When a delay buffer is

inserted, it is placed at the node so that the input capacitance

of a delay buffer is comparable to the sum of downstream sink

and wire capacitance of the target node, thus sink latency in

the other path changes very little. (see Figure 4 (b) ).
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Fig. 4. Delay buffer insertion and subsequent wire snaking when
Ω∆=10ps, the delay of the buffer d(B)=10ps. (a) Unoptimized sink
latencies are shown. (b) Delay buffer insertion for skew reduction
and isolation of the target node. (c) The snaked wire is isolated from
the right sink by the delay buffer.

Fig. 5. Our clock tree for ispd10cns07. Sinks are indicated by crosses,
buffers are indicated by blue rectangles. ∆ = 600µm is indicated at
the left-bottom of the figure.



VII. EMPIRICAL VALIDATION

Our implementation, Contango 2.0, is written in C++ and

is based on our software Contango 1.0 [14] that shared the

first place at the ISPD 2009 clock-network synthesis contest.

Contango 2.0 was the sole winner of the ISPD 2010 contest,

but we now report significantly stronger results.

ISPD 2010 benchmarks. Table II lists the statistics of all

benchmarks from the ISPD 2010 contest. The contest lim-

ited slew to 100ps, and all reported clock networks satisfy

this constraint. Slews in Contango 2.0 trees do not exceed

81ps. Table III compares Contango 2.0 with CNSrouter and

NTUclock. Clock networks produced by our software have

smaller capacitance than CNSrouter and NTUclock on average

by 4.22× and 4.13× respectively. The contest imposed local

skew constraints with yield y = 95%. Our clock trees always

yield > 95%, while CNSrouter violates yield constraints on

three benchmarks and NTUclock on all benchmarks except

one. All three teams satisfied the 12-hour runtime limit for

all benchmarks. Our data suggest that wire snaking usually

increases wire length by 1-3% (5.43% in one case), which is

small enough to neglect the negative effects of wire snaking.

Figure 7 compares probability density functions (pdf) pro-

duced by Monte-Carlo SPICE simulations of our clock trees

to those of clock meshes produced by CNSrouter. One such

clock tree is illustrated in Figure 5. Despite the dramatic

differences in network topology and total capacitance between

trees and meshes, some of the plots in Figure 7 bear striking

resemblance (cns01, cns02, cns04, cns05). To explain this

phenomenon, we recall that meshes cannot be buffered directly

and are therefore driven by a buffered clock tree. Such a

clock tree can be constructed by the same DME algorithm

that we use, which is why the pdf profiles in Figure 7 reflect

the pointset of sink locations. Apparently, the mesh does not

significantly change this profile.

Power versus robustness to variations. Figure 6 describes

experiments on benchmark ispd10cns08 with different local

skew constraints. When tight local skew constraints are given,

large buffers are required to ensure robustness to variations,

increasing the capacitance of the clock tree. On the other hand,

a large portion of capacitance can be saved when local skew

constraints are loose. To clarify the impact of variation, we

plot variational skew (y-axis), defined as ω∆,ν,y - ω∆ for ∆,

ν, y from Table II.

VIII. CONCLUSIONS

Power-performance-cost trade-offs are becoming a major

issue in modern high-performance CPU clock designs.

Mesh structures often sacrifice power to improve robustness

to variations. We propose a tree solution for CPU clock

routing that improves power consumption under tight skew

constraints in the presence of variations. To this end, we

introduce the notion of local-skew slack for clock trees, a

model for variational skew, a path-based technique to enhance

robustness, a new time-budgeting algorithm for clock-tree

tuning and accurate optimizations that satisfy budgets. We

have shown that clock trees can be tuned to have nominal
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Fig. 6. Trade-off between capacitance and robustness on ispd10cns08.
The x-axis represents total capacitance of a tree and y-axis represents
the maximal variational skew at 95% yield.

skew below 5 ps and total skew in single picoseconds in the

presence of variations. Our optimizations not only satisfy

given skew constraints and target yield but also lead to 4.22×
capacitance improvement on average over mesh structures

proposed in the ISPD 2010 contest. Furthermore, our clock

trees had a higher yield than the meshes because meshes

are not as easy to tune for nominal skew. Our analysis does

not consider gated clocks, inductive effects and short-circuit

power in meshes, but these factors generally favor trees over

meshes. Our strong empirical results suggest that clock trees

constructed using accurate variational skew modeling and

optimizations have distinct advantage in power consumption

and similar robustness as meshes. Hence, our techniques

may improve power of future CPUs without sacrificing other

performance metrics.
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