
SPIRE: A Retiming-Based Physical-Synthesis
Transformation System

David A. Papa♯‡ Smita Krishnaswamy† Igor L. Markov‡

iamyou@eecs.umich.edu skrishn@us.ibm.com imarkov@eecs.umich.edu
♯IBM Austin Research Lab, 11501 Burnet Rd., Austin, TX 78758

†IBM T. J. Watson Research Ctr., 1101 Kitchawan Rd., YorktownHeights, NY 10598
‡University of Michigan, EECS Department, 2260 Hayward St.,Ann Arbor, MI 48109-2121

Abstract—The impact of physical synthesis on design perfor-
mance is increasing as process technology scales. Current physical
synthesis flows generally perform a series of individual netlist
transformations based on local timing conditions. However, such
optimizations lack sufficient perspective or scope to achieve timing
closure in many cases. To address these issues, we develop an
integrated transformation system that performs multiple opti-
mizations simultaneously on larger design partitions thanexisting
approaches. Our system, SPIRE, combines physically-awarereg-
ister retiming, along with a novel form of cloning and register
placement. SPIRE also incorporates a placement-dependentstatic
timing analyzer (STA) with a delay model that accounts for
buffering and is suitable for physical synthesis. Empirical results
on 45nm microprocessor designs show8% improvement in worst-
case slack and69% improvement in total negative slackafter an
industrial physical synthesis flow was already completed.

I. I NTRODUCTION

A relatively recent addition to EDA, physical synthesis
arose when wire delays began to significantly impact cir-
cuit performance. The physical synthesis process begins by
computing a tentative cell placement and proceeds to re-
structure timing-critical paths. Traditional physical-synthesis
flows in the industry [1], [16] apply a series of local, mostly
greedy transformations such as inserting individual buffers on
particular nets, or relocating individual gates in the limited
context of their neighboring gates. Several iterations of such
transformations may be required for timing closure [1], [16].
However, growing reliance on physical synthesis motivatesthe
development of transformations that are more powerful in two
specific ways.

• Greater optimization scope: the ability to effect larger
changes in the circuit in terms of simultaneously moving or
altering several objects in order to achieve timing closure.

• Larger optimization window size: the ability to consider
temporal and spatial constraints from partitions of a design.

Increasing the optimization scope and window sizes can help
avoid local minima in the solution space that trap individual,
local transformations. Additionally, this circumvents the order-
ing problemof individual transforms, since different sequences
affect results.

We facilitate more powerful optimizations through retiming.
Unlike traditional gate- and net-centric timing optimizations
that aim to satisfy given stage-timing constraints, retiming
can optimize the constraints themselves to better fit a given
netlist. Therefore, we propose aSystem forPhysically-aware
IncrementalRetiming andEnhancements, orSPIRE, that per-
forms register-retiming with accurate delay models, buffering,

PLACEMENT RETIMING

STA with virtual buffering

JOINT
OPTIMIZATION

CLONING

3
4

7
8

5
6

2

1

1: CLONING changes the netlist and influences PLACEMENT
2: RETIMING helps select combinational gates for CLONING
3: CLONING creates new opportunities for RETIMING (see Fig. 2)
4: RETIMING relocates netlist registers, causing new PLACEMENT
5: PLACEMENT changes interconnect delays used in STA
6: Register PLACEMENT after retiming is performed based on STA
7: RETIMING relocates netlist registers, changing paths in STA
8: STA computes min slack — the optimization goal for RETIMING

Fig. 1. Interactions in SPIRE’s joint optimization.

placement, and logic cloning to seamlessly integrate retiming
into physical synthesis. Key features of SPIRE are:

• Multiple degrees of freedom to optimize the circuit, includ-
ing gate placement, register retiming, andgate cloning.

• A mixed-integer linear programming (MILP) framework
for joint optimization that emphasizes synergies between
point optimizations as shown in Figure 1.

• An embedding of placement-dependent STA computations
with virtual buffering into the MILP, which allows for
efficient and accurate consideration of timing constraints
from large design partitions.

SPIRE allows for placement, retiming, and cloning to
simultaneously optimize a circuit, as shown in Figure 1.
In physical synthesis, such a joint optimization problem is
often considered intractable. Instead, one chains individual
optimizations with limited scope. However, as shown in Figure
2, suchseparation of concernsoverlooks opportunities for joint
optimization. Therefore, we propose a powerful transformation
that is computationally expensive, but can be applied to sizable
circuit windows. Window sizes can be selected subject to
runtime constraints imposed on the system. Our experimental
results in Section IV, in fact, show that SPIRE can handle
window sizes of thousands of gates by efficiently encoding
the problem as an MILP with linearly many constraints in the
size of the circuit.

Retiming methods based on [9] enforce timing constraints
by requiring a register on every path whose delay exceeds
a threshold. However, such methods require computationally-
expensive path enumeration within the linear programming
formulation. We avoid path enumeration by enforcing linearly
many conditional STA-like constraints which determine op-
timal retiming and placement. Further, different choices for
retiming, cloning and gate relocation perturb only a small set
of local constraints directly (those affecting nearby edges).
Aside from the system as a whole, we highlight the following
contributions of this work:

• A method for retiming with an accurate STA-like embed-
ded delay computation model.

• A novel gate-cloning technique to enable retiming.
• A simultaneous retiming and re-placement technique.

The remainder of this paper is organized as follows. Section
II reviews background and notation. Section III presents our
maximum-slack retiming formulation that incorporates STA,
placement, and cloning. In Section IV, our methods are val-
idated on a 45nm high-performance microprocessor against
leading-edge physical synthesis tools. Section V outlinesad-
ditional optimizations that can further increase the scopeof
SPIRE. Conclusions are drawn in Section VI.

II. BACKGROUND, NOTATION AND OBJECTIVES

In this section, we provide the necessary background in
static timing analysis and period-constrained retiming.

A. Static Timing Analysis with Buffered Wires

SPIRE depends on the ability to encode timing constraints
efficiently, and in such a way that they can be easily adjusted
to accommodate changes resulting from circuit optimizations.
Here, we describe the basics of the static timing analysis model
we use, and delineate its assumptions.
In static timing analysis, a timing graph G = (V, E) is
extracted from a logic circuit [13]. Each vertexv ∈ V is a
timing point, and corresponds to an input or output pin of
a gate (or a global input or output pin). A pair of vertices,
u, v ∈ V , are connected by a directed edgee(u, v) ∈ E if
there is a timing relationship (i.e., a connection) betweenthe
pins u and v. This connection can occur within a gate, i.e.,
between an input pin and an output pin, or it can correspond
to a wire connecting two gates. Each edge has an associated
delaydelay(u, v) indicating the delay betweenu andv.

To determine the worst path in the circuit, a topological
traversal is performed on the graph beginning at the sources.
The actual arrival time AAT(v) at a timing pointv in the
circuit is the latest arrival time of any of its predecessorsafter
considering delay:

AAT(v) = max
{e(u,v)}

(AAT(u) + delay(u, v)) (1)

Therequired arrival timeRAT(u) at a timing pointu in the
circuit is computed in a similar fashion, traversing backwards
from the primary outputs of the circuit:

RAT(u) = min
{e(u,v)}

(RAT(v) − delay(u, v)) (2)

The timing graph is topologically traversed twice to find these
values, after which theslackS(v) is found at every pointv:

S(v) = RAT(v) − AAT(v)

(a) (b)
Fig. 3. A circuit (a) and its timing graph (b). Square objectshave fixed
AATs or RATs. STA is performed only on circular movable objects.

Delay models.Static timing analysis relies on compact models
of gate and net delay, e.g., a look-up table to represent gate
delays in terms of its inputs. Today, buffering is heavily used
in physical synthesis to reduce wire delay and improve timing.
Therefore, it is important to estimate buffered wire delay in
accurate interconnect delay models. We model the delay along
an ideally buffered net of lengthL as in [2], [12]:

delay(L) = L(RbC + RCb +
√

2RbCbRC) (3)

Here, Rb and Cb are the intrinsic resistance and input
capacitance of buffers.R and C are unit wire resistance and
capacitance, respectively. Empirical results in [2], [12]indicate
a 97% correlation between the results of this linear model and
an industrial timing analysis tool.

In practice, this model can be reduced to a linear equation
in terms of the length of wire with a technology-dependent
constant. The routed wirelength between two points can be
approximated by thehalf-perimeter wirelength(HPWL). We
denote the HPWL between two pointsu andv asHPWL(u, v).
Suppose that the net connecting(u, v) is bounded by thex and
y coordinates,Ux, Uy, Lx and Ly , from above and below.
Then

HPWL(u, v) = (Ux − Lx) + (Uy − Ly) (4)

In SPIRE, we approximate the delay between two points
using an empirically determined, technology-dependent param-
eter τ . In order to calculate the best value forτ , we buffer a
long netn and calculate

τ = delay(n)/HPWL(n) (5)

Then we calculate the delay between two pointsu andv as

delay(u, v) = τHPWL(u, v) (6)

To compute the initial conditions for SPIRE, the RAT and
AAT of all fixed timing points are generated by an STA engine
using very accurate delay models and a set of timing assertions
created by designers [10], [13]. SPIRE considers the timingof
register’s input pin fixed and uses an STA engine to determine
its RAT value. Similarly, the AAT is fixed on output pin
of a register. When calculating these values the STA engine
includes considerations of setup and hold time, intrinsic gate
delay and clock skew.
The timing metrics that we optimize include the minimum
slack of all vertices(M), the total negative slack in the circuit
(T), and the total slack below a threshold(ΘT), computed as
shown below. Note thatT = Θ0.

M = min
u

S(u) (7)

T =
X

u

min(0,S(u)) (8)

ΘT =
X

u

min(0,S(u) − T) (9)

In SPIRE, registers are allowed to move, while combina-
tional gates remainfixedin place; this limitation is not inherent,

Q

QSET

CLR

D

Q

QSET

CLR

DD
G

A

B

C
E

F

H

I

Q

QSET

CLR

D

Q

QSET

CLR

D

D G

A

B

C
E

F

H

I

C’

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

D
G

A

B

CE

F

H

I

C’

E’

(a) (b) (c)
Fig. 2. Retiming and gate cloning to improve slack: (a) Register E cannot be moved past gateC because of fanoutE-F . (b) If the NAND
gateC is cloned, creating a new gateC′ to drive its two sinks, it is possible to retime the top register without changing the logic function. (c)
The final result with registerE retimed.

as discussed in Section V. After gate cloning (Section III-D),
the cloned gates can be physically relocated. For efficiency,
we restrict our timing graph edges to those representing (1)
each connection between the movable gates, and (2) each
connection between a movable gate and a fixed gate. For the
subcircuit in Figure 3(a), the resultant timing graph is shown
in Figure 3(b).

B. Register Retiming
The original linear programming formulations for minimum-

period and minimum-area retiming were developed by Leiser-
son and Saxe [9]. In their framework, a circuit is represented
by a retiming graph G(V, E), where each vertexv ∈ V
represents a combinational gate, and each edge(u, v) ∈ E
represents a connection between a driveru and sinkv. An
edge is labeled by a weightw(u, v), indicating the number
of registers (flip-flops) betweenu and v. The objective of
minimum-area retiming is to determine labelsr(v) for each
vertexv, denoting the number of registers that are moved from
the outputs to the inputs ofv, that minimize the sum of edge
weights. The weight of an edge after retiming is given by:

wr(u, v) = w(u, v) − r(u) + r(v) (10)

Therefore, the total number of registers in the retimed circuit
can be minimized in terms of the following expression.

X

(u,v)∈E

w(u, v) − r(u) + r(v) (11)

Additionally, retiming labels have to meetlegality con-
straints,w(u, v) ≥ r(u) − r(v) for each edge, to enforce the
fact that edges cannot have negative weights. A linear program
for the minimum-area retiming problem is given in Figure 4.
Leiserson and Saxe [9] observe that this problem is the dual of
a min-cost network flow problem and can therefore be solved
in polynomial time.

Minimize
P

(u,v)∈E w(u, v) − r(u) + r(v)

subject to
∀(u,v) ∈ E, r(u) − r(v) ≤ w(u, v)

Fig. 4. An LP for minimum-area retiming.

As shown in Figure 5, the period can be constrained in this
formulation by requiring weight≥ 1 on every path between
two vertices with delay exceeding target periodP . However,
this formulation requiresΘ(|V |2) constraints in the form of
matrix D that stores the delay of the longest path between the
vertices(u, v) in D(u, v), and matrixW that stores the weight
of that path. Then, a binary search is performed to determine
the minimum achievable clock period. The feasibility of each
period according to the legality constraints is checked using
the Bellman-Ford algorithm [9].

Minimize
P

(u,v)∈E w(u, v) − r(u) + r(v)

subject to
∀(u, v) ∈ E, r(u) − r(v) ≤ w(u, v)
∀(u, v) ∈ E|D(u, v) > P, r(u) − r(v) ≤ W(u, v) − 1

Fig. 5. An LP for min-area, period-constrained retiming.

Prior work in retiming also includes the ASTRA [14]
algorithm, which is a faster approach. It relates the problem
of clock skew optimization at each flip-flop to a retiming
solution for minimum-period retiming, and uses the Bellman
Ford algorithm to derive the longest path. Recently, the authors
of [17] used program derivation to automatically generate an
algorithm for min-period retiming which iteratively shortens
the longest clock periods. Retiming was also explored for slack
budgeting and power minimization for FPGAs [5].
Challenges in min-period retiming. Algorithms based on
techniques from [9] enforce timing constraints by requiring
registers on gate-to-gate paths that exceed a length threshold.
This involves computationally expensive enumeration of such
paths. Therefore, in our approach we avoid path enumeration
by using slack, rather than period as a metric. Slack constraints
are linear in the size of the circuit and all path delays are
implicitly encoded through the AAT and RAT constraints.

Other retiming algorithms use network-flow based ap-
proaches which are difficult to extend to a multi-objective
optimization [14]. Using interconnect delays instead of lengths
has been a challenge, as wires can be dynamically re-buffered
when their lengths change [15]. Unlike much of past literature,
we use a buffered delay model to account for this.
Inherent limitations of retiming are associated with multi-
fanout branches. To move a register backward through a gate,
all fanout branches of the gate must include (or share) a
register, and all these registers must be retimed at once. This
constraint ensures that the number of registers on any PI-to-PO
path stays constant during retiming. Therefore, fanouts can be
a bottleneck for retiming. In order to alleviate this problem, we
clone gates within the retiming formulation so as to provide
additional backward-movement opportunities for registers (see
Figure 2).

III. JOINT OPTIMIZATION FOR PHYSICAL SYNTHESIS

This section introduces the SPIRE system which combines
several optimizations used individually in the past literature. As
shown in Figure 6, combining retiming and placement is better
than applying them individually. In this example, only the com-
bined approach closes timing. The main difficulty in combining
placement, cloning and retiming is their inter-dependence—
optimal locations and cloned configurations depend on the
timing constraints which are altered by retiming.

Q

QSET

CLR

D

(10, 20)

(10, 10)

(35, 15)
(30, 15)

(25, 18)

A

B

C
D

E

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

a

b

d q e

RAT(d) = 50
RAT(e) = 50

AAT(q) = 1

Q

QSET

CLR

D

(10, 20)

(10, 10)

(15, 18)
(20, 15)

(35, 15)D
A

B

C E

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

a

b

d q e

RAT(d) = 50
RAT(e) = 50

AAT(q) = 1

Q

QSET

CLR

D

Q

QSET

CLR

D(10, 20)

(10, 10) (26, 12)

(26, 25)

(30, 15) (35, 15)

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

A

B

C ED

D’

a

b

d

d’

q

q’

e

RAT(d) = 50
 RAT(d’) = 50
RAT(e) = 50

AAT(q) = 1
 AAT(q’) = 1

(a) (b) (c)
Fig. 6. Advantages of performance-driven retiming with simultaneous re-placement. In the original circuit (a), the timing path feeding the
input of the register has negative slack. Moving the gate andregister in (b) improves the slack, but movement alone does not allow the path
to meet timing constraints. Only by retiming and movement can all timing constraints be met in (c).

A. Embedding the STA Backplane into ILP

In order to incorporate STA into SPIRE, we first encode
the RAT and AAT variable computations into an MILP, with
constraints corresponding to Equations 1 and 2, both of which
are linear. Then, alternative constraints are introduced to ana-
lyze each timing arc, for the case where a register is between
the source and sink of the arc. Figure 7 shows an LP simply
for computing the worst-case slack. For circuitC with gates
G = {u1, u2 . . . un}, and registersR = {l1, l2, . . . lm}, the
variables in this program are:

• AAT and RAT for eachu ∈ G, denotedAu, andRu.
• M for the minimum slack.

In other words, for a gateu driven by i1, i2, . . . iS the
constraints to enforceAu are shown below. Here1 ≤ j ≤ S:

Au ≥ Aij
+ τHPWL(ij , u) + Du (12)

Since Au must actually be equal to one of the values in
Equation 12, it is added to the objective function so that it can
be minimized. The constraints guarantee that it will be greater
than any path’s delay. Adding it to the objective guarantees
that it will be no more than the greatest path delay. Similarly
for Ru, supposing thatu drives gateso1, o2, . . . oT , then the
corresponding constraints are of the form for1 ≤ k ≤ T :

Ru ≤ Rok
− τHPWL(g, ok) − Du (13)

We add −RAT(u) to the objective function since this
variable is maximized rather than minimized. The AAT and
RAT of registers (and other end points like primary input and
output pins) are simply set according to initial values obtained
form the reference timing model. The term−M is added to
the minimization objective. The total slackT can also easily
be computed from the MILP and added as an objective. In
practice, we minimize both. However, for brevity, we dropT
from the MILP formulations for the remainder of the paper.
Note that the number of constraints in this formulation is
proportional to the number of2-pin arcs in the circuit and
not the number of paths. Further,the number of constraints
in which each gate and2-pin connection appears is limited,
which is key to incorporating retiming, placement and cloning.

B. Max-Slack Retiming

Retiming is the most powerful optimization within SPIRE
because it can effect drastic changes on the timing constraints.
For instance, moving one register past a gate can allowcycle
stealing on the order of gate delays along all paths that
cross the register. In order to utilize the STA constraints
described in the previous section, we develop a maximum slack
formulation. The key idea in maximum-slack retiming is that
there are two versions of the AAT and RAT computations on
each vertex depending upon whether the vertex drives/is driven
by a register. The constraints that are actually enforced are

Objective
Minimize : −M
+∀(u)(Au − Ru)

subject to
∀u M ≤ S(u)
∀u∀(fanins f of u)Au ≥ Af + τHPWL(f, u) + Du

∀u∀(fanouts f of u)Ru ≤ Rf − τHPWL(u, g) − Du

∀register r, Rr ≥ clock_period
∀register r, Ar ≤ 0

Fig. 7. Finding minimum slack using LP.

determined by the retiming. Therefore, the retiming program
maximizes the worst-case slack.

Figure 8 shows the MILP that combines the STA constraints
with retiming. During retiming, we only know the contents of
the retiming graph(not the timing graph), because any edge
in the retiming graph can include a newly retimed register.
Therefore, STA constraints change depending on the retiming
variable values. However, there are only two possibilitiesfor
each retiming arc: either the arc contains a register after
retiming, or it does not (and combinations of arcs are implicitly
considered). This situation is modeled through IF-THEN logic
based on the retimed weight of the edge. If the weight is greater
than zero, then the wirelengths involved in RAT and AAT
computations change to incorporate the newly retimed register.
For brevity of presentation, we temporarily assume that the
new registerl will be placed at thecenter of gravity (COG)of
the neighboring gates ofl. Thus, the net connectingu to l has
length HPWL(u, COG(l)) and the net connectingl to v has
length HPWL(COG(l), v). In the next section, we eliminate
this simplification and consider the static timing analysisof
nearby gates when calculating slack-optimal register locations.

if(wr(u,v) == 0)
Ru ≤ Rv − τHPWL(u, v) − Du

Av ≥ Au + τHPWL(u, v) + Dv

if(wr(u,v) ≥ 1)
Ru ≤ Rl − τHPWL(u, COG(l)) − Du

Av ≥ Al + τHPWL(COG(l), v) + Dv

(14)

This IF-THEN logic is incorporated into a linear program
using thebig-M formulation. Under this formulation, a con-
straintv < k takes the formv < k+MvI , whereM is a large
constant. IfvI == 0, the constraint reduces to the original,
if vI 6= 0 then the constraint simply becomes a bound on
the variablev, i.e., v < MvI . Alternatively, IF-THEN logic
can be modeled usingindicators—binary variables that turn
constraints on and off.1 In our program, we define an indicator
hasReg(u, v) as follows:

1Indicators are supported by the MILP solver CPLEX 12.1.

Objective
Minimize : −M +

P

(u,v)∈E
(K) wr(u, v)

subject to
∀(u,v), r(u) − r(v) ≤ w(u, v)
∀(u,v), if(!hasReg(u, v))

Ru ≤ Rv − τHPWL(u, v) − Du

∀(u,v), if(!hasReg(u, v))
Av ≥ Au + τHPWL(u, v) + Dv

∀(u,v), if(hasReg(u,v))
Ru ≤ Rl − τHPWL(u, COG(l)) − Du

∀(u,v), if(hasReg(u,v))
Av ≥ Al + τHPWL(COG(l), v) + Dv

∀u ∈ V, M ≤ S(u)

Fig. 8. Max-slack retiming with STA embedded.

if(wr(u, v) > 0) hasReg(u, v) = 1
if(wr(u, v) ≤ 0) hasReg(u, v) = 0

(15)

This variable can be set in a variety of ways. One way is
to use the constrainthasReg(u, v) ≤ wr(u, v) and maximize
it. If wr(u, v) == 0 thenhasReg(u, v) = 0. If wr(u, v) ≥ 1
then, sincehasReg(u, v) is maximized, it is set to1. How-
ever, maximization can sometimes conflict with the objective,
therefore we use the following constraints instead:

hasReg(u, v) ≤ wr(u, v)
if(hasReg(u, v) == 0) wr(u, v) = 0

(16)

The second constraint uses thehasReg variable as an indi-
cator. Together, these two constraints require thathasReg = 0,
if and only ifwr(u, v) = 0. For brevity, we omit the setting of
this variable from our formulations. As we will see in Section
III-D, maximization of real and integer variables can also fail
when the objective has conflicting terms. Our formulation uses
the constraints below to maximize general variables (without
adding terms to the objective). We constrain the variable
C = max(A, B) as follows:2

C ≥ A, C ≥ B, (C == A)||(C == B) (17)

The min function is evaluated similarly. In Figure 8, the
slack, RAT, and AAT variables are real values while the
retiming variables have to be integer. We utilize a constant
weighting factorK to reconcile area with slack. The constant
K can be adjusted based on the available area.

Note that the formulation in Figure 8 does not require the
derivation of theW or D matrices that were described in
Section II. Instead, timing calculations are performed within
the MILP. Thus, the number of constraints is onlyO(|E|) for
a retiming graph with edge setE.

C. Register Placement

Registers have special significance in a timing graph because
their inputs are in a different clock cycle than their outputs.
This facilitatestime borrowing — the ability to shift delay
from one timing path to another by decreasing the delay on
inputs paths at the cost of increased delay on output paths, and
vice versa. By physically relocating registers, the interconnect

2The Logic-OR can be implemented using intermediary variables
δA, δB and indicator variablesIA, IB with the following constraints:
δA = C − A, δB = C − B, IA ≤ δA, if(IA == 0) δA = 0,
Ib ≤ δB , 6) if(IB == 0) δB = 0, IA + IB ≤ 1.

Objective :
Maximize L

subject to
∀e = (u, l) ∈ El, Ue

x ≥ αu
x, Ue

y ≥ αu
y

∀e = (u, l) ∈ El, Le
x ≤ αu

x, Le
y ≤ αu

y

∀f = (l, v) ∈ El, Uf
x ≥ αv

x, Uf
y ≥ αv

y

∀f = (l, v) ∈ El, Lf
x ≤ αv

x, Lf
y ≤ αv

y

∀e ∈ El, L
e
x ≤ βl

x ≤ Ue
x

∀f ∈ El, L
f
y ≤ βl

y ≤ Uf
y

∀e = (u, l) ∈ El, Ru ≤ Rl − τ (Ue
x − Le

x + Ue
y − Le

y) − Du

∀f = (l, v) ∈ El, Av ≥ Al + τ (Uf
x − Lf

x + Uf
y − Lf

y) + Dv

∀e = (u, l) ∈ El, L ≤ Ru − Au − Du

∀f = (l, v) ∈ El, L ≤ Rv − Av − Dv

Fig. 9. Optimal register location relative to adjacent gates.

delay around registers can be allocated to either the input or
output paths. In this section, we describe a formulation that
integrates register placement with the retiming describedin the
previous section. Register locations alter STA constraints by
changing interconnect length, and therefore, delays. On each
edge with a register, SPIRE chooses the physical location that
results in the best possible slack. The placement also interacts
with retiming, which optimizies the STA constraints based on
register locations for each edge.

In order to perform this integration, we utilize the same
type of case-logic as in the previous section. First we modify
constraints so that AATs and RATs on edges with registers
are calculated with respect to the placement. Register sharing
along adjacent edges further complicates the formulation.
However, we utilize the formulation from [12], to refine the
placement of the shared register based on related timing. The
retiming variables are, as in the previous section, optimized
to activate the most favorable STA constraints. This interplay
between retiming, placement, and STA is shown in Figure 1.

We first describe an LP formulation for local register relo-
cation based on a simplified form of the LP in [12]. We then
incorporate it into our retiming formulation.

Suppose registerl can be incrementally placed to improve
slack while leaving all other gates fixed. We define a timing
graphGl = (Vl, El) that consists of vertices and edges that
are adjacent tol. Vl contains the driveru, and sinksv, of l.
The edge setEl contains the timing arcs that are adjacent to
l. The LP formulation computes the variablesβl

x andβl
y , the

optimalx- andy-coordinates ofl. The variables in this LP are
as follows:

• αv
x, αv

y : fixed x- andy-coordinates of verticesv ∈ Vl.
• Ue

x, Ue
y , Le

x, Le
y : upper and lower bounds for the location

of netse ∈ El. These upper and lower bounds determine the
HPWL of the particular net described by edgee as follows:
HPWL(e) = (Ue

x − Le
x + Ue

y − Le
y). As the location of the

register changes, these net boundaries also change, and, in
turn, change the HPWL.

• Ru, Au: the AAT and RATs of vertices inVl.
• L: the local worst-case slack (of the worst pin inVl).

The MILP to determine optimal register placement is shown
in Figure 9. This program sets the values ofβl

x andβl
y such

that L is maximized. Here,Au of any vertexu ∈ Vl that
drives registerl is fixed. SimilarlyRv for any vertexv that is
driven by l is also fixed. The only independent variables are

Objective
Minimize : −M +

P

(u,v)∈E
(K) wr(u, v)

subject to
∀(u,v), r(u) − r(v) ≤ w(u, v)
∀e = (u, l) ∈ El, L ≤ Ru − Au − Du

∀f = (l, v) ∈ El, L ≤ Rv − Av − Dv

if(!hasReg(u,v)) :
∀(u, v), Ru ≤ Rv − τHPWL(u,v) − Du

∀(u, v), Av ≥ Au + τHPWL(u,v) + Dv

Let l be register on (u,v)
if(hasReg(u,v)):

e = (u, l), Ue
x ≥ αu

x, Ue
y ≥ αu

y

e = (u, l), Le
x ≤ αu

x , Le
y ≤ αu

y

f = (l, v), Uf
x ≥ αv

x, Uf
y ≥ αv

y

f = (l, v), Lf
x ≤ αv

x, Lf
y ≤ αv

y

∀e = (u, l), Le
x ≤ βl

x ≤ Ue
x

∀f = (l, v), Lf
y ≤ βl

y ≤ Uf
y

e = (u, l), Le
x ≤ βl

x ≤ Ue
x

e = (u, l), Le
y ≤ βl

y ≤ Ue
y

f = (l, v),Lf
x ≤ βl

x ≤ Uf
x

f = (l, v),Lf
y ≤ βl

y ≤ Uf
y

Ru ≤ Rl − τ (Uf
x − Lf

x + Uf
y − Lf

y) − Du

Av ≥ Al + τ (Ue
x − Le

x + Ue
y − Le

y) + Dv

Fig. 10. Max-slack retiming with relocation of registers.

βl
x andβl

y which determine theU andL variables. These, in
turn, determineAv, Ru for all vertices.

The program in Figure 9 is modified in Figure 10 to
simultaneously incorporate retiming and placement, and no
longer fixes the neighboring RAT and AAT variables. In this
figure, each edge(u, v) on which a register appears constrains
the placement of the register in question. It is assumed that
all edges starting atu, i.e., of the form (u, v), such that
hasReg(u, v) = 1 share the same registers. The register is
placed in a location which minimizes the slack of neighboring
gates. Since the slacks of neighboring gates in turn affect those
of their neighboring gates, and so forth, a ripple effect ensues.
Therefore, the register is actually placed in an optimal location
with respect to the entire circuit. The key here is to enforce
a small set of local constraints for each edge that interact to
find global optima.

D. Cloning to Increase the Scope of Retiming

A key insight in our work is thatopportunities for backward
register movement are often limited by fanout branches in
combinational circuits.As illustrated in Figure 2, retiming
movement is blocked when fanouts of a gate do not share
registers. We increase these opportunities by cloning fanout
branches such that registers can move beyond the cloned gate.
We achieve this by relaxing legality constraints to allow extra
registers to move backwards. In addition, the fanouts of any
cloned vertex are divided such that the STA on some of the
edges is computed with respect to the cloned, rather than
original vertex.

The legality constraints in retiming ensure that no edge
has negative weight. With cloning, edges can indeed have
negative weight due to registers being retimed backwards
through a cloned gate. However, forward retiming of registers
still follows traditional legality rules.

Suppose vertexu has fanoutsO = {o1, o2, . . . oT } and

Objective
Minimize : −M+

P

(u,v)∈E(K)RegCt(u,v) +
P

(u)IsCloned(u)

subject to
∀u,∀ fanins i of u, minPush(u) ≤ w(i, u) − r(i)
∀u,∀ fanouts o of u, maxPull(u) ≥ w(u, o) + r(o)
∀u, if(r(u) > 0)maxPull(u) ≥ r(u)
∀u, if(r(u) < 0)minPush(u) ≤ −r(u)
∀(u,v), if(wr(u, v) > 0)

RegCt(u, v) = wr(u, v),CloneCt = 0
∀(u,v), if(!isClone(u) && !hasReg(u,v)) :

Ru ≤ Rv − τHPWL(u, v) − Du

∀(u,v), if(!isClone(u) && hasReg(u, v)) :
Ru ≤ Rl − τHPWL(u, COG(l)) − Du

∀(u,v), if(isClone && hasClone(u,v)) :
Rclone(u) ≤ Rv − τHPWL(COG(clone(u)), v) − Du

∀(u,v), if(isClone(u) && !hasClone(u, v)) :
Ru ≤ Rv − τHPWL(u, v) − Du

∀(u,v), if(!isClone(v) && !hasReg(u,v)) :
Av ≥ Au + τHPWL(u, v) + Dv

∀(u,v), if(!IsClone(v) && hasReg(u,v)) :
Av ≥ Al + τHPWL(COG(l), v) + Dv

∀(u,v), if(isClone(v)) :
Av ≥ Au + τHPWL(u, v) + Dv

Aclone(v) ≥ Av + τHPWL(u,v) + Dv

∀u, if(isClone(u))
M ≤ Rclone(u) − Aclone(u) − Dclone(u)

∀u,M ≤ Ru − Au − Du

Fig. 11. Gate cloning in max-slack retiming.

fanins I = {i1, i2, . . . im}. We represent this situation by
imposing two constraints on the retiming variable r(u) for a
vertexu: one which is enforced whenr(u) is positive, and one
which is enforced whenr(u) is negative. Ifr(u) is positive
(i.e., the retiming is backward), then the maximum number
of registers that are allowed to pass backwards is the greatest
number of registers that appear on any fanout branch ofu. If
r(u) is positive, then the constraint is the same as before:

maxPull(u) = maxo∈O(w(u, o) + r(o))
minPush(u) = mini∈I(w(i, u) − r(i))
if(r(u) > 0) r(u) < maxPull(u)
if(r(u) < 0) minPush(u) ≥ −r(u)

(18)

Together, these two constraints can completely replace the
general legality constraints. The presence of registers isin-
dicated by a positive weight on an edge. Negative weights
indicate that the driver of the edge was cloned. The original
driver is connected to the retimed register on the (neighboring)
edge(s) with non-negative weight, and the cloned driver drives
the remaining sinks (as identified by edges with negative
weight). We use the additional variablehasClone(u, v) which
is set to1 if and only if the register count on edge(u, v) is
negative. These variables are set in a similar way ashasReg.
Recall that constraints can be triggered by logical conditions
through indicator variables or big-M formulations.

The MILP incorporating cloning is shown in Figure 11. For
clarity, we illustrate cloning incorporated into the basicSTA-
based program with COG-based placements. In practice, we
simultaneously place and clone registers and gates.

The slack is computed slightly differently in the pres-

ence of clones. New variables in Figure 11 include indicator
variables isCloned(u), Aclone(u), Rclone(u) for each vertex
v. The variable isCloned(u) = 1 if hasClone(u, v) =
1 for one of the edges of the form(u, v). The com-
putation of Aclone(u), Rclone(u) is performed as follows:

if(wr(i,u) − r(i) > 0)
Aclone(u) ≥ Ai + τHPWL(i, COG(l)) + Du

if(wr(u, i) − r(i) ≤ 0)
Aclone(u) ≥ Ai + τHPWL(i, u) + Du

if(wr(u, i) − r(i) ≤ 0)
Rclone(u) ≤ Ri − τHPWL(COG(clone(i)), i) − Du

For the new RAT variable, we assume that a vertex driven by
a clone has no registers on the connecting edge. As illustrated
in Figure 11, the main differences in slack computation include
1) the additional edge(u, clone(v)) for every edge(u, v)
wherev is cloned, 2) the use of the clone’s AAT,Aclone(u),
when computing the AAT of verticesv where (u, v) has a
clone. We minimize the number of registers and clones in
the retimed circuit using two variablesisCloned andRegCt,
which is computed as follows:

if(wr(u,v) > 0) RegCt(u, v) = wr(u, v) (19)

IV. EMPIRICAL VALIDATION

We integrate our optimizations into an industrial physical
synthesis flow. Our benchmarks are the largest functional units
of a 45nm high-performance microprocessor design. We op-
erate on these benchmarks after logic synthesis, timing-driven
synthesis, timing-driven placement, electrical correction, and
critical path optimization (through buffering and gate sizing)
are completed [3]. We use an industrial timing analysis tool
to obtain initial conditions for AATs and RATs throughout
the circuit [7]. Our experiments were conducted on an8-core
system with2.8 GHz AMD Opteron854 CPUs and80 GB
of memory. Our MILPs were solved with ILOG CPLEX12.1
configured to use up to8 cores in parallel.

Table I shows a7.7% improvement (on average) in worst-
case slack (M) and a 69% improvement intotal negative
slack (T) when retiming with simultaneous placement. The
slack improvements are reported in terms of the clock period
P = 174ps. T is computed as shown in Equation 8 with
threshold ofT = 0. Percentage improvement in min-slackM
is computed as follows:

%M =
Mnew −Mold

P ∗ 100% (20)

We note that the slack numbers are reported with respect
to bufferedwire delay. Past literature reportsunbufferedwire
delay, where dramatic improvement in slack may be mis-
leading due to the need for subsequent buffering. In this
experiment, the MILP for retiming with placement was given
initial solution seeds from the max-slack MILP retiming shown
in Figure 8. This helped CPLEX to calculate MILP solutions
quickly. The entire optimization sequence took< 41s on each
benchmark. Note that our joint optimization was performed
after several iterations of placement, rebuffering, and gate
sizing, yet significantly improved slack.

Table II evaluates the impact of cloning during retiming.
In this experiment, we measure thetotal thresholded slack
(ΘT), as defined in Equation 9, with the thresholdT = 100ps.

The threshold value represents the desired amount of guard-
banding (protection) against process variations and NBTI,
which can degrade timing. Empirical results indicate that
cloning can improve theΘT of the circuit by up to57% over
just retiming and placement. Thus, even when opportunities
for cloning on the critical path are limited, the remainder of
the circuit can be improved for increased resilience.

Unlike previous localized transformations, SPIRE scales to
design partitions with over 1000 cells as shown in the #std
cells column in Table I. SPIRE can process larger circuits
by partitioning the design into windows of appropriate size.
SPIRE can also be applied in overlapping windows.

V. EXTENSIONS

SPIRE’s key advantage over existing physical synthesis
transformations is the synergistic use of several types of
optimizations. Our MILPs are more costly than existing trans-
formations but also more powerful since they can be applied
to larger windows than many of the localized transformations
used in the industry today [11], [12]. This flexibility of SPIRE
allows one to change the size and scope of optimization
and offers rich trade-off opportunities. However, increasing
optimization strength will likely change the trade-off between
runtime and optimization-window size. Additional optimiza-
tions can be integrated into SPIRE.
• To relocate combinational gates, create variables for thex-
andy- location for each gate and write the delay equations
as in Section III-C in terms of those variables.

• To incorporate gate sizing in SPIRE, one must model
nonlinear timing characteristics of individual gates or stan-
dard cells. This can be accomplished by precomputing the
response to a set of discrete sizes (from the library) and
selecting them using conditional constraints. If a particular
gate size is selected, a corresponding gate delay will be used
in the STA, as specified by a conditional constraint.

• Similarly, threshold voltage (Vth) assignment is modeled
by selecting gate delays with Boolean variables. As lowering
Vth improves speed at the cost of power, the number of low-
Vth assignments must be upper-bounded.

• Common placement constraints including region con-
straints and obstacles can be represented in SPIRE. Region
constraints are modeled with linear bounds on thex- andy-
coordinates of each gate. To avoid obstacles, the placement
region is divided into allowable regions that hug the ob-
stacles. A disjunctive (OR-type) constraint is then added to
require placement in one of the allowed regions. Routing
congestion can also be represented as an obstacle using
this mechanism to prevent any movable objects from being
added in congested regions.

By integrating several optimizations and applying them to
windows with thousands of objects, SPIRE offers a unique
physical synthesis optimization that lies between local op-
timization of individual objects (which is typical of current
tools) and global optimization of the entire design.

VI. CONCLUSIONS AND FUTURE WORK

State-of-the-art physical synthesis methodologies tend to
perform a series of local transformations to achieve a target
clock period [3]. However, the difficulty of timing closure
in high-performance designs calls fornetlist transformations

#std. Initial Retiming+Placement Overhead Improvements
Design cells M, ps Regs T , ps M, ps Regs T , ps Time, s % cells % M % T

azure1 536 3.42 41 0.00 10.14 49 0.00 1.19 0.00 3.87 0.00
azure2 1097 -2.53 79 -15.17 2.95 155 0.00 4.46 6.93 3.15 100.00
azure3 1032 -16.22 97 -212.69 -6.49 108 -37.95 0.4 1.07 5.59 82.16
azure4 1125 -2.30 79 -2.30 3.82 96 0.00 7.66 1.51 3.52 100.00
azure5 1140 -13.18 89 -114.54 9.39 161 0.00 40.71 6.32 12.97 100.00
azure6 1156 -10.49 83 -91.39 7.14 149 0.00 10.80 5.71 10.13 100.00
azure7 1198 -29.84 80 -3399.92 -17.02 145 -259.67 20.73 5.43 7.37 92.36
azure8 2578 -38.47 209 -391.03 -28.64 287 -265.68 24.87 3.03 5.65 32.06
azure9 2911 2.56 290 0.00 23.31 318 0.00 7.12 0.96 11.92 0.00
average 3.66 7.73 68.87

TABLE I
Minimum slack(M) AND total negative slack(T) IMPROVEMENT DURING SIMULTANEOUS RETIMING+PLACEMENT ON MACROS OF A45NM

MICROPROCESSOR(SEEEQNS. 7-8). MAXIMAL T IMPROVEMENT (100%)IS REACHED WHEN DESIGN CLOSES ON TIMING. THESE CASES

ARE INDICATED IN BOLD . %M IS COMPUTED AS DESCRIBED INEQUATION 20 WITH P = 174ps.

#std. Initial Retiming+Placement Retiming+Cloning+Placement Overhead Improved
Design cells Regs ΘT , ps Regs ΘT , ps Regs ΘT , ps Time, s % cells % ΘT

azure1 536 41 -4521.87 47 -2989.53 47 -2989.53 6.28 0.00 0.00
azure2 1097 79 -15597.31 153 -4537.57 153 -4537.57 7201.14 0.00 0.00
azure3 1032 97 -15515.34 105 -14333.89 110 -12739.10 2252.07 0.48 11.13
azure4 1125 79 -24206.70 81 -22226.57 83 -21762.75 3727.78 0.18 2.09
azure5 1140 89 -35296.55 148 -18881.61 537 -11333.49 7202.15 34.12 39.98
azure6 1156 83 -32183.65 148 -27566.43 588 -11956.50 237.10 38.06 56.63
azure7 1198 80 -46265.55 122 -33419.14 620 -17643.49 3741.82 41.57 47.21
azure8 2578 209 -39253.82 296 -26272.53 657 -15117.06 7201.70 14.00 42.46
azure9 2911 290 -13134.72 317 -9539.07 522 -4096.63 3905.28 7.04 57.05
average 15.05 28.51

TABLE II
Total thresholded slack(ΘT) IMPROVEMENT THROUGH SIMULTANEOUS RETIMING, CLONING AND PLACEMENT (SEEEQN. 9). CLONING

ALSO IMPROVEDM ON AZURE6 BY 3.5%, WHILE ON THE REMAINING TESTCASES THE MOST-CRITICAL PATHS WERE NOT AFFECTED.

that can effect more powerful changes in the circuit. To
address these issues, we presented SPIRE, an MILP-based
physical synthesis optimization in which dynamic netlist trans-
formations including retiming, cloning, and placement, can
be performed simultaneously with respect to an embedded
static timing analysis program. We demonstrated that isolated
transformations, such as retiming, often run into obstacles
that can only be resolved by other transformations, such as
gate cloning. Empirical results show that SPIRE is able to
significantly improve the worst-case and total slack in func-
tional units of a 45nm high-performance microprocessor after
an industrial physical synthesis flow that consists of several
individual optimizations is performed.

SPIRE has been developed as an optimization for micro-
processor methodologies. Our future work involves extending
SPIRE to ASIC and SoC designs which are significantly
larger than microprocessor design partitions. For this purpose,
we propose automated partitioning to divide the design into
windows of manageable size. Figure 12 shows a preliminary
experiment incorporating the hMETIS partitioning software
into SPIRE [4]. From the plot, we observe that using smaller
windows sacrifices some solution quality, but additional parti-
tioning produces smaller instances that can be solved faster.

-1e6
-9e5
-8e5
-7e5
-6e5
-5e5

 0 5 10 15 20

T
N

S

#partitions

azure10 TNS

Fig. 12. An illustration of SPIREs effect onT (TNS) versus the
number of approximately equal-size partitions of azure10 generated
by the hMETIS partitioner [4].

REFERENCES
[1] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming of

Age of Physical Synthesis,”ICCAD 07, pp. 246-249.
[2] C. J. Alpert et al.,“Accurate Estimation of Global Buffer De-

lay Within a Floorplan,”TCAD 25(6), 2006, pp. 1140-1146.
[3] C. J. Alpert et al., “Techniques for Fast Physical Synthesis,”

Proc. IEEE95(3), 2007, pp. 573-599.
[4] hMETIS: http://www-users.cs.umn.edu/∼karypis/metis/hmetis/

[5] Y. Hu et al., “Simultaneous Time Slack Budgeting and Retim-
ing for Dual-Vdd FPGA Power Reduction,”DAC 06, pp. 478-483.

[6] A. Hurst, P. Chong, A. Kuehlmann,“Physical place-
ment driven by sequential timing analysis,”ICCAD 04, p.379-386.

[7] J. A. G. Jess et al.,“Statistical Timing for Parametric Yield
Prediction of Digital Integrated Circuits,”TCAD 25(11),
2006, pp. 2376-2392.

[8] K. N. Lalgudi, M. Papaefthymou “Retiming Edge-triggered
Circuits under General Delay Models,”ICCAD 97, p.1393-1408.

[9] C. E. Leiserson, J. B. Saxe, “Retiming Synchronous Cir-
cuitry,” Algorithmica, 6, 1991, pp. 5-35.

[10] R. Nair, C. Berman, P. Hauge, E. Yoffa,“Generation of Perfor-
mance Constraints for Layout,”TCAD 8(8), 1989, pp. 860-874.

[11] M. Moffit, D. A. Papa, Z. Li, C. J. Alpert, “Path Smoothing
via Discrete Optimization,”DAC 08, pp. 724-729.

[12] D. A. Papa et al., “RUMBLE: An Incremental, Timing-
driven, Physical-synthesis Optimization Algorithm,”TCAD
27(12), 2008, pp. 2156-2168.

[13] S. S. Sapatnekar,Timing, Springer-Verlag, New York, 2004.
[14] S. S. Sapatnekar, R. B. Deokar, “Utilizing the RetimingSkew

Equivalence in a Practical Algorithm for Retiming Large
Circuits,” TCAD 15(10), 1996, pp. 1237-1248.

[15] P. Saxena, B. Halpin, “Modeling Repeaters Explicitly Within
Analytical Placement,”DAC 04, pp. 699-704.

[16] L. Trevillyan et al.,“An Integrated Environment for Technol-
ogy Closure of Deep-submicron IC Designs,”IEEE Design
& Test 21(1), 2004, pp.14-22.

[17] H. Zhou, “Deriving a New Efficient Algorithm for Min-
period Retiming,”ASP-DAC09, pp. 990-993.

