SPIRE: A Retiming-Based Physical-Synthesis
Transformation System

David A. Papét Smita Krishnaswanly Igor L. Markov
iamyou@eecs.umich.edu skrishn@us.ibm.com imarkov@eagsh.edu
#IBM Austin Research Lab, 11501 Burnet Rd., Austin, TX 78758
1IBM T. J. Watson Research Ctr., 1101 Kitchawan Rd., Yorktddaights, NY 10598
tUniversity of Michigan, EECS Department, 2260 Hayward 8tn Arbor, Ml 48109-2121

Abstract—The impact of physical synthesis on design perfor- | CLONING |
mance is increasing as process technology scales. Currertysical
synthesis flows generally perform a series of individual ndist JOINT ®
transformations based on local timing conditions. Howeversuch OPTIMIZATION
optimizations lack sufficient perspective or scope to achie timing
closure in many cases. To address these issues, we develop an @

integrated transformation system that performs multiple opti- @
mizations simultaneously on larger design partitions thanexisting PLACEMENT | «— | RETIMING
approaches. Our system, SPIRE, combines physically-awaneg-

ister retiming, along with a novel form of cloning and register @ @

placement. SPIRE also incorporates a placement-dependestatic @

timing analyzer (STA) with a delay model that accounts for

buffering and is suitable for physical synthesis. Empiric results | STA with virtual buffering |
on 45nm microprocessor designs show% improvement in worst-

case slack and69% improvement in total negative slackafter an

industrial physical synthesis flow was already completed.

CLONING changes the netlist and influences PLACEMENT
RETIMING helps select combinational gates for CLONING
CLONING creates new opportunities for RETIMING (see Fig. 2)
RETIMING relocates netlist registers, causing new PLACEWE

A relatively recent addition to EDA, physical synthesis PLACEMENT changes interconnect defays used in STA
Register PLACEMENT after retiming is performed based on STA

arose when wire delays began to significantly impact cir- 7 RETIMING relocates netlist registers, changing paths i\ ST
cuit performance. The physical synthesis process begins by 8: | STA computes min slack — the optimization goal for RETIMING
computing a tentative cell placement and proceeds to re- Fig. 1. Interactions in SPIRE’s joint optimization.
structure timing-critical paths. Traditional physicghshesis
flows in the industry [1], [16] apply a series of local, mosﬂyplacement, and logic cloning to seamlessly integrate regm
greedy transformations such as inserting individual beften into physical synthesis. Key features of SPIRE are:
particular nets, or relocating individual gates in the tedi . Multiple degrees of freedom to optimize the circuit, includ
context of their neighboring gates. Several iterationswghs ing gate placementregister retiming andgate cloning
transformations may be required for timing closure [1],][16 , A mixed-integer linear programming (MILP) framework
However, growing reliance on physical synthesis motivétes for joint optimization that emphasizes synergies between
development of transformations that are more powerful i@ tw point optimizations as shown in Figure 1.
specific ways. « An embedding of placement-dependent STA computations
. Greater optimization scope: the ability to effect larger ~ with virtual buffering into the MILP, which allows for
changes in the circuit in terms of simultaneously moving or efficient and accurate consideration of timing constraints
altering several objects in order to achieve timing closure from large design partitions.
« Larger optimization window size: the ability to consider gp|RE allows for placement, retiming, and cloning to
temporal and spatial constraints from partitions Ofad’ESigsimultaneously optimize a circuit, as shown in Figure 1.
Increasing the optimization scope and window sizes can hdlp physical synthesis, such a joint optimization problem is
avoid local minima in the solution space that trap individuaoften considered intractable. Instead, one chains indalid
local transformations. Additionally, this circumventetirder- optimizations with limited scope. However, as shown in Fégu
ing problemof individual transforms, since different sequenceg, suchseparation of concernsverlooks opportunities for joint
affect results. optimization. Therefore, we propose a powerful transfdioma

We facilitate more powerful optimizations through retiigin that is computationally expensive, but can be applied taldez
Unlike traditional gate- and net-centric timing optimipats circuit windows Window sizes can be selected subject to
that aim to satisfy given stage-timing constraints, ratigni runtime constraints imposed on the system. Our experirhenta
can optimize the constraints themselves to better fit a giveasults in Section 1V, in fact, show that SPIRE can handle
netlist. Therefore, we propose3ystem forPhysically-aware window sizes of thousands of gates by efficiently encoding
IncrementaRetiming andEnhancements, d8PIRE that per- the problem as an MILP with linearly many constraints in the
forms register-retiming with accurate delay models, buffg size of the circuit.

I. INTRODUCTION

AL B R

Retiming methods based on [9] enforce timing constraints ./.<..
by requiring a register on every path whose delay exceeds -
a threshold. However, such methods require computatignall P'/.
expensive path enumeration within the linear programming a) (b)
formulation. We avoid path enumeration by enforcing limgar F19: 3. A circuit (&) and its timing graph (b). Square objéuase fixed

. - . . . AATs or RATs. STA is performed only on circular movable olifec

many conditional STA-like constraints which determine op-
timal retiming and placement. Further, different choices f Delay models.Static timing analysis relies on compact models
retiming, cloning and gate relocation perturb only a smefl sOf gate and net delay, e.g., a look-up table to represent gate
of local constraints directly (those affecting nearby exjge delays in terms of its inputs. Today, buffering is heavileds
Aside from the system as a whole, we highlight the followind physical synthesis to reduce wire delay and improve @min
contributions of this work: Therefore, it is important to estimate buffered wire delay i

« A method for retiming with an accurate STA-like embed@ccurate interconnect delay models. We model the delayalon
ded delay computation model. an ideally buffered net of length as in [2], [12]:

« A novel gate-cloning technique to enable retiming. delay(L) = L(RyC + RCy + V2RyCy RC') (3)
« A simultaneous retiming and re-placement technique. Here, R, and C}, are the intrinsic resistance and input

The remainder of this paper is organized as follows. SectiQipacitance of buffers? and C are unit wire resistance and
Il reviews background and notation. Section Il presents O¢apacitance, respectively. Empirical results in [2], [t]icate

maximum-slack retiming formulation that incorporates STA 9704 correlation between the results of this linear model and
placement, and cloning. In Section IV, our methods are Vaé'n industrial timing analysis tool.

idated on a 45nm high-performance microprocessor againsyy practice, this model can be reduced to a linear equation
leading-edge physical synthesis tools. Section V outl®@s i, terms of the length of wire with a technology-dependent

ditional optimizations that can further increase the scope .gnstant. The routed wirelength between two points can be
SPIRE. Conclusions are drawn in Section VI. approximated by théalf-perimeter wirelengtf{HPWL). We
1. BACKGROUND, NOTATION AND OBJECTIVES denote the HPWL between two pOinISindv aSHPWL(’U,7 ’U).

In this section, we provide the necessary background %uppose that the net connecting v) is bounded by the and

static timing analysis and period-constrained retiming. #h(;(;ordlnates,Uz, Uy, Lo and Ly, from above and below.

A. Static Timing Analysis with Buffered Wires
SPIRE depends on the ability to encode timing constraints HPWL(u, v) = (Us — Lo) + (Uy — Ly) (4)

efficiently, and in such a way that they can be easily adjustedIn SPIRE, we approximate the delay between two points

to accommodate changes resulting from circuit optimizatio |,sing an empirically determined, technology-dependerdma
Here, we describe the basics of the static timing analys$eMo oar— 1n order to calculate the best value for we buffer a

we use, and delineate its assumptions. long netn and calculate
In static timing analysis, a timing graphG = (V, E) is
extracted from a logic circuit [13]. Each vertexc V is a 7 = delay(n)/HPWL(n) ®)
timing point, and corresponds to an input or output pin ofhen we calculate the delay between two poimtand v as
a gate (or a global input or output pin). A pair of vertices, delay (u, v) = THPWL(u, v) (6)

u,v € V, are connected by a directed edge@:, v E if - .
v T . v a d@(_ ,v) € To compute the initial conditions for SPIRE, the RAT and
there is a timing relationship (i.e., a connection) betwten) g . -
. . . L . AAT of all fixed timing points are generated by an STA engine
pins v and v. This connection can occur within a gate, i.e., . o .
U&lng very accurate delay models and a set of timing aseertio

between an input pin and an output pin, or it can correspon . : :
to a wire connecting two gates. Each edge has an associa %ated by designers [10], [13]. SPIRE considers the tiring

delay delay(u, v) indicating the delay betweem andv. .reglétz_lr_s mlput plSr! fl??eo: ant?] usizfr! SIA zngme totdetterm|ne
To determine the worst path in the circuit, a topologica'lts value. Similarly, the IS Tixed on output pin

traversal is performed on the graph beginning at the sourcgg a register. When calculating these values the STA engine

The actual arrival time AAT(v) at a timing pointv in the includes considerations of setup and hold time, intringiteg

circuit is the latest arrival time of any of its predecessaiter _?_ﬁls);is]?: Cll‘ggi(rizzemat we optimize include the minimum
considering delay: 9 p

slack of all vertice.M), the total negative slack in the circuit
AAT(v) = Oy (AAT(u) + delay(u, v)) 1) (7), and the total slack below a threshdl@r), computed as
Therequired arrival timeRAT(u) at a timing pointu in the ~ shown below. Note thal” = ©o.
circuit is computed in a similar fashion, traversing backiga

= mi 7
from the primary outputs of the circuit: M m;nS(u))
RAT(u) = o (RAT(v) — delay(u,v)) (2 7 =) min(0,S(u)) (8)

The timing graph is topologically traversed twice to findgbe o
values, after which thslackS(v) is found at every point: Or = Z min(0, S(u) — T) ©

S(v) = RAT(v) — AAT(v) In SPIRE, registers are allowed to move, while combina-

tional gates remaifixedin place; this limitation is not inherent,

()
Fig. 2. Retiming and gate cloning to improve slack: (a) Regi& cannot be moved past gate because of fanouts-F'. (b) If the NAND
gateC is cloned, creating a new gat¢’ to drive its two sinks, it is possible to retime the top regiswithout changing the logic function. (c)
The final result with registeFr retimed.

as discussed in Section V. After gate cloning (Section J-D M nim ze

the cloned gates can be physically relocated. For efficiency Z(u,v)eE w(u,v) —r(u) +r(v)

we restrict our timing graph edges to those representing (1)subj ect to

each connection between the movable gates, and (2) each V(u,v) € E,r(u) —r(v) < w(u,v)

connection between a movable gate and a fixed gate. For the V(u,v) € E[D(u,v) > P,r(u) —r(v) < W(u,v) — 1

subcircuit in Figure 3(a), the resultant timing graph isvgho Fig. 5. An LP for min-area, period-constrained retiming.
in Figure 3(b).
B. Register Retiming Prior work in retiming also includes the ASTRA [14]

The original linear programming formulations for minimum-algorithm, which is a faster approach. It relates the pmoble
period and minimum-area retiming were developed by Leisedf clock skew optimization at each flip-flop to a retiming
son and Saxe [9]. In their framework, a circuit is represgntesolution for minimum-period retiming, and uses the Bellman
by a retiming graph G(V, E), where each vertew € V Ford algorithm to derive the longest path. Recently, théanst
represents a combinational gate, and each ddge) € F of [17] used program derivation to automatically generate a
represents a connection between a driveand sinkv. An algorithm for min-period retiming which iteratively sherts
edge is labeled by a weight(u,v), indicating the number the longest clock periods. Retiming was also explored farls|
of registers (flip-flops) betweem and v. The objective of budgeting and power minimization for FPGAs [5].
minimum-area retiming is to determine labelg) for each Challenges in min-period retiming. Algorithms based on
vertexv, denoting the number of registers that are moved fromechniques from [9] enforce timing constraints by requjrin
the outputs to the inputs af, that minimize the sum of edge registers on gate-to-gate paths that exceed a length thdesh
weights. The weight of an edge after retiming is given by: This involves computationally expensive enumeration ahsu

paths. Therefore, in our approach we avoid path enumeration

wr(u,v) = w(u,v) —r(u) +r(v) (10) by using slack, rather than period as a metric. Slack cdnsra
Therefore, the total number of registers in the retimecugirc are linear in the size of the circuit and all path delays are
can be minimized in terms of the following expression. implicitly encoded through the AAT and RAT constraints.
Other retiming algorithms use network-flow based ap-
Z w(u,v) —r(u) +r(v) (11) proaches which are difficult to extend to a multi-objective
(u,0)EE optimization [14]. Using interconnect delays instead oifhs

Additionally, retiming labels have to medegality con- has been a challenge, as wires can be dynamically re-bdffere
straints,w(u, v) > r(u) — r(v) for each edge, to enforce thewhen their lengths change [15]. Unlike much of past literatu
fact that edges cannot have negative weights. A linear progr we use a buffered delay model to account for this.
for the minimum-area retiming problem is given in Figure 4lnherent limitations of retiming are associated with multi-
Leiserson and Saxe [9] observe that this problem is the dualfanout branches. To move a register backward through a gate,
a min-cost network flow problem and can therefore be solvedl fanout branches of the gate must include (or share) a
in polynomial time. register, and all these registers must be retimed at onds. Th
constraint ensures that the number of registers on any-P&to
path stays constant during retiming. Therefore, fanoutsbea

.Z(u,v)EE w(u, v) —r(u) +r(v) a bottleneck for retiming. In order to alleviate this prohleve
subject to clone gates within the retiming formulation so as to provide

V(u,v) € E;r(u) —r(v) < w(u,v) additional backward-movement opportunities for regs{see
Fig. 4. An LP for minimum-area retiming. Figure 2).

Mnimze

As shown in Figure 5, the period can be constrained in this
formulation by requiring weight> 1 on every path between
two vertices with delay exceeding target peribd However, This section introduces the SPIRE system which combines
this formulation required(|V|*) constraints in the form of several optimizations used individually in the past litara. As
matrix D that stores the delay of the longest path between tilsbown in Figure 6, combining retiming and placement is bette
vertices(u, v) in D(u,v), and matrixi that stores the weight than applying them individually. In this example, only themc
of that path. Then, a binary search is performed to determib@ed approach closes timing. The main difficulty in comibgni
the minimum achievable clock period. The feasibility of lracplacement, cloning and retiming is their inter-dependence
period according to the legality constraints is checkechgisi optimal locations and cloned configurations depend on the
the Bellman-Ford algorithm [9]. timing constraints which are altered by retiming.

I1l. JOINT OPTIMIZATION FOR PHYSICAL SYNTHESIS

AAT(a)=25 AAT(@)=1 RAT(d)=50
AAT(a) = 25 RAT(d) = 50 AAT(a) = 25 RAT(d) = 50 AAT(D)=25 AAT(@)=1 RAT(D) =50
AT =25 AAT@O=1 RaT(e) =50 ATo)=25 AAT@=1 RaTEe)=50 (26, 25) RAT(€) =50
4 [C) d—a e —¢ a U= €<E 2 d 4 E«—E

(10,20) (25, 18) E (35,15) (10.20) (15 71g) (35,15) (10.20) FBlF (0.15 (519

b Delay(C)= 30 (30, 15) b (20, 15) By Delay(C)= 30

(10, 10) (10, 10) Delay(C)= 30 (10, 10) (26, 12)

(b)

a
Fig. 6. Advantages of performance-driven retiming with @taneou

(c)
s re-placement. In the original circuit (a), thmitig path feeding the

input of the register has negative slack. Moving the gate register in (b) improves the slack, but movement alone datsaliow the path

to meet timing constraints. Only by retiming and movemenmt ak tim

A. Embedding the STA Backplane into ILP
In order to incorporate STA into SPIRE, we first encod

the RAT and AAT variable computations into an MILP, witk

constraints corresponding to Equations 1 and 2, both oftwh
are linear. Then, alternative constraints are introducedna-
lyze each timing arc, for the case where a register is betwg
the source and sink of the arc. Figure 7 shows an LP sim
for computing the worst-case slack. For circaltwith gates
G = {u1,uz...un}, and registersk = {l1,l2,...lm}, the
variables in this program are:

o AAT and RAT for eachu € GG, denotedA.,, and R,,.

o M for the minimum slack.

In other words, for a gate: driven by i1,is,...is the
constraints to enforcel,, are shown below. Her¢ < j < S:
Ay > Ay + THPWL(i5,u) + Dy (12)

Since A, must actually be equal to one of the values i
Equation 12, it is added to the objective function so thaait ¢
be minimized. The constraints guarantee that it will be grea
than any path’s delay. Adding it to the objective guarante

ing constraints be met in (c).

Objective
Minimize : —M
+V(u)(Auw — Ru)
subject to
Yu M < S(u)
VuV(fanins f of u)A, > A¢ + 7HPWL(f,u) + Dy
uV(fanouts f of u)Ry < Rf — THPWL(u,g) — Dy
Vregister r, R, > clock_period
Vregister r, A, <0

Fig. 7.

e

C

ce
ply

Finding minimum slack using LP.

determined by the retiming. Therefore, the retiming progra
maximizes the worst-case slack.

Figure 8 shows the MILP that combines the STA constraints
with retiming. During retiming, we only know the contents of
the retiming graph(not the timing graph), because any edge
in the retiming graph can include a newly retimed register.
Therefore, STA constraints change depending on the regimin
variable values. However, there are only two possibilif@s
@ach retiming arc: either the arc contains a register after

that it will be no more than the greatest path delay. Simyilarlretiming, or it does not (and combinations of arcs are inijic

for R., supposing that. drives gates, o2, ... or, then the
corresponding constraints are of the form foK & < T

R. < R, — THPWL(g, 01) — D, (13)
We add —RAT(u) to the objective function since this

considered). This situation is modeled through IF-THENdog
based on the retimed weight of the edge. If the weight is great
than zero, then the wirelengths involved in RAT and AAT
computations change to incorporate the newly retimed texgis
For brevity of presentation, we temporarily assume that the

variable is_maximized rather than _minirnized_. The AAT anghey registed will be placed at theenter of gravity (COGf
RAT of registers (and other end points like primary input anghe neighboring gates @f Thus, the net connectingto ! has

output pins) are simply set according to initial values otee
form the reference timing model. The termM is added to
the minimization objective. The total slack can also easily
be computed from the MILP and added as an objective.
practice, we minimize both. However, for brevity, we drép
from the MILP formulations for the remainder of the pape
Note that the number of constraints in this formulation
proportional to the number of-pin arcs in the circuit and
not the number of paths. Furthehe number of constraints
in which each gate an@-pin connection appears is limited
which is key to incorporating retiming, placement and ahoni

B. Max-Slack Retiming

length HPWL(u, COG(l)) and the net connectingto v has
length HPWL(COG(I),v). In the next section, we eliminate
this simplification and consider the static timing analysfs
Hbarby gates when calculating slack-optimal registertioosa.

if(we(u,v) ==0)
Ry < Ry — THPWL(u,v) — Dy
Ay > Ay + THPWL(u, v) + D,
if(we(u,v) > 1)
R, < R; — THPWL(u, COG(l)) — D,
A, > A + THPWL(COG(I), v) + D,

r.
is
(14)

This IF-THEN logic is incorporated into a linear program

Retiming is the most powerful optimization within SPIREUSING thebig-M formulation. Under this formulation, a con-

because it can effect drastic changes on the timing conttrai
For instance, moving one register past a gate can atile
stealing on the order of gate delays along all paths th

straintv < k takes the form < k+ Mwvr, whereM is a large
constant. Ifv; == 0, the constraint reduces to the original,
df vr # 0 then the constraint simply becomes a bound on

cross the register. In order to utilize the STA constrainte variablev, i.e.,v < Muv;. Alternatively, IF-THEN logic
described in the previous section, we develop a maximunk slagan be modeled usingdicators—binary variables that turn
formulation. The key idea in maximum-slack retiming is thagonstraints on and offIn our program, we define an indicator
there are two versions of the AAT and RAT computations ohasReg(u, v) as follows:

each vertex depending upon whether the vertex drivesfierlri
by a register. The constraints that are actually enforced

ar lindicators are supported by the MILP solver CPLEX 12.1.

Objective Objective :
Minimize : —M+3 ., ,ep(K) wr(u,v) Maximize £
subject to subj ect to

V(u,v), r(u) - I‘(V) < W(u7 V)
V(u,v), if(thasReg(u,v))

Ru < Ry — THPWL(u, v) — Dy
V(u,v), if(thasReg(u,v))

Ay > Ay + THPWL(w, v) + Dy,

V(u,v), if(hasReg(u,v))

Ru < Ry — THPWL(u, COG(1)) — Dy,
V(u,v), if(hasReg(u,v))

Ay > A; + THPWL(COG(), v) + Dy,
YueV, M<S(u)

u

Ve = (u,l) € E, US> ay, Uy 2>oay

Ve=(u,l) € B, Ly <oy, Ly <ay

Vi=(,v) €E, UL>al, Ul >a)

vi=(Lv) € B, LL<a¥, Ll <ay

Ve € 1, Ly < B < Us

vf € By, LE < g} <UL

Ve = (u,]1) € E;,Ry <Ry — 7(US — L + US — L) — Dy
vE=(,v) € B,A, > Ay + 7(UL — LE + UL — L) + D,
Ve = (u,1) € E;, L<Ry—Ay—Dy

Vf=(Lv)€E, L<R,—A,-D,

Fig. 9. Optimal register location relative to adjacent gate

Fig. 8. Max-slack retiming with STA embedded.

delay around registers can be allocated to either the input o
if(wr(u,v) > 0) hasReg(u,v) =1 output paths. In this section, we describe a formulatiort tha
if(wr(u,v) <0) hasReg(u,v) =0 integrates register placement with the retiming describetie

This variable can be set in a variety of ways. One way Rrevious section. Register locations alter STA constsabyt
to use the constrairttasReg(u,v) < w,(u,v) and maximize changing interconnect length, and therefore, delays. @h ea
it. If w,(u, v) == 0 thenhasReg(u, v) = 0. If w,(u,v) >1 edge with a register, SPIRE chooses the physical locatiah th
then, sincehasReg(u,v) is maximized, it is set ta. How- results in the best possible slack. The placement alscaitter
ever, maximization can sometimes conflict with the objestiv With retiming, which optimizies the STA constraints based o
therefore we use the following constraints instead: register locations for each edge.

In order to perform this integration, we utilize the same
type of case-logic as in the previous section. First we nyodif
constraints so that AATs and RATs on edges with registers

The second constraint uses thes Reg variable as an indi- are calculated with respect to the placement. Registeirghar
cator. Together, these two constraints requirelhhalReg = 0, along adjacent edges further complicates the formulation.
if and only ifw.(u, v) = 0. For brevity, we omit the setting of However, we utilize the formulation from [12], to refine the
this variable from our formulations. As we will see in Seatio placement of the shared register based on related timing. Th
I1I-D, maximization of real and integer variables can alad f retiming variables are, as in the previous section, optuhiz
when the objective has conflicting terms. Our formulatioasus to activate the most favorable STA constraints. This idésrp
the constraints below to maximize general variables (withopetween retiming, placement, and STA is shown in Figure 1.
adding terms to the objective). We constrain the variable \we first describe an LP formulation for local register relo-
C = max(4, B) as follows? cation based on a simplified form of the LP in [12]. We then

C>A, C>B, (C==A)|(C==D58) 17) incorporate it ir!to our retimipg formulation. .
. L . . Suppose register can be incrementally placed to improve

The min function is eva!uated similarly. In Figure 8 theslack while leaving all other gates fixed. We define a timing
slack, RAT, and AAT variables are real values while th

S . . - raphG; = (Vi, E;) that consists of vertices and edges that
retiming variables have to be integer. We utilize a consta te adjacent td. V; contains the driver, and sinks, of [

weighting fac_torK to reconcile area With slack. The constant-, edge sef;, contains the timing arcs that are adjacent to
K can be adjusted based on the available area. I. The LP formulation computes the variablgs and 3}, the

Notg that the formulation in Flgure 8 does not require .thgptimal x- andy-coordinates of. The variables in this LP are
derivation of theWW or D matrices that were described iN2s follows:

Section Il. Instead, timing calculations are performedhimit
the MILP. Thus, the number of constraints is odly|E|) for
a retiming graph with edge sét.

(15)

hasReg(u,v) < wy(u,v)

if(hasReg(u,v) == 0) wr(u,v) =0 (16)

o ay,ay: fixed z- andy-coordinates of vertices € V.
o Us, Uy, L, Ly upper and lower bounds for the location
of netse € E;. These upper and lower bounds determine the

C. Register Placement HPWL of the particular net described by edgas follows:
Registers have special significance in a timing graph becaus HPWL(e) = (U; — Lg + Uy — Ly). As the location of the

their inputs are in a different clock cycle than their ougput register changes, these net boundaries also change, and, in

This facilitatestime borrowing— the ability to shift delay turn, change the HPWL.

from one timing path to another by decreasing the delay on Ru, A.: the AAT and RATs of vertices irV;.

inputs paths at the cost of increased delay on output patds, ae £: the local worst-case slack (of the worst pinTif).

vice versa. By physically relocating registers, the inbereect The MILP to determine optimal register placement is shown
in Figure 9. This program sets the valuesgif and 3, such
that £ is maximized. Here A, of any vertexu € V; that
drivesregisterl is fixed. Similarly R, for any vertexv that is
driven by! is also fixed. The only independent variables are

2The Logic-OR can be implemented using intermediary vagimbl
d4, 6p and indicator variable$ 4, I 5 with the following constraints:
ba=C—A, dp=C—B, I4<6d4, if(Ix ==0)04 =0,
Iy <ép, 6)if(Ip ==0) 6p =0,I4 +Ip < 1.

Objective Objective

Minimize : —M+3, ,cs(K) wr(u,v) Minimize : — M+
subject to z:myv)EE(K)RegCt(u7 v) + > (u)IsCloned(u)
Y(u,v),r(u) —r(v) < w(u,v) subject to
Ve = (u,1) € B, L<Ry—A,—Dy Vu,V fanins i of u,minPush(u) < w(i,u) —r(i)
Vi=(l,v) e E, L<Ry,—A,—-Dy Vu,V fanouts o of u,maxPull(u) > w(u,o)+ r(o)
if(thasReg(u,v)) : Vu, if(r(u) > 0)maxPull(u) > r(u)
V(u,v), Ru <Ry —7HPWL(u,v) — Dy Vu, if(r(u) < 0)minPush(u) < —r(u)
V(u,v), Ay > Ay + THPWL(u,v) + Dy V(u,v), if(we(u,v)>0)
Let 1 be register on (u,v) RegCt(u,v) = wi(u,v), CloneCt = 0
if (hasReg(u, v)): V(u,v), 1f('1sClone() && thasReg(u, v)) :
e=(u,l), Ug>ay, Uj>ay Ru < Ry — THPWL(u, v) —
e=(u,l), Lg <oy, Ly <ay V(u,v), if(lisClone(u) && hasReg(u,v)) :
f=(v), UL>ay, Ul>ay Ru < Ry — THPWL(u, COG(1)) —
f=(,v), LL< oe,vn Li <af V(u,v), if(isClone && hasClone(u,v)) :
Ve = (u,1),Lg < B < US Reione(n) £ Ry — THPWL(COG(clone(u)), v) — Dy
vf=(1,v),Lf < By <Uf V(u,v), if(isClone(u) && !hasClone(u, v)):
e = (u1),L5 < AL < US Ru < Ry — THPWL(u, v) —
e=(ul),Ls < B, <US V(u,v), if(lisClone(v) && 'hasReg(u v)) :
f:(lyv)yLi<ﬂ}c<Uf{ Ay > Ay + THPWL(u,v) +
f=(1,v),L, <g, <uf V(u,v), if(!IsClone(v) && haSReg(u v)):
Ru < Ry — T(Uf Lf + UL~ L) - D, A, > A + THPWL(COG(1), v) + Dy
Ay > A+ 7(US — LS+ US — L) + D, V(u,v), if(isClone(v)) :

Ay > Ay + THPWL(u,v) + Dy

Adione(v) = Av + THPWL(u,v) + Dy

/3, and 3, which determine thé/ and L variables. These, in | vu, if(isClone(u))

turn, determined,, R, for all vertices. M < Rejone(u) — Actone(u) — Detone(w)
The program in Figure 9 is modified in Figure 10 t@ VYu, M <R, — A, — Dy,

simultaneously incorporate retiming and placement, and no

longer fixes the neighboring RAT and AAT variables. In this

figure, each edgéu, v) on which a register appears constrain§nins I = {i1,i2,...in,}. We represent this situation by

the placement of the register in question. It is assumed tHEIPOSING two constraints on the retiming variable r(u) for a

all edges starting at, i.e., of the form (u,v), such that vertexu: one which is enforced wher(u) is positive, and one

hasReg(u,v) = 1 share the same registers. The register Which is enforced whem(u) is negative. Ifr(u) is positive

placed in a location which minimizes the slack of neighbgrin(i-€., the retiming is backward), then the maximum number

gates. Since the slacks of neighboring gates in turn affiestet Of registers that are allowed to pass backwards is the gteate

of their neighboring gates, and so forth, a ripple effect ensuedumber of registers that appear on any fanout branch. of

Therefore, the register is actually placed in an optimaaion 7 () is positive, then the constraint is the same as before:

Fig. 10. Max-slack retiming with relocation of registers.

Fig. 11. Gate cloning in max-slack retiming.

with respect to the entire circuit. The key here is to enforce maxPull(u) = max,co(w(u, 0) + r(0))

a small set of local constraints for each edge that intexact t minPush(u) = miner(w(i, u) — r(i))

find global optima. if(r(u) > 0) r(u) < maxPull(u) (18)
D. Cloning to Increase the Scope of Retiming if(r(u) < 0) minPush(u) > —r(u)

A key insight in our work is thabpportunities for backward ~ Together, these two constraints can completely replace the
register movement are often limited by fanout branches ieneral legality constraints. The presence of registelig-is
combinational circuits.As illustrated in Figure 2, retiming dicated by a positive weight on an edge. Negative weights
movement is blocked when fanouts of a gate do not shairglicate that the driver of the edge was cloned. The original
registers. We increase these opportunities by cloningulandriver is connected to the retimed register on the (neighpr
branches such that registers can move beyond the cloned getige(s) with non-negative weight, and the cloned driveredri
We achieve this by relaxing legality constraints to allovirex the remaining sinks (as identified by edges with negative
registers to move backwards. In addition, the fanouts of amyeight). We use the additional variatiiesClone(u, v) which
cloned vertex are divided such that the STA on some of the set tol if and only if the register count on edde, v) is
edges is computed with respect to the cloned, rather thamagative. These variables are set in a similar wajiafleg.
original vertex. Recall that constraints can be triggered by logical coodi

The legality constraints in retiming ensure that no edgéarough indicator variables or big-M formulations.
has negative weight. With cloning, edges can indeed haveThe MILP incorporating cloning is shown in Figure 11. For
negative weight due to registers being retimed backwardtarity, we illustrate cloning incorporated into the baStA-
through a cloned gate. However, forward retiming of regsstebased program with COG-based placements. In practice, we
still follows traditional legality rules. simultaneously place and clone registers and gates.

Suppose vertex: has fanoutsO = {o1,02,...0r} and The slack is computed slightly differently in the pres-

ence of clones. New variables in Figure 11 include indicatdarhe threshold value represents the desired amount of guard-
variables isCloned (1), Acione(u), Reione(uy fOr €ach vertex banding (protection) against process variations and NBTI,
v. The variableisCloned(u) = 1 if hasClone(u,v) = which can degrade timing. Empirical results indicate that
1 for one of the edges of the fornfu,v). The com- cloning can improve th®+ of the circuit by up t057% over
putation of Acione(u), Relone(n) 1S performed as follows: just retiming and placement. Thus, even when opportunities

if (wr (i, u) — r(i) > 0) for cl_onir_lg on the_critical path are limited, th_e_ remaindér o
Actone(u) > Ai + THPWL(i, COG(1)) + D, the CI!’CUIt carll be |mprqved for |ncreas§d resilience.

if(we(u,i) —r(i) < 0) Unlike previous localized transformations, SPIRE scates t
Adlone(u) > Ai + THPWL(7, u) + Dy, design partitions with over 1000 cells as shown in the #std

if (wre(u,i) —r(i) <0) cells column in Table I. SPIRE can process larger circuits
Relone(u) < Ri — THPWL(COG(clone(i)), i) — Du by partitioning the design into windows of appropriate size

) . SPIRE can also be applied in overlapping windows.
For the new RAT variable, we assume that a vertex driven by

a clone has no registers on the connecting edge. As illestrat V. EXTENSIONS

in Figure 11, the main differences in slack computationudel SPIRE’s key advantage over existing physical synthesis
1) the additional edgéwu, clone(v)) for every edge(u,v) transformations is the synergistic use of several types of
wherew is cloned, 2) the use of the clone’s AAR ione(u), Optimizations. Our MILPs are more costly than existing $ran
when computing the AAT of vertices where (u,v) has a formations but also more powerful since they can be applied
clone. We minimize the number of registers and clones i larger windows than many of the localized transformation
the retimed circuit using two variablésCloned and RegCt, used in the industry today [11], [12]. This flexibility of SRE

which is computed as follows: allows one to change the size and scope of optimization
if(wr(u,v) > 0) RegCt(u,v) = wr(u,v) (19) and offers rich trade-off opportunities. However, inciags
optimization strength will likely change the trade-off \ween
IV. EMPIRICAL VALIDATION runtime and optimization-window size. Additional optiraiz

al‘lions can be integrated into SPIRE.

» To relocate combinational gates, create variables for:the

andy- location for each gate and write the delay equations

as in Section IlI-C in terms of those variables.

o To incorporate gate sizing in SPIRE, one must model
nonlinear timing characteristics of individual gates anst
dard cells. This can be accomplished by precomputing the
response to a set of discrete sizes (from the library) and
selecting them using conditional constraints. If a patéicu
gate size is selected, a corresponding gate delay will beé use
in the STA, as specified by a conditional constraint.

« Similarly, threshold voltage{,) assignment is modeled

by selecting gate delays with Boolean variables. As lovgerin

Vi improves speed at the cost of power, the number of low-

Vin assignments must be upper-bounded.

Common placement constraints including region con-
straints and obstacles can be represented in SPIRE. Region
constraints are modeled with linear bounds onzhandy-
coordinates of each gate. To avoid obstacles, the placement
Mo — M region is divided into allowable regions that hug the ob-
BM = v — 27 00% (20) stacles. A disjunctive (OR-type) constraint is then added t

P) require placement in one of the allowed regions. Routing
We note that the slack numbers are reported with reSpethongestion can also be represented as an obstacle using

to bufferedwire delay. Past literature repontmbufferedwire this mechanism to prevent any movable objects from being
delay, where dramatic improvement in slack may be mis- _q4ed in congested regions.

leading due to the need for subsequent buffering. In thigy integrating several optimizations and applying them to
experiment, the MILP for retiming with placement was giveRyindows with thousands of objects, SPIRE offers a unique
initial solution seeds from the max-slack MILP retiming gimo physical synthesis optimization that lies between local op

in Figure 8. This helped CPLEX to calculate MILP solutiongjmization of individual objects (which is typical of cume
quickly. The entire optimization sequence toakils on each tools) and global optimization of the entire design.

benchmark. Note that our joint optimization was performed

after several iterations of placement, rebuffering, and gate VI. CONCLUSIONS ANDFUTURE WORK

sizing, yet significantly improved slack. State-of-the-art physical synthesis methodologies temd t
Table Il evaluates the impact of cloning during retimingperform a series of local transformations to achieve a targe

In this experiment, we measure thetal thresholded slack clock period [3]. However, the difficulty of timing closure

(©71), as defined in Equation 9, with the thresh@ld= 100ps. in high-performance designs calls foetlist transformations

We integrate our optimizations into an industrial physic
synthesis flow. Our benchmarks are the largest functioniéd un
of a 45nm high-performance microprocessor design. We op-
erate on these benchmarks after logic synthesis, timiivgur
synthesis, timing-driven placement, electrical cormttiand
critical path optimization (through buffering and gateirsip
are completed [3]. We use an industrial timing analysis tool
to obtain initial conditions for AATs and RATs throughout
the circuit [7]. Our experiments were conducted ong8agore
system with2.8 GHz AMD Opteron854 CPUs and80 GB
of memory. Our MILPs were solved with ILOG CPLER.1
configured to use up t8 cores in parallel.

Table | shows & .7% improvement (on average) in worst-
case slack 1) and a69% improvement intotal negative
slack (7)) when retiming with simultaneous placement. The
slack improvements are reported in terms of the clock period
P = 174ps. T is computed as shown in Equation 8 with
threshold ofT" = 0. Percentage improvement in min-slask
is computed as follows:

#std. Initial Retiming+Placement Overhead| Improvements
Design | cells | M, ps | Regs 7,ps | M, ps | Regs 7T,ps | Time, s % cells | % M % T
azurel 536 3.42 41 0.00 10.14 49 0.00 1.19 0.00 3.87 0.00
azure2 | 1097 -2.53 79 -15.17 2.95 155 0.00 4.46 6.93 3.15 | 100.00
azure3 | 1032 | -16.22 97 -212.69 -6.49 108 -37.95 0.4 1.07 5.59 82.16
azure4 | 1125 -2.30 79 -2.30 3.82 96 0.00 7.66 151 3.52 | 100.00
azure5 | 1140 | -13.18 89 -114.54 9.39 161 0.00 40.71 6.32 | 12.97 | 100.00
azure6 | 1156 | -10.49 83 -91.39 7.14 | 149 0.00 10.80 5.71 | 10.13 | 100.00
azure7 | 1198 | -29.84 80 | -3399.92| -17.02 | 145 | -259.67 20.73 5.43 7.37 92.36
azure8 | 2578 | -38.47 | 209 -391.03 | -28.64 | 287 | -265.68 24.87 3.03 5.65 32.06
azure9 | 2911 256 | 290 0.00 23.31| 318 0.00 7.12 0.96 | 11.92 0.00
average 3.66 7.73 68.87

TABLE |

Minimum slack{ M) AND total negative slackZ) IMPROVEMENT DURING SIMULTANEOUS RETIMINGFPLACEMENT ON MACROS OF A45NM
MICROPROCESSOKSEEEQNS. 7-8). MAXIMAL 7 IMPROVEMENT (100%)IS REACHED WHEN DESIGN CLOSES ON TIMINGTHESE CASES
ARE INDICATED IN BOLD. %M IS COMPUTED AS DESCRIBED INEQUATION 20WITH P = 174ps.

#std. Initial Retiming+Placement] Retiming+Cloning+Placemen{ Overhead| Improved
Design | cells | Regs O, ps | Regs O, ps | Regs ©r,ps | Time, s % cells % O
azurel 536 41 -4521.87 a7 -2989.53 a7 -2989.53 6.28 0.00 0.00
azure2 | 1097 79 | -15597.31| 153 -4537.57 153 -4537.57 | 7201.14 0.00 0.00
azure3 | 1032 97 | -15515.34| 105 -14333.89 | 110 | -12739.10| 2252.07 0.48 11.13
azure4 | 1125 79 | -24206.70 81 -22226.57 83 | -21762.75| 3727.78 0.18 2.09
azure5 | 1140 89 | -35296.55| 148 -18881.61| 537 | -11333.49| 7202.15 34.12 39.98
azure6 | 1156 83 | -32183.65| 148 -27566.43 | 588 | -11956.50| 237.10 38.06 56.63
azure7 | 1198 80 | -46265.55| 122 -33419.14 | 620 | -17643.49| 3741.82 41.57 47.21
azure8 | 2578 209 | -39253.82 296 -26272.53| 657 | -15117.06| 7201.70 14.00 42.46
azure9 | 2911 | 290 | -13134.72| 317 -9539.07 | 522 -4096.63 | 3905.28 7.04 57.05
average 15.05 28.51

TABLE Il

Total thresholded slack97) IMPROVEMENT THROUGH SIMULTANEOUS RETIMING CLONING AND PLACEMENT (SEEEQN. 9). CLONING
ALSO IMPROVED.M ON AZUREG BY 3.5%, WHILE ON THE REMAINING TESTCASES THE MOSTCRITICAL PATHS WERE NOT AFFECTED

that can effect more powerful changes in the circuib REFERENCES
address these issues, we presented SPIRE, an MILP-badéli C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming of
physical synthesis optimization in which dynamic netliaiis- Age of Physical Synthesis[CCAD 07, pp. 246-249.

formations including retiming, cloning, and placementn ca [2 C- J. Alpert et al. ‘Accurate Estimation of Global Buffer De-
be performed simultaneously with respect to an embedde[% lay Within a Floorplan,"TCAD 25(6), 2006, pp. 1140-1146.
static timing analysis program. We demonstrated that tiedla 1 C. J. Alpert et al,, "Techniques for Fast Physical Systhe
) oY . Proc. IEEE95(3), 2007, pp. 573-599.
transformations, such as retiming, often run IhtO ObSE’iCle[4] hMETIS: http://www-users.cs.umn.edukarypis/metis/hmetis/
that can only be resolved by other transformations, such gs) v. Hy et al., “Simultaneous Time Slack Budgeting and Retim-
gate cloning. Empirical results show that SPIRE is able to ing for Dual-Vdd FPGA Power ReductiolAC 06, pp. 478-483.
significantly improve the worst-case and total slack in func[6] A. Hurst, P. Chong, A. Kuehlmann,/Physical place-
tional units of a 45nm high-performance microprocessagraft ment driven by sequential timing analysi$¢CAD 04, p.379-386.
an industrial physical synthesis flow that consists of saver [7] J. A. G. Jess et al.,"Statistical Timing for Parametrizid
individual optimizations is performed. Prediction of Digital Integrated Circuits, TCAD 25(11),
2006, pp. 2376-2392.
SPIRE has been developed as an optimization for micrg8] K. N. Lalgudi, M. Papaefthymou “Retiming Edge-triggdre

processor methodologies. Our future work involves extemdi Circuits under General Delay ModelsCCAD 97, p.1393-1408.
SPIRE to ASIC and SoC designs which are significantly{9] C. E. Leiserson, J. B. Saxe, “Retiming Synchronous Cir-
larger than microprocessor design partitions. For thipgse, cuitry,” Algorithmicg 6, 1991, pp. 5-35.

we propose automated partitioning to divide the design in{® R-Nair, C. Berman, P. Hauge, E. Yoff&Generation of Perfor-
mance Constraints for LayoutTCAD 8(8), 1989, pp. 860-874.

windows of manageable size. Figure 12 shows a preliminaﬁll] M. Moffit, D. A. Papa, Z. Li, C. J. Alpert, “Path Smoothing
experiment incorporating the hMETIS partitioning softear via. Discr(’etelobtimize{tioﬁ DAC 08 op 794-729
into SPIRE [4]. From the plot, we observe that using smalleﬁz] D. A. Papa et al., “‘RUMBLE: An Incremental, Timing-

windows sacrifices some solution quality, but additionatipa driven, Physical-synthesis Optimization AlgorithmTCAD
tioning produces smaller instances that can be solvedrfaste 27(12), 2008, pp. 2156-2168.

[13] S. S. Sapatnekafiming Springer-Verlag, New York, 2004.

-5e5 ‘ ‘ ‘ 14] S. S. Sapatnekar, R. B. Deokar, “Utilizing the RetimBkew
-6e5 azurel0 TNS —+— | 1l Equivale’rame in a Practical Algorithm %r Retimin?gfarge
n 75t] Circuits,” TCAD 15(10), 1996, pp. 1237-1248.
£ -8e5 | 1 [15] P. Saxena, B. Halpin, “Modeling Repeaters Explicitlythih
-9e5 ¢ 1 Analytical Placement,DAC 04, pp. 699-704.
-1e6 s s s . [16] L. Trevillyan et al.,“An Integrated Environment for denol-
0 5 10 15 20 ogy Closure of Deep-submicron IC Design#EE Design
#partitions & Test 21(1), 2004, pp14-22
Fig. 12. An illustration of SPIREs effect oi (TNS) versus the (7] H. _Zhou, f‘D_erlvmg a New Efficient Algorithm for Min-
number of approximately equal-size partitions of azuret@egated period Retiming,’ASP-DACO09, pp. 990-993.

by the hMETIS partitioner [4].

