
High-Performance Gate Sizing with a Signoff Timer

Andrew B. Kahng‡+
, Seokhyeong Kang‡, Hyein Lee‡, Igor L. Markov† and Pankit Thapar†

UC San Diego, ‡ECE and +CSE Depts., La Jolla, CA 92093, {abk, shk046, hyeinlee}@ucsd.edu
†University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109, {imarkov, pankit}@eecs.umich.edu

ABSTRACT
Process and device scaling in late-CMOS technologies highlight
leakage power as a critical challenge for the semiconductor indus-
try. Careful gate sizing and Vth-swapping can reduce leakage, but
prior optimizations based on convex or dynamic programming (i)
are often based on unrealistic assumptions about circuit delay and
slew propagation, (ii) fail to handle practical design rules such as
transition time or load upper bounds, and (iii) do not scale well to
input complexities when full extracted parasitics are available. See-
ing substantial opportunities for improvement, we present a multi-
threaded, stochastic optimization (Trident2.0) for gate sizing and
Vth assignment to minimize leakage power subject to capacitance,
slew and timing constraints. Scalability and high performance of
Trident2.0 are validated on ISPD-2013 Gate Sizing Contest bench-
marks.

1. INTRODUCTION
Clock speed and supply voltage of leading-edge ICs have barely

improved in the last few technology nodes due to adverse inter-
connect and power scaling trends. As pointed out by IBM’s James
Warnock in his ISPD-2013 invited talk, “the solutions to problems
with scaling have been postponed by previous generations... at 14-
nm there is no way to get more performance by scaling alone” [26].
The industry anticipates some relief with the introduction of Fin-
FET transistors, but powerful EDA optimizations to control leakage
are already becoming critical. One such optimization deals with
cell sizes and Vth assignments — Intel reported 30% power reduc-
tion through the use of recently developed algorithms [16]. An-
other ISPD-2013 speaker — Mentor’s David Chinnery — claimed
that “global optimization of cell sizes can on average reduce total
power by 16% and leakage power by 29% versus iterative greedy
sizing in today’s vendor tools.” Such optimization can be difficult
due to the need for accurate timing analysis on large circuit netlists.
Chinnery reported 13-hour runtime when sizing 361K gates [3].

Realizing the importance of gate sizing and Vth assignment, aca-
demic and industry researchers developed numerous algorithms. It
is common to simplify circuit delay models and solve an abstract,
continuous version of the problem to facilitate convex optimiza-
tion — Lagrangian relaxation, linear programming, network flows,
etc. [6,10,20,21,25]. Simultaneous gate sizing and Vth assignment
has shown promising results [23, 24]. Some industry work empha-
sizes discrete methods [5], including dynamic programming [16]
that assumes structural properties of delay functions that do not
quite hold in practice. Device physics imply nonconvex delay func-
tions, causing nonconvexities in SPICE results and nonlinear delay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2013, November 18-21, 2013, San Jose, California, USA
Copyright 978-1-4799-1071-7/13/$31.00 c©2013 IEEE.

model (NLDM) tables. Capacitance and slew constraints further
complicate the problem.

For the ISPD-2012 Gate Sizing Contest [17], Intel researchers
prepared several large gate sizing benchmarks to empirically com-
pare competing leakage power optimizations. The contest method-
ology requires the use of Synopsys PrimeTime [29]. While the win-
ners of the contest used Lagrangian optimization, by the end of
the year the best (published) performance was attained by a new
stochastic optimization [7] without using continuous-valued tech-
niques or convexity assumptions. However, the fact that ISPD-2012
contest omitted interconnect delays led to some doubt that stochas-
tic techniques could remain competitive in realistic gate sizing con-
texts, where frequent invocations of a signoff timer threatened to
make stochastic optimization unacceptably slow.

For the ISPD-2013 Gate Sizing Contest [18], Intel researchers
developed a more extensive infrastructure for experimentation that
evaluated both gate and interconnect delay, and checked capaci-
tance and slew constraints (in addition to full-netlist SDC timing
constraints). Total runtime per benchmark was limited, with tighter
limits in a secondary category, where tool runtime could be traded
off for leakage power. In this paper, we describe a successful en-
try from the ISPD-2013 contest that achieves practical large-scale
metaheuristic gate sizing and Vth optimization with a signoff timer
(ST) in the loop. Our enabling innovations include

• mechanisms for closely tracking an external ST without un-
due loss of efficiency;

• choice of internal delay and slew models that permit suffi-
cient calibration to the external ST;

• metaheuristic innovations that improve the ability to efficiently
achieve timing-feasible sizing solutions; and

• implementation and metaheuristic strategies that achieve large
speedups without sacrificing solution quality.

The software system we describe, Trident2.0, integrates a num-
ber of previously known components and ideas with new ones. Sig-
nificant effort was spent on identifying the most pertinent ideas,
techniques and components (the optimization framework, models
for interconnect capacitance, delay and slew, etc.) whose runtime-
quality tradeoffs are consistent with the desired performance en-
velope of a high-performance sizer. Another area of major impor-
tance is partitioning the overall optimization into separate stages
that pursue specific goals and call for dedicated components. The
handoff between such stages has also been critical to the overall
performance. Given the large amount of computation involved, ef-
fective use of parallel-computing resources is required.

The remainder of the paper is structured as follows. In Sec-
tion 2 we review relevant delay models and discuss tradeoffs be-
tween accuracy and speed. Section 3 outlines our framework for
high-performance optimization of cell sizes and threshold voltage.
Given the complexity of this constrained optimization, a number of
practical insights are required for successful implementation. Such
insights are offered in Section 4. Section 5 compares our work to
prior techniques. Empirical validation on ISPD-2013 benchmarks
is given in Section 6, and Section 7 concludes the paper.

2. INTERCONNECT MODELING
In this section, we review fast delay models and explain how we

selected models appropriate for high-performance optimization. A
core insight, well understood in the field, is that early optimization
does not require signoff timing accuracy and can be performed with
simpler, faster delay models. Thus, we perform empirical studies
of known models to assess tradeoffs between (i) accuracy relative
to signoff-quality analysis tools, (ii) computation complexity and
runtime, and (iii) impact on sizing results.

Figure 1 illustrates basic modeling of interconnects. In Figure
1(a), delay from pin X to pin Y is composed of gate (cell1, cell2)
delay and wire (A-B) delay. For the gate/cell delay calculation,
lookup table-based nonlinear delay models (NLDMs) are widely
used and represent functions of input slew and output capacitance
in library (Synopsys Liberty) files. With the NLDM, cell delay and
slew estimation from a signoff timer (ST) can be reproduced with
negligible errors. However, incorrect wire slew estimation (in pin
B) can lead to large errors in the slew and delay estimation for cell2.

wire
cell2cell1

wire delay

(a)

SA B

A

C

S

B

C(b)

A B

C

S

(c)

v0 v1 v2

v3

v4 v5

C0 C1 C2 C5

C3

R0-1 R1-2

R2-3
R3·4 =R0-1 +R1-2

C4

cell3

R2-4

R4-5

wire slew

75%

25%X Y

Figure 1: Interconnect modeling; (a) wire between cell1 and cell2, (b) wiring tree
with a Steiner point S, and (c) RC segment tree with RC nodes (N=5).

Wire delay model. We consider Elmore delay (EM) [4], D2M [2],
and two 2-pole (DM1, DM2) [8] interconnect models. More com-
plex models, such as PRIMA [15] and RICE [19], are more difficult
to implement and too slow for high-performance gate sizing. Fur-
thermore, empirical results in Section 6 show that our modeling is
conducive to highly competitive results.

In an RC tree with nodes v0, ...,vN (v0 is the source) as shown in
Figure 1(c), let Ci be the capacitance at node vi for 0 < i ≤ N, and
let Rki be the total resistance of the intersection (overlap) between
the unique path from v0 to vi and the unique path from v0 to vk. The
Elmore delay from node v0 to node vi is given by

EMi =
N

∑
k=1

Rki ·Ck. (1)

Elmore delay is the first moment of the impulse response and
can be inaccurate when there is a high degree of resistive shielding.
Alpert et al. [2] propose the D2M (delay with 2 moments) metric
which is a simple function of the first two circuit moments, m1 and
m2. Starting with m0 = 1, the jth moment of the impulse response
[2] for node vi is defined as

m(i)
j =−

N

∑
k=1

Rki ·Ck ·m
(k)
j−1 (2)

Higher moments for each node in an RC tree can be calculated
by traversing the tree recursively. We can express the delay models
in terms of the first and second moments as follows.

EM =−m1 D2M = ln2
m2

1√
m2

(3)

DM1 =
1
2
(−m1 +

√
4m2−3m12) ln(1− m1√

4m2−3m12
) (4)

DM2 = ln2
√

2m2−m12 (5)

Wire slew model. We consider the PERI [9] and scaled S2M [1]
models, which are calculated as

PERI(v j) =
√

T 2
vi

+(ln9 ·m1)2 (6)

where Tvi and PERI(v j) are the slews at nodes vi and v j, respec-
tively, and m1 is the first moment of node v j, and

S2M(v j) =

√
T 2

vi
+(ln9

√
−m1

4
√

m2

√
2m2−m2

1)
2 (7)

where m1 and m2 are the first and second moments of node v j and
Tvi is the slew of node vi.

Capacitance model. Empirical formulas for delay and transition
time of gates depend only on the input slew rate and a single load
capacitance, called effective capacitance, which represents the cu-
mulative effect of the load. We have implemented McCormick’s
effective capacitance model [13] based on a normalized 2D lookup
table. The method is iterative and converges to an effective capac-
itance value, but is slower than closed-form models. For ISPD-
2013 testcases, total capacitances are very close to effective capac-
itances for more than 85% of nets, providing sufficient accuracy for
our delay and slew calculation in early optimization stages. There-
fore, our calculations of gate delay and transition time use total
capacitance instead of McCormick’s effective capacitance model;
this improves runtime without discernible loss of accuracy. Re-
peated calibration (described in Section 3.1) with a signoff timer
increases accuracy of modeling at later stages.

Model selection. To select appropriate wire delay and slew model,
we evaluate the timing discrepancy between Trident2.0 and the sig-
noff timer. We implement each model for wire delay and slew,
then perform static timing analysis (STA) on ISPD-2013 bench-
marks [28]. Figure 2 illustrates endpoint slack error distributions
for several combinations of delay models (EM, D2M, DM1 and
DM2) and slew models (PERI and S2M). Total capacitance is used
instead of the effective capacitance model. The plots show that
(D2M, PERI) and (DM1, PERI) exhibit negligible error at around
60% of endpoints, while for other models this statistic is <50%.
The error distribution for the (D2M, PERI) model combination has
smaller mean (-15.9ps) and standard deviation (25.9ps), hence we
select it for STA. We validate the overall optimization flow in Sec-
tion 6 on ISPD-2013 contest benchmarks with a signoff timer.

3. HIGH-PERFORMANCE OPTIMIZATION
Trident2.0 follows the general outline of the Trident method-

ology [7] that is based on stochastic importance-sampling meta-
heuristics and sensitivity-guided optimization. A major improve-
ment upon [7] is accounting for interconnect delay and additional
constraints — both extensions require the development of several
new algorithmic components and closed-loop control techniques.1

During early optimization stages, our framework performs similar
parameter sweeps (including power exponent and commit ratio) to
those in [7], but with coarser steps, so as to accommodate slower
STA and stringent runtime constraints.2 In response to the inclu-
sion of interconnect delay, sensitivity functions have been revised
and additional optimization steps are developed.

1Compared to interconnect delay modeling, cell delay modeling is relatively straight-
forward with lookup table-based NLDMs. At the ISPD-2012 contest, most teams im-
plemented fast internal STA engines that exactly matched Synopsys PrimeTime results
on ISPD-2012 benchmarks.
2Thus, further runtime-quality tradeoffs are possible.

80400-40-80-120-160-200

60

45

30

15

0

80400-40-80-120-160-200

60

45

30

15

0

(EM,PERI)
P
e
rc
e
n
t

(D2M,PERI)

(DM1,PERI) (DM2,PERI)

80400-40-80-120-160-200

60

45

30

15

0

80400-40-80-120-160-200

60

45

30

15

0

(EM,S2M)

P
e
rc
e
n
t

(D2M,S2M)

(DM1,S2M) (DM2,S2M)

80400-40-80-120-160-200

60

45

30

15

0

80400-40-80-120-160-200

60

45

30

15

0

(EM,PERI)
P
e
rc
e
n
t

(D2M,PERI)

(DM1,PERI) (DM2,PERI)

Mean -59.49

StDev 78.32

N 7936

(EM,PERI)

Mean -15.88

StDev 25.86

N 7936

(D2M,PERI)

Mean -17.92

StDev 28.71

N 7936

(DM1,PERI)

Mean -16.07

StDev 32.73

N 7936

(DM2,PERI)

80400-40-80-120-160-200

60

45

30

15

0

80400-40-80-120-160-200

60

45

30

15

0

(EM,S2M)

P
e
rc
e
n
t

(D2M,S2M)

(DM1,S2M) (DM2,S2M)

Mean -79.18

StDev 101.9

N 7936

(EM,S2M)

Mean -33.37

StDev 48.47

N 7936

(D2M,S2M)

Mean -35.51

StDev 51.34

N 7936

(DM1,S2M)

Mean -33.65

StDev 53.05

N 7936

(DM2,S2M)

Figure 2: Endpoint slack error distribution reported by the signoff timer for the fft_fast testcase (x-axis: slack error (ps), y-axis: percentage of endpoints).

3.1 Key ideas and techniques in Trident2.0
Calibration-free early optimization. Given that calibration with
the signoff timer is time-consuming, we first “warm-up” metaheuris-
tics with a low-accuracy internal timer in order to optimize pa-
rameters of individual search heuristics. When timing constraints
are loose, this stage may be sufficient to produce feasible or near-
feasible solutions quickly. In general, it also enables more effective
use of parallel computing resources.

Offset-based timing calibration. Moon et al. [14] introduce the
idea of improving the accuracy of a given STA engine by periodi-
cally invoking a signoff timer and storing slack differences (offsets)
at every timing endpoint. When the STA engine produces new esti-
mates (e.g., during optimization), they are adjusted by slack offsets.
Following up on this idea, we perform calibration with the signoff
timer at every iteration of heuristic search. We use slack offsets
both in full and incremental STA. As a result, there is a perfect
agreement with signoff timing immediately after calibration, but
the discrepancy slowly increases as cells are changed during gate
sizing optimization. The frequency of calibration is determined by
the maximal fraction of cells that are allowed to change. We eval-
uated possible thresholds of 5%, 10%, 15% and 30% cells in terms
of average slack errors. Figure 3 shows the results, e.g., with the
5% threshold slack errors average <10ps. Based on these observa-
tions, we have chosen 5% and 10% thresholds for our flow.

Dedicated critical path optimization. We optimize critical paths
by (i) downsizing non-critical fanout cells, and (ii) peephole opti-
mization using a Gray code.
(i) Downsizing fanout cells. Large and low-Vth cells can be faster
and can help reducing path delays, but their larger input capaci-
tances degrade upstream slews and delays. The presence of in-
terconnects aggravates this effect by increasing the overall capac-
itance. Given both cell and wire delay increase, upsizing alone is
insufficient for reliable timing recovery. Our insight is that down-
sizing certain non-critical cells can reduce critical path delay. In

-50

-40

-30

-20

-10

0

0.0% 15.0% 30.0% 45.0%

Sl
ac

k
e

rr
o

r
(p

s)

The fraction of cells changed

5%

10%

15%

30%

Figure 3: The impact of calibration frequency on slack error while sizing the
fft_fast benchmark. Each line corresponds to a frequency and shows the
average slack error at timing (end)points against the fraction of cells changed.

particular, we focus on fanout cells of the cells lying on critical
paths — downsizing these fanout cells reduces capacitance driven
by critical cells. As a side effect, the delay of those fanout cells
increases, thus they should not themselves lie on critical paths. We
select downsizing candidates as fanout cells of critical path cells c
based on the sensitivity function, SFdown = Cout(c)/size(c), where
Cout(c) is the capacitance driven by cell c.3 If downsizing a can-
didate cell decreases negative slack, we restore previous size and
continue to the next candidate.
(ii) Peephole optimization using a Gray code. We consider several
cells at a time and exhaustively evaluate size combinations within
a given radius of the cells’ current sizes. For example, if three
choices are considered for three cells — one size up, one size down
and no change, — then 27 combinations would be evaluated. The
use of a Gray code, i.e., traversing all size combinations by mod-
ifying one cell at a time, accelerates incremental timing analysis.
In particular, our incremental STA engine performs timing updates
faster when the amount of change is smaller.

Sensitivity functions. To identify the most promising cells to size,
several stages of our optimization take into account (i) the direct
impact of sizing a given cell on its slack, (ii) the required increase
in leakage power, and (iii) the number of critical paths whose slack
is improved. These parameters are combined into a sensitivity score,
by which candidate cells are ranked. Thus, non-critical cells are
not considered for upsizing during sensitivity-guided optimization,
but small cells lying on numerous critical paths (bottleneck cells)
are given higher priority. In practice, no single sensitivity func-
tion dominates other functions and the most accurate computations
are prohibitively expensive. Trident [7] approximates the impact of
single-cell changes on total negative slack. Significant efficiency is
achieved by only propagating cell delay, and this abstraction works
well for the ISPD-2012 contest infrastructure where only gate de-
lays are computed. In contrast, the ISPD-2013 contest adds in-
terconnect considerations and requires more comprehensive delay
modeling. In particular, one must model slew degradation in wires
on a timing path and the impact of slew on delay.

To track the impact of single-cell changes more accurately, we
calculate slack updates considering both delay and slew. In our two
global timing recovery (GTR) stages, we account for slack change
(∆slack), the number of paths passing through the cell (#paths),
and the change in leakage (∆leakage_power). The latter is raised
to power (power_exponent) — a configurable parameter for the
sensitivity function (SF).

SFGT R =
∆slack ·#paths

∆leakage_powerpower_exponent (8)

The power reduction with feasible timing (PRFT) stage uses sensi-
tivity functions from Trident [7].

3Cells that have higher SFdown values are optimized first.

Power Reduction with Feasible Timing (PRFT)

Best parameters (α,γ)

Best solution

Input design

Initial sizing of netlist

Timing recovery

Cell upsizing

Internal slack
calibration

Peephole & Critical
path optimization

Increase guardband (GB)

No

Yes

Feasible?
No

GTR(α,γ)

Yes

Timing recovery

GTRwST

GTRwoST

Feasible?
No

SGGS(SFi)

Yes

Timing recovery

PRFT phase1

Next Sensitivity Function (SFi)

GTR(GB) GTR(GB) GTR(α,γ)

Feasible?
No

SGGS(SF)

Yes

Timing recovery

PRFT phase2

Next Kick Move (LSMC)

Best Sensitivity Function (SF)

Global Timing Recovery (GTR)

Feasible? Feasible? Feasible?

GTR(GB) GTR(GB)

Multi-threaded

Calibration w/
signoff timer

GTR Solution

Figure 4: Overall optimization flow.

3.2 The overall optimization flow
Figure 4 shows the overall optimization flow in Trident2.0. We

initially rely on an internal timer. A multi-threaded metaheuris-
tic optimizes individual parameters of lower-level search heuris-
tics, similar to the GTR stage in Trident [7], but with interconnect
delay models and constraints. The second stage performs timing
calibration with the signoff timer and seeks to produce a feasible
solution with respect to signoff timing. This stage also uses tech-
niques from GTR [7], but is more accurate and more constrained in
terms of runtime. The third stage performs power reduction with
feasible timing and roughly corresponds to PRFT in [7].
Stage 1. GTR without a signoff timer (GTRwoST). This stage
seeks to satisfy timing constraints with respect to our internal STA
engine. Due to discrepancies with the signoff timer, this solution
may not be signoff-feasible. Further improvements will be per-
formed by slower yet more accurate optimization stages. However,
much of the work in exploring the overall solution space is per-
formed at this early stage with a fast timer. Moreover, this stage
optimizes the configurations of sensitivity functions (e.g., power
exponent α and commit ratio γ in Trident [7]) by metaheuristic
search based on importance sampling. If a timing-feasible solu-
tion cannot be found, guardband (GB)4 is applied until a feasible
solution is found with a loose timing constraint.
Stage 2. GTR with a signoff timer (GTRwST). With the best
parameters from first phase of GTR, this phase finds a feasible so-
lution based on the signoff timer. To remove the timing discrep-
ancy versus the signoff timer, we calibrate internal slack values
as described in Section 3.1.After each iteration of global cell up-
sizing, we calibrate internal slack values, and check the number
of violations. If the number of violations does not decrease af-
ter each global upsizing, Trident2.0 optimizes the worst negative-
slack paths as well. For the critical path optimization, we downsize
4A positive (negative) GB means tighter (looser) timing constraint than the original
clock period.

Trident2.0 signoff timer

load designlaunch signoff timer

cell sizing

open socket

cell swap list
update cell size

incremental STAtiming calibration
timing results

(b)

(a)Tcl client (Trident2.0)

socket interface

Tcl server (signoff timer)

socket -server accept $port

vwait events

proc accept {sock addr port}

 fileevent $sock readable \\

 [list svcHandler $sock]

 fconfigure ...

 set server xx.xx.xx

 set chan [socket $server $port]

 proc GetData {}

 set data [gets $chan]

 return $data

 proc SendData {data}

 puts $chan $data

Figure 5: Socket interface between Trident2.0 and the signoff timer: (a) Tcl
socket code and (b) timing calibration with the socket interface.

fanout cells which are not in the critical path. Peephole optimiza-
tion using a Gray code is applied on worst paths if there are still
violation after the previous optimizations. These two optimizations
were discussed in detail in Section 3.1. The GT RwST phase uses
one thread with one signoff timer invocation.
Stage 3. Power Reduction with Feasible Timing (PRFT) is per-
formed in two phases. Starting with the best feasible solution from
GTRwST, Trident2.0 performs a sensitivity-guided greedy down-
sizing to reduce leakage power subject to timing constraints. The
greedy optimization is attempted with different sensitivity func-
tions, and violations that occur as a result of downsizing are fixed
with timing recovery iterations (upsizing). We try different sen-
sitivity functions and carry over the best solution among trials to
the second phase (or, otherwise, the configuration with the smallest
amount of violations). Downsizing occasionally introduces con-
straint violations, which we fix on-demand with iterative upsizing,
peephole optimization and critical path optimizations (similar to
GTRwST). The latter two optimizations are also capable of im-
proving leakage. The second phase of PRFT uses the most suc-
cessful sensitivity function from the first phase and performs ad-
ditional greedy (down) sizing with kick-moves. Kick-moves de-
scribed in [7] can be viewed as implementing large-step Markov
chain (LSMC) optimization.

4. PRACTICAL INSIGHTS FOR
SUCCESSFUL IMPLEMENTATION

In this section, we present several key implementation issues and
insights that were not stressed in the above discussions.

4.1 Signoff-timer interface
Given frequent timing calibration, the interface between the in-

ternal timer and the signoff timer must be efficient. ISPD-2013
contest infrastructure [28] includes a file-based interface that re-
quires saving and reading large files, and starting a new instance
of the signoff timer on each invocation. This interface is particu-
larly inefficient for incremental STA and when performing targeted
optimization of critical paths. Instead, we interface with the sign-
off tool using a Tcl-socket interface, similar to the one in UCSD
SensOpt [22].5 Our interface is illustrated in Figure 5, including
client-server Tcl socket code [31].

When timing calibration is initiated, we launch the signoff timer
and open a Unix socket. An open socket allows a program to send
5Unix sockets are a standard means for interprocess communication (IPC). Commer-
cial signoff timing tools, such as ExtremeDA GoldTime [30] and Cadence Encounter
Timing System [27], provide engine access through sockets.

Benchmarks GTR PRFT Runtime 1st place team 2nd place team 3rd place team
leakage runtime leakage runtime total limit leakage runtime leakage runtime leakage runtime

(mW) (min) (mW) (min) (min) (min) (mW) (min) (mW) (min) (mW) (min)
usb_phy_fast 1.78 0.12 1.60 0.01 0.14 48 1.64 0.25 2.63 2.71 1.61 0.58
usb_phy_slow 1.12 0.11 1.08 0.01 0.13 48 1.08 0.25 1.09 0.67 1.08 0.40
pci_b32_fast 155.39 1.40 105.30 0.60 2.40 48 112.64 2.91 504.98 48.03 96.11 23.61
pci_b32_slow 67.60 0.90 60.20 0.50 1.80 48 60.17 2.25 136.95 48.02 57.89 9.58
fft_fast 678.90 3.40 342.10 1.69 5.50 48 361.30 6.93 974.60 48.03 224.53 30.54
fft_slow 144.40 1.90 96.25 1.11 3.48 48 98.15 4.1 418.99 48.03 90.32 22.78
cordic_slow 1546.30 20.00 394.70 5.20 25.70 50 563.09 26.16 1961.09 60.06 323.71 49.65
des_perf_slow 616.40 12.00 391.90 5.90 19.23 72 395.86 20.48 2823.88 72.26 353.80 67.85
edit_dist_fast 1260.40 30.04 689.90 10.60 42.20 84 704.82 44.25 9769.38 84.18 — —
edit_dist_slow 721.30 20.18 487.90 9.80 31.60 84 489.47 33.21 7485.66 84.18 90.31 22.78
matrix_m_slow 1118.48 37.70 562.40 37.50 77.30 84 570.74 65.17 7540.34 84.16 — —
netcard_fast 5764.40 100.98 5277.40 71.80 190.77 310 — — — — — —
netcard_slow 5371.04 71.20 5184.20 59.50 148.60 310 5371.10 336.30 — — — —

Table 1: Results for Trident2.0 (GTR+PRFT) on ISPD-2013 benchmarks in fast mode. Benchmarks where no team satisfied timing constraints are not shown because
detailed results were not reported at the contest. All solutions reported exhibit zero violations. Long dashes (—) indicate solutions with violations, crashes and time-outs.
Contest scores are computed based on runtime and leakage power. Note that Trident2.0 outperforms the winning team in both runtime and leakage power on every
benchmark except for pci_b32_slow, where leakage is very slightly higher, but runtime is significantly smaller. Benchmark statistics are listed in Table 2.

Benchmarks Clock #Cells GTR PRFT Runtime Leakage achieved by top-ranked teams
period leakage runtime leakage runtime total limit 1st place 2nd place 3rd place

(ps) (mW) (min) (mW) (min) (min) (min) (mW) (mW) (mW)
usb_phy_fast 300 608 1.59 0.13 1.59 0.08 0.21 240 1.61 1.68 6.55
usb_phy_slow 450 608 1.11 0.12 1.07 0.05 0.17 240 1.08 1.07 1.12
pci_b32_fast 750 30603 147.30 3.19 101.90 8.79 12.00 240 96.51 106.93 —
pci_b32_slow 1000 30603 65.12 1.93 58.83 3.40 5.39 240 57.89 59.26 77.18
fft_fast 1400 32766 609.20 13.80 305.29 18.80 32.58 240 226.20 321.45 637.81
fft_slow 1800 32766 128.0 6.70 93.10 10.30 17.40 240 90.34 97.71 106.68
cordic_slow 3000 42903 1546.30 64.80 511.91 33.10 98.39 300 323.79 443.61 1077.73
des_perf_slow 1300 113112 601.28 27.40 375.80 33.50 62.30 360 353.00 380.44 2391.83
edit_dist_fast 3000 126665 1173.40 94.50 619.30 74.50 170.60 420 596.32 639.01 —
edit_dist_slow 3600 126665 632.50 64.79 465.60 42.80 107.20 420 447.40 468.45 —
matrix_m_slow 2800 156440 957.30 117.20 499.90 93.40 212.60 420 469.73 512.85 1381.37
netcard_fast 2000 982258 5764.40 269.40 5271.80 429.35 716.80 1650 5317.84 — 19152.00
netcard_slow 2400 982258 5371.04 184.60 5183.89 237.07 439.60 1650 5302.27 5371.10 5245.66

Table 2: Results for Trident2.0 (GTR+PRFT) on ISPD-2013 benchmarks in normal mode. Benchmarks where no team satisfied timing constraints are not shown because
detailed results were not reported at the contest. All solutions reported exhibit zero violations.

commands (e.g., cell sizing and timing query commands) to the
signoff timer and receive data (e.g., updated transition time and
slack). Changes made to gate sizes during optimization (GTR and
PRFT) are communicated to the signoff timer, which returns re-
sults of incremental STA used to re-calibrate our internal timer. In
Trident2.0, communications with the signoff timer are always per-
formed in conjunction with the internal timer.

4.2 Handoff between optimization stages
As noted earlier, each optimization stage in Trident2.0 pursues

its own goals, often using parallel search, and hands off the best so-
lutions found to the next stage. This modularity is not only conve-
nient for software development, maintenance and testing, but also
allows us to combine optimizations with very different runtime-
quality tradeoffs as well as carefully tune each stage for reliability
and performance. Two GTR stages seek violation-free (timing-
feasible) solutions; GTRwoST is more computationally efficient
than GTRwST, but also less accurate. The PRFT stage iteratively
reduces total leakage power while respecting timing constraints.
Combining such diverse optimization stages requires particular at-
tention to the handoff between them. Approximately matching the
strength of optimization before and after the handoff helps improve
the stability of the overall flow. Note that out of 13 benchmarks
where timing constraints were satisfied, GTRwoST finds timing-
feasible solutions in eight, and the signoff timer takes <50% run-
time in those cases. Thus, using our internal timer without cali-

bration during early search is compatible with later optimization
stages, helps reduce runtime and allows Trident2.0 to explore a
larger solution space.

4.3 Scalability
Support for parallelism. The initial search for a timing-feasible
configuration (GTRwoST) is performed in parallel. Our implemen-
tation uses up to 16 threads. As these threads are essentially inde-
pendent, further scalability is mostly limited by memory usage and
diminishing returns in terms of solution quality from randomized
multi-starts. While searching for feasible cell sizes/configurations,
GTRwoST identifies best parameters for search heuristics in GTR,
as explained in [7]. To exploit parallelism in further stages, it is
important to parallelize invocations of the signoff timer and have
multiple licenses available. The file-based interface provided with
the ISPD-2013 contest infrastructure does not support parallel invo-
cation of the signoff timer. We found such extensions challenging
with our socket-based interface as well, mostly due to undetermin-
istic race conditions. Assuming a reliable infrastructure for paral-
lelism, last-stage local optimizations appear a priori amenable to
parallel execution. However, one must first study runtime break-
down and identify bottlenecks.
Runtime breakdown. Figure 6 shows the runtime breakdown of
Trident2.0 for individual ISPD-2013 benchmarks and the fraction
of runtime taken by the signoff timer. In both fast and normal
modes, difficult netlists such as cordic and edit_dist take

P
er

ce
n

ta
ge

 o
f

to
ta

l t
im

e
u

se
d

u
sb

_p
h

y_
fa

st

u
sb

_p
h

y_
sl

o
w

p

ci
_b

3
2_

fa
st

p

ci
_b

32
_s

lo
w

ff

t_
fa

st

ff
t_

sl
o

w

co
rd

ic
_s

lo
w

d

es
_p

er
f_

sl
o

w

ed
it

_d
is

t_
fa

st

ed
it

_d
is

t_
sl

o
w

m

at
ri

x_
m

_s
lo

w

n
et

ca
rd

_f
as

t

n
et

ca
rd

_s
lo

w

u
sb

_p
h

y_
fa

st

u
sb

_p
h

y_
sl

o
w

p

ci
_b

3
2_

fa
st

p

ci
_b

32
_s

lo
w

ff

t_
fa

st

ff
t_

sl
o

w

co
rd

ic
_s

lo
w

d

es
_p

er
f_

sl
o

w

ed
it

_d
is

t_
fa

st

ed
it

_d
is

t_
sl

o
w

m

at
ri

x_
m

_s
lo

w

n
et

ca
rd

_f
as

t

n
et

ca
rd

_s
lo

w

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Leakage optimization
GTR with signoff timer
GTR without signoff timer

Signoff timer runtime contribution Overall runtime break−down

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Kick move optimization

Leakage optimization

GTR with signoff timer

GTR without signoff timer

Overall runtime breakdown Signoff timer runtime contribution

P
er

ce
n

ta
g
e

o
f

to
ta

l
ti

m
e

u
se

d

u
sb

_
p

h
y
_

fa
st

u

sb
_
p

h
y
_

sl
o

w

p
ci

_
b
3

2
_

fa
st

p

ci
_

b
3

2
_

sl
o

w

ff
t_

fa
st

ff

t_
sl

o
w

co

rd
ic

_
sl

o
w

d

es
_

p
er

f_
sl

o
w

ed

it
_
d

is
t_

fa
st

ed

it
_
d

is
t_

sl
o

w

m
at

ri
x
_

m
_

sl
o

w

n
et

ca
rd

_
fa

st

n
et

ca
rd

_
sl

o
w

u
sb

_
p

h
y
_

fa
st

u

sb
_
p

h
y
_

sl
o

w

p
ci

_
b
3

2
_

fa
st

p

ci
_

b
3

2
_

sl
o

w

ff
t_

fa
st

ff

t_
sl

o
w

co

rd
ic

_
sl

o
w

d

es
_

p
er

f_
sl

o
w

ed

it
_
d

is
t_

fa
st

ed

it
_
d

is
t_

sl
o

w

m
at

ri
x
_

m
_

sl
o

w

n
et

ca
rd

_
fa

st

n
et

ca
rd

_
sl

o
w

Figure 6: Runtime breakdown for Trident2.0 on ISPD-2013 benchmarks in fast mode (left) and normal mode (right). Multiple optimization stages use the signoff timer.

longer in GTRwoST because it is harder to satisfy timing con-
straints, even with respect to our internal timer. Once a timing-
feasible solution is found, GTRwST runtime is less sensitive to the
difficulty of the benchmark, even though GTRwST is much slower
due to calibration with the signoff timer. This trend is also apparent
in the percentage runtime contribution of the signoff timer being
comparatively small for these benchmarks in both modes. When
GTRwoST does not find a timing-feasible solution (pci_b32_fast,
fft_*), relatively more time is spent in signoff-timer calls.

5. COMPARISONS TO PRIOR RESEARCH
ISPD-2012 and 2013 Gate Sizing Contests [17,18] have dramati-

cally changed the landscape of research in the field. To this end, the
benchmarking infrastructure developed by Intel researchers does
not have academic precedents in terms of

• using discrete gate sizes and Vth assignment,

• relying on an industry-standard signoff timer,

• increasing the scale of optimization to netlists with hundreds
of thousands of cells,

• using realistic technology models (cell timing, drive, power)
and timing constraints, and

• imposing capacitance and slew constraints.

The two contests attracted several dozen research teams from all
over the world, but few teams produced competitive solutions. Con-
sequently, few publications describe relevant algorithms. Among
pre-contest tools, UCSD SensOpt [22] uses sensitivity-guided op-
timization for post-layout discrete gate sizing. It communicates
with an industry signoff timer through a Tcl interface. UCLA OA
Sizer [22] implements greedy optimization, linear programming,
Lagrangian relaxation and dynamic programming, while relying on
the OAGear-Static-Timer.

Core optimization techniques used in our work — metaheuris-
tic optimization with importance sampling and sensitivity-guided
search — have been developed in [7], and we extend them. Di-
rect comparisons with the tool from [7] on ISPD-2012 benchmarks
show that our implementation runs approximately 10× faster, pri-
marily due to streamlined data structures, but results in slightly
higher leakage power. Unlike [7], we keep track of interconnect
delay and slew, and per-pin timing slack (plus, offsets with respect
to a signoff timer). Given the relatively simple timing models used
at the ISPD-2012 contest, [7] did not need to directly invoke a sig-
noff timer. Our optimization must invoke a signoff timer, creating a
number of complications that lead to major structural changes and
different parameter settings. Several new techniques for modeling
and optimization are required to make metaheuristics from [7] suc-
cessful when interconnects are considered.

The performance of Lagrangian relaxation techniques on ISPD-
2012 benchmarks was described in [11, 12]. Empirically, runtimes
show significant improvement over [7], but at the cost of increased
leakage. Interconnect delay modeling and optimization are not dis-
cussed in [11,12]. These considerations completely change the na-
ture of the overall optimization, making it impossible to reliably
extrapolate the performance of Lagrangian relaxation to the ISPD-
2013 benchmark suite, as several algorithmic components must be
developed to enable a full comparison.

6. EMPIRICAL VALIDATION
Optimization trajectories pursued by Trident2.0. Figure 7 il-
lustrates the reduction of normalized worst negative slack (WNS)
with GTR iterations during GTRwoST and GTRwST on multiple
ISPD-2013 benchmarks. GTRwoST reduces WNS quickly because
many cells can be upsized to improve circuit delay. Figure 8
illustrates the progress of normalized leakage power with GTR it-
erations during GTRwoST and GTRwST. When Trident2.0 does
not find a feasible solution in GTRwoST in the first 8-10 iterations,
leakage power quickly increases with many changes made to cells,
but then saturates because few possible cell moves are available.
The impact of timing calibration. We evaluate leakage-power op-
timization with PRFT in five cases: (i) frequent calibration (after
every 5% of cells change), (ii) one-time calibration before PRFT,
(iii) no calibration, (iv) using a 5ps guardband (GB) without cali-
bration and (v) using a 10ps GB without calibration. For each case,
Figure 9 shows leakage (normalized to case i after timing recovery),
total negative slack (TNS) and WNS after PRFT and timing recov-
ery. Frequent calibration achieves smallest leakage power without
timing violations.

Without calibration (case iii), solutions may be infeasible with
respect to signoff timing. Feasible solutions can sometimes be pro-
duced without any calibration by using a GB (cases iv and v), but
this pessimism will limit leakage reduction. For example, violation-
free solutions are produced with a 10ps GB for pci_b32_fast
and 5ps for fft_fast, but leakage power increases by 6% ver-
sus frequent calibration, due to the excessive cell upsizing. At the
PRFT stage, WNS and TNS are larger (better) with calibration due
to pessimism in our internal timer (Figure 2). One-time calibration
exhibits the largest errors in WNS and TNS, suggesting that the
timing discrepancy with the signoff timer increases as more cells
undergo size changes.
Comparisons to ISPD-2013 contest results. Tables 1 and 2 re-
port our results on ISPD-2013 benchmarks and official ISPD-2013
contest results. Trident2.0 finds violation-free solutions whenever
any contestants found them. For other benchmarks, detailed data
are unavailable and we omit them from the tables. By the primary
metric (leakage power), Trident2.0 places between the first- and

Figure 7: Normalized worst negative slack during GTR without (left) and with (right) signoff timer in fast mode. The corresponding plot for normal mode is very similar.

Figure 8: Normalized leakage during GTR without (left) and with (right) signoff timer in fast mode. The corresponding plot for normal mode is very similar.

97%

100%

103%

106%

109%

112%

PRFT after timing recovery

N
o

rm
al

iz
e

d
 L

e
ak

ag
e

 (
%

)

calibration (5%) init calibration

no calibration GB=5ps

GB=10ps

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

PRFT after timing recovery

TN
S

(p
s)

calibration (5%)

init calibration

no calibration

GB=5ps

GB=10ps

-15

-13

-11

-9

-7

-5

-3

-1

PRFT after timing recovery

W
N

S
(p
s)

calibration (5%)

init calibration

no calibration

GB=5ps

GB=10ps

97%

100%

103%

106%

109%

112%

PRFT after timing recovery

N
o

rm
al

iz
e

d
 L

e
ak

ag
e

 (
%

)

calibration (5%) init calibration
no calibration GB=5ps
GB=10ps

-80

-70

-60

-50

-40

-30

-20

-10

0

PRFT after timing recovery

TN
S

(p
s)

calibration (5%)

init calibration

no calibration

GB=5ps

GB=10ps

-15

-13

-11

-9

-7

-5

-3

-1

PRFT after timing recovery

W
N

S
(p
s)

calibration (5%)

init calibration

no calibration

GB=5ps

GB=10ps

(a)

(b)

ps

ps

ps

ps

ps
ps

ps
 ps

ps

ps

ps

ps

Figure 9: Impact of calibration on leakage reduction and timing recovery with various guardband (GB) values: (a) pci_b32_fast, (b) fft_fast.

second-place teams. Our results with the secondary metric (based
on leakage power and runtime) are ahead of the first-place team —
we achieve smaller leakage, spend less runtime, and find feasible
solutions on more benchmarks. In the normal (not fast) mode, Tri-
dent2.0 finishes ahead of the runtime limit and could produce better
results by using this runtime wisely.

7. CONCLUSIONS
We have studied power minimization during discrete gate-sizing

and Vth assignment in large netlists with respect to a signoff timer.
The significance of this optimization is growing because semicon-
ductor scaling is not providing the same reductions in circuit power
and delay that it provided in previous technology nodes. As a re-
sult of scaling trends, leakage power reduction has become one of
the main challenges to the semiconductor and EDA industries, and
will likely remain critical in future technology nodes. Prior litera-
ture in the field leaves obvious room for improvement and obvious
gaps, which our research seeks to address. For example, published
methods reliant on continuous-valued and convex optimization can
be improved upon by embracing the combinatorial nature of the
problem, which we accomplish through metaheuristics for discrete
stochastic optimization based on [7]. In contrast to simplified tim-
ing evaluation in prior academic research, our empirical validation
uses a signoff timer and the infrastructure of the ISPD-2013 Gate
Sizing Contest.

To achieve a high-performance gate-sizing optimization, Trident2.0
has addressed several major challenges, namely, to

• identify interconnect models whose accuracy-vs.-complexity
tradeoffs are compatible with large-scale optimization;

• develop an internal timer fast enough for move-based opti-
mization, yet accurate enough to track a signoff timer;

• obtain sharp tradeoffs between timing and power reduction;

• satisfy timing, slew and capacitance constraints; and

• use parallel computing resources effectively.
In solving these challenges, we put significant effort into not only

individual techniques and components, but also into the entire sys-
tem, paying attention to the stability and scalability of optimiza-
tion. The software we developed achieves highly competitive re-
sults compared to the ISPD-2013 contest winners. In particular,
Trident2.0 outperforms the winners in the secondary-metric com-
petition and places between first and second by the primary metric.
Given how recently the ISPD-2013 contest concluded, We antici-
pate that our ongoing research will yield further improvements.

8. REFERENCES
[1] K. Agarwal, D. Sylvester and D. Blaauw, “A Simple Metric for Slew

Rate of RC Circuits Based on Two Circuit Moments”, IEEE Trans.
on CAD 23(9) (2004), pp. 1346–1354.

[2] C. J. Alpert, A. Devonna and C. Kashyap, “A Two Moment RC Delay
Metric for Performance Optimization”, Proc. ISPD, 2000, pp. 73–78.

[3] D. Chinnery, “High Performance and Low Power Design Techniques
for ASIC and Custom in Nanometer Technologies”, Proc. ISPD,
invited talk, 2013.

[4] W. C. Elmore, “The Transient Response of Damped Linear Network
with Particular Regard To Wideband Amplifiers”, Journal of Applied
Physics 19(1) (1948), pp. 55–63.

[5] S. Held, “Gate Sizing for Large Cell-Based Designs”, Proc. DATE,
2009, pp. 827–832.

[6] S. Hu, M. Ketkar and J. Hu, “Gate Sizing for Cell-Library-Based
Designs”, IEEE Trans. on CAD 28(6) (2009), pp. 818–825.

[7] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim and I. L. Markov,
“Sensitivity-guided Metaheuristics for Accurate Discrete Gate
Sizing”, Proc. ICCAD, 2012, pp. 233–239.

[8] A. B. Kahng and S. Muddu, “An Analytical Delay Model for RLC
Interconnects”, IEEE Trans. on CAD 16(12) (1997), pp. 1507–1514.

[9] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “PERI: A
Technique for Extending Delay and Slew Metrics to Ramp Inputs”,
Proc. TAU, 2002, pp. 57–62.

[10] Y. Liu and J. Hu, “A New Algorithm for Simultaneous Gate Sizing
and Threshold Voltage Assignment”, IEEE Trans. on CAD 29(2)
(2010), pp. 223–234.

[11] V. S. Livramento, C. Guth, J. L. Güntzel and M. O. Johann, “Fast and
Efficient Lagrangian Relaxation-Based Discrete Gate Sizing”, Proc.
DATE, 2013, pp. 1855–1860.

[12] Y. Lu, H. Zhou, Li Li, P. Kang, Y. Lu and H. Zhou, “An Efficient
Algorithm for Library-based Cell-type Selection in
High-Performance Low-Power Designs”, Proc. ICCAD, 2012, pp.
226-232.

[13] S. P. McCormick, “Modeling and Simulation of VLSI Interconnects
with Moments”, PhD Thesis, MIT, June 1989.

[14] C. Moon, P. Gupta, P. J. Donehue and A. B. Kahng, “Designing a
Digital Circuit by Correlating Different Static Timing Analyzers”,
U.S. Patent No. 7,823,098, 2010.

[15] A. Odabasioglu, M. Celik and L.T. Pileggi, “PRIMA: Passive
Reduced-Order Interconnect Macromodeling Algorithm”, Proc.
ICCAD, 1997, pp. 58–65.

[16] M. M. Ozdal, S. Burns and J. Hu, “Gate Sizing and Device
Technology Selection Algorithms for High-Performance Industrial
Designs”, Proc. ICCAD, 2011, pp. 724–731.

[17] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo,
“ISPD-2012 Discrete Cell Sizing Contest and Benchmark Suite”,
Proc. ISPD, 2012, pp. 161–164,
http://archive.sigda.org/ispd/contests/12/
ispd2012_contest.html.

[18] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo,
“An Improved Benchmark Suite for the ISPD-2012 Discrete Cell
Sizing Contest”, Proc. ISPD, 2013, pp. 168–170,
http://archive.sigda.org/ispd/contests/13/
ispd2013_contest.html.

[19] C.L. Ratzlaff, N. Gopal and L.T. Pillage, “RICE: Rapid Interconnect
Circuit Evaluator”, Proc. DAC, 1991, pp. 555–560.

[20] S. Roy, W. Chen, C. C.-P. Chen and Y. H. Hu, “Numerically Convex
Forms and Their Application in Gate Sizing”, IEEE Trans. on CAD
26(9) (2007), pp. 1637–1647.

[21] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya and S.-M. Kang, “An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using
Convex Optimization”, IEEE Trans. on CAD 12(11) (1993), pp.
1621–1634.

[22] UCSD SensOpt Leakage Optimizer (A. B. Kahng and S. Kang,
2010-2011),
http://vlsicad.ucsd.edu/SIZING/optimizer.html.

[23] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw and V.
Zolotov, “Discrete Vt Assignment and Gate Sizing Using a
Self-Snapping Continuous Formulation”, Proc. ICCAD, 2005, pp.
704–711.

[24] A. Srivastava, D. Sylvester and D. Blaauw, “Power Minimization
Using Simultaneous Gate Sizing, Dual-Vdd and Dual-Vth
Assignment”, Proc. DAC, 2004, pp. 783–787.

[25] H. Tennakoon and C. Sechen, “Gate Sizing Using Lagrangian
Relaxation Combined with a Fast Gradient-Based Pre-Processing
Step”, Proc. ICCAD, 2002, pp. 395–402.

[26] J. Warnock, “Circuit and PD Design Challenges at the 14nm
Technology Node”, Proc. ISPD, invited talk, 2013.

[27] Cadence Encounter Timing System User’s Manual,
http://www.cadence.com.

[28] ISPD 2013 Discrete Gate Sizing Contest and Benchmark Suite,
http:
//ispd.cc/contests/13/ispd2013_contest.html.

[29] Synopsys PrimeTime User’s Manual,
http://www.synopsys.com.

[30] ExtremeDA GoldTime User’s Manual, Extreme DA Corp., 2010.
[31] Tcl/Tk Built-in Socket Commands Manual,

http://www.tcl.tk/man/tcl8.4/TclCmd.

