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Abstract—Combinatorial objects in EDA applications exhibit a great
amount of complexity and typically defy polynomial-time algorithms.
To achieve acceptable performance, EDA tools seek to exploit various
structures found in these objects in practice. In this work, we explore
symmetries of Boolean functions and develop a new algorithm based on
nested partition refinement, abstract group theory and Boolean satisfi-
ability. We apply our algorithm to solve large-scale Boolean matching.

I. INTRODUCTION

Finite combinatorial objects are viewed as subsets of power sets,
Cartesian products, and derived sets. For example, a directed graph
is defined by a set of vertices V and a set of edges E ⊆ V × V , an
undirected hypergraph is similarly defined by its hyperedges E ⊆ 2V ,
and a Boolean function is defined by its input set X and minterms
M ⊆ 2X . In all such cases, there is a notion of underlying variable
set, to which one can apply permutations or value substitutions.

A symmetry of a finite combinatorial object is a permutation of
the object’s variables that leaves the object unchanged. For example,
a symmetry of Boolean function f is a permutation of f ’s inputs
and outputs (with their possible negation) that preserves the value
of f for all input combinations. A symmetry, under this generalized
definition, is not limited to just a swap or simultaneous swaps of
variables. Instead, it comprises a number of rotations, where a swap
is a rotation with two variables. As an example, a 4-to-1 multiplexer
exhibits 16 symmetries under the permutation and negation of its
I/Os. These symmetries are listed in Fig. 1.1

The set of all symmetries of an object forms a group2 under
functional composition. This group is referred to as the symmetry
group of the object. In general, the size of the symmetry group of
an object is exponential in the number of its variables. Nevertheless,
all symmetries of an object can be generated from just a subset of
its symmetries. This is accomplished by repeatedly composing the
elements of that subset under functional composition. Such a subset
is called a symmetry group generating set. Fig. 2 shows a 3-element
symmetry group generating set for the 4-to-1 multiplexer of Fig. 1,
and shows how the remaining 13 symmetries of the multiplexer can
be generated from that generating set.

In this paper, we study the symmetries of Boolean functions,
which find numerous applications in logic synthesis and verification.
One common application is in Boolean matching, where functional
equivalence of Boolean functions under permutation (and negation) of

1A rotational symmetry of the form (a1, a2, a3, ..., an) maps a1 to a2, a2

to a3, ..., and an to a1. Also, ι denotes the identity.
2Group theory is a branch of abstract algebra that studies the algebraic

structures known as groups. A group comprises a non-empty set of elements
with a binary operation that is associative, admits an identity element, and is
invertible. For example, the set of integers with addition forms a group.

MUX: z = a0s′1s
′
0 + a1s′1s0 + a2s1s′0 + a3s1s0

γ1 : ι

γ2 : (a0, a2)(a′0, a
′
2)(a1, a3)(a′1, a

′
3)(s1, s′1)

γ3 : (a1, a2)(a′1, a
′
2)(s0, s1)(s′0, s

′
1)

γ4 : (a0, a1, a3, a2)(a′0, a
′
1, a
′
3, a
′
2)(s0, s1, s′0, s

′
1)

γ5 : (a0, a1)(a′0, a
′
1)(a2, a3)(a′2, a

′
3)(s0, s′0)

γ6 : (a0, a3)(a′0, a
′
3)(a1, a2)(a′1, a

′
2)(s0, s′0)(s1, s′1)

γ7 : (a0, a2, a3, a1)(a′0, a
′
2, a
′
3, a
′
1)(s0, s′1, s

′
0, s1)

γ8 : (a0, a3)(a′0, a
′
3)(s0, s′1)(s′0, s1)

γ9 : (a0, a′0)(a1, a′1)(a2, a′2)(a3, a′3)(z, z′)
γ10 : (a0, a′2)(a′0, a2)(a1, a′3)(a′1, a3)(s1, s′1)(z, z′)
γ11 : (a0, a′0)(a1, a′2)(a′1, a2)(a3, a′3)(s0, s1)(s′0, s

′
1)(z, z′)

γ12 : (a0, a′1, a3, a′2)(a′0, a1, a′3, a2)(s0, s1, s′0, s
′
1)(z, z′)

γ13 : (a0, a′1)(a′0, a1)(a2, a′3)(a′2, a3)(s0, s′0)(z, z′)
γ14 : (a0, a′3)(a′0, a3)(a1, a′2)(a′1, a2)(s0, s′0)(s1, s′1)(z, z′)
γ15 : (a0, a′2, a3, a′1)(a′0, a2, a′3, a1)(s0, s′1, s

′
0, s1)(z, z′)

γ16 : (a0, a′3)(a′0, a3)(a1, a′1)(a2, a′2)(s0, s′1)(s′0, s1)(z, z′)

Fig. 1. Symmetries of a 4-to-1 MUX under permutation/negation of I/Os.

Generating Set: g = {γ3, γ5, γ9}
γ1 =γ3.γ3 γ2 =γ3.(γ5.γ3) γ4 =γ5.γ3
γ6 =γ5.(γ3.(γ5.γ3)) γ7 =γ3.γ5 γ8 =γ5.(γ3.γ5)

γ10 =(γ3.(γ5.γ3)).γ9 γ11 =γ3.γ9 γ12 =(γ5.γ3).γ9
γ13 =γ5.γ9 γ14 =(γ5.(γ3.(γ5.γ3))).γ9
γ15 =(γ3.γ5).γ9 γ16 =(γ5.(γ3.γ5)).γ9

Fig. 2. A generating set for the symmetry group of the MUX in Fig. 1.

inputs and outputs is investigated [1], [2]. Other applications include
BDD minimization [3] and circuit power optimization [4].

Most existing symmetry-detection algorithms for Boolean func-
tions only look for classical symmetries, i.e., symmetries that include
just a single swap of variables [5], [3]. As the number of such
symmetries is at most quadratic in the number of a function’s inputs,
they can be evaluated one by one and explicitly enumerated. The
caveat of these algorithms, however, is that they overlook symmetries
that involve more than two variables. For instance, none of the 16
symmetries of the multiplexer in Fig. 1 would be found this way.

Higher order symmetries, formed by simultaneous swaps of
variables, have also been addressed in the literature. The algorithm
in [6] captures higher order symmetries (under permutation and
negation of inputs) by performing hierarchical partitioning on the set
of variables of a netlist. This algorithm, although capable of reporting
symmetries beyond classical, does not always find all symmetries of
a Boolean function.

Furthermore, most symmetry-detection algorithms only allow
permutation of inputs, but not permutation of outputs [5], [6]. Such
algorithms report symmetries of a multi-output function by isolating



each output one at a time. Nevertheless, symmetries that are formed
by simultaneous permutations of inputs and outputs are beneficial
in EDA. For instance, [4] uses such symmetries to enhance post-
placement algorithms. It, however, performs an exhaustive search for
symmetries, and hence, can only handle small (sub)circuits.

In this paper, we propose a new algorithm for detecting symme-
tries of Boolean functions under permutation but not negation of I/Os
(we plan to modify the proposed algorithm to consider negation of
I/Os in our future work). Our algorithm takes a function in the form
of an And-Inverter graph (AIG), constructs a complete permutation
tree, and systematically prunes it by integrating group-theoretic (and
other) techniques. To accomplish this, it builds several graphs based
on functional dependency and random simulation, and uses them to
refine the search space. It also takes advantage of satisfiability to test
functional equivalence under candidate permutations, and learns from
satisfiability counterexamples to avoid recurring conflicts.

We integrate our algorithm within the ABC package [7] — an
established system for synthesis and verification of logic circuits. We
test the performance of our algorithm on a collection of available
combinational circuits. As part of our study, we also encode Boolean
matching as a symmetry-detection problem, and report the results of
applying our algorithm to several Boolean matching instances.

Key contributions of our work include:
1) Proposing a novel symmetry-detection algorithm for

Boolean functions based on group-theoretic concepts.
2) Allowing permutations of both inputs and outputs.
3) Learning from satisfiability counterexamples.
4) Formulating Boolean matching as symmetry detection.

The remainder is organized as follows. Section II provides def-
initions and notation for Boolean functions and discusses relevant
work. Section III describes our symmetry-discovery algorithm for
Boolean functions. Section IV formulates Boolean matching as a
symmetry-detection problem. Section V presents experimental results.
Section VI provides conclusions and discusses future work.

II. DEFINITIONS AND BACKGROUND

This section provides definitions and notation for Boolean func-
tions and their symmetries. It also discusses relevant background.

A. Boolean Functions and Related Definitions

An n-input m-output Boolean function f is a function on Bn into
Bm, where B = {0, 1}. We denote the set of all inputs of f by X =
{x1, ..., xn}, and the set of all outputs of f by Z = {z1, ..., zm}.

An input vector P = 〈p1, ..., pn〉 of f assigns value pi ∈ {0, 1}
to input xi ∈ X . The output vector R = 〈r1, · · · , rm〉 that
corresponds to input vector P is the result of simulating P with f ,
where ri ∈ {0, 1} holds the simulation result for output zi ∈ Z. Input
xi ∈ X is observable to output zj ∈ Z (or output zj is controllable
by input xi) with regard to input vector P = 〈p1, ..., pn〉 and its
corresponding output vector R = 〈r1, · · · , rm〉, if flipping pi ∈ P
flips rj ∈ R.

The positive (negative) cofactor of f with regard to input x ∈ X ,
denoted by fx (fx′ ), is the function that fixes the value of x to one
(zero). The support of output z ∈ Z, denoted by supp(z), is the set
of all inputs x ∈ X that functionally affect z, i.e, supp(z) = {x ∈
X | fx 6= fx′ for z}.

A partition π = [W1|W2| · · · |Wt] of a set is a list of non-empty
pair-wise disjoint subsets of the set whose union is the set. An ordered
partition is a partition whose subsets are ordered. The subsets Wi are
called the cells of the partition. The size of cell Wi is denoted by
|Wi|.

An ordered partition pair (OPP) Π of a set is specified as

Π =

[
πT
πB

]
=

[
T1 |T2 |· · · |Ts
B1 |B2 |· · · |Bt

]
with πT and πB referred to, respectively, as the top and bottom
ordered partitions of Π. OPP Π is isomorphic if s = t and |Ti| = |Bi|
for i = 1, · · · , t; otherwise non-isomorphic. An isomorphic OPP is
discrete if |Ti| = |Bi| = 1 for i = 1, · · · , t, and unit if s = t = 1.

Input vector P = 〈p1, ..., pn〉 is said to be proper with regard
to partition π = [W1| · · · |Wt] of input set X , if it assigns the same
value to all inputs in the same cell of π, i.e., for all i and j, pi = pj
if xi, xj ∈ Wl, for some l. Two input vectors P = 〈p1, ..., pn〉 and
Q = 〈q1, ..., qn〉 are said to be consistent with regard to isomorphic
OPP of input set X

Π =

[
πT
πB

]
=

[
T1

B1

∣∣∣∣ T2

B2

∣∣∣∣ · · ·· · ·
∣∣∣∣ Ts
Bs

]
(1)

if P is proper with regard to πT , Q is proper with regard to πB , and
P and Q assign the same value to all inputs in the same-index cells
of πT and πB , i.e., for all i and j, pi = qj if xi ∈ Tl and xj ∈ Bl,
for some l.

B. Symmetry in Boolean Functions

We assume familiarity with basic notions from group theory,
including such concepts as groups, subgroups, group generators,
cosets, orbit partition, etc. More information on these concepts is
available in abstract algebra texts such as [8].

Given Boolean function f with input set X and output set Z, a
permutation of f is defined as a bijection from X to X and Z to Z.
Permutation γ, when applied to f , permutes f ’s inputs and outputs,
and produces function fγ .

A symmetry (automorphism) of f is a permutation γ of f
that preserves f ’s functionality, i.e., fγ = f , where “=” denotes
functional equivalence. Every function has a trivial symmetry, called
the identity (denoted by ι), that maps each I/O to itself. Two functions
f1 and f2 are isomorphic if and only if there exists a permutation γ
such that fγ1 = f2.

The set of all symmetries of f forms a group under functional
composition. This group is called the symmetry group of f , and is
denoted by G. A generating set for G is a subset of the symmetries
in G whose combinations under functional composition generate G.
Each element of a generating set is called a (group) generator.

A subgroup of G is a subset of G that forms a group under func-
tional composition. The stabilizer subgroup of I/O i ∈ X∪Z, denoted
by Gi, is a subgroup of G that fixes i, i.e., Gi = {γ ∈ G | γi = i}.

The (right) coset of Gi in G containing σ ∈ G is the set {γσ | γ ∈
Gi}. The set of all cosets of Gi in G partitions G into equally-sized
subsets. Choosing one element from each coset yields a set of coset
representatives. Each coset representative composed with G generates
the entire coset.
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Fig. 3. An example function with 1 symmetry.

Given G, i ∼ j for inputs i, j ∈ X or outputs i, j ∈ Z (read
i and j share the same orbit), if and only if there exists symmetry
γ ∈ G that maps i to j, i.e., γi = j. “∼” defines an equivalence
relation on set X ∪Z, which partitions X ∪Z into a so-called orbit
partition Θ. Each cell of the orbit partition is called an orbit. The
orbit that contains i is written as Θi.

C. And-Inverter Graphs

An And-Inverter graph (AIG) is a directed acyclic graph that
represents the functionality of a Boolean function. The nodes of an
AIG are two-input “And” gates, and its edges are optionally marked
to indicate “Not” gates. Modern logic synthesis tools, such as ABC,
use AIGs as alternatives to Binary Decision Diagrams (BDDs), since
AIGs are more memory efficient, and are faster in performing logic
simulation. Unlike BDDs, AIGs are not canonical, but are structurally
hashed to be partially canonical [9]. Without limiting our work, we
assume that circuits are represented by structurally hashed AIGs, .

D. Boolean Satisfiability

Boolean satisfiability (SAT) seeks a variable assignment to a
Boolean function that evaluates the function to true. If such an assign-
ment exists, the function is satisfiable, and unsatisfiable otherwise.
One application of SAT in EDA is to check the functional equivalence
of two combinational circuits [10]. This is accomplished by building
the miter of the two circuits and passing it to a SAT solver. The
miter of two circuits is constructed by combining inputs with the
same name, feeding outputs with the same name to two-input XOR
gates, and connecting the outputs of the XOR gates to one multi-fanin
OR gate. If the miter is unsatisfiable, the circuits are equivalent. If
not, the circuits are not equivalent, and the satisfiable assignment
serves as a counterexample. In our work, we use SAT to check the
equivalence of a Boolean function under permutations of its I/Os.

III. PROPOSED SYMMETRY-DETECTION ALGORITHM FOR

BOOLEAN FUNCTIONS

In this section, we describe our algorithm for detecting symme-
tries of Boolean functions under permutation of I/Os. We periodically
refer to the three examples depicted in Fig. 3, Fig. 4, and Fig. 5 to
illustrate our algorithm.

A. Implicit Representation of Permutation Sets

OPPs play a central role in our symmetry-detection algorithm,
since they provide a compact implicit representation of sets of
permutations. Specifically, a discrete OPP represents a single
permutation, whereas a unit OPP represents all k! permutations of a
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Fig. 4. An example function with 12 symmetries.

k-variable object. In general, the isomorphic OPP in (1) represents∏
1≤i≤s |Ti|! permutations. On the other hand, note that it is not

possible to obtain well-defined mappings between the top and bottom
partitions of a non-isomorphic OPP. Thus, non-isomorphic OPPs
serve as empty sets of permutations. Below are several example
OPPs and the permutation sets they encode:

−Discrete OPP:

[
x1

x2

∣∣∣∣ x2

x3

∣∣∣∣ x3

x1

]
= {(x1, x2, x3)}

− Unit OPP:

[
x1, x2, x3

x1, x2, x3

]
= {ι, (x1, x2), (x1, x3), (x2, x3),

(x1, x2, x3), (x1, x3, x2)}

− Isomorphic OPP:

[
x3

x2

∣∣∣∣ x1, x2

x3, x1

]
= {(x2, x3), (x1, x3, x2)}

− Non-isomorphic OPPs:

[
x1, x3|x2

x2|x3, x1

]
= ∅

B. Basic Enumeration of the Permutation Search Space

To search for the symmetries of a Boolean function, our algorithm
builds a permutation tree whose nodes are OPPs. Each OPP represents
a set of I/O permutations. The OPP at the root, for example, is an
isomorphic OPP that gathers all inputs (resp. outputs) in the same-
index cells of the top and bottom partitions. This OPP encodes all
n!m! I/O permutations.

The basic skeleton of our permutation enumeration algorithm is
formed by extending isomorphic OPPs using the following procedure:
− choosing a non-singleton cell (the target cell) from the top

partition,
− choosing an I/O from the target cell (the target I/O),
− mapping the target I/O to an I/O (the candidate I/O) from

the corresponding cell of the bottom partition.

The mapping step splits the target cell so that the target I/O has
its own cell. It then similarly splits the candidate I/O in the bottom
partition by putting it in its cell under the target I/O. For example,
node (11) of the tree in Fig. 4 maps y to x, and hence, the OPP at
node (11) separates y from x on the top and x from y on the bottom.
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Fig. 5. A 4-to-1 multiplexer which has 2 symmetries.

The permutation search tree can be pruned significantly by
performing partition refinement before branching on a target I/O. This
is accomplished by modeling partial functionality of the Boolean
function by several abstraction graphs, and using them to preclude
permutations that do not yield any symmetry. In the trees of Fig. 3,
Fig. 4, and Fig. 5, down arrows refer to refinement steps. The abstrac-
tion graph used by each refinement is shown next to it. We discuss
partition refinement in detail in Sections III-C and III-D. Furthermore,
our tree exploits two group-theoretic pruning techniques, namely,
coset and orbit pruning, to avoid exploring an exponential space of
symmetries. These two techniques are explained in Section III-E.

After partition refinement, an OPP is either isomorphic or non-
isomorphic. A non-isomorphic OPP reflects a conflict. A discrete OPP,
however, is a candidate for symmetry which needs to be verified by
SAT (see Section III-F). If SAT disqualifies a symmetry, it returns
a counterexample which is used to further prune the search (see
Section III-G). Mapping I/Os continues until a conflict or a candidate
symmetry is detected. In either case, our algorithm backtracks and
maps the target I/O at the backtrack level to the remaining candidate
I/Os. The search ends when all possible mappings are exhausted.

It should be mentioned that our enumeration algorithm first maps
outputs and then inputs. Our experiments show that once outputs are

distinguished, inputs can be distinguished quickly.

C. Abstraction Graphs

Abstraction graphs are two-colored bipartite graphs constructed
to partially capture the functionality of a Boolean function. These
graphs are used by partition refinement to prune the permutation
space. Here, we introduce three types of abstraction graphs; one based
on functional dependency, and two based on random simulation.

1) Dependency Graph: The dependency graph of a Boolean
function encodes the supports of the function as a graph using the
following procedure. A red vertex is added for each input, and a blue
vertex for each output. An edge is added between input x and output
z if and only if x ∈ supp(z). For the functions of Fig. 3, Fig. 4,
and Fig. 5, the dependency graphs are depicted where refinement is
labeled with “Dep”.

We build dependency graphs to distinguish outputs (resp. inputs)
that have different functional dependency (resp. influence). For exam-
ple, at node (2) of the tree in Fig. 3, input b is separated from inputs
a and c, since the degree of b in the dependency graph is different
from that of a and c.

2) Simulation Graphs: We construct two types of simulation
graphs based on proper random input vectors. Intuitively, a proper
random input vector assigns the same value to all inputs that are not
yet distinguished. For the functions of Fig. 3, Fig. 4, and Fig. 5,
type-1 and type-2 simulation graphs are depicted where refinement
is labeled with “Sim 1” and “Sim 2”, respectively. These graphs are
built based on proper input vectors that are shown next to them.

Given a proper input vector P = 〈p1, ..., pn〉 (with regard to
partition π of input set X) and its corresponding output vector R =
〈r1, ..., rm〉, we build two types of simulation graphs as follows:

− Simulation Graph Type 1: We add a red vertex for each input,
and a blue vertex for each output. We add an edge between zi ∈ Z
and all inputs x ∈ supp(zi), if and only if ri = 1. For example, the
simulation graph at node (2) of the tree in Fig. 3 encodes the fact
that if a = c = 0 and b = 1, then x = 0 and y = 1.

− Simulation Graph Type 2: We add a red vertex for each input,
and a blue vertex for each output. We then flip each pi ∈ P , one
at a time, and save the resulting n input vectors in P1, ..., Pn. We
simulate P1, ..., Pn and record the resulting n output vectors in R1 =
〈r11, ..., r1m〉, ..., Rn = 〈rn1 , ..., rnm〉. We add an edge between zj ∈ Z
and xi ∈ X , if and only if rij 6= rj . For example, the simulation
graph at node (7) of the tree in Fig. 5 encodes the fact that if a1 =
a2 = s0 = a0 = a3 = 0 and s1 = 1, flipping a2 flips z.

We build type-1 simulation graphs primarily to distinguish out-
puts. Once outputs are distinguished, inputs might be distinguished
as well. For example, at node (3) of the tree in Fig. 3, output y is
separated from output x, and subsequently, input c is separated from
input a. Furthermore, we build type-2 simulation graphs to distinguish
inputs (outputs) that have different observability (controllability). For
example, at node (7) of the tree in Fig. 5, input a2 is separated from
input a1, since the observability of a2 is different from that of a1

(with regard to the given random input vector).

D. Refinement by Abstraction Graphs

Partition refinement based on an abstraction graph propagates
the constraints (i.e., vertex colors, vertex degrees, and edge rela-
tion) of the graph until the partition becomes equitable. Partition



Inputs: Π, GD
Outputs: L1, L2

1) Set πT to the top partition of OPP Π.
2) Refine partition πT by dependency graph GD .
3) Build ordered partition π = [W1| · · · |Wt] ⊂ πT by removing

the cells of πT that contain the outputs.
4) Set counter i = 0.
5) Generate random bit vector B = 〈b1, ..., bt〉, where bi ∈ {0, 1}.
6) Generate proper random input vector P = 〈p1, ..., pn〉 with

regard to π, where pi = bj if input xi ∈Wj .
7) Generate type-1 simulation graph G that corresponds to input

vector P .
8) Refine πT by simulation graph G.
9) If new cells are induced at line 8, refine πT by dependency graph

GD , save bit vector B in list L1, and set counter i = 0.
10) Increment i. Go to line 5 if i < 200.
11) Repeat lines 4-10, but this time generate type-2 simulation graph

G at line 7, and save bit vector B in list L2 at line 9.

Fig. 6. Pseudocode for refining the top partition of OPP Π.

Inputs: Π, GD , L1, L2

Outputs: 0 or 1
1) Set πB to the bottom partition of OPP Π.
2) Refine partition πB by dependency graph GD .
3) Build ordered partition π = [W1| · · · |Wt] ⊂ πB by removing

the cells of πB that contain the outputs.
4) Set counter i = 0.
5) Set bit vector B = 〈b1, ..., bt〉 to the i-th element of list L1.
6) Generate proper random input vector P = 〈p1, ..., pn〉 with

regard to π, where pi = bj if input xi ∈Wj .
7) Generate type-1 simulation graph G that corresponds to input

vector P .
8) Refine πB by simulation graph G. Return 0 if a conflict is

detected.
9) Refine πB by dependency graph GD . Return 0 if a conflict is

detected.
10) Increment i. Go to line 5 if i < size(L1).
11) Repeat lines 4-10, but this time set bit vector B to the i-th

element of list L2 at line 5, generate type-2 simulation graph
G at line 7, and check i < size(L2) at line 10.

12) Return 1.

Fig. 7. Pseudocode for refining the bottom partition of OPP Π.

π = [W1|W2| · · · |Wt] is said to be equitable (with respect to a given
graph) if, for all vertices v1, v2 ∈ Wi (1 ≤ i ≤ t), the number
of neighbors of v1 in Wj (1 ≤ j ≤ t) is equal to the number of
neighbors of v2 in Wj .

In our context, refinement is applied simultaneously [11] to the
top and bottom partition of an OPP, until 1) both partitions become
equitable and the resulting OPP is isomorphic, or 2) the resulting
OPP is non-isomorphic indicating an empty set of permutations (i.e.,
a conflict). In implementation, our algorithm first refines the top
partition until it becomes equitable, and records where the cell splits
occur. Then, it starts refining the bottom partition, and compares
the splitting locations of the bottom to the top (i.e., checks the
isomorphism of the two partitions) after each refinement step. It also
ensures that the connections of each newly created cell on the bottom
match the connections of its corresponding cell on the top.

Fig. 6 and Fig. 7 demonstrate the refinement routines for the top
and bottom partitions, respectively. In these figures, “Refine” refers
to the simultaneous partition refinement explained above.

The routine of Fig. 6 primarily refines the top partition by the
dependency graph (lines 1-2). It then generates a number of proper
input vectors with regard to the subset of the top partition that includes
just the inputs of the function (lines 3-6 and 10). Next, it builds type-1
simulation graphs based on the generated input vectors (line 7), and
uses them to refine the top partition (line 8). It refines once more
by dependency graph if new cells were induced at the previous step
(line 9). It also saves the bit vectors whose corresponding simulation
graphs caused further refinement (line 9). These vectors will later be
used by the refinement of the bottom partition to generate consistent
input vectors. This routine ends by following similar refinement steps
for type-2 simulation graphs (line 11).

The routine of Fig. 7 resembles that of Fig. 6, but with two
main differences. First, it does not generate new random bit vectors.
Instead, it uses the ones generated by Fig. 6 to make pairs of
consistent input vectors (lines 5-6). In other words, it assigns the
same Boolean value to all potentially mappable inputs of the top
and bottom partitions. Second, it checks OPP isomorphism during
refinement, and returns 0 if a conflict is detected (lines 8-9).

In the tree of Fig. 5, refinement at node (8) assigns the same
Boolean value to all inputs in the same-index cells of the top and
bottom partitions. It then refines the OPP using type-2 simulation
graph. The result of refinement is the isomorphic OPP at node (9).

E. Group-Theoretic Pruning

Our symmetry-detection algorithm exploits two group-theoretic
pruning techniques: coset pruning and orbit pruning. These tech-
niques are standard in high-performance symmetry-detection pack-
ages to avoid enumeration of an exponential number of symmetries.

Coset pruning affirms that one generator per coset (i.e., the coset
representative) can generate all symmetries in the coset. In fact, it
allows our algorithm to look for one generator per coset. For example,
node (9) of the tree in Fig. 4 is coset pruned, since the symmetry at
node (8) is a coset representative for the coset at node (7).

Orbit pruning uses the orbit partition to eliminate redundant
generators. It exempts our algorithm from seeking symmetries that
can be generated from already found symmetries. For example, node
(10) of the tree in Fig. 4 is orbit pruned, since composing the
symmetries at nodes (8) and (6) yields a new symmetry that maps
input a to input c.

Coset and orbit pruning techniques are enabled in our algorithm
because the left-most path of our search tree corresponds to a
sequence of subgroup stabilizers, ending in the identity. In other
words, “decisions” along that path map each I/O to itself. This
requirement does not apply to decisions in other parts of the tree.

It should be noted that our algorithm finds at most n + m − 2
symmetry group generators for an n-input m-output Boolean func-
tion. It also calculates the size of the symmetry group using the orbit-
stabilizer and Lagrange theorems [8]: |G| = |Gi| · |Θi|.

F. Checking Functional Equivalence by SAT

A candidate symmetry (returned by refinement) needs to be
verified by SAT, since refinement by abstraction graphs per se does
not prove functional equivalence. To perform this verification, our
algorithm permutes the I/Os of the function according to the candidate
symmetry, builds the miter of the original and permuted functions,



Inputs: γ, f , C, DB
Outputs: None

1) Set input vectors P to SAT counterexample C.
2) Set input vectors Q to SAT counterexample C.
3) Permute input vector Q based on permutation γ.
4) Simulate function f with input vector P and save the simulation

result in output vector R.
5) Simulate function f with input vector Q and save the simulation

result in output vector U .
6) Build simulation pairs 〈P,R〉 and 〈Q,U〉.
7) Check if simulation pair 〈P,R〉 already exists in database DB.

If no, add 〈P,R〉 to DB, and set the activity of 〈P,R〉 to 0.
8) Repeat line 7, but this time for simulation pair 〈Q,U〉.
9) If size(DB) > 50, reduce DB.

Fig. 8. Pseudocode for learning from a SAT counterexample.

and hands off the miter to SAT. If SAT finds the miter unsatisfiable, a
symmetry is found; otherwise, a functional conflict is detected, and a
counterexample is returned. In Fig. 3, Fig. 4, and Fig. 5, all discrete
OPPs form symmetries of the corresponding functions.

G. Learning From SAT Counterexamples

Partition refinement typically reduces the number of possible
matches from n!m! to hundreds or less, often making exhaustive
search (with SAT-based equivalence checking) practical. However,
this phase of search can be significantly improved by learning from
SAT counterexamples.

A SAT counterexample is in the form of an input vector that
forces the miter of the original function and the permuted function
to be satisfiable. Our algorithm learns a collection of such input
vectors, along with their corresponding output vectors, and uses them
to backjump to the tree level where functional conflicts are resolved.

Fig. 8 shows the routine that learns from a SAT counterexample.
This routine makes two copies of the counterexample (lines 1-2), and
permutes one copy based on the candidate symmetry (line 3). It then
simulates the function with the two copies, and saves the results in
simulation pairs of the form 〈input vector, output vector〉 (lines 4-
6). It attaches the two simulation pairs to the database of simulation
pairs, and set their activities to zero (lines 7-8). The activity of a
simulation pair quantifies its participation in conflict detection. This
routine ends by potentially reducing the database (line 9) by finding
the median of the activities of all simulation pairs and deleting pairs
whose activities fall below the median.

Once a functional conflict is detected, our backjumping routine
backtracks one level up at a time, checks the current OPP for
functional conflicts, and stops backtracking once the OPP is found
free of conflicts.

Fig. 9 shows the routine that checks for a functional conflict in
an OPP. This routine searches the database of simulation pairs for
two consistent input vectors (lines 1-13). Suppose that it finds input
vectors P and Q consistent with regard to the OPP, and suppose
that 〈P,R〉 and 〈Q,U〉 are the simulation pairs that correspond to
P and Q. This routine counts the number of outputs in each cell
of the top (resp. bottom) partition whose values in R (resp. U ) is
one (lines 14-15). It declares a conflict, if two same-index cells of
the top and bottom partitions have different counters (line 16). In
fact, it anticipates that such a pair of cells will eventually map two
outputs whose simulation values, and hence, functional behaviors, are

Inputs: Π, DB
Outputs: 0 or 1

1) Set ordered partition πT and ordered partition πB to the top and
bottom partitions of OPP Π, respectively.

2) Build two ordered partitions πiT and πoT from partition πT , where
πiT contains cells of πT that have inputs, and πoT contains cells
of πT that have outputs.

3) Repeat line 2, but this time for partition πB , and save the
resulting sub-partitions in πiB and πoB .

4) Set counter i = 0.
5) Return 1 if i ≥ size(DB).
6) Set simulation pair 〈P,R〉 to the i-the element of database DB.
7) Check if input vector P is proper with regard to partition πiT . If

no, increment i, and go to line 5.
8) Set counter j = 0.
9) Check j ≥ size(DB). If yes, increment i and go to line 5.

10) Set simulation pair 〈Q,U〉 to the j-the element of database DB.
11) Check if input vector Q is proper with regard to partition πiB .

If no, increment j, and go to line 9.
12) Build OPP Πi by putting partitions πiT and πiB as the top and

bottom partitions of Πi, respectively.
13) Check if input vectors P and Q are consistent with regard to

Πi. If no, increment j, and go to line 9.
14) Set cell Ck to the k-th cell of πoT . Set Nk to the number of

outputs in Ck whose value in R is 1. Do this for all 1 ≤ k ≤
size(πoT ).

15) Set cell Ck to the k-th cell of πoB . Set Mk to the number of
outputs in Ck whose value in U is 1. Do this for all 1 ≤ k ≤
size(πoB).

16) Check if Nk 6= Mk for some k. If yes, increase activity of pairs
〈P,R〉 and 〈Q,U〉, and return 0.

17) Return 1.

Fig. 9. Pseudocode for checking functional conflicts in isomorphic OPP Π.

different under P and Q. At the end, it increases the activity of 〈P,R〉
and 〈Q,U〉 to credit their participation in conflict detection (line 16).

Fig. 10 shows an example of learning when refinement is dis-
abled.3 For this example, our algorithm encounters functional conflicts
at nodes (4) and (6). While backtracking from node (6), it finds that
node (5) has a functional conflict under simulation pairs Γ3 and Γ4.
Hence, it backtracks from node (6) to node (8), and skips node (7).

IV. CASE STUDY: BOOLEAN MATCHING

PP-equivalence checking is a Boolean matching problem which
seeks functional equivalence of two functions under permutation of
I/Os. In other words, it checks the isomorphism of the two functions.
Here, we explain how our symmetry-detection algorithm can be
modified to solve the PP-equivalence checking problem.

An automorphism of a function is an isomorphism with itself.
Hence, one can check isomorphism of two functions by putting
them side by side, and passing them to an automorphism-detection
algorithm that incorporates the two following modifications. First, the
modified algorithm only needs to look for permutations that map I/Os
of one function to another. In other words, it immediately prunes
subtrees that (partially) map one function to itself. Second, it only
needs to find one symmetry to confirm isomorphism. It should be
mentioned that this algorithm does not use coset or orbit pruning,
since it terminates the search as soon as it finds one symmetry.

3A search tree that could illustrate learning and perform partition refinement
was too large to fit in the paper.
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Fig. 10. An example function with its partial search tree built by our
symmetry-detection algorithm when refinement is disabled.

V. EMPIRICAL VALIDATION

We integrated our proposed symmetry-detection algorithm for
Boolean functions in the ABC package (command saucy3) [7]. Our
experiments were conducted on an HP workstation equipped with a
3.2GHz Intel Quad-Core CPU, an 8MB cache and an 8GB RAM,
running 64-bit Windows 7. A time-out of 2000 seconds was applied.

Table I demonstrates the results of applying our symmetry-
detection algorithm on a collection of benchmarks from IS-
CAS’85 [12], ISCAS’89 [13], MCNC [14], and ITC’99 [15]. In this
table, the first column lists the name of the benchmarks. The next
three columns list the number of inputs, number of outputs, and
the size of AIG for each benchmark, respectively. Column #Symms
shows the order of symmetry group, and Column #Gen shows the
number of generators. Information on constructed search trees, such
as the number of nodes, number of levels, and number of conflicts,
are drawn in Columns #Node, #Lev, and #Conf, respectively. The
last column shows the runtimes in second.

The symmetry group orders in Table I range from one trivial
symmetry up to approximately 10260 symmetries. The largest group
order was reported for b19; the largest benchmark in our collection. In
our experiments, we observed that the number of symmetries of an n-
to-1 multiplexer was reported to be (log n)! This number corresponds
to all permutations of the multiplexer’s control signals.

The largest runtime in Table I is 1843 seconds (reported for b17).
Of the 55 total benchmarks, only 3 took more than 1000 seconds to
finish. The remaining were solved in less than 400 seconds (including
s38584 which has more than a thousand I/Os). All benchmarks with
less than a hundred I/Os were processed in less than two seconds. We
also observed that b19 was not processed within the time-out limit.

In our experiments, the majority of the benchmarks (76%) did not
encounter any conflict. This suggests that our refinement techniques
were effective enough to prune away unpromising branches of search.
We also assessed the effect of learning by disabling it and re-running
our algorithm on all benchmarks that showed conflicts. We observed
that, without learning, our algorithm failed to solve 61% of those
benchmarks within the time-out limit.

TABLE II. THE RESULTS OF USING OUR SYMMETRY-DETECTION
ALGORITHM TO SOLVE PP-EQUIVALENCE CHECKING

Circuit #Node #Lev #Conf Time (s) Time (s)
from [1]

mux-64 68 13 32 0.29 2.51
mux-128 4144 17 754 46 22
adder-16 141 36 36 0.11 0.05
adder-40 333 84 84 1.02 0.84
b05 161 26 86 0.22 0.19
b12 75 16 30 2.32 > 2000
b14 1057 62 874 12 10
b20 2096 119 1742 190 126
b21 2096 119 1742 210 145
s5378 272730 104 6785 173 1.45
s13207 11201 609 9377 78 > 2000
s15850 4893 232 4200 83 > 2000
s38584 5459 514 3504 188 > 2000
frg2 60 13 24 0.24 0.47
i10 166 30 79 3.25 2.20
rot 206 35 104 0.75 0.4

As part of our study, we encoded several instances of Boolean
matching as symmetry detection, and used a slightly modified version
of our algorithm to solve them (command bm2 in ABC). Table II
demonstrates the results, and compares the runtimes of our matcher to
that proposed in [1] (we chose [1] since it solves large-scale matching
and its source code is publicly available). All the results in Table II are
averaged over 10 re-runs, where each re-run 1) randomly permuted
I/Os of the circuits, and 2) reconstructed the circuits using ABC’s
synthesis commands to ensure structural difference.

Of the 16 benchmarks in Table II, our Boolean matcher managed
to solve all 16 in less than 210 seconds, but the matcher from [1]
failed to process 4 within the time-out limit. On the other hand, the
matcher from [1] solved one instance (s5378) in less than 2 seconds,
but our matcher took 173 seconds to process it. For the remaining
benchmarks, both matchers exhibited comparable results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we revisited the notion of symmetry in Boolean
functions with a special emphasis on group theory. We proposed a new
algorithm that searches for symmetries of Boolean functions under
permutation of inputs and outputs. We used functional dependency,
random simulation and satisfiability to facilitate the search. We also
learned from satisfiability counterexamples to avoid similar conflicts.
Moreover, we solved instances of Boolean matching by formulating
them as symmetry-detection problems. Empirical results confirm the
scalability of our algorithm to circuits with hundreds of I/Os. As
future research, we plan to extend our algorithm to detect symmetry
under permutation and negation of I/Os. Applications of such an
algorithm include solving the general Boolean matching problem [2],
and reducing samples for logic simulation [16].
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