Seeing the Forest and the Trees:
Steiner Wirelength Optimization in Placement

Jarrod A. Roy, James F. Lu and Igor L. Markov
The University of Michigan, Department of EECS
1301 Beal Ave., Ann Arbor, MI 48109-2122

{royj, jflu, imarkov}@eecs.umich.edu

ABSTRACT

‘We show how to optimize Steiner-tree Wirelength (StWL) in global
and detail placement without a significant runtime penalty, mak-
ing the use of Half-Perimeter Wirelength unnecessary. Given
that StWL correlates with Routed Wirelength (rfWL) much better
than HPWL, our new optimization improves the overall Place-and-
Route results. We also develop congestion-driven whitespace dis-
tribution during global placement. Comparing to the state of the
art where whitespace is redistributed after global placement, we
demonstrate that cell-shifting techniques often increase via counts.
Our placer ROOSTER outperforms best published results for
Dragon, Capo, FengShui, mPL-R/WSA and APlace in terms of
routed wirelength by 10.7%, 5.6%, 9.3%, 5.5% and 4.2% respec-
tively. Via counts, especially important at 90nm and below, are
improved by 15.6% over mPL-R/WSA and 11.9% over APlace.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-Aided Design
General Terms Algorithms, Design

Keywo rds Physical Design, Placement, Routing, Steiner Tree

1. INTRODUCTION

Recently there has been much interest in estimating the amount
of improvement that is left in placement optimization [6]. The gap
between optimal and practically achievable solutions is usually ex-
plained by the difficulty of optimization and shortcomings of indi-
vidual algorithms. In this work we point out another major source
of sub-optimality in Physical Design — solving wrong optimization
problems, whether optimally or not. In the short term, this source
of sub-optimality seems fairly easy to address, as confirmed by our
empirical results. We improve placement algorithms by leveraging
existing research on minimal Steiner trees.

Our main contribution is optimizing Steiner-tree Wirelength
(StWL) in global and detail placement without a significant runtime
penalty, making the use of Half-Perimeter Wirelength unnecessary.
We draw on recent works in min-cut placement, and particularly the
terminal propagation technique from [21], improved in [7], which
better correlates small net-cut with small HPWL. We generalize
this technique and show that with adequate data structures it re-
duces StWL in global placement efficiently. To our knowledge,
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Objectives/constraints Use in placement Our empirical
in Place-and-Route Pertinent | Popular | Ours improvements
Routability * +
o Routed WL * +
g Via count * limit +
o Timing * ~ potential
. Dynamic power * potential
Router runtime * +
o | Congest estimates ? * * +
e Placer runtime * * Iimit -
g Steiner-tree WL * +
< HPWL * -

Table 1: Traditional work on placement does not optimize or
even report the objectives most pertinent for Place-and-Route.
It is particularly difficult to optimize objectives that are mea-
sured relative to a given industrial router. We improve key ob-
jectives by departing from the traditional HPWL optimization.
(?) Optimizing congestion per se appears of limited use.

minimization of StWL in min-cut bisection has not been attempted
before, particularly the net-vector technique [12] cannot capture
Steiner-tree lengths in bisection or quadrisection (for more details
see Section 2.1). Our Steiner-tree driven detail placer leverages the
speed of the recent FLUTE package [8]. The closest work in detail
placement [13] models single-trunk Steiner trees to reduce conges-
tion in FPGAs. While effective, this technique requires exorbitant
amounts of runtime. Instead, our detail placer is quite fast, consid-
ers optimal Steiner trees, and optimizes a different objective.

We also build up on recent work in congestion-driven placement
that uses congestion maps. In [25] congestion maps are built after
global placement, and annealing moves are applied to minimize a
congestion metric. Another technique, proposed in [18] and known
as WSA, is applied after detail placement. It identifies areas with
high congestion and injects whitespace into these areas in a top-
down fashion. Our work uses congestion maps from [24] to allo-
cate whitespace in a manner similar to WSA but proactively, dur-
ing global placement. As a result, our placer ROOSTER (Rigorous
Optimization Of Steiner-Trees Eases Routing) produces the best
known routed wirelengths on the IBMv2 benchmarks [25].

At the 90nm technology node and below, increased via resis-
tance, manufacturing variability and manufacturing defects require
unprecedented attention to vias. Most semiconductor manufactur-
ers require vias to be doubled for reliability. To this end, we point
out that a range of easy-to-implement detail placement algorithms
(those of the cell-shifting variety) tend to increase via counts, even
when they improve routability. ROOSTER avoids them and ex-
hibits the smallest via counts on standard benchmarks among all
published results and our runs of recent placement tools.




In the remainder of this paper, Section 2 describes previous work
on VLSI placement. Section 3 discusses the realization of Steiner-
tree modeling in min-cut placers and Section 4 describes Steiner-
driven detail placement. Section 5 outlines whitespace allocation
to improve routability. Experimental results are given in Section 6,
and Section 7 outlines further applications of our techniques.

2. BACKGROUND AND PREVIOUS WORK

Traditionally, placement and routing are treated as two sepa-
rate and independent optimization problems. Standard-cell place-
ment is generally seen as the problem of finding non-overlapping
row and site-aligned positions for cells while minimizing the wire-
length of the design. Currently, HPWL is the estimate of choice
for wirelength minimization in placement because it is compu-
tationally easy and exactly estimates Rectilinear Steiner Minimal
Tree (RSMT) length for 2- and 3-pin nets. Unfortunately, routers
construct routed wires using Steiner trees whose length is under-
approximated by HPWL. Since RSMT construction is an NP-
complete problem [11], it has been generally regarded as too com-
putationally demanding for use in placement [12]. To illustrate
how a placer optimizes its chosen objective, we describe a specific
placement technique — top-down placement.

2.1 Top-down placement

Top-down placement algorithms seek to decompose a given
placement instance into smaller instances by subdividing the place-
ment region, assigning modules to subregions and cutting the netlist
hypergraph [3]. Min-cut placers generally use either bisection
or quadrisection to divide the placement area and netlist. The
netlist division step is commonly implemented with the Fiduccia-
Mattheyses heuristic and derivatives [10, 4], or alternatively with
quadratic placement and geometric partitioning [2].

Placement bins. Each hypergraph partitioning instance is in-
duced from a rectangular region, or bin, in the layout. In this con-
text a placement bin represents (i) a placement region with allowed
module locations (sites), (ii) a collection of circuit modules to be
placed in this region, (iii) all signal nets incident to the modules in
the region, and (iv) fixed cells and pins outside the region that are
adjacent to modules in the region (terminals). Top-down placement
can be viewed as a sequence of passes where each pass examines
all bins and divides some of them into smaller bins. These smaller
bins collectively contain the entire layout area and cells of the orig-
inal instance. When placement bins are divided, careful choice of
vertical or horizontal cut direction influences wirelength and rout-
ing congestion in resulting placement solutions [23].

Terminal propagation. Proper handling of terminals is essential
to the success of top-down placement approaches. When a partic-
ular placement bin is split into multiple subregions, some of the
cells inside may be tightly connected to cells outside of the bin. Ig-
noring such connections can adversely affect the quality of a place-
ment since these connections can account for significant amounts of
wirelength. On the other hand, these terminals are irrelevant to the
classic partitioning formulation as they cannot be freely assigned to
partitions. A compromise is possible by using an extended formula-
tion of “partitioning with fixed terminals”, where the terminals are
considered to be fixed in (“propagated to”) one or more partitions,
and assigned zero areas (original areas are ignored). Nets which
are propagated to both partitions in bi-partitioning are considered
“inessential” since they will always be cut and can be safely re-
moved from the partitioning instance to improve runtime [5]. Ter-
minal propagation [9, 22, 12, 5] is typically driven by geometric
proximity of terminals to subregions/partitions.

Minimizing HPWL through weighted net-cut. The authors of
[21] also note the inaccuracy of representing the wirelength objec-
tive of placement by the min-cut objective in partitioning. Optimiz-
ing HPWL directly through partitioning can provide improvements
over the simple min-cut objective. The authors introduce a new
terminal propagation technique in their placer THETO that allows
the partitioner to better map net-cut to HPWL. The terminal prop-
agation in THETO differs from traditional terminal propagation in
that each original net may be represented by one or two nets in the
partitioned netlist, depending on the configuration of the net’s ter-
minals. Two special cases — nets with no terminals and inessential
nets — are treated the same as in traditional terminal propagation.
Five other cases are analyzed in [21], based on the configuration
of terminals relative to the centers of the child bins, and proper
weight computation is described (one case requires two nets). This
way weighted net-cut better represents the “HPWL degradation”
seen after partitioning. Empirically, this terminal propagation and
net weighting are shown to reduce HPWL in min-cut placement.

This technique is simplified in [7] and reduced to the calcula-
tion of three wirelengths per net per partitioning instance (see more
details in Section 3). Our key observation is that this calculation
is sufficiently general to facilitate the minimization of wirelength
estimates other than HPWL.

Using multi-way partitioning. In an attempt to improve ba-
sic recursive bisection, many researchers have noted that it even-
tually produces multi-way partitions which could be alternatively
achieved by direct methods using wirelength-like multi-way objec-
tives. In [12] the authors make use of quadrisection and show how
several different cost functions other than cut can be optimized effi-
ciently, although with overhead greater than that of bisection. One
such cost function is the Minimum Spanning Tree (MST) length
which they note is a far more accurate predictor of routed wire-
length than net-cut. The authors note that for a wirelength evaluator
to be feasible for placement optimization, it must have evaluation
complexity similar to or smaller than MST. On the other hand, the
authors claim that their techniques can apply to “arbitrarily compli-
cated per-net placement objectives” [12].

The net-vector technique includes the computation of 2P integer
costs per optimization objective defined for p partitions (p = 4 in
[12] because quadrisection is used). It then looks up these costs
during partitioning. Unfortunately, such look-ups require the dis-
cretization of pin locations and cannot account for the location of
fixed terminals with as much precision as our work. Furthermore,
the Steiner-tree objective on a discretized 2x2-grid does not differ
from the discretized MST objective, hence it appears that optimiz-
ing StWL would require at least 16-way partitioning, with fairly
large net-vector tables. However, no 16-way geometric partition-
ers can be found in the literature that are competitive to recursive
bisection. In our work, Steiner trees are built on the fly for each
configuration, but the overall runtime remains reasonable.

2.2 Estimating congestion
and routed wirelength

Congestion Maps. There have been many recent advances in
estimating routing congestion. Most have come in the form of more
accurate and faster congestion maps [15, 24]. In this work, we
make use of the congestion mapping techniques presented in [24]
which assumes that routers attempt to route nets with the fewest
number of bends possible. Thus it models two-pin nets in only
L and Z shapes, unlike other methods that consider all possible
shortest paths between two pins equally. Empirically the authors of
[24] have found that some routers are able to find routes with one
bend 60% of the time and two bend routes for the majority of other



nets. Thus, one-bend and two-bend routes are weighted this way
in their maps. Empirical results show that such estimates correlate
well with actual routing usage in the Magma Place-and-Route flow.

Rectilinear minimal Steiner-tree evaluators. The problem of
constructing Rectilinear Steiner Minimal trees is known to be NP-
hard [11]. Specifically, it is the problem of connecting a given set
of points in the Manhattan plane by a minimum-length tree, which
can use additional branching (Steiner) points. This problem admits
polynomial-time approximations and practical heuristics. Three
such algorithms with available source code are Batched Iterated
1-Steiner (BI1ST) [14], FastSteiner [16] and FLUTE [8]. BI1ST is
the oldest and slowest of these algorithms but generally produces
the best solutions overall. FLUTE is the most recent, the fastest,
and provably optimal for instances with nine points or fewer. Fast-
Steiner is in the middle in terms of both speed and solution quality.

2.3 Achieving Routable Placements

It is well-known that a placement with small HPWL may be un-
routable due to uneven routing demand and ensuing wiring con-
gestion. For this reason, modern placers must explicitly account
for routing congestion in order to produce routable placements. In
[25], congestion maps are built after global placement, and anneal-
ing moves are applied to minimize a congestion metric. Another
technique known as WSA [18] is applied after detail placement.
WSA uses congestion maps to identify areas with high congestion
and injects whitespace into these areas in a top-down fashion. After
all the whitespace allocation is done, cells generally overlap each
other and legalization is required. After legalization, window based
detail placement techniques are applied to reduce wirelength that
was increased during whitespace allocation and legalization. Cell
bloating [20] and cell spreading [18] are used to tie whitespace to
specific cells, rather than to fixed regions as in techniques based on
congestion maps.!

3. MINIMIZING TOTAL STEINER-TREE
LENGTH IN GLOBAL PLACEMENT

In this section, we describe new techniques to minimize Steiner
wirelength in min-cut placement. In addition to the overall meth-
ods that make minimizing Steiner wirelength possible, we present
data structures new to min-cut placement that keep runtimes prac-
tical. These global placement techniques alone can reduce routed
wirelength by up to 7%, as demonstrated in Figure 2.

A framework for minimizing StWL. To minimize total StWL
during min-cut placement, we capture it using the weighted net-cut
objective used in partitioning. In the case of HPWL minimization,
this has been accomplished in [21] with a 7-case analysis. A differ-
ent group reduced this technique to the calculation of three wire-
lengths per net per partitioning instance [7] and verified resulting
empirical improvements.

While the formulation from [7] is more compact than the one
from [21], we also note that it is far more general. For each net in
each partitioning instance, one must calculate the cost of all nodes
on the net being placed in partition 1 (wy), the cost of all nodes on
the net being placed in partition 2 (W,) and the cost of all nodes
on the net being split between partitions 1 and 2 (wW13). Up to two
nets can be created in the partitioning instance, one with weight
|wi; —w,| and the other with weight wi, — max(w,w;). The only
assumption made in [7] is that wip > max(wy,Ws).

ICell bloating artificially increases the width of cells because their
heights are determined by rows. However, the peak demand for
horizontal tracks does not decrease because cells are not spread ver-
tically. To the contrary, by spreading cells horizontally cell bloating
increases the overall demand for horizontal tracks.

The points required to calculate w; for a given net are the termi-
nals on the net plus the center of partition 1. Similarly, the points
required to calculate W, are the terminals plus the center of partition
2. Lastly, the points to calculate Wy, are the terminals on the net
plus the centers of both partitions. Clearly the HPWL of the set of
points necessary to calculate Wy, is at least as large as that of w; and
W, since it contains an additional point. By the same logic, StWL
also satisfies this relationship since RSMT length can only increase
with additional points. Since StWL is a valid cost function for these
weighted partitioning problems, we have a framework whereby it
can be minimized. To our knowledge, such a framework has not
been known in min-cut placement until now.

The simplicity of this framework for minimizing StWL is deceiv-
ing. In particular, the propagation of terminal locations to the cur-
rent placement bin and the removal of inessential nets [5] — stan-
dard techniques for HPWL minimization — cannot be used when
minimizing StWL. Moving terminal locations drastically changes
Steiner-tree construction and can make StWL estimates extremely
inaccurate. Nets that are considered inessential in HPWL mini-
mization (Where the bounding box of terminals spans the centers of
child bins) are not necessarily inessential when considering StWL
because there are many Steiner trees of different lengths that have
the same bounding box. Not only computing Steiner trees, but even
traversing all relevant nets to collect all relevant point locations can
be very time-consuming. Therefore, the main challenge in support-
ing StWL minimization is to develop efficient data structures and
limit additional runtime during placement.

Pointsets with multiplicities. Building Steiner trees for each net
during partitioning is a computationally expensive task. Similarly,
Table 8 in Appendix A shows how expensive a naive replacement
of HPWL with Steiner-tree evaluation can be in floorplanning. To
keep the runtime reasonable when building Steiner trees for par-
titioning, we propose a simple yet highly effective data structure
— pointsets with multiplicities. For each net in the hypergraph, we
maintain two lists. The first list contains all the unique pin locations
on the net that are fixed. A fixed pin can come from sources such
as terminals or fixed objects in the core area. The second list con-
tains all the unique pin locations on the net that are movable, i.e.,
all other pins that are not on the fixed list. We maintain a unique
list of points so that we don’t pass any redundant points to Steiner
evaluators which may increase their runtime. To do so efficiently,
we keep the lists sorted. For both lists, in addition to the location
of the pin, we keep the number of pins that correspond to a given
point. Before legalization in detail placement, there may be signif-
icant cell overlap which can cause pins to have the same location.
Maintaining the number of real pins that correspond to a point in a
pointset (i.e., the multiplicity of that point) is necessary for efficient
update of pin locations during placement.

Steiner weighted min-cut step by step. At the beginning of
min-cut placement, all the movable cells are placed at the center
of the first placement bin which encompasses the core area. Next
all the fixed and movable pointsets are initialized. The runtime
required to initialize each pointset is asymptotically the same as
sorting the pointset. The multiplicities associated with each point
are updated in constant time when duplicates are removed.

When a partitioning instance is to be built for a bin, all nets that
are incident to the bin must be examined in any min-cut placer.
Usually any cell that is outside of the bin would be propagated to
the border of the bin. We skip this step as this reduces the accuracy
of the Steiner measurements. Instead we collect all the locations of
terminals on this net. This includes all the fixed pins in addition to
any movable pins that are outside of this bin. At this point, other
placers would check to see if the bounding box of terminals would



Whitespace Metal
Benchmark | # Cells | # Nets easy hard layers
ibm01 12028 | 11753 | 14.88% | 12.00% 4
ibm02 19062 | 18688 | 9.58% 4.72%
ibm07 44811 | 44681 | 10.05% | 4.70%
ibm08 50672 | 48230 | 9.97% 4.84%
ibm09 51382 | 50678 | 9.76% 4.88%
ibm10 66762 | 64971 | 9.78% 4.92%
ibml1 68046 | 67422 | 9.89% 4.67%
ibm12 68735 | 68376 | 14.78% | 9.94%

(N IRV, IRV, RV, RV, IRV |

Table 2: Statistics of the IBMv2 benchmarks [25].

contain the centers of the potential child bins (or would be check-
ing for this condition while gathering the terminals on this net) and
stop without adding this net to the partitioning problem. If this con-
dition holds, the net is inessential to partitioning when optimizing
for HPWL, but may not be inessential when optimizing for Steiner
WL. Thus we cannot skip this net before calculating its three costs.

We calculate the three costs for each net by making calls to a
particular Steiner evaluator. If the number of unique points that
needs to be passed to the Steiner evaluator is larger than a certain
threshold, we use HPWL evaluation instead purely for speed con-
cerns. After making calls to the Steiner evaluator, we make checks
to ensure consistency of the costs since the evaluators we are using
are approximation algorithms for building RSMTs. For example
we ensure that ¢; < €y, by setting ¢; = min(cy,Cy3) and similarly
for ¢;. Also, we make sure that Cj, is no larger than min(cy,¢;)+
the rectilinear distance between the centers of the child bins. This
is necessarily true because one has a tree that connects to all the
terminals on the net and the center of partition 1, one can easily
connect to the center of partition 2 with a single edge.

After constructing the partitioning instance with properly
weighted nets, the partitioner runs and produces a solution. A cut-
line is selected based on the partitioning (see Section 5 for more
details), and then new bins are constructed for the next cycle of
min-cut placement to continue. When the new bin is constructed,
cells that belong to that bin are placed at its center and all pointsets
for nets incident to the bin must be updated. Since the pointset
structures are sorted and have multiplicities, moving a pin to a new
location takes time logarithmic in the number of pins on a net. For
a given placement instance, this time is essentially constant. With-
out multiplicities, the entire pointset would need to be rebuilt from
scratch due to the removal of duplicates. Empirically building and
maintaining the pointset data structures takes less than 1% of the
runtime of global placement. Pointsets must also be updated when
when bin is placed — movable pins get reassigned to the fixed-
pin pointset. Note that partitioning only causes a movable pin to
change position, and fixed pointsets are unaffected.

Performance. After implementing net-weighting based on
pointsets, we compared three different Steiner evaluators to see
their impact on runtime and solution quality. Based on the re-
sults discussed in Appendix B, we have chosen FastSteiner [16]
for global placement, thanks to its reasonable runtime and con-
sistent performance on large nets. Table 3 shows that the use of
FastSteiner with our techniques lead to a reduction of StWL on
IBMv2 benchmarks [25] by nearly 3% on average while using less
than 30% additional runtime. Since min-cut placers are fast and ex-
tremely scalable, this is a very encouraging result. The largest and
smallest benchmarks (ibmOle and ibm12e) differ by 5x in size, but
HPWL minimization consistently takes 75% of runtime for StWL
minimization, suggesting that the ratio remains approximately con-
stant regardless of the scale.

Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL | StWL | Time (s) | HPWL | StWL | Time (s)
ibmOle | 0.523 | 0.602 205 0.526 | 0.590 271
ibmOlh | 0.514 | 0.592 204 0.523 | 0.587 266
ibm08e | 3.603 | 4.300 1484 37757 | 4.241 2304
ibmO8h | 3.620 | 4.258 1446 3.646 | 4.101 2268
ibml2e | 8.193 | 9.109 2235 8.321 | 8.990 3016
ibml12h | 7.983 | 8.907 2215 7.966 | 8.621 2957

[ Rato | 0987 [ 1.029 [ 0.733 | 1.000 | 1.000 | 1.000 |

Table 3: Improving Steiner WL with FastSteiner [16]. Aver-
age HPWL, Steiner WL and placement runtimes are shown for
representative IBMv2 benchmarks [25]. All wirelengths are in
meters. Optimizing StWL decreases StWL by 2.9%, increases
runtime by 27% and increases HPWL by 1.3%.

4. DETAIL PLACEMENT DRIVEN
BY STEINER TREE LENGTH

Sliding-window optimizations for HPWL during detail place-
ment are quite common in modern placers. A recent techniques of
that variety models single-trunk Steiner trees and has had success
in improving routability of FPGAs [13]. Unfortunately, it appears
very slow. We have implemented two types of sliding-window opti-
mizers directed at minimizing StWL using the FLUTE Steiner eval-
uator [8]. The first optimizer checks all possible linear orderings of
small groups of cells exhaustively. The second optimizer also does
linear placement, but uses a dynamic programming algorithm for
an interleaving optimization similar in spirit to that presented by
Jariwala and Lillis [13]. Given K cells, this dynamic programming
algorithm explores an n-by-m (n = k/2, m = k — n) table of partial
solutions, and uses FLUTE to evaluate their costs. Since such dy-
namic programming does not, in general, produce min-StWL con-
figurations, we keep the better of the initial and dynamic program-
ming solutions. Compared to exhaustive search, dynamic program-
ming allows for larger windows with reasonable runtime.

Table 4 evaluates detail placement on the IBMv2 benchmarks,
with 4 cells per window during exhaustive enumeration and 8 cells
per window during interleaving. Such detail placement alone re-
duces Steiner WL by 0.69% and routed WL by 0.72% while only
consuming 11.83% of the total placement runtime.

5. CONGESTION-BASED
CUTLINE SHIFTING

In this section we introduce whitespace allocation based on con-
gestion estimates during min-cut placement. This technique is es-
sential to achieving routability, but in some cases increases routed
wirelength, as seen in Figure 2.

Steiner WL Routed WL | % Total

Benchmark | improvement | improvement | runtime
ibm02e 0.735% 1.344% 10.89%
ibm02h 0.644% 1.078% 11.14%
ibm09%e 0.533% 0.890% 13.00%
ibm0%h 0.716% 0.282% 13.26%
ibm12e 0.698% 1.019% 11.11%
ibm12h 0.619% 2.318% 11.50%

[ Average | 0.688% | 0717% [ 11.83% |

Table 4: Detail placement improves Steiner WL and routed
WL. Average improvements and runtime (as a fraction of total
placement time) are shown for representative IBMv2 bench-
marks [25].



One of the most important reasons that we use bisection instead
of quadrisection is the flexibility that it allows in choosing the cut-
line of a partitioned bin. Before partitioning we first choose a di-
rection for the cutline which is usually based upon the geometry of
the bin. We then choose a tentative cutline in that direction to split
the bin roughly in half.

After the partitioner returns a solution, we have the flexibility to
keep the cutline as it was chosen before partitioning or to change
it to optimize an objective. The WSA [18] technique, applied after
placement, geometrically divides the placement area in half and es-
timates the congestion in both halves of the layout. It then allocates
more area to the side with greater routing demand (i.e. shifts the
cutline) and proceeds recursively on the two halves of the design.
In WSA, cells must be re-placed after the whitespace allocation.
We can avoid this re-placement because our cells have not yet been
placed and will be taken care of naturally in the min-cut process.

Cutline shifting used to handle congestion necessitates a slicing
floorplan. The only work in the literature that describes top-down
congestion estimates and uses them in placement assumes a grid
structure [2]. Therefore we develop the following technique: be-
fore each round of partitioning, we overlay the entire placement
region on a grid. We choose the grid such that each placement bin
is covered by 2-4 grid cells. We build a congestion map using the
last updated locations of all pins. We choose the mapping technique
from [24] as it shows good correlation with routed congestion.

When cells are partitioned and their positions are changed, the
congestion values for their nets are updated. Before cutline shift-
ing, the routing demands and supplies for either side of the cutline
are estimated with the congestion map. Given the bounding box
of a region, we estimate its demand and supply by intersecting the
bounding box with the grid cells of the congestion map. Grid cells
that partially overlap with the given bounding box contribute only a
portion of their demand and supply based on the ratio of the area of
the overlap to the area of the grid cell. Using the demand and sup-
ply estimates, we shift the cutline to equalize the ratio of demand
to supply on either side of the cutline.

To show the effectiveness of this dynamic version of WSA, we
plot congestion maps of placements of ibm0O1h produced with and
without our technique in Figure 1. The left plot illustrates uniform
whitespace allocation and the right plot congestion-driven whites-
pace allocation. Our whitespace allocation technique reduces the
maximum congestion by 50% and the number of overfull global
routing cells from 3.95% to 3.18% (as reported by an industry
router). We also post-process our placements with WSA and ob-
serve mixed results, as discussed below (see Table 7).

6. EXPERIMENTAL RESULTS

To test the quality of placements produced by ROOSTER, we
ran it on the IBMv2 suite of benchmarks [25] and routed them us-
ing Cadence WarpRoute 2.4.41. All runs of placement and routing
were performed on 3.2GHz Intel Pentium 4 processors with 1GB
of RAM. Statistics for the IBMv2 benchmarks are shown in Table
2. A comparison of ROOSTER against the best published results
for several competitive placers is shown in Table 5. A ratio greater
than 1.0 indicates that our results are overall better for routing on
this benchmark suite, which is true for all the routed wirelengths
and via counts of previously published results.

Most of the placers whose best published results are shown in
Table 5 have more recent binaries which we evaluate in Table 6. We
ran Dragon 4.0 in fixed-die mode on the IBMv2 benchmarks, but it
consistently crashed and we are unable to show results for it. Table
6 shows that the latest version of mPL-R + WSA has slightly worse
rWL (0.7%) when compared to ROOSTER and 6.9% higher via

count. APlace 2.04 has rWL 3.24% smaller than ours, but 7.32%
more vias and violations on 2 of the 16 benchmarks.

Since our cutline shifting for congestion can be viewed as a dy-
namic version of the WSA post-processing technique, we were in-
terested in seeing how WSA or other detail placement techniques
would affect the routability of our placements. Table 7 shows that
WSA is able to improve our wirelength by approximately 1.0%
with a 0.4% increase in via count. Direct comparisons show that
the most improvement is obtained on the ibm01 and ibm02 bench-
marks. In contrast, the detail placers of Dragon 4.0 and FengShui
5.1 make the routability of our placements far worse with increases
in routed wirelength, via count and violations.

7. CONCLUSIONS AND FURTHER WORK

We have presented techniques which leverage recent ad-
vances in RSMT construction [8, 16] to optimize Steiner wire-
length in global and detail placement with only a modest in-
crease in runtime, features currently usable only in our placer
ROOSTER which is freely available as part of the UMpack
(http://vlsicad.eecs.umich.edu/BK/PDtools/). With our whitespace
allocation based on congestion maps from [24], ROOSTER out-
performs best published results for Dragon, Capo, FengShui, mPL-
R/WSA and APlace in terms of routed wirelength by 10.7%, 5.6%,
9.3%, 5.5% and 4.2% respectively. Via counts, especially im-
portant at 90nm and below, are improved by 15.6% over mPL-
R/WSA and 11.9% over APlace. Further improvements by other
researchers in Steiner-tree construction and congestion maps can
only make our results better. In particular, if the FLUTE package
becomes faster and can process larger nets with high fidelity, the
window sizes used by our detail placers can increase.

Properly accounting for obstacles in placement is an area that
we believe could benefit significantly from our StWL minimiza-
tion techniques. An obstacle-aware Steiner evaluator could be used
directly in our implementation for nontrivial improvement. In ad-
dition to handling blockages, both Steiner-tree evaluators used in
ROOSTER (FLUTE [8] and FastSteiner [16]) can be used with ar-
bitrary per unit-costs of horizontal and vertical wires. This may
provide a safe means of balancing the demand for horizontal and
vertical routing resources (similarly motivated cut-line selection in
min-cut placement did not improve results in our experiments).

Our technique may conceivably be extended to improve circuit
timing — this mainly requires the ability to estimate the per-net
timing differential based on Steiner trees which we already com-
pute. Extensions to optimize timing may require block-based static
timing analysis. Even more accessible would be a similar extension
to optimize dynamic power. In particular, in designs with multiple
clock domains, we could optimize clock trees during global place-
ment by estimating the lengths of bounded-skew clock trees using
algorithms such as BST-DME.
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Table 5: A comparison of our work to best published routing results for several placers on the IBMv2 benchmarks [25]. All routed
wirelengths (rWL) are in meters. A ratio greater than 1.0 indicates that our results are overall better for routing on this benchmark
suite. For all cases, ROOSTER outperforms best published routing results in terms of routed wirelength and via count. Published
routing data for APlace 1.0 for ibm09-ibm12 is unavailable. Routing data for Capo 9.2, Dragon 3.01 and FengShui 2.6 were taken
from [19] which did not contain via counts. Routing uses a 24-hour time-out. Best legal rWL and via counts are in bold.

Latest mPL-R + WSA APlace 2.04 -R 0.5 FengShui 5.1

rWL #Vias #Viol. | rWL #Vias #Viol. rWL #Vias #Viol.
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ibmO7h | 4.240 | 516929 0 4,141 | 518089 0 4.632 617327 486
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ibm12h | 9.724 | 976993 0 8.814 | 961296 0 10.333 | 1344067 466

[ Ratio | 1.007 [ 1.069 | [0968 | 1.073 ]| [ 1.097 [ 1230 ] |

Table 6: A comparison of our work to the most recent version of mPL-R + WSA, APlace 2.04 and FengShui 5.1 on the IBMv2
benchmarks [25]. All routed wirelengths (rWL) are in meters. The ratios are with respect to ROOSTER’s performance described
in Table 5. Note that while APlace 2.04 achieves overall smaller wirelength than our placer, it routes with violations on 2 of the 16
benchmarks. Legal rWL and via counts better than those in Table 5 are highlighted in bold.
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ROOSTER + WSA ROOSTER + Dragon 4.0 DP | ROOSTER + FengShui 5.1 DP
rWL #Vias #Viol. | rWL #Vias #Viol. rWL #Vias #Viol.
ibmOle | 0.718 | 122873 0 0.790 | 133498 0 0.850 | 162248 155
ibmO1h | 0.725 | 124063 0 0.800 | 176562 36 0.858 | 176585 257
ibm02e | 2.000 | 256155 0 2.164 | 278854 0 2215 | 347022 129
ibm02h | 1.978 | 262022 0 2.004 | 271237 0 2.234 | 345638 285
ibm07e | 3.953 | 470104 0 4.175 | 502808 0 4.498 | 581269 563
ibmO7h | 4.091 | 489067 0 4721 | 593629 76 4.885 | 617061 870
ibm08e | 4.231 | 559010 0 4.443 | 598266 0 4.662 | 684313 276
ibm08h | 4.240 | 577879 0 4491 | 619733 0 4794 | 714798 768
ibm09e | 3.200 | 473605 0 3.392 | 502967 0 3.718 | 573996 583
ibm0% | 3.205 | 480961 0 3.328 | 511174 0 3.688 | 587486 630
ibml10e | 6.420 | 755673 0 6.759 | 798405 0 7.214 | 905508 229
ibm10h | 6.544 | 781897 0 6.523 | 804478 0 6.943 | 911878 296
ibmlle | 4.746 | 613437 0 4.879 | 644060 0 5.308 | 735762 492
ibmllh | 4.716 | 625654 0 4.830 | 654948 0 5.288 | 755418 591
ibm12e | 9.333 | 930397 0 9.427 | 953405 0 9.888 | 1087932 10
ibml12h | 9.282 | 942551 0 9.260 | 966280 0 9.786 | 1102197 312
| Ratio | 0.990 | 1.004 | | 1.041 | 1.089 | | 1.114 | 1.248 | |

Table 7: Results when applying various post-processors to our placements for the IBMv2 benchmarks [25]. All routed wirelengths
(rWL) are in meters. The ratios are with respect to ROOSTER’s performance described in Table 5. While WSA shows improvement
on some of our placements, it increases routed wirelength and via counts on the largest benchmarks. The detail placers of Dragon
4.0 and FengShui 5.1 make the routability of our placements far worse with increases in routed wirelength and via count on all

benchmarks and the addition of violations. Legal improvements to ROOSTER in rWL and via counts are highlighted in bold.

Bench- Max Edge | Avg Edge | #Nets with
mark #Macros | #Nets Degre(i,g Digreeg Degree > 3
ami33 33 123 34 3.4797 8
ami49 49 408 24 2.2892 19
nl0 10 118 4 2.1017 2

n30 30 349 3 2.0716 0

n50 50 485 4 2.1650 1
n100 100 885 4 2.1164 5
n300 300 1893 6 2.3022 47
Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL | StWL Time | HPWL | StWL Time
ami33 83267 | 105857 1.20 83434 | 103566 | 35.44
ami49 | 913680 | 934291 2.90 932408 | 951646 | 13.67
nl0 56767 56841 0.12 57169 57277 0.45
n30 172614 | 172614 1.07 170527 | 170527 3.78
n50 204061 | 204100 3.16 207151 | 207193 9.70
nl00 339423 | 339545 | 12.76 | 340396 | 340502 | 37.05
n300 764859 | 766389 | 122.98 | 760575 | 761968 | 299.32

[ Ratio | 1.000 [ 1.000 | 1.000 [ 1.004 [ 1.001 [ 4.590 |

Table 8: Fixed-outline floorplanning to minimize HPWL versus
Steiner WL. All StWLs were calculated using the Steiner eval-
uator FLUTE [8]. All wirelength and runtime measures are
averaged over 50 runs. Optimizing for Steiner WL increases
runtime by a minimum of 2.43x for n300 and a maximum of
29.53x for ami33.
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A. OPTIMIZING STEINER
WIRELENGTH IN FLOORPLANNING

In order to show just how expensive Steiner length estimation
can be as compared to HPWL computation, we replaced the HPWL
subroutine of the fixed-outline annealing-based floorplanner Par-
quet with FLUTE [8], a very fast Steiner-tree evaluator. The choice
of floorplanning for this experiment is explained by its relative sim-
plicity. It also clearly illustrates the impact of optimizing Steiner
length on runtime and solution quality in circuit layout.

Table 8 shows netlist statistics for some common floorplanning
benchmarks as well as runtimes and wirelengths with and without
the use of FLUTE. All runtimes and wirelengths are averages over
50 runs. As is evident from the table, blindly replacing an HPWL
evaluator with a Steiner-tree evaluator, even one as fast as FLUTE,
can result in a huge increase in runtime when nets have nontriv-
ial pin count. Trivial pincount for any Steiner evaluator is three or
fewer since Steiner length is the same as HPWL in such instances.
All the nets in the n30 benchmark have trivial pincount, but we
observe a 3.53x increase in runtime. The reason for this runtime
increase is that calling a Steiner-tree evaluator requires nontrivial
overhead (most notably the removal of duplicate points which re-
quires sorting) as compared to Parquet’s HPWL evaluator which is
hand-tuned for speed.

The data in the table is also quite striking in that it shows that op-
timizing for Steiner length was not particularly effective, as Steiner
wirelength and HPWL were both increased across all of the bench-
marks. This shows that what one may think is an obvious method
to reduce Steiner wirelength may not be all that useful. A possible
explanation of this strange result is that Steiner WL is not a convex
objective. Therefore it may require a longer annealing schedule
than a convex objective like HPWL, whereas in our experiments
the annealing schedule was fixed.



Figure 1: Congestion maps for the ibm01h benchmark: uniform whitespace allocation (produced with Capo -uniformWs) is illus-
trated on the left, congestion-driven allocation in ROOSTER is illustrated on the right. The peak congestion when using uniform
whitespace is 50% greater than that for our technique. When routed with Cadence WarpRoute, uniform whitespace produces 3.95%
overfull global routing cells and routes in just over 5 hours with 120 violations. ROOSTER’s whitespace allocation produces 3.18%
overfull global routing cells and routes in 22 minutes without violations.

B. STEINER-TREE TOOLS: RUNTIME,
ACCURACY AND FIDELITY

After implementing our technique to reduce StWL during global
placement, we tested three different Steiner-tree evaluators to see
how they would affect the runtime and solution quality of place-
ment. The three evaluators used were Batched Iterated 1 Steiner
(BI1ST) [14], FastSteiner [16] and FLUTE [8]. We used each eval-
uator individually as well as combinations of all three. When using
more than one evaluator at a time, we choose the smallest wire-
length among all estimates since RSMT estimators overestimate
actual RSMT length. Recall that FLUTE is known to be optimal
for nets with nine or fewer pins and also much faster than other
evaluators. Therefore, in mixed evaluators for nets with four to
nine pins we use FLUTE exclusively.

Table 9 shows a runtime and solution quality comparison for all
eight possible combinations of Steiner evaluator for the benchmark
ibmOle. Runtimes and wirelengths are averages of five indepen-
dent runs. The trends present for ibmOle are very similar for the
other IBMv2 benchmarks. It is clear from the table that BI1ST
gives the best solutions but uses the most runtime for a single evalu-
ator. FastSteiner is very close to BI1ST in terms of solution quality,
but uses much less runtime. Of the three pure evaluators, FLUTE is
the least successful in terms of placement quality but is the fastest.
We decided to use FastSteiner in global placement because it pro-
vided the best trade-off in terms of solution quality and runtime
across all benchmarks.

Surprisingly, the mixed Steiner evaluators were outperformed by
individual evaluators and hurt solution quality rather than improved
it. This trend was even stronger on larger benchmarks. In partic-
ular, FastSteiner performed better than FastSteiner + FLUTE on
ibm07. Certainly using the best of three Steiner evaluators makes
estimates more accurate, but our global placement relies on differ-
ences between Steiner lengths rather than the lengths themselves.
This suggests that the accuracy, measured by maximum error, of
Steiner-tree estimation is not as important as its fidelity, which is
defined as preserving relative magnitudes between estimates.

Steiner Place Steiner Steiner
evaluator(s) time (s) WL WL Ratio

HPWL (no Steiner eval) 141 0.5955 1.0000

BIIST + FastSteiner + FLUTE 202 0.5918 0.9937

BIIST + FLUTE 186 0.5900 0.9907

BIIST + FastSteiner 248 0.5893 0.9895

FLUTE 148 0.5886 0.9884

FLUTE + FastSteiner 158 0.5875 0.9866

FastSteiner 180 0.5875 0.9866

BIIST 208 0.5861 0.9843

Table 9: Impact of Steiner evaluators during global place-
ment (ibm01e). Total StWL and global placement runtime are
listed for all combinations of three Steiner evaluators. In such
combinations, the minimum Steiner length estimate is used in
weighted partitioning (see details in Appendix B).

112

T T T T T
Capo with uniform whitespace

optimizing StWL in global placement + above ==z

11 F congestion driven whitespace allocation + above E==XY

v optimizing StWL in detailed placement (ROOSTER) + above - |

1.08 oV
1.06
1.04
1.02

1

Increase in Routed Wirelength (rwL)

0.98

0.96

ibm0le ibm02e ibmO7e ibmO8e ibmO9e ibm10e ibmlle ibml2e

112

T T T T
Capo with uniform whitespace
optimizing StWL in global placement + above =zzzz|
11 F congestion driven whitespace allocation + above =<3
optimizing StWL in detailed placement + above (ROOSTER)
\4

1.08 |

1.06 Vv

Increase in Routed Wirelength (rwL)

I\

ibm01h ibm02h ibm07h ibm08h ibmO%h ibm10h ibml1lh ibm12h

Figure 2: Impact of individual optimizations on the rwL
produced by ROOSTER. “V” indicates violations in routing.



