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ABSTRACT
We propose Sidewinder, a new global router that combines
pattern routing and maze routing in a novel, incremental,
ILP formulation. It is the first flat ILP-based approach scal-
able enough to consider over 104 GCells at once. Moreover,
it also can be used as a component in previously proposed
multi-level and progressive ILP schemes. Sidewinder is par-
ticularly good at finding routes with minimal via count,
which can improve yield in sub-90nm technologies. Other
innovations in our work include an ILP construction based
on a dynamically-updated congestion map and the use of
C-shape routes to alleviate local congestion and improve
routability. On well-known benchmarks, Sidewinder im-
proves routed wirelength and reduces via count by over 6%
compared to ILP-based BoxRouter 1.0 and 35.8% compared
to DLM-based FGR 1.0. This easy-to-implement methodol-
ogy is extensible to detail routing of ASICs as well as FPGAs
where it can account for complex design rules and models.
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]: Computer-aided de-
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1. INTRODUCTION
Routing is one of the key steps in the VLSI design flow

process, as it impacts circuit performance, power, and pro-
duction. Routing directly affects the timing of the design,
as the process determines length of the critical paths. Tradi-
tionally, a router’s main goal is to only minimize wirelength.
However, with the current technology scaling trends, designs
are susceptible to coupling capacitance and other parasitic
effects. Traversing from one metal layer to another is becom-
ing costly as now vias have non-trivial effects because they
significantly impact timing and may block several routing
tracks [18]. In this respect, routing is even more important,
as it directly determines the locations and number of vias.
Thus, a router must also limit the number of vias as well as
minimize the wirelength of a given design.

The problem of (global) routing is known to be NP-
Complete [12]. Thus, there are two main approaches to
handling this issue: heuristics and (integer) linear program-
ming (ILP). Almost all current academic routers [3,7,15] are
based on the former, the main reason being that the latter
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Figure 1: A design’s routing grid. (a) A sample
routing grid (5x5) for a generic design. (b) A close-
up of a GCell and the edge capacities in each direc-
tion. The routing grid abstraction models a multi-
metal layer problem where each layer can be con-
nected to another layer with the use of vias.

lacks scalability. The first ILP-based router was proposed
by Burstein and Pelavin [2] but was impractical because ILP
solvers of the day were unacceptably slow. ILP solvers have
improved dramatically in terms of speed and efficiency in
the past twenty years and very recently M. Cho and D. Pan
(BoxRouter 1.0) [3] have successfully implemented an ILP-
based router with pre- and post-processing to simplify the
problem.

In this paper, we propose Sidewinder, an iterative,
congestion-driven ILP-based advanced pattern router. Like
BoxRouter 1.0, we consider routing optimally all two-pin
nets with L shapes first. However, instead of iteratively ex-
panding a small bounding box, we consider the entire rout-
ing grid during each pass. In addition to L shapes, we also
consider all Z shapes and selected C shapes (i.e. slightly
detoured routes). In the ILP formulation, each net has only
two allowed patterns, which are chosen based on a conges-
tion map. On the ISPD98 benchmarks [10], this formulation
alone routes 98% of nets with optimal wirelength and mini-
mal via count, but remaining nets require small detours.

Sidewinder is much simpler than existing routers because
the majority of work is done by the ILP solver. Unlike the
ILP formulations used in BoxRouter 1.0 [3], Sidewinder’s
pattern routes allow at most three bends per two-pin sub-
net and detours of at most four GCells in length. With these
restrictions relaxed, any remaining nets can be routed with
a simple post-routing step in all the designs we considered.
On the other hand, Figure 2 suggests that Sidewinder is al-
ready a viable global router because post-processing can be



performed by existing detail routers. Sidewinder’s ILP for-
mulation can also be used in the BoxRouter flow to improve
via count and detours.

The following key ideas are proposed in this work:

• the selection of two least congested patterns per net

• search over all 2-bend Z-shaped routes

• the use of slightly detoured 2-bend and 3-bend C-
shape routes

• congestion-based ILP formulation

• congestion map updates between ILP calls

• an incremental ILP for all nets that is guaranteed to
never make solutions worse

The rest of the paper is structured as follows: Section 2
states background information and previous work. Section
3 describes the problem formulation in detail. Section 4
has the experimental setup and results. Finally, Section 5
concludes the paper and mentions future work.

2. BACKGROUND AND PREVIOUS WORK
Below we review global routing, detail routing and several

known routing approaches.

2.1 Global and Detail Routing
Routing is typically split into two stages: global and detail

routing. During global routing, design rules are not consid-
ered and the design itself is broken down into a grid made
up of global routing cells or GCells (see Figure 1). Each net
is then assigned routing segments within each GCell such
that the terminal pins are connected. To model routing re-
sources, capacities are assigned to each GCell edge to limit
the number of routing segment assignments. A global rout-
ing solution is considered legal if all nets are connected and
all edge capacities are respected.

After global routing, detail routing is applied to the de-
sign. Given the routing segments assigned to each GCell
from global routing, detail routing physically assigns each
segment to specific routing tracks. Detail routing also takes
into account spacing rules specific to the design.

Note that a purely legal global routing solution is not re-
quired for the detail router, as illustrated in Figure 2, an
excerpt from a Cadence WarpRoute report on a test bench-
mark. It shows that although global routing reported 295
GCells with violations, the detail routing solution is legal.
As long as the percentage of violations is small, detail rout-
ing is usually able to compensate.

Recently developed routers include work from Hadsell and
Madden (Fengshui with Chi dispersion) [7], M. Cho and D.
Pan (BoxRouter 1.0) [3], Roy and Markov (FGR 1.0) [17], as
well as M. Pan and C. Chu (FastRoute) [15, 16]. Fengshui,
BoxRouter 1.0, and FGR 1.0 minimize total routed wire-
length, while FastRoute minimizes its runtime at the cost of
higher wirelength.

2.2 Routing Approaches
The following discusses traditional as well some recent

approaches to global routing.
Pattern Routing. Pattern routing significantly reduces

the problem’s solution space and improves runtime. Instead
of having restrictions placed on each routing segment, each
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Figure 2: Excerpt from Cadence WarpRoute on a
test benchmark. Notice that although global routing
produced a total of 295 GCells with violations (line
4), the final result given by detail routing (line 3) has
none. This is typical for dozens of industry circuits
we routed.

net is limited to a small number of shapes. A two-pin net is
commonly mapped to an L shape, where only one bend is
used and the wirelength is optimal, or a Z shape, where two
horizontal segments are connected with a middle vertical
segment or vice versa. Kastner et al. [13] have shown that
in standard application specific integrated circuits (ASICs),
pattern routing is efficient, as it minimizes via count and
increases scalability. Further work done by Westra et al.
by [19] shows that in ASIC routing, the majority of two-pin
nets can be routed using only L shapes. Typically, pattern
routing is more flexible than routing only Ls and Zs - each
pattern is selected from a finite set of routing topologies.

Maze Routing. The most common routing technique
used today, maze routing uses standard search algorithms
such as BFS and Dijkstra’s algorithm [6] to connect termi-
nals along the routing grid. While shortest routed lengths
are found for pairs of terminals, the order in which nets are
routed has a profound effect on solution quality and routed
length. As a result, maze routing must be applied many
times with heuristic net orderings to find legal solutions. In
addition, vias must be modeled explicitly to prevent unnec-
essary detouring.

SAT- and ILP-based Routing. Modeling routing con-
straints by Boolean formulas in CNF, Nam et al. [14] de-
veloped a SAT-based detail router which routes all nets si-
multaneously. Using ILP, this formulation can be extended
to route as many nets as possible [20]. ILP-based routing
has traditionally been avoided due to its lack of scalabil-
ity. An early attempt by Burstein and Pelavin [2] could
not be efficiently implemented because contemporary ILP
solvers were not sufficiently powerful. However, after major
advancements in ILP solvers, the idea of routing optimally
using ILP became an option. Recently, M. Cho and D. Pan
developed BoxRouter 1.0 [3]. After decomposing multi-pin
nets into two-pins subnets, BoxRouter 1.0 uses pattern rout-
ing and begins at the most congested region. Starting within
a small bounding box, it optimally routes as many nets in
the region as possible using only L patterns; the remaining
unrouted nets are given to a maze router. The bounding box
is iteratively expanded using a progressive ILP formulation
that extends partially-routed nets with additional L-shaped
segments. Then maze routing is invoked to complete nets
that did not route. Such steps are repeated until the entire
global routing grid is subsumed. Given that ILPs are solved
optimally, using powerful ILP solvers can only improve run-
time. However, a faster ILP solver may facilitate a more
comprehensive ILP formulation.

One common method used to improve the scalability of
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Figure 3: High-level flow of Sidewinder. We first
create an initial solution using only L shapes. Next,
we build a congestion map based on the current so-
lution to use as a guide for the new solution. For
net path candidates, we consider Ls, Zs, Cs, and a
maze route. Once all nets are processed, an ILP is
formed and solved. This cycle continues until the
new solution has the same cost as the current so-
lution. Once there is no more improvement, maze
routing is applied to yield the final routing solution.

ILP-based routing techniques is to relax the ILP problem
into an easier linear programming (LP) problem. Multi-
commodity flow (MCF) based routers take this approach
[1, 8]. An approximation technique incrementally adjusts
routing edge weights and builds new Steiner tree topologies
for each net at every iteration to solve the LP. BoxRouter
1.0 has been compared to a recent MCF-based router and
was found to be superior in speed and solution quality [3].

3. SIDEWINDER
Below we introduce our approach to global routing, start-

ing from the problem framework. We then present the high-
level flow, related algorithms, and our ILP formulation.

3.1 Problem Framework
For every design, a finite global routing grid G of size

X × Y is defined. For simplicity, we define the bottom
left GCell of G to be (0,0) and only consider rectilinear
paths. For an arbitrary GCell g(x, y), we define four edge
capacities cg(x,y)→g(x+1,y), cg(x,y)→g(x−1,y), cg(x,y)→g(x,y+1),
and cg(x,y)→g(x,y−1), one for each cardinal direction, as
shown in Figure 1. Finally, we only consider the routing
of two-pin nets; multi-pin nets are decomposed into mul-
tiple two-pin nets. The terminals of each net are located
within their respective GCells.

3.2 High-Level Framework
As shown in Figure 3, we first generate an initial routing

solution using only L shapes (initial routing). Using this
current solution, we build a congestion map to guide the
routing of the new solution. For each net, we consider Ls,
Zs, Cs, and a maze route as possible path candidates. This
specific portion is discussed in greater detail in Algorithm
1, Algorithm 2, and Section 3.3. After all the path candi-
dates have been selected, we formulate this problem into an
ILP and generate the new routing solution. If this new solu-
tion is better (higher objective function) than the previous
solution, this process is repeated. Once there is no more im-
provement, we apply a final round of maze routing to route
all outstanding nets.

 
AAllggoorriitthhmm  11::  HHiigghh--LLeevveell  IItteerraattiivvee  AAllggoorriitthhmm  ooff  SSiiddeewwiinnddeerr  
IInnppuutt::   RRoouutt ii nngg  GGrr ii dd  GG,,   NNeett ll ii ss tt   NN,,   SSooll uutt ii oonn  RR  
    11::   CCuurrSSooll  ==  RR;;   
    22::   iimmpprroovveemmeenntt  ==  II NNTT__MMAAXX;;   
      33::   wwhhii ll ee  (( iimmpprroovveemmeenntt  >>  00))   
    44::     MMaakkeeCCoonnggeessttiioonnMMaapp(( GG,,   CCuurrSSooll)) ;;   
    55::     ff oorr   eeaacc hh  uunnrr oouutt eedd  nneett   nn  ii nn  NN  
    66::       ppqquueeuuee  ppqq  ==  øø;;   
    77::       ff oorr   eeaacc hh  ppaatt hh  tt yy ppee  PPTT  
    88::         ppqq..ppuuss hh(( CCrreeaatteePPaatthh(( PPTT)) )) ;;   
    99::       ppqq.. ppoopp(( nn..ppaatthh11)) ;;   
  1100::       ppqq.. ppoopp(( nn..ppaatthh22));;  
  1111::     ff oorr   eeaacc hh  rr oouutt eedd  nneett   nn  ii nn  NN  
  1122::       ppqquueeuuee  ppqq  ==  øø;;   
  1133::       ff oorr   eeaacc hh  ppaatt hh  tt yy ppee  PPTT  
  1144::         ppqq..ppuuss hh(( CCrreeaatteePPaatthh(( PPTT)) )) ;;   
  1155::       ppqq.. ppoopp(( nn..ppaatthh11)) ;;   
  1166::       nn..ppaatthh22  ==  nn..ccuurrrreennttPPaatthh;;   
  1177::     IInnsstt  ==  MMaakkeeIILLPP(( GG,,   NN)) ;;   
  1188::     NNeewwSSooll  ==  SSoollvveeIILLPP(( IInnsstt)) ;;   
  1199::     iimmpprroovveemmeenntt  ==  SSQQ(( NNeewwSSooll))   ––  SSQQ(( CCuurrSSooll)) ;;   
  2200::     CCuurrSSooll  ==  NNeewwSSooll;;   
OOuuttppuutt::   NNeewwSSooll  
 
 
 Figure 4: High-level algorithm of Sidewinder. The
first iteration routes as many subnets as possible
using Ls. In subsequent iterations, alternative paths
of Ls, Zs, Cs, and a maze route are evaluated using
a congestion map.

3.3 Algorithm Design
The iterative portion of Sidewinder is given in Figure 4.

Based on an initial routing solution R, we place all routed
nets to construct an initial congestion map. As noted by
line 16, all routed paths will be used as one possible path
candidate in the next iteration. The alternate candidate
will be the best (least congested) path out of: all possible
Ls, all possible Zs, all possible Cs, and a route generated
by a maze router (pattern routes are depicted in Figure 5).
For each unrouted net, as there is no current path to use,
the two best paths will be selected as candidates from the
aforementioned list. To improve routability, we evaluate all
unrouted nets before routed nets.

For each net, we only consider legal path candidates, e.g.,
detoured paths that are not within the routing grid are not
allowed. Each of the shapes are also considered “sufficiently
different” — this gives the router more flexibility and free-
dom. We emphasize that the two chosen paths are always
different. In the case where the maze route is a duplicate
pattern path, the maze route is removed and the next best
path comes off the priority queue.

Once the two routes are selected, the congestion map is
updated. If the net was routed, the current path is given
a weight of 0.9 and the new candidate 0.1. If the net was
not routed, each candidate is given a weight of 0.5. Notice
that the congestion map is updated after each net has been
processed. This guides the router such that the new path
choices will not create new congestion areas.

After each net has two possible path candidates, we create
the ILP formulation and solve. This yields a new routing
solution NewSol. If the solution quality of NewSol is bet-
ter (more than) than the solution quality of R, then R =
CurSol and the process is repeated. From our formulation,
we define the quality of a routing solution to be the objec-
tive function returned by the ILP solver. A higher objective
value implies more nets have been routed. Once the objec-
tive value stabilizes, i.e., SQ(NewSol) = SQ(CurSol), the
iterative portion of Sidewinder terminates.



The algorithm for path calculation and selection is given
in Figure 6. Each candidate route is given two metrics: min-
imum number of free segments (pathFree) and total number
of free segments (pathTotal). pathFree is found by taking
the minimum available space/segment for each segment in
the path. If a segment has no room (capacity = 0) or is
overfilled (capacity < 0), the priority is the -(total number
of routing violations). In other words, paths with overflow
have a negative priority (less desirable) while paths with-
out any violations have a positive priority (more desirable).
Likewise, pathTotal is found by summing up the total num-
ber of free space across the path.

Once all the path priorities are calculated, they are ranked
by pathFree. That is, the least congested paths are the top
choices while the most congested paths are at the bottom.
pathTotal is only used in case of a tie between paths that
have the same pathFree. Thus, the most desirable path is
the one with the most total available capacity. Note that
with this formulation, there are always at least two legal
and “sufficiently different” paths available.

With this formulation, we guarantee that the ILP solution
will be no worse than the previous. Each subsequent ILP
instance routes at least as many nets as the current ILP
instance. In the worse case, the same nets will be routed,
causing the objective function to stay constant.

3.4 ILP Formulation
We present the general case of our ILP formulation. Note

that the first ILP iteration is a special case where the two
selected paths are Ls. Variables are explained after the for-
mulation.

Maximize:
X

n

w1nx1n + w2nx2n

Subject to:

x1n + x2n ≤ 1 ∀ n

x1n ∈ {0, 1} ∀ n

x2n ∈ {0, 1} ∀ n
X

x1n
,x2n

∈g(i,j)→g(i,j+1)

x1n + x2n ≤ cg(i,j)→g(i,j+1) 0 ≤ i < X, 0 ≤ j < Y − 1

X

x1n
,x2n

∈g(i,j)→g(i,j−1)

x1n + x2n ≤ cg(i,j)→g(i,j−1) 0 ≤ i < X, 0 < j < Y

X

x1n
,x2n

∈g(i,j)→g(i+1,j)

x1n + x2n ≤ cg(i,j)→g(i+1,j) 0 ≤ i < X − 1, 0 ≤ j < Y

X

x1n
,x2n

∈g(i,j)→g(i−1,j)

x1n + x2n ≤ cg(i,j)→g(i−1,j) 0 < i < X, 0 ≤ j < Y

Where:
N : netlist
G : routing grid
X × Y : size of G

x1n, x2n : two paths for each net n ∈ N

w1n, w2n : net weights for x1n, x2n

g(i, j) : grid cell ∈ G

cg(i,j)→g(i±1,j±1) : capacities

Recall that we choose two possible path candidates for
each net n in the netlist N . In the ILP, this is represented
with two 0-1 variables, x1n and x2n. A value of 0 represents

(a) (b) (c)

(d) (e) (f)

Figure 5: Patterns Sidewinder considers when
choosing paths. (a) Two different L shapes, (b) All
possible vertical Zs, (c) All possible horizontal Zs,
(d) C shapes - detouring one unit in the vertical
direction, (e) C shapes - detouring one unit in the
horizontal direction, (f) C shapes - detouring one
unit in both the horizontal and vertical direction.

the path was not chosen; the value of 1 represents the path
chosen for the net. The first three constraints guarantees
that at most one path out of the two will be selected (either
one path will be chosen or no paths will be chosen). The
fourth constraints states that for all North routing edges
g(i, j) → g(i, j + 1) ∈ G, the summation of all taken paths
must be less than or equal to cg(i,j)→g(i,j+1) , the total ca-
pacity of g(i, j). That is, the sum of routing segments as-
signed through a GCell must be less than or equal to the
total capacity of the edge. Similarly, the next three con-
straints ensure that South, East, and West edge capacities
are respected. Note that only the North and East (or some
similar variation) constraints are needed, as the North and
South constraints are the same and the East and West are
the same. Lastly, the variables w1 and w2 are the corre-
sponding weights given to each path. These weights are
determined by the type of path x1n and x2n are. Strictly
speaking, a higher coefficient implies that path is more pre-
ferred than a path with a lower coefficient.

Since we consider a number of paths with different wire-
length and bends (an L has less wirelength and fewer bends
than a detour), we assign different weights to the objective
function based on the type of path selected. Since the objec-
tive function is maximized, we value Ls the most, followed
by Zs, then Cs, and finally maze routes. Note that although
we consider many different paths, the number of variables
needed is still only two per subnet, ensuring the scalability
of our ILP formulation.

3.5 Insights
During our preliminary work, we have evaluated a number

of different ILP formulations to global routing. We quickly
observed that all formulations that scale to a large number
of nets fell into the category of pattern routing. That is,
they would only allow a small number of configurations per
net. Furthermore, ILP formulations with only two patterns
per net were solved an order of magnitude faster than those
with four or more patterns per net.

While our observations about efficient ILP formulations
are consistent with the success of L-shape routing in
BoxRouter 1.0, the choice of L-shapes is not as critical. Thus
our first insight is as follows: Select routing patterns other
than L-shapes for nets and allow for dynamic selection of



 
 
 
 
AAllggoorriitthhmm  22::  PPaatthh  SSeelleeccttiioonn  
IInnppuutt::  RRoouuttiinngg  GGrriidd  GG,,  PPaatthh  pp  
    11::  ppaatthhFFrreeee  ==  00;;  
    22::  ppaatthhTToottaall  ==  00;;  
    33::  iiff  ((pp..iilllleeggaall))  
    44::    ppaatthhFFrreeee  ==  PPAATTHH__IILLLLEEGGAALL;;  
    55::    ppaatthhTToottaall  ==  PPAATTHH__IILLLLEEGGAALL;;  
    66::  ffoorr  eeaacchh  sseeggmmeenntt  ss  iinn  pp  
    77::    iiff  ((GG[[ss]]..ccaappaacciittyy  <<  00))  
    88::      iiff  ((ppaatthhFFrreeee  >>==  00))  
    99::        ppaatthhFFrreeee  ==  --11;;  
  1100::      eellssee  
  1111::        ppaatthhFFrreeee----;;  
  1122::    eellssee  
  1133::      ppaatthhFFrreeee  ==  mmiinn((ppaatthhFFrreeee,,  GG[[ss]]..ccaappaacciittyy));;  
  1144::      ppaatthhTToottaall  ++==  GG[[ss]]..ccaappaacciittyy));;  
OOuuttppuuttss::  ppaatthhFFrreeee,,  ppaatthhTToottaall  
  
 
 Figure 6: Algorithm to find the least congested
path. The path priority is based on the minimum
number of free segments along the path (pathFree)
and the total number of free segments (pathTotal).
All path choices are ranked in ascending order first
with respect to pathFree and then pathTotal. Thus,
the dominant metric for congestion is pathFree and
pathTotal is only used as tie-breaking criterion.

pattern shapes.
For further studies, we extracted several small but diffi-

cult routing instances from common benchmarks. In some
of the instances, only about half the nets could be routed
with Ls due to capacity constraints. We have evaluated sev-
eral simple patterns, including Z-shapes where the middle
segment would cross the midpoint of the net’s bounding box.
We found that allowing this pattern provides only marginal
(if any) improvement to L-only ILPs. However, including
shapes with slight detours (which we term as C-shapes) al-
lowed us to route significantly more nets.

Our third insight is paths should be evaluated using a con-
gestion map, rather than strictly length or via count, to de-
termine the best candidates. For the initial ILP formulation,
we select the two best paths based on congestion if the net
was not routed previously and the current and best paths if
the net was routed. We noticed that the runtime of the ILP
solver decreased dramatically the more accurate we were at
predicting the possible paths.

Our final insight is that all Z-shaped paths should be con-
sidered rather than only ones that cross the midpoint of a
nets’ bounding box. For a given net, we can scan the con-
gestion map and find quickly the least congested Z-shaped
paths. We noticed that this new flexibility noticeably im-
proved our solution quality.

3.6 Sidewinder vs. BoxRouter 1.0
Comparing our ILP formulation with BoxRouter 1.0 —

the only scalable ILP router in the literature — we note
several important differences:

• BoxRouter’s ILP is applied to a small region and in-
cludes only L-shaped routes; our formulation is applied
to the entire global routing grid and after the first iter-
ation also includes all possible C-shapes and Z-shapes.

• For long nets, BoxRouter’s ILP routes one portion of
the net at a time, whereas Sidewinder’s ILP routes
entire nets in all cases.

• At each iteration, BoxRouter’s progressive ILP extends
its current region to a slightly larger region and ex-

Bench- Total Nets Runtime
mark Grid nets routed Iterations (min)
ibm01 64×64 11507 99.36% 12 231
ibm02 80×64 18429 99.95% 8 92
ibm03 80×64 21621 99.99% 6 93
ibm04 96×64 26163 99.50% 6 217
ibm05 128×64 27777 100% 1 < 1
ibm06 128×64 33354 99.98% 6 130
ibm07 192×64 44394 99.94% 6 100
ibm08 192×64 47944 99.98% 6 120
ibm09 256×64 50393 99.99% 6 277
ibm10 256×64 64227 99.98% 5 103

Average 99.86%

Table 1: Results of routability for Sidewinder on the
ISPD98 benchmark suite [10] before final routing.

tends nets present in both regions by new L-shaped
segments. Therefore, long nets may be routed with two
bends per region1, whereas the baseline Sidewinder
formulation is global and does not allow more than
three bends per subnet.

• BoxRouter’s ILP formulation is not sensitive to con-
gestion, but is formulated for the most congested re-
gion in its first iteration. In contrast, Sidewinder’s ILP
formulation is global. The second iteration (and be-
yond) explicitly accounts for congestion when selecting
two patterns for each net. Moreover, the status of the
internal congestion map is dynamically updated dur-
ing the ILP construction.

4. EMPIRICAL VALIDATION
We implemented Sidewinder as follows. The high-level al-

gorithms are written in C++; we used CPLEX v.10.1 [9] as
our ILP solver. Using FLUTE [5], we decompose all multi-
pin nets into two-pin subnets. For our ILP cost function, we
use the following pricing scheme for the different patterns:
1.00 for Ls, 0.99 for Zs, 0.98 for Cs, and 0.97 for the maze
route. Note that this formulation directly accounts for both
bends (vias) and wirelength. L-shapes are the most pre-
ferred route, as they have the fewest number of bends –
zero or one. After Ls, Z-shapes are the most preferred, as
they have the same (minimal) wirelength and only one extra
bend. Next, C-shapes have an additional two units of wire-
length and one additional bend. Finally, a maze route used
as the last choice. In practice, the maze routes have more
bends and wirelength than any of the other patterns. The
chosen coeffients both encourage the use of short (L-shapes)
routes as well as enable a degree of flexibility for detours.
All experiments were performed on an AMD Opteron 2.4
GHz machine with 4 GB of memory.

Routability results for Sidewinder on the ISPD98 bench-
marks [10] are shown in Table 1. We list the percentage of
nets routed by Sidewinder, the number of iterations neces-
sary and the total runtime for each benchmark. The ILP
portion of Sidewinder is successful in routing 99.86% of all
nets. Note that 100% routability is not required - the per-
centage of unrouted nets after ILP are trivial and a detail
router is able to compensate (see Fig. 2). In order to com-
pare directly with BoxRouter 1.0 and FGR 1.0, we take the
solutions generated by Sidewinder and route all unrouted
nets with a single pass of a maze router. No nets originally

1Except in cases where the L is degenerate — a flat wire
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Figure 7: Via count comparison between Sidewinder and BoxRouter 1.0 for (a) ibm03, (b) ibm07, and (c)
ibm10. The x- and y-axes have the number of vias for Sidewinder and BoxRouter 1.0, respectively. Each net
is represented by a point whose coordinates are the number of vias it has in the results of these two routers.
The blue line shows where Sidewinder and BoxRouter 1.0 use the same number of vias for a given net. Thus,
if a point is above the blue line, Sidewinder uses fewer vias than BoxRouter 1.0 for the same net.

ISPD98 Sidewinder BoxRouter 1.0 FGR 1.0
Bench Over- Via Routed Over- Via Routed Over- Via Routed
-mark flow count length flow count length flow count length
ibm01 255 15084 66058 102 15434 65588 0 17124 63332
ibm02 8 30668 174062 33 32529 178759 0 37937 168918
ibm03 0 22809 147524 0 25724 151299 0 31993 146412
ibm04 618 28611 172652 309 30836 173289 0 38464 167101
ibm05 0 50321 409778 0 51228 409747 0 77104 409739
ibm06 0 42847 280007 0 45692 282325 0 57036 277608
ibm07 0 56895 381694 53 60832 378876 0 78563 366180
ibm08 0 69321 413300 0 75291 415025 0 93905 404714
ibm09 0 64419 416554 0 68707 418615 0 86645 413053
ibm10 0 95316 591036 0 100546 593186 0 128141 578795

Average +6.4% +0.5% +35.8% -1.9%

Table 2: Solution quality comparison of Sidewinder to BoxRouter 1.0 [3] and FGR 1.0 [17]. Note that on
these benchmarks, unlike the ISPD 2007 benchmarks, the default mode of FGR 1.0 does not penalize bends
and only minimizes wirelength without accounting for vias.

routed by Sidewinder were ripped-up to route the remaining
nets.

Table 2 compares these fully routed solutions to those
of FGR 1.0 and BoxRouter 1.0 in terms of total overflow,
via count and total routed wirelength. We first compare
against FGR 1.0 [17], which won the ISPD 2007 Contest
[11] in the 2D Category. While FGR 1.0 completes all the
ISPD98 benchmarks without violation, its via counts are
higher than Sidewinder’s by 35.8%. Note that since this
set of benchmarks don’t formally have vias, we refer to vias
as when a net “bends”. That is, a via is counted when a
horizontal routing segment is followed by a vertical segment
(or vice versa). FGR 1.0, in this case, did not penalize bends
and only minimized wirelength.

Compared against BoxRouter 1.0, we achieve 6.4% fewer
vias and 0.5% shorter routed wirelength with moderate
amounts of overflow. The via comparison is further depicted
in Figure 7. The blue line represents where both routers use
the same number of vias for that net. That is, a data point
above the blue line means Sidewinder uses fewer vias and
a data point below the blue line indicates Sidewinder uses
more vias. Against BoxRouter 1.0, Sidewinder uses fewer
vias on the vast majority of the nets. Using more sophisti-
cated techniques such as iterations of rip-up and re-route, we
could improve these violation counts. However, Sidewinder’s
solutions are sufficient to be used by a detail router.

5. CONCLUSIONS
In this paper, we propose the first ILP router that can

handle the entire global routing grid and produces routing

solutions with very few vias. Our path selection algorithm
is congestion-driven - during each iteration, the algorithm
intelligently selects the two best (least congested) paths as
candidates based on a dynamically updated congestion map.
Our ILP formulation is scalable: for a net n ∈ N , we only
consider two possibilities. Thus, given |N | nets, we only
need 2|N | variables. In addition to the traditional L and
Z routing patterns, we introduce shapes with detouring, C

shapes, to significantly improve routability. Finally, our for-
mulation guarantees that each new solution will be no worse
than the current solution. Note that our incremental ILP
approach is not limited to global ASIC routing - it is adapt-
able to detail routing applications as well as FPGA routing.

Our ILP formulation can be easily extended to various as-
pects of detail routing. In particular, mutual exclusion con-
straints and logical implications can be expressed compactly.
This type of framework allows designers to easily handle
complex design rules. One important application is forbid-
den pitches - routed paths must comply with multiple dis-
tance bounds with respect to either. For example, two paths
can be be [2λ, 4λ] or [8λ, 10λ] apart2; (4λ, 8λ) is strictly for-
bidden. Typically, complying with these restrictions is in-
credibly difficult, as there is no efficient way of modeling
these limitations. However, using ILP, not only can these
design constraints be easily expressed, they can also be inte-
grated with other design rules and models (and solved opti-
mally). Assignment of routing tracks in detailed routing can
also be expressed efficiently using ILP formulations similar

2λ is a technology-dependent distance metric



to ours. As demonstrated in Section 4, Sidewinder is adept
at handling pricing for vias.
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