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&THE EVOLUTION OF IC technology has included

changes, sometimes subtle ones, in the types of defects

prevalent in circuits. Therefore, designers must occa-

sionally reconsider fault modeling and testing in order

to incorporate relevant new sources of circuit error. At

the deep-submicron scale, VLSI circuits have higher

feature density, lower supply voltage, and higher

operating frequency, all contributing to greater signal

noise. High feature density increases capacitive and

inductive crosstalk between neighboring signals,

which can result in delay and logic faults. Further-

more, process variations are more common because

of the discrepancy between lithography wavelengths

and circuit feature sizes. These phenomena lead to

a considerable amount of randomness in actual

threshold voltages and gate delays observed after

manufacturing.

Decreased threshold voltages leave circuits suscep-

tible to soft faults caused by external radiation. When

primary radiation particles enter the atmosphere,

neutrons and other secondary particles can strike

a critical circuit node, leaving behind an ionized track

in silicon, called a single-event upset. An SEU can flip

a gate’s output signal. If this effect propagates to a flip-

flop, that flip-flop can capture (latch) it, forming a soft,

but persistent, error. However, because of three

masking mechanisms, not all SEUs cause circuit errors:

An SEU is logically masked if it appears

in an unsensitized portion of the circuit.

It is electrically masked if its amplitude

becomes lower than the threshold

voltage as it propagates through a gate.

Temporal masking occurs if an SEU

arrives at a flip-flop during a nonlatching

portion of the clock cycle. The proba-

bility of an SEU at a gate depends on gate area, neu-

tron flux, altitude, and other environmental factors.
1

New device technologies such as quantum and

nanocircuits exhibit probabilistic behavior because

the scale of interaction is often that of subatomic

particles. For instance, quantum bits exist in superpo-

sition states that collapse to either 0 or 1 with different

probabilities upon measurement. In many nanoelec-

tronic devices, the difference between logical states

approaches the thermal limit. The behavior of such

devices will therefore be inherently probabilistic.

Furthermore, defects become more common in

nanoscale devices because of manufacturing difficul-

ties. For example, devices such as single-electron

transistors and quantum cellular automata store state

in a few electrons, so missing electrons and misplaced

cells are common faults in these devices. Additionally,

electromagnetic noise and other types of interference

affect nanoscale systems easily. In summary, most

defects in nanocircuits are either inherently probabi-

listic or modeled probabilistically when deterministic

models are impractical.

Several soft-error-rate analyzers have been released

recently.2,3 These tools electrically characterize specif-

ic technology nodes and estimate the overall error rate

of combinational circuits. However, they are difficult

to use for ATPG because they don’t offer discrete logic-
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efficient technique that relies on a probabilistic approach to detect and

diagnose nontraditional faults and defects.

—Fabrizio Lombardi, Northeastern University

Computer-Aided Design for Emerging Technologies

0740-7475/07/$25.00 G 2007 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers



level fault models. Also, the user cannot specify faults

for test generation, and the tools don’t handle multiple

SEUs or multiple faults in general because these tools

emphasize radiation-induced SEUs in VLSI circuits. To

address these issues, we propose a general fault-

modeling framework that can capture both probabi-

listic faults such as SEUs and deterministic faults such

as stuck-at faults.

Generating tests for probabilistic models is funda-

mentally different from previous testing techniques.

Traditionally, the goal of testing has been to detect the

presence of faults. Traditional testing applies a test

pattern set to a circuit’s inputs and then compares the

resultant outputs with correct precomputed outputs to

determine whether a fault is present. In contrast, the

goal of probabilistic testing is to estimate fault

probability, or in other words to track uncertainty.

Probabilistic testing requires a multiset (a set with

repetitions) of test patterns because a given fault is

present for only a fraction of the computational cycles.

We call this multiset a multitest. Another difference is

that some test vectors are more likely than others to

detect transient faults, because of path-dependent

effects such as electrical masking. Therefore, in

probabilistic testing, we must consider the likelihood

of detecting a fault—in other words, a test vector’s

sensitivity to a fault. Table 1 summarizes these

differences.

PTM fault-modeling framework
Traditional testing uses a deterministic fault model

to represent faults and derive test vectors that

propagate fault effects (errors) to outputs. In our

framework, we use a probabilistic analog called the

probabilistic transfer matrix (PTM) method, which is

technology independent but well-suited to represent-

ing faults and errors in nanotechnology.4

The PTM framework describes a gate or circuit’s

faulty behavior using a PTM, M, a matrix whose (j, k)th

entry represents the conditional probability of output

signals Out 5 o0, o1, …, on having value k if input

signals In 5 i0, i1, …, im have value j—that is, p(k | j).

We treat row and column indices j, k as bit vectors

whose entries represent values of inputs and outputs.

For instance, p(3|2) represents the probability that two

output variables (o0, o1) have values (1, 1) given that

two input variables (io, i1) have values (1, 0). A fault-

free circuit has an ideal transfer matrix (ITM), which is

a PTM in which the output’s correct value occurs with

probability 1. Figure 1 shows the ITM and a PTM for

a two-input AND gate. In the PTM, AND2(p), the

probability of an output error is p for each input

combination.

We treat wiring subnetworks as a special class of

gates, which have permutation matrices as ITMs. We

form wire PTMs by permuting bits of the identity

matrix’s row and column indices. Figure 2 shows the

wire swap matrix for two adjacent wires Swap2, a fan-

out matrix F2, and an identity matrix representing

a wire or buffer I1. In working with n-bit buses, it is

useful to define n-bit versions of the wiring ITMs in

Figure 2—for example, I1,n, F2,n, and Swap2,n. The first

subscript is the number of output buses, and the

second is the bus width. I1,n is a 2n 3 2n identity matrix,

and F2,n is a 2n 3 22n matrix that copies an n-bit signal

twice.

In the PTM framework, we represent a signal with

a 1 3 2 row vector, v 5 [p0 p1], where p0 is the
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Table 1. Key differences between deterministic and probabilistic testing.

Attribute Deterministic testing Probabilistic testing

Fault occurrence Deterministic Transient or intermittent

Fault model Stuck-at, bridging, transition Probabilistic generalization

Test inputs Set of input vectors Multiset of input vectors (multitest)

Coverage Each test either detects a fault or not (binary) Tests detect faults with varying probabilities

Goal Detect fault presence or conclude fault absence Estimate fault probability

Figure 1. ITM AND2 (a) and PTM AND2(p) (b) for an

AND gate. The PTM describes output error

probability p for each input combination.
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probability of the signal’s being 0, and p1 is the

probability of its being 1. Multiple signals can be jointly

represented. For example, input vector vin (to a gate or

a circuit) is a row vector representing the joint

probability distribution of its input signals. The ith

entry of vin, denoted vin(i), gives the probability that

input signals have values represented by bit vector i.

We can combine independent signals by using the

tensor product of individual signal vectors. Given two

matrices M1 and M2 of dimensions 2k 3 2l and 2m 3 2n,

tensor product M 5 M1 fl M2 is a 2km 3 2ln matrix

whose entries are

M i0 . . . ikzm{1, j0 . . . jl{1ð Þ~
M1 i0 . . . ik{1,i0 . . . jl{1ð Þ|
M2 ik . . . ikzm{1, jl . . . jlzn{1ð Þ

The output probability distribution after input

vector vin is evaluated on gate G with PTM MG is vin

3 MG.

Example 1. If inputs i1 and i2 of an ideal AND

gate are described by vi1 5 [0.5 0.5] and vi2 5

[0.5 0.5], then the input row vector is vin 5 vi1 fl vi2 5

[0.25 0.25 0.25 0.25]. The output distribution is given

by (vin 3 AND2) 5 [0.75 0.25].

PTMs can represent a wide variety of deterministic

and probabilistic faults. Figure 3 shows a subset of gate

faults that PTMs can capture.

Thus far, we’ve described signals by their logic

values. We now expand signal representation to

incorporate necessary electrical characteristics, while

retaining our model’s discreteness. For instance, we

can differentiate signals of long and short duration just

as we differentiate signals of high and low amplitude

(with their logic values). We represent a signal by

vector w, which has four entries instead of two: w 5

[p0S p0L p1S p1L]. The second bit of the row index

represents short (S) or long (L) duration, so p0S is the

probability of a logic 0 with short duration. Extraneous

glitches such as those induced by SEUs are likely to

have short durations, whereas driven logic signals are

likely to have relatively long durations.

Each gate in a circuit has the probability of

experiencing an SEU strike that depends on environ-

mental factors such as neutron flux and temperature.

We call this the probability of occurrence for gate (or

node) G: poccur(G). SEU strikes create glitches that can

be differentiated through a combination of shape and

amplitude. These differentiations are important in

a glitch’s propagation through circuit gates. Therefore,

we use a modified identity matrix called I1,n(poccur) to

represent the probability distribution of a glitch in-

duced by an SEU strike.

We use the specific glitch propagation model of

Omana et al. to determine which signal characteristics

to capture.5 A different model might require that other

characteristics be represented. The model we use

classifies glitches into three types, depending on their

duration D and amplitude A relative to gate propaga-

tion delay TP and threshold voltage VTH. We assume

that signals change from the logic-low value to the

logic-high value only when a glitch occurs (but these

values can later be inverted). The following are the

three types of glitches:

& Type 1. These glitches

have amplitude A .

VTH and duration D .

2TP,and theypropagate

without attenuation.

& Type 2. These have A

. VTH and 2TP . D .

TP, and they propa-

gate with attenuated

amplitude A9 , A.

314

Figure 2. Wiring ITMs: Swap2 (a) is an adjacent

swap of two wires; F2 (b) is a fan-out with two

branches; and I1 (c) is an identity matrix on

one wire.

Figure 3. Various faults in an AND gate: input-dependent error (a), first input signal

stuck-at 1 (b), probabilistic output bit-flip with p 5 0.05 (c), and wrong-gate error with

AND gate replaced by an XOR gate (d).
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& Type 3. Glitches in this

category have A ,

VTH and don’t propa-

gate at all.

Amplitude is already

indicated by the logic

value, so we need an

additional bit to indicate

whether the duration is

longer or shorter than the

gate’s propagation delay

(when amplitude is higher

than threshold voltage).

Duration is irrelevant for

glitches with amplitudes

lower than the threshold

voltage, because these

amplitudes are likely to

be attenuated. Figure 4b

shows the probability dis-

tribution of an SEU strike

when the correct logic

value is 0. Type 1 glitches

are indicated by row labels 11, type 2 glitches are

indicated by labels 10, and type 3 glitches are indicated

by 01. Figure 4b assumes a uniform distribution with

respect to glitches.

Once an SEU strikes a gate and induces a glitch, the

gate’s electrical characteristics determine whether the

glitch is propagated. Glitches with long duration and

high energy relative to gate propagation delay and

threshold voltage are usually propagated; others are

quickly attenuated. We call the probability that a glitch

is propagated pprop(g). We represent a logic gate’s

relevant glitch transfer characteristics with a modified

gate PTM. For example, Figure 4c shows a modified

AND PTM, denoted AND2,2(pprop).

In the selected glitch model, attenuation transforms

sensitized Type 2 glitches, with a certain probability,

into Type 3 glitches. All other signals retain their

original output value given by the gate’s logic function.

The PTM in Figure 4c describes this transfer function. It

shows an AND gate that propagates an input glitch

(only if the other input has a noncontrolling value),

with certainty if the glitch is Type 1 (and thus is

indistinguishable from a driven logic value), or with

probability pprop if the glitch is Type 2.

When using 2-bit signal representations, we compute

a signal’s probability of having a logic 1 value by mar-

ginalizing or summing out over the second bit. For in-

stance, if a signal has the 2-bit distribution [0.2 0.1 0.3 0.4],

because the second bit indicates duration, the

probability of a logic 0 is 0.2 + 0.1, and the probability

of a logic 1 is 0.3 + 0.4.

Test vector sensitivity
To discuss the sensitivity of test vectors to faults, we

begin with an example of a circuit in which a fault is

detected by different vectors with different probabil-

ities. Then, we present PTM-based algorithms for

calculating test vector sensitivity.

Example 2. Consider the circuit in Figure 5. Suppose

an SEU periodically occurs at input b. The test vectors

that propagate the induced glitch to the outputs are t1 5

001 (to output z), t2 5 100 (to output y), and t3 5 101 (to

both y and z). In deterministic testing, we can choose

any of these test vectors. However, error attenuation

along sensitized paths affects the propagation of

probabilistic errors. If the propagation probability is

pprop at each gate, t1 has probability pt1 5 p2
prop of

propagating the error to an output, t2 has probability pt 2

5 pprop, and t3 has probability pt 3 5 pt1 + pt 2 – pt 1 pt 2. For

a fault that occurs with probability pf, a vector ti must be

repeated q1/(pti * pf )r times for one expected de-

tection. Therefore, test application time is shortest for
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Figure 4. PTMs for SEU modeling: glitch with duration D and amplitude A attenuated to

duration D9 and amplitude A9 as it passes through a gate with propagation delay Tp (a);

probability distribution I2,2(poccur) of the energy of an SEU strike at a gate output,

assuming a uniform energy distribution (b); and SEU-induced glitch propagation

AND2,2(pprop) for a two-input AND gate (c). Row labels indicate input signal type. Type 2

glitches become attenuated to Type 3 with a probability of 1 – pprop. (In (b), division by 3

is due to the uniform distribution assumption.)
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test vector t3, which is the most sensitive to the transient

fault in question.

There are two ways to identify sensitive test vectors.

The first is circuit PTM computation, a general method

for deriving circuit reliability information.4 This meth-

od combines the gate PTMs to form a circuit PTM, and

the most sensitive test vectors can be read off from the

circuit PTM. Starting with the gate PTMs, we calculate

the circuit PTM using a few construction rules and two

matrix operations:

& If two gates G1 and G2 with PTMs P1 and P2 are

connected in series, their combined PTM is given by

their matrix product P1P2.

& If G1 and G2 are connected in

parallel, their combined PTM is

given by their tensor product P1 fl

P2.

Figure 5 shows an algebraic expres-

sion for a circuit PTM directly calculated

from the circuit diagram with the pre-

ceding rules. Figure 6 shows the same

circuit with a circuit PTM for SEU-

induced probabilistic faults.

Given the notion of a circuit’s PTM,

we can now define a test vector’s

sensitivity to faults in the circuit. We

define the sensitivity of test vector t to

fault set F 5 {f1, f2, … fn}, which occurs

with probability P 5 { p1, p2, … pn} in

circuit C with PTM MF and ITM M, as the total

probability that the output under t is erroneous given

that faults F exist with probability P. Test vector t can

be represented by vector vt with 0s in all but the index

corresponding to the input assignments of t. For

instance, if test vector t assigns 0s to all input signals

and C has three inputs, then vt 5 [1 0 0 0 0 0 0 0]. The

sensitivity of t is the probability that the ideal and faulty

outputs are different, and we compute it by taking the

L1 norm of the element-wise product (denoted .*) of

the correct and faulty output vectors. (The L1 norm of

a vector is simply the sum of its elements.)

sens F , tð Þ~ 1 { vtMfð Þk :� vtMð ÞkL1 ð1Þ

Example 3. We com-

pute the sensitivity of test

vector vt 5 [1 0 0 0 0 0 0 0]

for the circuit in Figure 5,

with error probability p 5

0.1, using the circuit’s

PTM MF and ITM M, as

shown in Figure 7.

Note that vtMf and vtM

must be marginalized if

there is a multibit signal

representation. For exam-

ple, in the case of the SEU

model described in the

previous section, we must

sum out the second bit

for both vectors to obtain

the correct sensitivity.
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Figure 5. Sample circuit with its ITM and PTM computations.

Figure 6. Circuit with ITM and PTM computations describing an SEU strike and

propagation with multibit signal representations.
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The second method of sensitivity

computation is output distribution com-

putation for a particular test vector. We

begin with a preselected complete set

of test vectors for the permanent stuck-

at faults corresponding to those in F. For

each test vector in this set, we compute

the faulty output (vtMf) and the ideal

output (vtM) by propagating signal

distributions through each gate using

vector-PTM multiplication.

Example 1 illustrates this process.

The difference in this sensitivity compu-

tation method is that we avoid explicitly

computing the circuit PTM and ITM,

which is computationally expensive.

Then, we use Equation 1 to compute

the sensitivity.

Fan-outs result in inseparable proba-

bility distributions of the branch signals.

Marginalizing these signals or treating

them as separate can cause inaccura-

cies in the output probabilities. A

possible way to handle this problem is

simply to keep these signals together

(joint representation) and enlarge

any gate PTM that any of the signals

pass through, thus encapsulating the

fan-out. We enlarge gates by adding

inputs that pass through unchanged.

This corresponds to tensoring the gate

matrix with an identity matrix.

In Example 4, we compute signal vectors through

the circuit in topological order to obtain output

vectors. At each step, we compute the appropriate

joint input probability distribution for the next gate in

topological order. However, because of inseparable

signal distributions, we must often enlarge gates with

identities. This method’s complexity is linear in the

number of gates in a circuit, if gate size (including

enlargement) is bounded by a constant. Therefore,

this method scales much farther than PTM computa-

tion. The gate size is limited to less than 10 inputs in

most circuit synthesis techniques. We can contain the

enlargement by imposing a limit on the number of

signals and marginalizing any distributions that

become larger.

Example 4. Consider the circuit in Figure 5 with the

primary inputs described by vectors va, vb, and vc, and

the two-input AND gates described by PTM AND2(p).

We compute the faulty output vector in the following

steps:

1. Multiply vb by F2 to obtain fan-out branches

d and e: vd,e 5 vb 3 F2.

2. Enlarge the AND gate with inputs a and d to

include e, which is inseparable from d, as an

input and an output: enlarged_AND2(p) 5

AND2(p) fl I1.

3. Compute the joint probability of a, d, and e,

using the tensor product to form the inputs for

the enlarged gate of the previous step: va,d,e 5

va fl vd,e.

4. Compute the joint probability of f with e by

vector matrix multiplication: vf,e 5 va,d,e 3

enlarged_AND2(p).

5. Signals f and e are now inseparable. Therefore,

enlarge the AND gate with inputs c and e,
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Figure 7. Matrix equations to compute the sensitivity of test vector vt for the

circuit in Figure 5 with error probability p 5 0.1, using the circuit’s PTM MF

and ITM M. The first matrix equation multiplies input vector vt by ITM M,

resulting in an output vector (a). The second matrix equation multiplies

input vector vt by faulty matrix MF, resulting in an erroneous output vector

(b). Combining these two matrix equations, we compute the sensitivity of

this input vector (c).
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and compute outputs f and g: vf,g 5 (vf,e fl vc) 3

(I1 fl AND2(p)).

6. Multiply the joint vector of f and g by an

enlarged F2 to produce y, x, and g: vy,h,g 5 vf,g

3 (F2 fl I1).

7. Multiply vy,h,g by an enlarged AND gate to

produce y, z: vy,z 5 vy,h,g 3 (I1 fl AND2(p)).

8. To find the ideal output vector, change all

instances of AND2(p) to AND2.

This computation incorporates effects of the

reconvergent fan-out from b to z because signals in

the fan-out branch (d, g, f, x, z) are always jointly

represented and processed. However, storing joint

probability distributions can be computationally

expensive, so we sometimes trade a loss of accuracy

for a reduction in memory complexity.

Compact multitest generation
Multitest generation is closely related to the

standard set-cover problem, in which a set’s elements

are ‘‘covered’’ by subsets. The difference in multitest

generation is that set members (faults) are detected by

a test (covered) only probabilistically. This lets us

modify algorithms designed for set cover and in-

troduce integer linear-programming (ILP) formulations

whose linear-programming (LP) relaxations can be

solved in polynomial time. Furthermore, modifying the

multitest objective simply amounts to altering the ILP

objective function.

Suppose single fault f in circuit C has estimated

occurrence probability p. We confirm this probability

as follows:

1. Derive test vector t with high sensitivity sens(f,

t).

2. Apply t to C, k 5 t1/(sens(f, t))s times for one

expected detection.

3. If there are d(f ) .. 1 detections, we conclude

that the actual probability of f is higher, and we

reject the estimated probability.

We estimate the probability that

there are d(f ) detections in k

trials using the binomial theorem.

If the probability of d(f ) detec-

tions is low, the actual fault

probability is likely to be greater

than estimated probability p.

To extend this argument to multiple

faults, we consider two assumptions about faults:

& Assumption 1. There are several possible proba-

bilistic faults, yet the circuit experiences only

a single fault in any given clock cycle. This is

a common assumption in techniques focused on

SEUs and is justified by the relatively low

frequency of particle strikes.

& Assumption 2. Each circuit component (gate)

has an independent fault probability; that is,

multiple faults at different locations can occur in

the same clock cycle. This assumption applies to

nanotechnologies in which large physical de-

fects or random device behavior can lead to

multiple faults in different circuit locations. Here,

the probability of two faults is given by the

product of individual fault probabilities.

Our goal in either case is to pick a multitest of

vectors T9 , T 5 {t1, t2, … tm} such that |T9| is minimal.

Recall that each test vector ti represents a subset of F

(that is, a subset of faults).

Under Assumption 1, we can reduce multitest size

by using test vectors that are either especially

susceptible to one fault or somewhat sensitive to

many faults. Therefore, to obtain the minimum

detection probability, pth, we need n tests, where n

satisfies (1 – p)n # 1 – pth.

Figure 8 shows the greedy algorithm for gener-

ating such a multitest, starting from a compacted

set of test vectors for the corresponding determin-

istic faults. Intuitively, compacted test sets are

likely to contain many sensitive test vectors

because each test vector can detect multiple faults.

However, we get better results if we start with

a larger set of test vectors, such as the union of

different compact test sets. The set R in the

algorithm stores the uncovered faults in any

iteration—undetected faults—with a minimum

probability of pth. As before, T 5 {t1, t2 … tn} is
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Figure 8. Greedy algorithm for minimizing the number of test vectors (with

repetition) required for fault detection.
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the test set, and F is the

fault set. Kleinberg and

Tardos proved that the

approximation factor for

the related set-cover algo-

rithm is O(log( | multi-

test | )).6 The runtime is

lower-bounded by the

multitest’s size, which is

the number of iterations

through the while loop.

We also formulate this problem as the ILP

formulation shown in Figure 9a. The challenge in

adapting the ILP algorithms for set cover or set

multicover is that there is no notion of a probabi-

listic cover in known set-cover formulations. In our

case, each test detects each fault with a different

probability, sens(fj, ti). If we required a minimum

detection probability pth, as in Figure 8, the

constraint that Yfj, Pj(1 – sens(fi, tj)) , 1 – pth

wouldn’t be linear. We alter this constraint and

linearize it by observing that each repetition of test

ti can be regarded as an independent, identically

distributed binomial variable for each fault fj.

Therefore, if a test repeats xi times, the expected

detections for fault fj are xi 3 sens(fj, ti)—that is, the

expected value of a binomial random variable with

parameters (xi, sens(fj, ti)). Because expectation is

linear, we can add the contributions of all test

vectors for each fault fj as Si(xi 3 sens(fj, ti)),

leading to the constraint in line 3 of Figure 9a. We

can show that this ILP formulation reduces to the

multiset-multicover problem. The LP relaxation,

along with randomized rounding, gives a solution

of this problem, which is within a log factor of

optimal.7 In randomized rounding, each xi is

rounded up with a probability equal to the

fractional part of xi.

Assumption 2 generalizes the single-fault case. We

can treat the fault set as a single fault with multiple

locations and introduce fault probabilities in all gates’

PTMs simultaneously. We denote this fault F9. Then, we

simply pick the test vector t that is most sensitive to the

combination of simultaneous faults, using the output-

distribution-based test vector sensitivity computation.

We repeat t a total of k/(sens(F9, t)) times for k expected

detections. Table 2 represents a situation in which each

gate in the circuit has a small error probability, p 5

1025. The average difference between the number of

repetitions needed by a random vector and the number

needed by the most sensitive test vector is 53.3%. This

implies a proportional decrease in test application time.

In addition, we can diagnose the probabilistic faults

in Assumption 1. In other words, we select test vectors

that minimize ambiguity about which fault is detected.

For this purpose, we modify the objective to that of Fig-

ure 9b. Intuitively, we know that achieving the required

detection probability minimizes the total number of

extra detections. This is equivalent to minimizing the
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Table 2. Number of repetitions required for one expected detection: random vectors versus maximally sensitive

test vectors.

Circuit

Average

sensitivity

No. of

repetitions

Maximum

sensitivity

No. of

repetitions

Improvement

(%)

9symml 3.99 3 1025 2.51 3 104 7.99 3 1025 1.25 3 104 50.00

Alu4 5.78 3 1024 1.73 3 103 1.82 3 1023 549 68.20

i1 6.65 3 1025 1.50 3 104 9.99 3 1025 1.00 3 104 33.40

b9 7.70 3 1025 1.30 3 104 1.10 3 1024 9.09 3 103 30.00

C880 5.38 3 1024 1.86 3 103 9.39 3 1024 1.07 3 103 42.70

C1355 1.03 3 1023 970 1.27 3 1022 78 91.80

C499 2.76 3 1024 3.62 3 103 1.27 3 1023 787 78.27

x2 3.39 3 1025 2.95 3 104 4.99 3 1025 2.00 3 104 32.10

Average 53.30

Figure 9. ILP formulations for test set generation for a fixed number of expected

detections: minimizing the number of test vectors required (a) to maximize fault

resolution (minimize overlap) (b).
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overlap in the subsets represented by the test vectors. In

contrast to the previous formulation, this problem is

related to the multiset-exact-multicover problem.

In practice, the number of test vectors needed for

probabilistic testing can be quite small because testers

are likely to be mainly concerned with the most

frequently occurring faults. The number of repetitions

of a test vector for n expected detections is!n/pf, where

pf is the fault probability. Therefore, multitest size

decreases with expected fault probability.8 Also, if

application time is limited, we can select test vectors

that maximize the expected detection rate. To do this, we

use a binary search for the largest value of n achievable

with m test vectors. Because the program in Figure 9a

attempts to minimize the number of test sets selected, it

also maximizes the faults covered by each test.

In summary, test generation for probabilistic faults

consists of the following steps:

& Generate test set T for the corresponding de-

terministic faults in F.

& Evaluate the sensitivity of each test in T with

respect to each fault in F, using the output

distribution computation.

& Execute the greedy algorithm (Figure 8) or the

ILP formulations (Figure 9).

Table 3 shows the number of test vectors

required to detect input signal probabilistic stuck-

at-0 faults (of probability pf 5 0.05) using the

method shown in Figure 8. These results show that

our algorithm requires more than 50% fewer test

vectors than random selection. Our base set is

a complete test vector set generated by the

Atalanta ATPG software.9

Once a multitest is generated, we can use Bayesian

learning to estimate the actual error probability. This

well-established AI technique uses observation (data)

and prior domain knowledge to predict events.10 In our

case, the prior domain knowledge is the expected or

modeled fault probabilities in a circuit, and the data

comes from test results.

AS CIRCUIT RELIABILITY becomes a primary concern in

submicron VLSI and nanotechnology, testing will take

on an increasingly important role in ensuring the

correct functionality of combinational circuits. Fur-

thermore, the types of faults that occur in circuits will

change because of the greater impact of transient

faults and inherently probabilistic effects in circuit

technology. Our general probabilistic fault model and

algorithms address these concerns. Our methods are

suitable for the following uses: First, after manufacture,

they can be used to assess circuits’ susceptibility to

transient faults and to determine yield. They can also

be used in conjunction with radiation and high-

temperature testing for further acceleration. Second,

during deployment, our methods can serve to test the

effects on the circuit of high-radiation environments

and to turn on redundant computation units for error

correction if necessary. Our future research in

probabilistic testing will include the development of

BIST techniques that can be used efficiently in these

situations. &
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