
InVerS: An Incremental Verification System
with Circuit-Similarity Metrics and Error Visualization

Kai-hui Chang, David A. Papa, Igor L. Markov and Valeria Bertacco
Department of EECS, University of Michigan at Ann Arbor

{changkh, iamyou, imarkov, valeria}@eecs.umich.edu

April 25, 2008

Abstract

As interconnect increasingly dominates delay and power at the latest technology nodes,
much effort is invested in physical synthesis optimizations, posing great challenges in vali-
dating the correctness of such optimizations. Common design methodologies postpone the
verification of physical synthesis transformations until the completion of the design phase.
The design flow is no longer sustainable because isolating potential errors produced by
these physical transformations becomes extremely challenging at the late design stages. To
address these issues, we propose a fast incremental verification system for physical syn-
thesis optimizations, InVerS, which includes capabilities for error detection, diagnosis, and
visualization. InVerS is based on a simple yet effective circuit similarity metric to quickly
help engineers identify potential errors earlier in the development, and it resorts to tradi-
tional verification only when necessary to ensure the completeness of the verification flow.
InVerS also provides an error visualization interface to simplify error isolation and cor-
rection, thereby reducing verification effort and enabling more aggressive optimizations to
improve design performance.

Keywords: functional verification, debugging, equivalence checking

1 Introduction

The complexity growth of digital designs poses increasing challenges to the functional verifi-
cation of a circuit. As a result, digital systems are commonly released with latent bugs, and the
number of such bugs is growing larger for each new design, as can be observed from publicly
available errata documents by any major semiconductor vendor. The verification problem is
further exacerbated by the growing dominance of interconnect in delay and power of modern
designs, which requires tremendous physical synthesis effort [11] and even more powerful op-
timizations such as retiming [6]. Given that bugs still appear in many EDA tools today [9], it



is important to verify the correctness of the performed optimizations. Traditional techniques
address this verification problem by checking the equivalence between the original design and
the optimized version. This approach, however, only verifies the equivalence of two versions
of the design after a number, or possibly all, of the transformations and optimizations have
been completed. Unfortunately, such an approach is not sustainable in the long term because it
makes the identification, isolation, and correction of errors introduced by such transformations
extremely difficult and time-consuming. On the other hand, performing traditional equivalence
checking after each circuit transformation is too demanding. Since functional correctness is the
most important aspect of high-quality designs, a large amount of effort is currently devoted to
verification and debugging, expending resources that could have otherwise been dedicated to
improve performance. Because of this, verification has become the bottleneck that limits which
novel features that can be included in a design [3], slowing down the evolution of the overall
quality of electronic designs.

Given the current practice, it is crucial to address this verification bottleneck to improve de-
sign quality. Recent advancements to this end often focus on improving the performance of the
verification tool itself. For example, several techniques that use simulation to accelerate SAT or
BDD-based equivalence checking have been proposed [7]. We advocate not only investing in
the performance of verification algorithms and tools, but also revising the design methodology
to ease the burden on verification and debugging effort. We propose an Incremental Verifica-
tion System (InVerS) capable of exposing design errors earlier on during the optimization flow,
hence facilitating debugging. The high performance of our equivalence verification solution
allows quick evaluation of the correctness of each design transformation. When an error is de-
tected, InVerS provides a counterexample so that the designer can analyze the error directly.
Our technique also suggests the most probable location and source of the error, pinpointing, in
most cases, the specific transformation responsible for it. To further improve designers’ produc-
tivity, InVerS provides an intuitive Graphical User Interface (GUI). Our implementation is built
using the OpenAccess database [10] and uses the OpenAccess Gear (OAGear) programmer’s
toolkit, so that we can seamlessly integrate design, verification and debugging activities into the
same framework. This framework is highly flexible and can easily be enhanced in the future.

The contributions of this work include: (1) InVerS, an incremental verification methodology
that enhances the accuracy of error detection; (2) an innovative and scalable metric, called
the similarity factor, that quickly pinpoints potential bug locations; and (3) a GUI for InVerS
with data visualization that improves the usability of our tools. Our techniques can greatly



improve design quality because: (1) the resources and effort saved in verifying the correctness
of physical optimizations can be redirected to improve other aspects of the design, such as
reliability and performance; and (2) more aggressive changes to the circuit can be applied, such
as retiming optimizations and design-for-verification (DFV) techniques.

The rest of this paper is organized as follows. In Section 2 we review previous work and
background material. We describe our incremental verification system in detail in Section 3.
Experimental results are shown in Section 4, and Section 5 concludes this paper.

2 Background

InVerS addresses the functional verification of incremental netlist transformations. To under-
stand the problem better, we describe two common optimization techniques: physical synthesis
and retiming. We then briefly explain the challenges to verification imposed by these tech-
niques.

2.1 Physical Synthesis Flows

Post-placement optimizations have been studied and used extensively to improve circuit pa-
rameters such as power and timing, and these techniques are often called physical synthesis.
In addition, it is sometimes necessary to change the layout manually in order to fix bugs or
optimize specific objectives; this process is called Engineering Change Order (ECO). Physical
synthesis is commonly performed using the following flow: (1) perform accurate analysis of
the optimization objective, (2) select gates to form a region for optimization, (3) resynthesize
the region to optimize the objective, and (4) perform legalization to repair the layout.

Given that subtle and unexpected bugs still appear in physical synthesis tools today [9],
verification must be performed to ensure the correctness of the circuit. However, verification
is typically a time-consuming process; therefore, it is often postponed until hundreds of opti-
mizations have been completed. Consequently, if an error is detected, it is difficult to pinpoint
the specific circuit modification that introduced the bug. In addition, debugging a circuit at this
design stage is often difficult because engineers are unfamiliar with the automatically generated
netlist. As we show later, InVerS addresses these problems by providing a fast incremental
verification technique and an integrated error visualization tool.



2.2 Retiming

Retiming is a sequential logic optimization technique that relocates registers in a circuit while
leaving the combinational cells unchanged [6]. It is often used to minimize the number of regis-
ters in a design or to reduce a circuit’s delay. Although retiming is a powerful technique, ensur-
ing its correctness is an even more complex verification problem because sequential equivalence
checking is much more difficult than combinational equivalence checking [5]. As a result, if
the analysis terminates, the runtime of sequential verification is often much larger than that of
combinational verification. In this paper we propose new techniques that extend our previous
work [2] to address the sequential verification problem for retiming.

3 Incremental Verification

We present an incremental verification package that is composed of a logic simulator, a SAT-
based formal equivalence checker, our innovative similarity metric between a circuit and its re-
vision, and new visualization tools to aid users of our proposed incremental verification method-
ology. In this section we define our similarity metric, illustrate the error visualization interface,
and then describe our overall verification methodology.

3.1 New Metric: Similarity Factor

We define an estimate of the similarity between two netlists, ckt1 and ckt2, that utilizes fast sim-
ulation, called the similarity factor. This metric is based on simulation signatures of individual
signals, i.e. the k-bit sequences holding signal values computed by simulation on each of k input
patterns (e.g., k=1024). Let N be the total number of signals (wires) in both circuits. Out of
those N signals, we distinguish M matching signals — a signal is considered matching if and
only if both circuits include signals with an identical signature. The similarity factor between
ckt1 and ckt2 is then M/N. In other words:

similarity f actor =
number o f matching signals

total number o f signals (1)

We also define the Difference Factor as (1− similarity f actor).

Example 1 Consider the two netlists shown in Figure 1, where the signatures are shown above
the wires. There are 10 signals in the netlists, and 7 of them are matching. As a result, the
similarity factor is 7/10= 70%, and the difference factor is 1 - 7/10 = 30%.



Figure 1: Similarity factor example. Note that the signatures in the fanout cone of the corrupted
signal are different.

(a)

(b)
Figure 2: Resynthesis examples: (a) the gates in the rectangle are resynthesized correctly, and
only their signatures may be different from the original netlist; (b) an error is introduced dur-
ing resynthesis, leading to potential signature changes in the fanout cone of the resynthesized
region, significantly increasing the difference factor.

Intuitively, the similarity factor of two identical circuits should be 100%. If a circuit is
changed slightly but is still mostly equivalent to the original version, then its similarity factor
should drop only slightly. For example, Figure 2(a) shows a netlist where a region of gates is
resynthesized correctly. Since only the signatures in that region will be affected, the similarity
factor is still high. However, if the change greatly affects the circuit’s function, the similarity
factor can drop significantly, depending on the number of signals affected by the change. As
Figure 2(b) shows, when a bug is introduced by resynthesis, the signatures in the output cone of
the resynthesized region are also different, causing a larger drop in similarity factor. However,
two equivalent circuits may be dissimilar, e.g., a Carry-Look-Ahead adder and a Kogge-Stone
adder. Therefore, the similarity factor should be used in incremental verification and cannot



replace traditional verification techniques.
One issue that may affect the accuracy of the similarity factor is that two different signals

may have identical signatures by coincidence. To counter this, a larger number of simulation
vectors can be used, and the vectors can be selected carefully. For example, input vectors gener-
ated by ATPG tools typically have better signal distinguishing capabilities than those generated
by random simulation. An orthogonal, but more effective technique hashes not just signatures
but also the input supports of signals — two signatures match only when their input supports
are also the same. Additionally, we could consider the distances from inputs to the signals in
hops (depth). If two signals are found at very different distances from the inputs, they are con-
sidered different even when their signatures are identical. On the other hand, it is important to
note that if one signature is wrong, its entire fanout will usually be wrong, and the chances of
the entire fanout cone matching existing signatures by coincidence are low. This phenomenon
makes the similarity factor more accurate, even without extensions for support and signal depth,
for circuits with deeper logic. These extensions will primarily be useful for shallow circuits or
signatures that are close to outputs, and also in the cases when we seek to precisely locate the
bug at the “tip” of the incorrect fanout cone.

3.2 Sequential Verification for Retiming

A signature represents a fraction of a signal’s truth table, which in turn describes the informa-
tion flow within a circuit. While retiming may change the clock cycle at which a signature is
generated, the generated signatures should still be identical. Figure 3 shows a retiming example
from [2], where (a) is the original circuit and (b) is the retimed circuit. A comparison of signa-
tures between the circuits shows that the signatures in (a) also appear in (b), although the cycles
in which they appear may be different. For example, the signatures of wire w (bold-faced) in the
retimed circuit appear one cycle earlier than those in the original circuit because the registers
were moved later in the circuit. Otherwise, the signatures of (a) and (b) are identical. This
phenomenon becomes more obvious when the circuit is unrolled, as shown in Figure 4. Since
the maximum absolute lag in this example is 1, retiming only affects gates in the first and the
last cycles, leaving the rest of the circuit unmodified. As a result, signatures generated by the
unaffected gates should not change.

Based on the observation above, we extend our similarity factor to sequential verification,
called sequential similarity factor, as follows. Assume two netlists, ckt1 and ckt2, where the
total number of signals (wires) in both circuits is N. After simulating C cycles, N×C signatures



(a)

(b)
Figure 3: A retiming example: (a) is the original circuit, and (b) is its retimed version. The
tables above the wires show their signatures, where the nth row is for the nth cycle. Four traces
are used to generate the signatures, producing four bits per signature. Registers, initialized to 0,
are represented by black rectangles. As wire w shows, retiming may change the cycle in which
signatures appear, but it does not change the signatures themselves. Corresponding signatures
are highlighted in blue (boldface).

will be generated. Among those we count M matching signatures. The sequential similarity
factor between ckt1 and ckt2 is then M/(N ×C). In other words:

sequential similarity f actor =
number o f matching signatures f or all cycles

total number o f signatures f or all cycles (2)

3.3 Error Visualization

The computation of similarity factor works by matching signals from two revisions of a design.
Naturally, this process also identifies those nets which are unmatched to the previous design
version. Those nets are responsible for the change in circuit behavior. We use two techniques
to highlight the differing nets, in both cases we present the results to the user using a familiar
layout format. Our first technique uses a highlight color for the gates whose output signals
have unmatched signatures. In presence of an error the layout will highlight the entire output



(a)

(b)
Figure 4: Circuits in Figure 3 unrolled three times. The cycle at which a signal appears is
denoted using subscript “@”. Retiming affects gates in the first and the last cycles (dark green),
while the other gates are structurally identical (light yellow). Therefore, only the signatures of
the green gates will be different.

cone of logic of the unmatched signature. The second technique only highlights the source of
a problem, by marking only those gates with matched input signatures and unmatched output
signatures. Figure 5 shows an example of our visualization techniques. Notice, however, that
fixing these bugs may unmask other bugs, for instance in Figure 5(b) we could only detect 4
of the 5 injected bugs. The two visualization techniques described enable designers to quickly
narrow down errors and find their original cause, hopefully simplifying the correlation to the
synthesis optimization that generated them.

3.4 Overall Verification Methodology

As mentioned in Section 1, traditional verification is typically performed after a batch of circuit
modifications because it is very demanding and time consuming. As a result, once a bug is
found, it is often difficult to isolate the specific change that introduces the bug because hundreds
or even thousands of changes have been processed since the last check. The similarity factor
addresses this problem by pointing out the changes that might have corrupted the circuit. As
described in the previous subsections, a change that greatly affects the circuit’s function will
probably cause a steep drop in the similarity factor. By monitoring changes in similarity factor
after each circuit modification, engineers can isolate when a bug might have been introduced
and trigger full equivalence checking immediately. Based on the techniques that we developed,
we propose the InVerS verification methodology as follows (see Figure 6):



(a) (b)

Figure 5: Our similarity layout viewer for design SASC with bug-related data shown in red
(darker color): (a) one bug injected; highlighted gates drive unmatched signals; (b) 5 unrelated
bugs injected; highlighted gates drive unmatched signals, but all of their inputs are matched; 4
bugs are identified, and one is masked.

Figure 6: The InVerS verification methodology monitors each layout optimization to identify
potential errors and calls equivalence checking when necessary. A debugging support GUI is
provided when verification fails.

1. After each modification to the circuit, the similarity factor between the new and the origi-
nal circuit is calculated. Running average and standard deviation of the past 30 similarity
factors are used to determine whether the most recent similarity factor is significantly
lower. Empirically, we have found that if the latest similarity factor drops below the
average by more than two standard deviations, then it is likely that the change had intro-
duced a bug. This value, however, may vary among different benchmarks and should be
empirically determined.

2. When the similarity factor indicates a potential problem, traditional verification should
be performed to verify the correctness of the executed circuit modification.

3. If verification fails, our error visualization tools can be used to debug the errors by high-



lighting the gates producing differing signals.

Since InVerS monitors drops in similarity factors, rather than absolute values of similarity
factors, the structures of the netlists become less relevant. Therefore InVerS can be applied to a
variety of netlists, potentially with different error-flagging thresholds. As Section 4 shows, the
similarity factor exhibits high accuracy for various practical designs and allows our verification
methodology to achieve significant speed-up over traditional techniques.

4 Experimental Results

We implemented InVerS using OpenAccess 2.2 and OAGear 0.96 [10]. Our testcases are se-
lected from IWLS’05 benchmarks based on designs from ISCAS’89 and OpenCores suites,
whose characteristics are summarized in Table 1. In the table, the average logic depth is calcu-
lated by averaging the logic level of 30 randomly selected gates. The logic depth can be used
as an indication of the circuit’s complexity. We conducted all our experiments on an AMD
Opteron 880 Linux workstation. The resynthesis package used in our experiments is ABC from
UC Berkeley [8]. In this section we report results on combinational and sequential verification,
respectively.

Benchmark Cell Ave. logic Function
count depth

S1196 483 6.8 ISCAS’89
USB PHY 546 4.7 USB 1.1 PHY
SASC 549 3.7 Simple asynchronous serial controller
S1494 643 6.5 ISCAS’89
I2C 1142 5.5 I2C master controller
DES AREA 3132 15.1 DES cipher (area optimized)
SPI 3227 15.9 SPI IP
TV80 7161 18.7 8-Bit microprocessor
MEM CTRL 11440 10.1 WISHBONE memory controller
PCI BRIDGE32 16816 9.4 PCI bridge
AES CORE 20795 11.0 AES cipher
WB CONMAX 29034 8.9 WISHBONE Conmax IP core
DES PERF 98341 13.9 DES cipher (performance optimized)

Table 1: Benchmark characteristics.

Verification for combinational optimizations: in our first experiment, we perform two types
of circuit modifications to evaluate the effectiveness of the similarity factor for combinational
verification. In the first type, we randomly inject an error into the circuit according to Abadir’s
error model [1], which includes errors that occur frequently in gate-level netlists. This mimics



the situation where a bug has been introduced by an optimization. In the second type, we extract
a subcircuit from the benchmark, which is composed of 2-20 gates, and perform resynthesis of
the subcircuit using ABC with the “resyn” command [8]. This is similar to the physical syn-
thesis or ECO flow described in Section 2.1, where gates in a small region of the circuit are
modified. We then use random simulation to generate 1024 patterns and calculate the similarity
factor after each circuit modification for both types. Thirty samples were used in this experi-
ment, and the results are summarized in Table 2. From the results, we observe that both types
of circuit modifications lead to decreases in similarity factor. However, the decrease is much
more significant when an error is injected. As d1 shows, the standardized differences in the
means of most benchmarks are larger than 0.5, indicating that the differences are statistically
significant. Since resynthesis tests represent the norm and error-injection tests are anomalies,
we also calculate d2 using only SDr. As d2 shows, for most benchmarks the mean similarity
factor drops more than two standard deviations when an error is injected. This result shows that
the similarity factor is effective in predicting whether a bug has been introduced by an optimiza-
tion. Nonetheless, in all benchmarks, the maximum similarity factor for error-injection tests is
larger than the minimum similarity factor for resynthesis tests, suggesting that the similarity
factor cannot replace traditional verification and should be used as an auxiliary technique.

Benchmark Similarity factor (%)
Resynthesized One error injected d1 d2

Meanr Minr Maxr SDr Meane Mine Maxe SDe
USB PHY 99.849 99.019 100.000 0.231 98.897 91.897 99.822 1.734 0.969 4.128
SASC 99.765 99.119 100.000 0.234 97.995 90.291 99.912 2.941 1.115 7.567
I2C 99.840 99.486 100.000 0.172 99.695 98.583 100.000 0.339 0.567 0.843
SPI 99.906 99.604 100.000 0.097 99.692 96.430 99.985 0.726 0.518 2.191
TV80 99.956 99.791 100.000 0.050 99.432 94.978 100.000 1.077 0.930 10.425
MEM CTRL 99.984 99.857 100.000 0.027 99.850 97.699 100.000 0.438 0.575 4.897
PCI BRIDGE32 99.978 99.941 100.000 0.019 99.903 97.649 99.997 0.426 0.338 3.878
AES CORE 99.990 99.950 100.000 0.015 99.657 98.086 99.988 0.470 1.372 21.797
WB CONMAX 99.984 99.960 100.000 0.012 99.920 99.216 99.998 0.180 0.671 5.184
DES PERF 99.997 99.993 100.000 0.002 99.942 99.734 100.000 0.072 1.481 23.969

Table 2: Statistics of similarity factors for different types of circuit modifications. In this ex-
periment we perform thirty test sets per benchmark and show the mean, minimal value (Min),
maximum value (Max), and standard deviation (SD) in each row. The last two columns show
the standardized differences in the means: d1 is calculated using the average of both SDe and
SDr, while d2 uses only SDr.

To evaluate the effectiveness of our incremental verification methodology described in Sec-
tion 3.4, we assume that there is 1 bug per 100 circuit modifications, and then we calculate the
accuracy of our methodology by measuring the fraction of cases in which the similarity factor



correctly predicted equivalence. We also report the runtime for calculating the similarity factor
and the runtime for equivalence checking of each benchmark. Since most circuit modifications
do not introduce bugs, we report the runtime when equivalence is maintained. The results are
summarized in Table 3. From the results, we observe that our methodology has high accuracy
for most benchmarks. In addition, the results show that calculating the similarity factor is signif-
icantly faster than performing equivalence checking. Take the largest benchmark (DES PERF)
for example, calculating the similarity factor takes less than 1 second, while performing equiv-
alence checking takes about 78 minutes. Due to the high accuracy of the similarity factor, our
incremental verification technique identifies more than 99% of errors, rendering equivalence
checking unnecessary in those cases and providing more than 100X speed-up.

Benchmark Cell Accuracy Runtime(sec)
count EC SF

USB PHY 546 92.70% 0.19 <0.01
SASC 549 89.47% 0.29 <0.01
I2C 1142 95.87% 0.54 <0.01
SPI 3227 96.20% 6.90 <0.01
TV80 7161 96.27% 276.87 0.01
MEM CTRL 11440 99.20% 56.85 0.03
PCI BRIDGE32 16816 99.17% 518.87 0.04
AES CORE 20795 99.33% 163.88 0.04
WB CONMAX 29034 92.57% 951.01 0.06
DES PERF 98341 99.73% 4721.77 0.19

Table 3: The accuracy of our incremental verification methodology. 1 bug per 100 circuit mod-
ifications is assumed in this experiment. Runtimes for similarity-factor (SF) and equivalence
checking (EC) are also shown.

Sequential verification for retiming: in our second experiment, we implement the retiming
algorithm described in [6] and use our verification methodology to check the correctness of our
implementation. This methodology successfully identified several bugs in our implementation.
In our experience, most bugs were caused by incorrect netlist modifications when repositioning
the registers, and a few bugs were due to erroneous initial state calculation. Examples of the
bugs include: (1) incorrect fanout connection when inserting a register to a wire which already
has a register; (2) missing/additional register; (3) missing wire when a register drives a primary
output; and (4) incorrect state calculation when two or more registers are connected in a row.

To quantitatively evaluate our verification methodology, we ran each benchmark using the
correct implementation and the buggy version to calculate their respective sequential similarity
factors, where 10 cycles were simulated. The results are summarized in Table 4, which shows
that the sequential similarity factors for retimed circuits are 100% for most benchmarks. As ex-



plained in Section 3.2, only a few signatures should be affected by retiming. Therefore, the drop
in similarity factor should be very small, making sequential similarity factor especially accurate
for verifying the correctness of retiming. This phenomenon can also be observed from Table 5,
where the accuracy of our verification methodology is higher than 99% for most benchmarks.
To compare our methodology with formal equivalence checking, we also show the runtime of a
sequential equivalence checker based on bounded-model-checking in Table 5. This result shows
that our methodology is more beneficial for sequential verification than combinational because
sequential equivalence checking requires much more runtime than combinational. Since the
runtime to compute sequential similarity factor remains small, our technique can still be ap-
plied after every retiming optimization thus eliminating most unnecessary sequential equiva-
lence checking calls.

Benchmark Sequential similarity factor (%)
Retiming without errors Retiming with errors

Meanr Minr Maxr SDr Meane Mine Maxe SDe
S1196 100.0000 100.0000 100.0000 0.0000 98.3631 86.7901 100.0000 3.0271
USB PHY 100.0000 100.0000 100.0000 0.0000 99.9852 99.6441 100.0000 0.0664
SASC 99.9399 99.7433 100.0000 0.0717 99.9470 99.3812 100.0000 0.1305
S1494 100.0000 100.0000 100.0000 0.0000 99.0518 94.8166 99.5414 1.5548
I2C 100.0000 100.0000 100.0000 0.0000 99.9545 99.6568 100.0000 0.1074
DES AREA 100.0000 100.0000 100.0000 0.0000 95.9460 69.1441 100.0000 6.3899

Table 4: Statistics of sequential similarity factors for retiming with and without errors. In this
experiment we perform thirty test sets per benchmark and show the mean, minimal value (Min),
maximum value (Max), and standard deviation (SD) in each row.

Benchmark Cell DFF Accuracy Runtime (sec)
count count SEC SSF

S1196 483 18 99.87% 5.12 0.42
USB PHY 546 98 99.10% 0.41 0.34
SASC 549 117 95.80% 5.16 0.56
S1494 643 6 99.47% 2.86 0.45
I2C 1142 128 99.27% 2491.01 1.43
DES AREA 3132 64 99.97% 49382.20 14.50

Table 5: Runtime of sequential similarity factor calculation (SSF) and sequential equivalence
checking (SEC). The accuracy of our verification methodology is also reported, where 1 bug
per 100 retiming optimizations is assumed.



5 Conclusions

In this work we developed a novel incremental verification and debugging system, InVerS, with
a particular focus on improving design quality and engineer’s productivity. The high perfor-
mance of InVerS allows designers to invoke it frequently, after each circuit transformation, and
thereby detect errors sooner, when these errors can be more easily pinpointed and resolved. The
scalability of InVerS stems from the use of fast simulation, which can efficiently calculate a
“similarity factor” metric to spot potential differences between two versions of a design. The
areas where we detect a low similarity are spots potentially hiding functional bugs that can be
subjected to more expensive formal techniques or visually inspected. Therefore, we provide
a user interface to improve the usability of our methodology and support the designer in the
debugging task. Part of this user interface is our error visualization tool that graphically re-
veals the difference between two circuits, allowing the designer to pinpoint the root cause of the
bugs more easily. The experimental results show that InVerS achieves a hundred-fold runtime
speed-up on large designs compared to traditional techniques for similar verification goals. Our
methodology and algorithms promise to decrease the number of latent bugs released in future
digital designs and to facilitate more aggressive performance optimizations, thus improving the
quality of electronic design in several categories.

References
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification via Test Generation”, IEEE

TCAD, pp. 138-148, Jan. 1988.

[2] K.-H. Chang, D. A. Papa, I. L. Markov and V. Bertacco, “InVerS: An Incremental Verification
System with Circuit Similarity Metrics and Error Visualization”, ISQED’07, pp.487-492.

[3] I. Chayut, “Next-Generation Multimedia Designs: Verification Needs,” DAC’06, Section 23.2,
http://www.dac.com/43rd/43talkindex.html

[4] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and Applications of Satisfiability
Testing, SAT, 2003, pp. 502-518.

[5] J.-H. R. Jiang and R. K. Brayton, “On the Verification of Sequential Equivalence”, IEEE Transac-
tions on Computer-Aided Design, Jun. 2003, pp. 686-697.

[6] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry”, Algorithmica, 1991, Vol. 6, pp.
5-35.

[7] Q. Zhu, N. Kitchen, A. Kuehlmann and A. Sangiovanni-Vincentelli, “SAT Sweeping with Local
Observability Don’t-Cares”, DAC’06, pp. 229-234.



[8] Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and
Verification, Release 51205. http://www-cad.eecs.berkeley.edu/˜alanmi/abc/

[9] “Conformal finds DC/PhysOpt was missing 40 DFFs!”, ESNUG 464 Item 4, Mar. 30, 2007.

[10] http://www.si2.org/

[11] “Future of Chip Design Revealed at ISPD”, EE Times, Apr. 17, 2008.


