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Abstract: The increasing popularity of SAT and BDD techniques in formal hardware verifica-
tion and automated synthesis of logic circuits encourages the search for additional speedups.
Since typical SAT and BDD algorithms are exponential in the worst-case, the structure of real-
world instances is a natural source of improvements. While SAT and BDD techniques are often
presented as mutually exclusive alternatives, our work points out that both can be improved via
the use of the same structural properties of instances. Our proposed methods are based on effi-
cient problem partitioning and can be easily applied as pre-processing with arbitrary SAT solv-
ers and BDD packages without modifying the source code of SAT/BDD tools. 

Finding a better variable ordering is a well recognized problem for both SAT solvers and
BDD packages. Currently, the best variable-ordering algorithms are dynamic, in the sense that
they are invoked many times in the course of the host algorithm that solves SAT or manipulates
BDDs. Examples include the DLCS ordering for SAT solvers and variable sifting during BDD
manipulations. In this work we propose a universal variable-ordering algorithm MINCE (MIN
Cut Etc.) that pre-processes a given Boolean formula in CNF. MINCE is completely indepen-
dent from target SAT algorithms and in some cases outperforms both the variable state indepen-
dent decaying sum (VSIDS) decision heuristic for SAT and variable sifting for BDDs. We argue
that MINCE tends to capture structural properties of Boolean functions arising from real-world
applications. Our contribution is validated on the ISCAS circuits and the DIMACS benchmarks.
Empirically, our technique often outperforms existing SAT/BDD techniques by a factor of two
or more. Our results motivate the search for better dynamic ordering heuristics and combined
static/dynamic techniques.
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verification, partitioning.

Category: I.1.2, I.2.8 

Journal of Universal Computer Science, vol. 10, no. 12 (2004), 1562-1596
submitted: 9/10/04, accepted: 14/8/04, appeared: 28/12/04 © J.UCS



1   Introduction

Algorithms that efficiently manipulate Boolean functions arising in real-world applica-
tions are becoming increasingly popular in several areas of computer-aided design and
verification. In this work we focus on two classes of these algorithms: complete Bool-
ean satisfiability (SAT) solvers [Goldberg and Novikov, 2002], [Moskewicz et al.,
2001], [Silva and Sakallah, 1996], [Stålmarck, 1994], [Zhang, 1997] and algorithms for
manipulating Binary Decision Diagrams (BDDs) [Bryant, 1986], [Drechsler and Beck-
er, 1998], [Lu et al., 2000]. A generic complete SAT solver must correctly determine
whether a given Boolean function represented in conjunctive normal form (CNF) eval-
uates to false for all input combinations. Aside from its pivotal role in complexity the-
ory, the SAT problem has been widely applied in electronic design automation. Such
applications include ATPG [Larrabee, 1992], [Stephan et al., 1996], formal verification
of circuit functions [Biere et al., 1999], timing verification of circuits [Silva et al.,
1998], and routing of field-programmable gate arrays [Nam et al., 2001], among others.
While no exact polynomial-time algorithms are known for the general case, many exact
algorithms [Goldberg and Novikov, 2002], [Moskewicz et al., 2001], [Silva and Sakal-
lah, 1996], [Stålmarck, 1994], [Zhang, 1997] manage to complete very quickly for
problems of practical interest. Such algorithms are available in the public domain and
are typically based on elementary steps that consider one variable at a time (e.g.,
branch-and-bound algorithms select the next variable for branching). Previously pub-
lished results [Goldberg and Novikov, 2002], [Moskewicz et al., 2001], [Silva and
Sakallah, 1996], [Stålmarck, 1994], [Zhang, 1997], as well as our empirical data, imply
that the order of these steps critically affects the run time of state-of-the-art SAT algo-
rithms. This order of steps depends on the order of variables used to represent the input
function, but can also be controlled dynamically based on the results of previous steps.

BDDs [1] [Bryant, 1986], [Bryant, 2002], [Drechsler and Becker, 1998] are common-
ly used to implicitly represent large solution spaces in combinatorial problems that arise
in synthesis and verification. A BDD is a directed acyclic graph constructed in such a
way that its directed paths represent combinatorial objects of interest (such as subsets,
clauses, minterms, etc.). An exponential compression rate is achieved by BDDs whose
number of paths is exponential in the number of vertices and edges (graph size). BDDs
can be transformed by algorithms that visit all vertices and edges of the directed graph
in some order and therefore take polynomial time in the current size of the graph. How-
ever, when new BDDs are created, some of these algorithms tend to significantly in-
crease the number of vertices in the BDD, potentially leading to exponential memory
and run time requirements. Several BDD ordering techniques have been proposed to
overcome this problem. These include static [Fujita et al., 1988], [Malik et al., 1988]
and dynamic [Panda and Somenzi, 1995], [Rudell, 1993], [Somenzi, 2001] approaches.
Just as for SAT solvers, the order of BDD variables is critically important. This order
can either be chosen statically, i.e., by pre-processing the input formula, or dynamically,
based on the outcome of previous steps during the BDD construction process. 

[1] Only Reduced Ordered Binary Decision Diagrams (ROBDDs) are considered in this 
work.
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A reliable and fast variable-ordering heuristic for a given application can dramatical-
ly affect its competitiveness and is often considered an important part of its implemen-
tation. For example, the leading-edge SAT solver Chaff [Moskewicz et al., 2001] is
typically used with the dynamic variable-ordering heuristic variable state independent
decaying sum (VSIDS), and the renowned CUDD package [Somenzi, 1997] for BDD
manipulation incorporates the dynamic variable-sifting heuristic [Rudell, 1993] which
is applied many times in the course of BDD transformations. Variable sifting is affected
by the initial order, but can also be completely turned off to improve run time. Sifting
for BDDs is typically more expensive than most dynamic ordering heuristics for SAT.
However, the effect of ordering heuristics on total run time is highly instance-specific.

We noticed that, for some CNF formulae in [Tab. 2] and [Tab. 7] in [Section 5], turn-
ing off sifting for BDD manipulations and turning off VSIDS in SAT resulted in signif-
icantly smaller run times. For BDDs, this also led to memory savings, especially for
circuit benchmarks from the ISCAS’89 set [Brglez et al., 1989]. In other words, using
a good order of variables when encoding problems into a CNF formula is, by itself, su-
perior to using the best known dynamic heuristic with a poor static order of variables
(note that static and dynamic ordering heuristics can be used together). In practice, stat-
ic variable orderings are easier to work with, because they do not require modifying the
source code of the host algorithm. In particular, the same variable-ordering implemen-
tation can be used for SAT solvers and BDD manipulations if it, indeed, improves both
classes of algorithms. However, an application-specific problem encoding procedure
may overlook superior static variable orderings. Therefore, we propose a domain-inde-
pendent algorithm to automatically find good static variable orderings that capture glo-
bal properties of CNF formulae and circuits.

This work involves three types of Boolean function representations: CNF formulae,
Boolean circuits, and BDDs. While BDDs are the most flexible of popular representa-
tions, they often need to be constructed from other representations, such as CNFs, cir-
cuits, or disjunctive normal form formulae. We address the construction of BDDs from
CNFs and circuits in [Section 2.2] and [Section 2.3], respectively [see Fig. 1]. 

The remainder of the paper is structured as follows. In [Section 2], we review existing
work on solving CNF instances using SAT solvers and constructing BDDs from CNF
and circuits. [Section 3] motivates our reliance on circuit/CNF partitioning and place-
ment and reviews recent progress in that area. [Section 4] describes the application of
partitioning-based variable ordering to SAT and BDDs and shows examples of hyper-
graph partitioning. [Section 5] provides experimental evidence of the effectiveness of
partitioning-based variable ordering. [Section 6] concludes the paper and provides per-
spective on future work.

Figure 1: Conversions between Compact Representations of Boolean Functions. 
(^ stands for this work and * stands for [Yang and Ciesielski, 2002])

SAT SolverBDD

Circuit

CNF
[Aloul et al., 2001], ^

*
[Fujita et al., 1988], 
[Malik et al., 1988], ^

[Garey and Johnson, 1979]

BDD Engine
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2   Background

2.1  Solving CNF problems using SAT

A conjunctive normal form (CNF) formula  on n binary variables  is the
conjunction (AND) of m clauses  each of which is the disjunction (OR) of
one or more literals, where a literal is the occurrence of a variable or its complement.
The size of a clause is the number of its literals. A formula  denotes a unique n-vari-
able Boolean function  and each of the formula’s clauses corresponds to
an implicate of f [Hachtel and Somenzi, 2000]. The satisfiability problem (SAT) is con-
cerned with finding an assignment to the arguments of  that makes the
function equal to 1 or proving that the function is equal to the constant 0. 

Backtrack search algorithms [Davis et al., 1962] implicitly traverse the space of 
possible binary assignments to the problem variables looking for a satisfying assign-
ment. A typical backtrack search algorithm consists of three main engines:

• A Decision engine that makes elective assignments to the variables;

• A Deduction engine that determines the consequences of these assignments,
typically yielding additional forced assignments to, i.e., implications of other
variables;

• A Diagnosis engine that handles the occurrence of conflicts (i.e., assignments that
cause the formula to become unsatisfiable) and backtracks appropriately. 

Many techniques have been proposed to improve the above three engines. Neverthe-
less, selecting an intelligent variable decision order remains a challenge. Many decision
heuristics have been described [Goldberg and Novikov, 2002], [Moskewicz et al.,
2001], [Shacham and Zarpas, 2003], [Silva and Sakallah, 1996], [Wang, 1997]. Some
are based on an analysis of the number of variables and clauses in the problem, such as
DLCS [Silva and Sakallah, 1996] (select the variable that appears in the maximum
number of unresolved clauses) or DLIS [Silva and Sakallah, 1996] (select the literal that
appears in the maximum number of unresolved clauses). Other decision heuristics are
based on randomized algorithms.

2.2  Construction of BDDs from CNF

A CNF formula can be viewed as a two-level logic circuit, in which each clause is rep-
resented by an OR gate where the number of fanins (i.e., gate inputs) is equal to the
number of literals in the clause. The outputs of all OR gates are ANDed together to pro-
duce the function f. Additionally, circuit consistency functions can be represented in
CNF in linear time [Ryan], [Tseitin, 1983]. Each gate in the circuit is represented using
a CNF formula that denotes the valid input-output assignments to the gate. The CNF
formula for the circuit consists of the conjunction of the formulae representing each
gate. [Tab. 1] shows the CNF formulae for simple gates. 

ϕ x1 … xn, ,
ω1 … ωm, ,

ϕ
f x1 … xn, ,( )

f x1 … xn, ,( )

2n

1565Aloul F.A., Markov I.L., Skallah K.A.: MINCE: A Static Global ...



In general, dynamic sifting [Rudell, 1993], [Somenzi, 1997] is the main variable or-
dering heuristic used in constructing BDDs from CNFs. In this paper, we show that
BDD variable ordering, in addition to the order in which clauses are processed, can be
very effective in reducing the run time and the size of the BDDs. 

2.3  Construction of BDDs from Circuits

Algorithms that construct a BDD for a single-output function given by a Boolean circuit
are typically recursive. They start by constructing a BDD for each primary input (PI)
and finish by constructing a BDD for the primary output (PO). The gates are traversed
in a topological order, and at every step a BDD is computed for a new gate using BDDs
for its fanin gates. As mentioned earlier, the size of the BDD and the execution time for
building the BDD depend on the ordering of its variables. A good ordering can lead to
a smaller BDD and faster run time, whereas a bad ordering can lead to an exponential
growth in the size of the BDD and hence can exceed available memory. Several heuris-
tics have been proposed to order the BDD variables based on the given circuit input in-
formation [Fujii et al., 1993], [Fujita et al., 1988], [Malik et al., 1988], [Minato et al.,
1990]. In the following, we describe some of the common variable ordering techniques:

TABLE 1: CNF formulae representing simple gates.

z NOT x1( )=

z OR x1 … xj, ,( )=

z AND x1 … xj, ,( )=

x1 z+( ) x1 z+( )⋅

x1 z+( ) x1 z+( )⋅

xi z+( )

i 1=

j

∏ xi z+

i 1=

j

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

xi z+( )

i 1=

j

∏ xi z+

i 1=

j

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

xi z+( )

i 1=

j

∏ xi z+

i 1=

j

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

xi z+( )

i 1=

j

∏ xi z+

i 1=

j

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

Gate Type Gate Function Equivalent CNF Formula

z NAND x1 … xj, ,( )=

z NOR x1 … xj, ,( )=

z Buf x1( )=
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• Original: Each PI is appended to the BDD variable ordering according to its
original index (i.e., ascending order of the original indices) in the circuit.

• DFS: A depth-first search (DFS) is performed starting from the PO. A PI is
appended to the ordering as soon as that PI is traversed.

• BFS: A breadth-first search (BFS) is performed starting from the PO. A PI is
appended to the ordering as soon as that PI is traversed.

• Fujita [Fujita et al., 1988]: A DFS is performed starting from the PO. PIs with
multiple fanouts are appended first to the ordering as soon as these PIs are
traversed. Once that is complete PIs with single fanouts are appended to the
ordering. 

• Malik-level [Malik et al., 1988]: POs are assigned level 0. The level of each node
 in the circuit is computed by , where 

represents the fanouts of node . PIs are appended to the ordering in descending
order of their levels. Ties are broken between PIs with the same level by selecting
the PI with the smallest index first.

• Malik-fanin [Malik et al., 1988]: A DFS is performed starting from the PO.
However, unlike previous heuristics, in which ties are broken between gate fanins
by selecting the fanin with the smallest index, the transitive fanin (TFI) depth size
is used as a tie-breaker. The TFI depth of a node  is defined as the maximum
level of any node in the fanin cone of node . Fanins with larger TFI depths are
visited first. A PI is appended to the ordering list as soon as that PI is traversed.

The last three heuristics have been shown to provide the best performance when ap-
plied to circuits. Fujita’s heuristic aims to minimize the number of crosspoints of nets
in the circuit diagram [Fujita et al., 1988]. On the other hand, the heuristics of [Malik et
al., 1988] give priority to PIs that are far away from the POs in the circuit, since these
PIs are expected to greatly influence the circuit behavior. The order of BDD variables
can be further improved during the BDD construction by the dynamic sifting heuristic
[Rudell, 1993] that entails pairwise swaps of variables and is now considered an integral
part of every BDD package [Somenzi, 1997].

In addition to ordering the BDD variables, which represent the PIs in a circuit, the
order in which gates are traversed when constructing the BDD can also be varied. After
the BDD variables are ordered by one of the ordering techniques explained above, we
consider three strategies to order the gates: (1) use the gate order from the DFS traversal
from POs, (2) use the gate order from the BFS traversal from POs, (3) perform a BFS
from PIs. In case of a tie, the gate with the smallest index is selected first [2]. In general,
strategy 1 shows the best performance [3]. 

[2] Different tie-breaking strategies lead to different topological orderings. We experi-
mented with Malik’s level and fanin options as gate tie-breakers. The results were sim-
ilar to those from the index tie-breaking approach.

g level g( ) max level go( ) 1+( )= go
g

j
j
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3   Instance Partitioning

We first observe that Boolean functions arising in many applications represent spacial,
logical or causal connections among variables. Therefore, processing connected vari-
ables together seems intuitively justified. For example, if a large SAT instance is not
satisfiable because of a small group of variables, the variables in this group are likely
to be connected by some clauses. If we can partition all variables into, say, two largely
independent groups, then such a function is likely to be represented by a BDD with a
small cut, i.e., there will be relatively few edges between these two groups (considered
as graphs). BDDs with many small cuts tend to have fewer edges, and therefore fewer
vertices (since in decision diagrams every vertex is a source of exactly two edges). This
suggests that we interpret CNF formulae as hypergraphs (a hypergraph is a graph whose
edges, referred to as hyperedges, can connect two or more vertices) by representing
variables by vertices (polarities are ignored) and clauses by edges. Two vertices share
(are incident to) an edge if the two corresponding variables share a clause in the formu-
la.

We now look for partitioning formulations that are addressed in existing literature
and for which efficient [heuristic] algorithms are available. One such formulation is
balanced min-cut hypergraph partitioning. It was studied for more than 30 years in the
VLSI CAD and database communities; near-linear-time heuristics are available today
with excellent empirical performance [Caldwell et al., 2000c], [Karypis et al., 1997]. In
min-cut k-way partitioning (k > 1 is an integer), one looks to assign each vertex of a giv-
en hypergraph to one of k partitions so as to minimize the number of hyperedges (that
can be connected to more than two vertices) that connect vertices in more than one par-
tition; this objective is commonly called the cut. In this work, as in many other applica-
tions, only the case k = 2 (bi-partitioning) is important. What makes min-cut bi-
partitioning NP-hard is the balance constraint, which requires that the numbers of ver-
tices in the two partitions be approximately equal (precise definitions are given below).
Without balance constraints, a reduction to max-flow computation on graphs gives an
exact polynomial-time algorithm. Vertex-weighted versions of balanced min-cut parti-
tioning require that the sums of vertex weights in all partitions be approximately equal
(vertex weights are typically positive numbers), and hyperedge-weighted versions min-
imize weighted cut, i.e., the sum of weights of all hyperedges in the cut.

While hyperedge and vertex weights are typically defined in domain-specific terms,
the balance constraint itself is motivated by the desire to improve the run time and ac-
curacy of recursive bisection (see the theorems below). In recursive bisection every par-
tition that results from a bisection is further partitioned by a recursive call. Recursion
bottoms out when a partition contains one vertex. If implemented properly, (e.g., using
terminal propagation), recursive bisection results in a linear ordering of hypergraph ver-
tices and can be considered a heuristic that optimizes several important objectives at
once.

[3] When computing the BDD variable orders, POs with the highest level (as computed in 
Malik-level) are traversed first. When constructing the BDDs, POs are traversed 
according to the order specified in the input file.
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Applying balanced min-cut partitioning to a hypergraph derived from a CNF formula
separates the original formula into relatively independent sub-formulae. Ordering the
variables in each part together would be a step towards ordering connected variables
next to each other, as advocated earlier. Once the first partitioning is performed, the
parts can be partitioned recursively. This process results in a linear variable ordering.
We note that cuts of CNF formulae have been studied in [Prasad et al., 1999], and in-
stances having small cuts were theoretically shown to be easy for SAT [Prasad et al.,
1999]. Our work seeks constructive and efficient ways to amplify the easiness of CNF
instances with small cuts by finding good variable orderings. Related attempts to lever-
age partitioning techniques in the context of theorem proving and Boolean satisfiability
were made prior to our work [Amir and McIlraith, 2000], however with somewhat dif-
ferent partitioning formulations and, we believe, much weaker partitioning algorithms
(based on max-flow) in terms of scalability. Our approach leverages recent high-perfor-
mance partitioning heuristics that run in near-linear time with near-linear memory re-
quirements. We show that the use of such heuristics with modern SAT solvers is
justified in terms of total run time. Aside from using more scalable algorithms and im-
plementations compared to work using network flows [Caldwell et al., 2000a], [Cald-
well et al., 2000b], [Caldwell et al., 2000c], [Fiduccia and Mattheyses, 1982], [Karypis
et al., 1997], our overall improvements in speed can be explained by (i) our focus on
edge cuts rather than vertex separators (i.e., groups of vertices whose removal makes
the graph disconnected) [Amir and McIlraith, 2000], and (ii) performing balanced par-
titioning recursively. The idea of finding and using balanced vertex separators was
briefly mentioned in [Amir and McIlraith, 2000], but discarded because of the compu-
tational difficulties of this approach (similar conclusions were reached several years
earlier in the literature on parallel numerical algorithms). Our approach has good em-
pirical performance (no empirical results were reported in [Amir and McIlraith, 2000])
and is formulated as a pre-processing step followed by one call of an existing SAT solv-
er. Given existing software tools for partitioning and Boolean satisfiability, very few
changes of these tools is required.

Additionally, we show that min-cut partitioning is relevant to other representations of
Boolean functions than CNF formulae. Prior works correlated circuit cutwidth with the
size of BDDs [Berman, 1991], [Bryant, 2002]. [Fig. 6(a-c)] show two topological or-
derings of a small circuit that lead to BDDs of different sizes. For a given ordering of
gates and PIs, we define the netlength of a given signal net as the maximal difference
in indices of gates on this net. We observe that smaller total netlengths tend to co-exist
with smaller BDDs (see [Fig. 6]) [Bryant, 2002]. This connection can be explained as
follows. It is known from VLSI placement, that smaller netlengths correlate with small-
er cuts, which is used in min-cut placement [Caldwell et al., 2000b]. Smaller cuts in cir-
cuits have been related to smaller BDDs in [Berman, 1991]. Therefore, we will attempt
to produce topological orderings that minimize total netlength, by using min-cut place-
ment.
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3.1  Recursive Bisection and Hypergraph Placement

Recursive min-cut bisection of hypergraphs has been intensively studied in the context
of VLSI partitioning and placement. First heuristics for balanced graph bisection were
published in [Kernighan and Lin, 1970] and then significantly improved in [Fiduccia
and Mattheyses, 1982], followed by multi-level extensions [Karypis et al., 1997] which
not only improve performance but also guarantee near-linear run time in practice. Re-
cursive bisection has been used for circuit layout since the 1960s at IBM and else-
where—an early account can be found in [Breuer, 1977]. The theory behind min-cut
partitioning and especially recursive bisection has been developed more recently in
terms of approximation algorithms. Below we follow definitions and arguments from
[Vazirani, 2001], except that we ignore non-trivial vertex and edge weights for clarity
(they are not used in our application) and only allow for unit-weighted and zero-weight
vertices, which means either counting or not counting a given vertex towards partition
balances.

Given an undirected hypergraph  and a rational number ,
balanced min-cut bisection aims to assign each vertex in  to partition 0 or partition 1
to minimize the number of hyperedges connecting vertices in different partitions, sub-
ject to , where  is the set of vertices in partition 0. For

, a polynomial-time approximation algorithm based on linear programming
([Vazirani, 2001], page 193) is guaranteed ([Vazirani, 2001], Claim 21.28) to find cuts
within  factor of the minimum cut. While no run time analysis is available in
[Vazirani, 2001], it is unlikely that this algorithm will run in near-linear time. In fact, it
may be slower than , which would make it impractical for large-scale applica-
tions. Therefore, high-performance heuristics are used in practice [Caldwell et al.,
2000a], [Caldwell et al., 2000c], [Fiduccia and Mattheyses, 1982], [Karypis et al.,
1997], even though no worst-case analysis is available to describe their performance.
However, they are believed to typically produce near-optimal solutions on instances
important in common applications.

The min-cut linear arrangement problem [Vazirani, 2001] of an undirected hyper-
graph  is concerned with finding vertex orderings, i.e., it assigns each ver-
tex a unique integer index from , that minimizes the total wirelength. For every
i from , we define the  cut with respect to a given vertex ordering as the
number of hyperedges that connect vertices with numbers both less than and greater
than . The goal is to minimize the maximal cut (out of  cuts) by choosing
a good vertex ordering. While NP-hard, this problem is approximable up to a factor of

 in polynomial time, e.g., using approximation algorithms for the balanced
min-cut partitioning problem [Vazirani, 2001] within the framework of recursive bisec-
tion.

The main algorithmic subtlety of recursive bisection for linear ordering is in the treat-
ment of connections to outer partitions. For example, suppose we partition the original
hypergraph into  and , then connections from  to  require special treatment
when  itself is partitioned. Vertices in  that are incident to such connections are
modelled by fake zero-weight vertices fixed in the sub-partition of  that is closer to

 (fake vertices are removed after partitioning and are only used to influence the as-

G V E,( )= b 0 b 1 2⁄< <( )
V

b V P0 1 b–( ) V< < P0
b 1 3⁄=

O Vlog( )

O V 2( )

G V E,( )=
1… V

1… V 1– ith

i 0.5+ V 1–

O Vlog2( )

P0 P1 P0 P1
P0 P1

P0
P1
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signments of actual vertices). This technique is sometimes called “terminal propaga-
tion” [Dunlop and Kernighan, 1985]. Practically every known algorithm for min-cut
partitioning can be adapted to accommodate fixed vertices.

The argument proving the O(log2|V|)-approximation of recursive bisection assuming
that each balanced bisection is performed with accuracy O(log |V|) goes as follows (see
[Vazirani, 2001], Claim 21.30 for details). Suppose the minimum possible max-cut of
a linear arrangement is c. Then the number of newly-cut hyperedges after every bal-
anced bisection is guaranteed to be within O(log |V|)c, regardless of the previous cuts.
Because every bisection is approximately balanced, the depth of recursion is no more
than O(log |V|). The partition balance b itself does not matter for asymptotics [4], as
long as it is bounded away from 0, but in our implementation we require that b > 1/3
and choose more balanced partitions among those with equal cuts (the specific ratio is
determined empirically and may be changed, further adjusted for different applica-
tions). The two worst-case O(log |V|) factors prove the O(log2|V|) approximation prop-
erty of recursive bisection. In terms of run time, if each balanced min-cut partitioning
within recursive bisection is performed in polynomial (near-linear) time, then recursive
bisection as a whole also takes polynomial (near-linear, respectively) time. This is be-
cause the complexity of carefully implemented recursive bisection can be estimated as
the complexity of balanced min-cut partitioning multiplied by a logarithm of the size of
the input hypergraph (|E|+|V|).

The recursive bisection procedure described above for CNF formulae has been em-
pirically successful in solving the linear placement problem, where hypergraph vertices
are placed on a line, i.e., ordered, to minimize the total length of hyperedges (equiva-
lently, the average net length). The length of a hyperedge is defined as the distance be-
tween the lowest and the highest numbered incident vertices. If a hypergraph is used to
model a circuit (with hyperedges representing signal nets), recursive bisection leads to
small “half-perimeter wire-length” (which is equal to the total length of hyperedges).
This result has been used in VLSI placement for at least 30 years, and we will use a
high-performance large-scale VLSI placer in our experiments. On the other hand, if a
hypergraph represents a CNF instance, minimizing the total length of hyperedges can
translate back to small average clause span in CNF formulae. Here we define the span
of a clause with respect to a variable ordering as the difference between the greatest and
the smallest variables in this clause (so that the span exactly corresponds to the half-
perimeter wirelength of a hyperedge). We can also define the ith cut with respect to a
given ordering as the number of clauses including variables with numbers both less than
and greater than i+0.5.

[4] When we partition N nodes with a given partition balance b, the larger partition may 
have up to  nodes, and  as long as . Furthermore, the 
height of a binary tree of partitions is upper-bounded by , where the 
base of the logarithm depends on the partition balance b. For example, for  
we have , for , we have , which is greater. Since 

, the base of the logarithm does not affect the asymptotic 
behavior.

1 b–( )N 1 b–( )N N< b 0>
N( )1 1 b–( )⁄( )log

b 1 2⁄=
N( )2log b 1 3⁄= N( )3 2⁄( )log

N( )alog N( )ln a( )ln⁄=
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Observation: Given an ordering of variables in a CNF formula, the total clause span
equals the sum of all cuts

The average clause span is proportional to the average cut, 

and the coefficient  is approximately equal to the clause-to-variable ratio
of the CNF formula (since the total number of clauses and variables equals the total
number of hyperedges and vertices, respectively).

Since the total net-length of hypergraphs corresponds to the total clause span of CNF
formulae, we will use the leading-edge VLSI [hypergraph] placer CAPO [Caldwell et
al., 2000b] based on recursive min-cut bisection [Caldwell et al., 2000c], [Karypis et
al., 1997] to minimize the average clause spans and cuts of CNF formulae. CAPO im-
plements several improvements to classical recursive bisection, reducing the total
clause span. Such techniques include bisection with high balance tolerance (e.g.,

) and adaptive cut-line selection according to the actual balance achieved,
which allows greater freedom in partition sizes in order to improve the cut. The under-
lying multi-level hypergraph partitioner MLPart [Caldwell et al., 2000c] outperforms
the well-known hMetis [Karypis et al., 1997], while both rely on Multi-Level Fiduccia-
Mattheyses (MLFM) partitioning heuristics. Since the MLFM heuristic is randomized,
it returns different solutions on every call (each call is a start). On every call, MLPart
executes two independent starts and applies one V-cycle [Caldwell et al., 2000c],
[Karypis et al., 1997] to further improve the better solution. In the next two paragraphs
we briefly review the basic terminology and algorithms related to MLFM. 

The Fiduccia-Mattheyses (FM) heuristic [Caldwell et al., 2000a], [Fiduccia and Mat-
theyses, 1982] starts with an initial solution (e.g., randomly chosen) and applies deter-
ministic linear-time passes that are executed using the same algorithm. No pass can
make the cut worse (by construction), and the passes are stopped once no improvement
is achieved in a pass. Every pass contains single-vertex moves in which vertices are
moved to a different partition. No vertex can be moved twice in a pass, and no move
can violate the required partition balance constraints. Every next move is chosen to have
the best possible effect on the total cut with the caveat that the best possible move may
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∑ cut i( )
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make the cut worse. A pass ends when no allowed moves are available, and the best par-
titioning seen during the pass is restored. Linear time per pass is guaranteed by a clever
bucketing scheme [Fiduccia and Mattheyses, 1982] for choosing moves. From an opti-
mization point of view, the FM heuristic behaves greedily when it is possible to directly
improve the cut, but otherwise temporarily increases the cut in the hope of decreasing
it later (performs hill climbing). It is particularly good in moving clusters of vertices
from partition to partition, which requires hill climbing and improves performance on
structured hypergraphs (e.g., those representing circuit netlists or logic theories), i.e.,
graphs that each connect very few groups of vertices with hyperedges.

The performance of the FM heuristic starts deteriorating at 500-1000 vertices for
sparse hypergraphs, both in terms of run time and solution quality. The run time dete-
rioration is due to numerous passes that improve cut by only several hyperedges, and
the solution quality is due to local minima. However, multi-level (ML) extensions
[Caldwell et al., 2000c], [Karypis et al., 1997] solve the problem. The main idea is to
cluster the hypergraph and partition it instead of the original hypergraph at first. Not
only this is a speed improvement, but with a reasonably good clustering it produces de-
cent partitionings for the original hyper-graph, and those partitions can be further de-
creased by the FM heuristic. The multi-level FM heuristic consists of three phases. At
the first phase, the hypergraph is progressively clustered using fast greedy algorithms
until the number of clusters reaches a predetermined value, say, 200. At the second
phase, the flat (i.e., not multi-level) FM heuristic is applied with a random initial solu-
tion to the top-level clustered hypergraph. At the third stage, clusters are refined in
steps, and at every step the flat FM heuristic is applied to further decrease cuts (in prac-
tice, it performs 2-4 passes per level, which takes linear time). Multi-level partitioning
is fast on large hypergraphs because the total number of Fiduccia-Mattheyses passes is
limited by [a constant times] the number of levels, which is logarithmic in the number
of original vertices. If clustering requires near-linear time (i.e., n times polylogarithm
of n) in the size of the input hypergraph, per level, then the total run time of multi-level
partitioning must be near-linear.

While the FM heuristic is iterative, its multi-level extension is not—it cannot start
with a given partitioning and improve it. This is remedied by V-cycles [Karypis et al.,
1997], which are performed given a partitioning. A V-cycle is a variation of MLFM
where vertices in different partitions cannot be clustered. The top-level clustered hyper-
graph automatically comes with a partitioning whose cut equals the cut of the initial par-
titioning. This is true because bottom-up clustering during a V-cycle does not merge
vertices that are assigned to different partitions in the initial solutions. Therefore, each
cluster is assigned to a certain partition, the overall partitioning of clusters is balanced,
and the cut nets correspond one-to-one to cut nets in the original solution. Since the top-
level cut cannot increase during further stages, V-cycle is guaranteed not to make it
worse. A V-cycle takes asymptotically as much time as regular multi-level partitioning,
but is somewhat faster in terms of actual CPU time because fewer FM passes are re-
quired to refine already good solutions.

Wood and Rutenbar have already used linear hypergraph placement as a variable-or-
dering technique for BDD minimization in [Wood and Rutenbar, 1998]. However, they
used spectral methods which entail converting hyperedges to edges and then minimiz-
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ing quadratic edge length, rather than the half-perimeter (linear) edge length. Spectral
placement methods used in [Wood and Rutenbar, 1998] do not appear to have direct
connection to cut minimization. As of 2001, spectral methods for partitioning and
placement are practically abandoned due to their unacceptable run time on large in-
stances and poor solution quality as measured by half-perimeter edge length. This can
be contrasted with min-cut placement that is among the fastest known approaches, pro-
vides good solutions and is obviously related to cut minimization. 

4   Using Partitioning-Based Variable Ordering

We propose to reorder variables in SAT and BDD in a particular way. The algorithm
we use is empirically successful in lowering both the max-cut and the average cut.

4.1  Ordering Variables in CNF

We propose the following heuristic that orders variables in CNF formulae [see
Fig. 2(a)]. An initial CNF formula (that may originate from circuits or other applica-
tions) is converted into a hypergraph [see Fig. 3]. An ordering of hypergraph vertices is
then found via min-cut linear placement and translated back into an ordering of CNF
variables. The variables of the original CNF formula are reordered and then the formula
is used (i) as input to an arbitrary SAT solver, or (ii) to construct a BDD representation

Circuit

Linear Min-cut Placement by

 Preprocess circuit

BDD Construction

Hypergraph

Figure 2: The MINCE heuristic based on Multi-Level Fiduccia-Mattheyses (MLFM) 
partitioning [Caldwell et al., 2000b], [Caldwell et al., 2000c], [Karypis et al., 1997] for 

(a) CNF problems (b) circuits.

Recursive MLFM Partitioning

MINCE
Flow

CAPO

Circuit

CNF instance

Linear Min-cut Placement by

Variable ordering for CNF

 Preprocessed CNF instance

SAT Solver BDD Construction

Hypergraph

Recursive MLFM Partitioning

MINCE
Flow

CAPO

Gates and Pimary Input ordering
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of the Boolean function it denotes. The results produced by SAT solvers and BDD ma-
nipulations are then translated back into the original variable order.
    Note that this approach does not require modifications in SAT solvers, BDD manip-
ulation software or the min-cut placer [5]. We call this heuristic MINCE (MIN-Cut,
Etc.) and implemented it by chaining publicly-available software with PERL scripts.

To enable black-box reuse of publicly-available software (CAPO), we ignore polari-
ties of literals in CNF formulae (i.e., assume negative literals are positive). We note that
the oriented version of min-cut bisection has been extensively studied in the context of
timing-driven placement, i.e., circuit layout techniques that minimize circuit delay
along signal paths. In particular, a small unoriented cut can be interpreted as an oriented
cut of the same size or less. Vice versa, in most real-world examples, near-optimal ori-
ented cuts can be found by unoriented partitioning.

On the empirical side, our results with BDD minimization presented below show that
MINCE outperforms variable sifting (used without static ordering) in both run time and
memory usage. According to [Hachtel and Somenzi, 2000], as of 2000, variable sifting
is the best published dynamic variable reordering heuristic for BDDs with near-linear
performance [6]. From this, we conclude that our proposed technique outperforms all
other published scalable approaches to BDD minimization. Of course, dynamic vari-
able reordering techniques can be applied on top of MINCE or can use the MINCE or-
der as a tie-breaker. 

Applications that entail several BDD operations or solve similar SAT problems can
reuse the same static ordering for all runs. On the other hand, since MINCE is random-
ized and returns different solutions every time it is called, it can also be used to perform
random restarts of SAT solvers [Gomes et al., 1998] (e.g., a new ordering is created be-
fore each restart).

[5] Commercial software for Electronic Design Automation can be used, e.g., QPlace - a 
commercial software tool from Cadence Design Systems, Inc.

[6] Some generic or simulated annealing reordering algorithms can generate smaller 
BDDs but may incur longer run times.

Figure 3: Example showing a hypergraph using (a) default vertex ordering 
(b) improved vertex ordering. The total span is reduced from 8 to 4 by the improved 

vertex-ordering. Arrows indicate hyperedges.
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4.1.1  Motivating Example

[Fig. 3] shows the difference between a good and a bad variable order for a CNF for-
mula. We use the CAPO placer to find an ordering of vertices, i.e., variables, that pro-
duces a small total (equivalent average) clause span. [Fig. 3(b)] shows a sample order
returned by MINCE for the example described. The total span of all clauses in this CNF
formula is reduced from 8 to 4 by this new variable order. In addition, the number of
edges crossing each variable (cut) is reduced. The original problem has a maximum
variable cut (at variable c) of 3 which is reduced to 1 in the MINCE order.

In general, structured problems such as the hole-n series of benchmarks (e.g., hole-
10, hole-11, etc.) are divided by MINCE into several partitions. [Fig. 4] shows such an
example. The initial variable order has average clause span and variable cut equal to 74
and 20, respectively. In comparison, the new variable order, has average clause span
and variable cut equal to 17 and 4.7, respectively. As shown in [Fig. 4(b)], this reduc-
tion exposes the problem’s structure. Our experiments show that such MINCE variable
ordering generally speeds up SAT solvers and improves run time/memory of BDD ma-
nipulations.

Similar techniques and intuitions apply in related contexts. For example, one can ap-
ply MINCE to formulas in DNF (Disjunctive Normal Form) rather than in CNF (as in
Boolean Satisfiability). DNF-based descriptions are useful in automatic synthesis of
logic circuits. In this and related cases, one starts with a description of a Boolean func-
tion that is sparse, i.e., connects very few groups of variables (by clauses, minterms,
etc.). Recursive partitioning orders the connected variables close to each other. Since
connections between variables often imply logical dependencies, min-cut orderings al-
low SAT solvers and BDD engines to track fewer variables beyond their neighbor-
hoods.
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Figure 4: Sample hypergraph representing the structure of the hole-7 instance using 
(a) default vertex-ordering (b) improved vertex-ordering.

Variables are represented by points on the x-axis and clauses are represented by stars 
of edges that connect those points. The center-point of each star is elevated 

proportionally to the span of the clause with the given ordering of the variables 
(i.e., the distance between the right-most and the left-most variables in the clause).
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4.2  Ordering Clauses in CNFs

In [Section 4.1], we used linear hypergraph placement to generate a static variable or-
dering to speedup SAT and minimize BDD sizes. We propose to further minimize the
intermediate BDD sizes and speed up the BDD construction run time by ordering the
clauses using linear hypergraph placement. If we can partition the clauses, in a formula,
into several groups, such that clauses in each group share common variables, then such
a formula is expected to be built faster and to require smaller intermediate BDDs, since
we are likely to traverse a specific part of the BDD that only involves the common
shared variables. On the other hand, constructing BDDs for a random order of clauses
could require traversing the BDD between its highest and lowest index node each time
a clause is added.

We propose the following heuristic that orders the clauses in CNF formulae. An ini-
tial CNF formula is converted to a hypergraph, in which clauses are represented by ver-
tices. For each variable , a hyperedge is created that connects all clauses including the
variable  (regardless of the polarity of ). Applying balanced min-cut partitioning to
such hypergraphs separates the CNF formula into relatively independent subformulae.
Constructing the BDD for the clauses in each part would be a step towards manipulating
given parts of the BDD, as advocated earlier. [Fig. 5] shows an example. When building
the clauses using the original clause order, the BDD will have a maximum size of 4
nodes after constructing the second clause. In comparison, if the improved clause order
is used, the BDD will have a maximum size of 3 nodes after constructing the fifth
clause. 

In addition to the min-cut clause ordering approach, we propose to order the clauses
according to their literals. Each clause level is computed as .
Clauses with the highest levels are constructed first, since they include BDD variables
with the highest index (i.e., at the bottom of the BDD). This approach allows for a bot-
tom-up construction of the BDD and permits the manipulation of variables at specific
levels in the BDD. We will refer to this approach as the Bottom-Up clause ordering ap-
proach.

4.3  Ordering Primary Inputs in Circuits

Similarly, recursive min-cut bisection can also be applied to circuits to identify tightly
connected clusters of gates. Processing such clusters should help in reducing the con-
struction run time and the size of BDDs. We use the min-cut circuit placer CAPO [Cald-
well et al., 2000b]. Since circuit partitioning and placement are typically performed on
hypergraph representations of circuits, we distinguish two such hypergraph models: the
circuit hypergraph (Circuit HG) and the dual hypergraph (Dual HG). 

A Circuit HG models circuits by representing each gate with a hypergraph node and
each signal net driven by a gate with a hyperedge. PIs and signal nets driven by PIs are
also included as hypergraph nodes and hyperdges, respectively. Each hyperedge con-

x
x x

level min literal( )=
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Figure 5: Example of (a) default clause-ordering (b) improved min-cut clause-
ordering. BDD for (a) after reading the first two clauses is shown in (c). 

BDD for (b) after reading all five clauses is shown in (d).
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Figure 6: Example using (a) default variable ordering with Circuit hypergraph 
(b) Dual hypergraph 

(c) min-cut variable ordering with Circuit hypergraph (d) Dual hypergraph. 
BDDs representing (a) and (c) are shown in (e) and (f), respectively. 
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nects the fanout of a gate to the fanins of the gates that it is connected to. An example
is shown in [Fig. 6(a)]. After CAPO is applied to this hypergraph and returns an order-
ing of gates, the ordering of PIs is derived from the gate ordering. 

A Dual HG can also be generated by replacing the hyperedges in a Circuit HG, with
new hyperedges that connect the fanout of each gate to its fanins. [Fig. 6(b)] shows an
example of a Dual HG. Dual HGs are more likely to produce better PI ordering than the
Circuit HG approach, since the inputs of each gate are ordered closely to the output of
the gate. [Fig. 6(c-d)] show an example of the hypergraph generated by CAPO for the
given circuit using the HG and the Dual HG models. Clearly, the total netlength and the
max-cut were reduced for both cases. The original ordering of the Dual HG model im-
plied a total netlength, max-cut, and BDD size of 5, 24, and 9 nodes, respectively. In
comparison, the new PI-ordering for the Dual HG model reflected a total netlength,
max-cut, and BDD size of 3, 14, and 5 nodes, respectively. We conjecture that such PI
ordering should yield better BDD run time and memory results.

5   Empirical Results

In this section, we present experimental evidence of the improvements obtained by
MINCE. We used zChaff [Moskewicz et al., 2001] as our SAT solver and CAPO [Cald-
well et al., 2000c] as our min-cut circuit placer. Experimental results are given for 38
instances from the following benchmark families: pigeon-hole [DIMACS], randomized
Urquhart [Urquhart, 1987], global routing [Aloul et al., 2002a], FPGA routing (fpga
and chnl) [Aloul et al., 2002b], xor-chains [SAT 2004], microprocessor verification
(pipe) [Velev and Bryant, 1999], bounded model checking (barrel and longmult) [Biere
et al., 1999], n-queens [SATLIB], ISCAS’85 circuits [ISCAS, 1985], and flat versions
of the ISCAS’89 circuits [Brglez et al., 1989] expressed in CNF. The experiments were
performed on a Linux (Red Hat 9.0) workstation with a 2-GHz Xeon and 1 GB of RAM.
The run time limit for all experiments was set to 1000 seconds. 
SAT Experiments: We performed two sets of experiments. In the first set, we used the
original instances. In the second set the variables were statically re-ordered using
MINCE. For each set, we ran zChaff with three settings: (1) Fixed decision heuristic
[Davis et al., 1962] (unassigned variable with smallest index is chosen first); (2) Vari-
able state independent decaying sum (VSIDS) dynamic decision heuristic [Moskewicz
et al., 2001]; and (3) VSIDS with random restarts (referred to as VRR). VSIDS selects
the variable that appears in the highest number of clauses and gives some priority to
variables that appear in recent conflict-induced clauses. It has been found to be signifi-
cantly effective in a variety of EDA problem instances [Moskewicz et al., 2001].

[Tab. 2] shows zChaff’s run times for each set of experiments and three settings. The
table also shows the ordering run times of MINCE. [Tab. 3] shows the size of each in-
stance (number of variables #V and CNF clauses #C) and the average variable cut for
the original and MINCE variable orders. We observe the following from analyzing the
data:
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Instance

zChaff run time (sec) MINCE
Order
(sec)

Original (Search) MINCE (Search) MINCE (Order + Search)

Fixed VSIDS VRR Fixed VSIDS VRR Fixed VSIDS VRR

hole9 0.34 0.95 0.89 0.31 1.31 1.89 0.45 1.45 2.03 0.14

hole10 2.16 13.66 15.24 1.49 20.68 12.29 1.75 20.94 12.55 0.26

hole11 15.6 128 68.08 8.15 162 84.7 8.36 162.2 84.9 0.21

Urq3_1 >1000 147 136 51.05 241 214 51.1 241 214 0.09

Urq3_5 >1000 >1000 >1000 659 >1000 >1000 659 >1000 >1000 0.15

Urq3_9 114 4.47 4.31 1.14 8.87 4.69 1.22 8.95 4.77 0.08

grout-3.3-3 72.14 37.89 5.49 0.46 1.48 7.37 9.35 10.37 16.26 8.89

grout-3.3-4 0.04 1 32.41 0.25 1.96 4.61 6.04 7.75 10.4 5.79

grout-3.3-8 156 0.71 2.44 0.56 0.4 3.79 6.85 6.69 10.08 6.29

grout-3.3-10 0.05 729 22.17 38.38 138 0.98 58.4 158 20.97 19.99

fpga10_8 58.58 20.65 160 2.57 29.87 565 2.79 30.1 565.2 0.22

fpga10_9 734 124 4.25 2.34 112 181 2.7 112.4 181.4 0.36

fpga12_8 499 316.9 974 1.86 403 486 2.55 403.7 486.7 0.69

fpga12_9 >1000 >1000 >1000 141 677 >1000 141.9 677.9 >1000 0.88

fpga12_11 >1000 >1000 >1000 15.62 33.66 147 16.7 34.7 148.1 1.07

fpga12_12 >1000 936 76.02 13.22 395 60.81 13.6 395.3 61.14 0.33

fpga13_9 >1000 >1000 >1000 8.86 >1000 >1000 10.18 >1000 >1000 1.32

fpga13_10 >1000 >1000 >1000 397 >1000 >1000 398.3 >1000 >1000 1.34

fpga13_12 >1000 >1000 >1000 12.38 422 >1000 12.8 422.4 >1000 0.41

chnl10_11 2.06 13.65 15.31 1.85 13.64 10.79 2.3 14.09 11.24 0.45

chnl10_12 2.02 14.06 11.86 1.54 16.47 15.79 1.88 16.81 16.13 0.34

chnl10_13 2.04 14.63 15.16 1.4 25.03 14.28 1.84 25.5 14.72 0.44

chnl11_12 14.7 128 68.51 8.18 182 63.59 8.63 182.5 64.04 0.45

chnl11_13 14.98 232 97.54 6.99 242 102 7.48 242.5 102.5 0.49

chnl11_20 15.1 >1000 627.1 41.05 397.9 117 48.7 405.6 124.7 7.68

x1_24 422 11.29 43.68 0.29 12.18 1.62 0.72 12.61 2.05 0.43

x1_32 >1000 >1000 >1000 2.82 13.7 22.44 3 13.88 22.62 0.18

x1_36 >1000 >1000 >1000 5.02 >1000 19.84 5.18 >1000 20 0.16

2pipe_1_o >1000 0.16 0.17 >1000 0.15 0.19 >1000 8.25 8.29 8.1

2pipe_2_o >1000 0.22 0.24 >1000 0.18 0.17 >1000 9.81 9.8 9.63

2pipe >1000 0.14 0.14 26.74 0.13 0.11 33.96 7.35 7.33 7.22

barrel7 39.04 9.72 9.57 6.59 12.79 10.97 42.95 49.15 47.33 36.36

barrel8 79.47 28.34 38.51 26.72 33.08 25.52 73.35 79.71 72.15 46.63

longmult7 >1000 13.39 14.3 2.49 13.09 13.15 14.44 25.04 25.1 11.95

longmult8 >1000 67.7 118 12.76 56.72 141 26.73 70.69 155 13.97

NQueens20 57.86 114.3 1.49 0.01 197.6 1.57 8.54 206.1 10.1 8.53

NQueens22 >1000 >1000 1.96 0.64 >1000 1.99 14.15 >1000 15.5 13.51

NQueens24 91.1 >1000 1.91 0 >1000 2.44 17.48 >1000 19.92 17.48

Total 18392 14108 10567 3500 9864 7338 3733 10097 7571 233

# Solved 22 27 30 36 32 33 36 32 33

TABLE 2: zChaff search run times (in seconds) for the CNF-SAT instances, using 
various static and dynamic decision heuristics. 
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Instance #V #C
Avg Var Cut

MINCE Order (sec)
Original MINCE

hole9 90 415 149.4 25.4 0.14

hole10 110 561 200.9 29.9 0.26

hole11 132 738 263.1 34.7 0.21

Urq3_1 43 334 219.7 95.2 0.09

Urq3_5 46 470 351.9 142.3 0.15

Urq3_9 37 236 161.9 63.4 0.08

grout-3.3-3 960 9156 2281 273.9 8.89

grout-3.3-4 912 8356 2082 262.2 5.79

grout-3.3-8 912 8356 2082 258.8 6.29

grout-3.3-10 1056 10862 2707 311.2 19.99

fpga10_8 120 448 116.9 31.5 0.22

fpga10_9 135 549 140.9 36.2 0.36

fpga12_8 144 560 141.4 36.5 0.69

fpga12_9 162 684 170.3 41.5 0.88

fpga12_11 198 968 237.9 56.9 1.07

fpga12_12 216 1128 276.6 61.8 0.33

fpga13_9 176 759 185.5 45.1 1.32

fpga13_10 195 905 221.6 52.0 1.34

fpga13_12 234 1242 300.8 64.7 0.41

chnl10_11 220 1122 200.9 34.9 0.45

chnl10_12 240 1344 239.2 34.6 0.34

chnl10_13 260 1586 280.9 39.7 0.44

chnl11_12 264 1476 263.1 34.7 0.45

chnl11_13 286 1742 308.9 39.8 0.49

chnl11_20 440 4220 732.4 95.6 7.68

x1_24 70 186 66.5 27.0 0.43

x1_32 94 250 89.9 33.3 0.18

x1_36 106 282 105.8 33.2 0.16

2pipe_1_o 834 7026 2517 781.5 8.1

2pipe_2_o 925 8212 3054 882.9 9.63

2pipe 861 6695 2187 727.2 7.22

barrel7 3523 13765 767 358 36.36

barrel8 5106 20083 1021 505 46.63

longmult7 3319 10335 468 155 11.95

longmult8 3810 11877 472 157 13.97

NQueens20 400 12560 2728 2738 8.53

NQueens22 484 16808 3624 3649 13.51

NQueens24 576 21920 4697 4723 17.48

Total 29627 202684 36353 17161 233

TABLE 3: The size of CNF-SAT instances in terms of variables and clauses is shown. 
The table also includes ordering run times of the static decision heuristic MINCE and 

the average cutwidth for each instance. 
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Instance

BerkMin561 run time (sec) MINCE
Order
(sec)

Original (Search) MINCE (Search) MINCE (Order + Search)

Fixed Dynamic Fixed Dynamic Fixed Dynamic

hole9 3.15 2.83 0.16 3.17 0.3 3.31 0.14

hole10 17.13 50.81 0.83 53.01 1.09 53.27 0.26

hole11 127.04 >1000 10.5 1000 10.71 >1000 0.21

Urq3_1 >1000 92.32 >1000 637.6 >1000 637.7 0.09

Urq3_5 >1000 >1000 >1000 >1000 >1000 >1000 0.15

Urq3_9 3.77 0.84 0.18 0.64 0.26 0.72 0.08

grout-3.3-3 4.92 7.96 7.4 11.93 16.29 20.82 8.89

grout-3.3-4 5.49 4.18 1.59 2.14 7.38 7.93 5.79

grout-3.3-8 6.17 6.73 >1000 4.87 >1000 11.16 6.29

grout-3.3-10 26.29 22.17 7.11 8.98 27.1 28.97 19.99

fpga10_8 >1000 0.03 0.16 0.01 0.38 0.23 0.22

fpga10_9 >1000 0.02 0.13 0.03 0.49 0.39 0.36

fpga12_8 >1000 0.02 0.6 0.1 1.29 0.79 0.69

fpga12_9 >1000 0.04 >1000 0.03 >1000 0.91 0.88

fpga12_11 >1000 0.06 >1000 0.02 >1000 1.09 1.07

fpga12_12 >1000 0.15 >1000 0.13 >1000 0.46 0.33

fpga13_9 >1000 0.07 >1000 0.07 >1000 1.39 1.32

fpga13_10 >1000 0.03 >1000 0.03 >1000 1.37 1.34

fpga13_12 >1000 0.06 >1000 0.02 >1000 0.43 0.41

chnl10_11 18.49 60.04 0.88 55.49 1.33 55.94 0.45

chnl10_12 19.74 >1000 3.31 47.92 3.65 48.26 0.34

chnl10_13 20.48 >1000 8.09 53.91 8.53 54.35 0.44

chnl11_12 130.8 >1000 10.34 >1000 10.79 >1000 0.45

chnl11_13 130.4 >1000 30.3 >1000 30.79 >1000 0.49

chnl11_20 130 >1000 >1000 >1000 >1000 >1000 7.68

x1_24 629 3 0.1 15.84 0.53 16.27 0.43

x1_32 >1000 10.95 15.74 >1000 15.92 >1000 0.18

x1_36 >1000 >1000 10.89 >1000 11.05 >1000 0.16

2pipe_1_o >1000 0.07 0.23 0.07 8.33 8.17 8.1

2pipe_2_o >1000 0.07 0.98 0.09 10.61 9.72 9.63

2pipe 21.92 0.05 0.07 0.06 7.29 7.28 7.22

barrel7 19.69 30.78 477 17.75 513.6 54.1 36.36

barrel8 75.67 294.4 9.66 214.15 56.3 261 46.63

longmult7 5.19 3.96 >1000 5.48 >1000 17.43 11.95

longmult8 22.42 19.1 >1000 23.33 >1000 37.3 13.97

NQueens20 >1000 0.03 0 0 8.53 8.53 8.53

NQueens22 >1000 0.03 0 0 13.51 13.51 13.51

NQueens24 >1000 0.03 0 0 17.48 17.48 17.48

Total 19418 8611 12596 8156 12829 8389 233

# Solved 20 30 26 31 26 31

TABLE 4: BerkMin561 search run times (in seconds) for the CNF-SAT instances, 
using static and dynamic decision heuristics. 
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Instance

Seige_v4 run time (sec) MINCE
Order
(sec)

Original (Search) MINCE (Search) MINCE (Order + Search)

Dynamic Dynamic Dynamic

hole9 27.48 31.56 31.7 0.14

hole10 172 167.1 167.3 0.26

hole11 595.4 553.2 553.4 0.21

Urq3_1 17.67 17.95 18.04 0.09

Urq3_5 357.1 475.4 475.6 0.15

Urq3_9 0.95 0.44 0.52 0.08

grout-3.3-3 4.6 7.39 16.28 8.89

grout-3.3-4 7.35 4.49 10.28 5.79

grout-3.3-8 10.15 55.76 62.05 6.29

grout-3.3-10 11.1 8.57 28.56 19.99

fpga10_8 0.01 0.3 0.52 0.22

fpga10_9 0.01 0.34 0.7 0.36

fpga12_8 0.01 0.2 0.89 0.69

fpga12_9 0.01 0.46 1.34 0.88

fpga12_11 0.01 2.62 3.69 1.07

fpga12_12 0.01 0.52 0.85 0.33

fpga13_9 0.01 0.39 1.71 1.32

fpga13_10 0.01 1.56 2.9 1.34

fpga13_12 0.01 1.04 1.45 0.41

chnl10_11 166.1 172.7 173.2 0.45

chnl10_12 310.6 865 865.3 0.34

chnl10_13 379.8 927.4 927.9 0.44

chnl11_12 >1000 773.7 774.1 0.45

chnl11_13 >1000 >1000 >1000 0.49

chnl11_20 >1000 >1000 >1000 7.68

x1_24 3.42 0.75 1.18 0.43

x1_32 9.31 4.25 4.43 0.18

x1_36 76.49 100.3 95.16 0.16

2pipe_1_o 0.13 0.07 8.17 8.1

2pipe_2_o 0.13 0.11 9.74 9.63

2pipe 0.11 0.05 7.27 7.22

barrel7 21.22 24.44 60.8 36.36

barrel8 127.1 133.3 179.9 46.63

longmult7 7.39 7.76 19.71 11.95

longmult8 36.57 33.75 47.72 13.97

NQueens20 0.01 0.01 8.54 8.53

NQueens22 0.01 0.01 13.52 13.51

NQueens24 0.01 0.01 17.49 17.48

Total 5342 6367 6600 233

# Solved 35 36 36

TABLE 5: Seige_v4 search run times (in seconds) for the CNF-SAT instances. 
Random seed 1 was used.
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• For the pigeon-hole, unsatisfiable FPGA routing (chnl), satisfiable FPGA routing
(fpga), urquhart, and xor-chain instances, the combination of MINCE/Fixed
yields the best search run times.

• For the n-queens instances, the combination MINCE/Fixed (when not counting
MINCE ordering run time) shows the best search run times in all cases. 

• The results are mixed for the global routing, microprocessor verification, and
bounded model checking instances. The combination Original/VSIDS yields the
best search run times in six out of eleven cases. The two instances, grout-3.3-3
and grout-3.3-8, are solved in a fraction of a second using the combinations
MINCE/Fixed and MINCE/VSIDS (when not counting MINCE ordering run
times) respectively. All microprocessor verification instances are solved in a
fraction of a second using the combination MINCE/VSIDS/Restarts (when not
counting MINCE ordering run times). Note that these instances have large
average variable cuts.

• MINCE significantly reduces the average variable cut for most instances. 

• Ordering run times are correlated with the size of the instance.

Deciding on closely-connected variables (i.e., variables that share many clauses)
leads to a reduction in search run time. Since “connected” variables are ordered next to
each other, this approach allows the SAT solver to quickly identify and avoid unprom-
ising partial solutions. In other words, instead of deciding on variables from separate
partitions, one partition is considered at a time. This approach was found to be more ef-
fective on instances with well-pronounced connectivity structure, such as the pigeon-
hole or FPGA routing instances, which consist of multiple partitions. On these prob-
lems, MINCE finds variable orders compatible with the problem’s structure, which
speeds up SAT solvers. For example, a speedup of 9 was obtained for the hole10 in-
stance over the VSIDS decision heuristic with random restarts.

Nevertheless, the dynamic decision heuristic, VSIDS (with or without Random Re-
starts), does outperform the use of MINCE with fixed decision heuristic on general
structured EDA instances, such as the microprocessor verification instances. This, in
part, is explained by the fact that the VSIDS decision heuristic accounts for the added
conflict-induced clauses when selecting the next decision variable. Augmenting the
CNF formula with a large number of conflict-induced clauses during the search process
is likely to increase the formula’s cutwidth and eliminate the advantage of the static or-
derings identified by MINCE. Observe that MINCE has a worst- and best-case perfor-
mance of  [Caldwell et al., 2000c], where  is the total number
of variables and  is the number of clauses in a given CNF formula. MINCE’s perfor-
mance compares favorably with many SAT solvers, e.g., zChaff, that have exponential
worst-case performance. Nevertheless, the table shows that pre-processing the instanc-
es with MINCE, even when the dynamic decision heuristic VSIDS is used, helps speed-
up the search process. Finally, even when MINCE’s run time makes it prohibitively
expensive for a particular SAT instance where MINCE reduces a solver’s run time, cap-

Θ C V+( ) Vlog2( ) V
C
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turing the instance structure may lead to a better understanding and be useful for prac-
tical purposes. 

In order to study MINCE’s effect when using other state-of-the-art SAT solvers, we
solved the instances using two of the best known SAT solvers: BerkMin561 [Goldberg
and Novikov, 2002] and seige (variant 4) [Ryan]. BerkMin561 was run with two set-
tings: (1) Fixed decision heuristic (BerkMin561 option - strategy 2); and (2) its default
dynamic decision heuristic (BerkMin561 option - strategy 0). Seige can only be tested
with its dynamic decision heuristic enabled. A random seed of 1 was used with Seige.
Note that the source-code for both solvers is not public.

[Tab. 4] and [Tab. 5] show BerkMin561’s and Seige’s run times, respectively. The
tables also show the ordering run times of MINCE. We observe the following from an-
alyzing the data:

• For BerkMin561, pre-processing the instances with MINCE solves more
instances (26 versus 20 with fixed ordering, and 31 versus 30 with dynamic
ordering). Both for fixed and dynamic ordering, overall run times decrease
(19418 sec versus 12829 sec with fixed ordering and 8611 sec versus 8389 sec
with dynamic ordering). 

• For Seige, pre-processing the instances with MINCE solves more instances (36
versus 35 with dynamic ordering). Note that some of the instances showed better
results without pre-processing with MINCE. This is explained by the fact that
Seige uses a dynamic decision heuristic only which can eliminate the advantage
of the static ordering identified by MINCE.

• zChaff’s total run times when using MINCE/Fixed outperform the best total run
times for BerkMin561 and Seige (3733 sec for zChaff -includes MINCE’s
ordering run times- versus 8389 sec for BerkMin561 versus 5342 sec for Seige).

• For difficult instances (and overall), the time needed to reorder variables with
MINCE does not dominate SAT-solving, either before or after variable ordering.

Instance
MINCE Order (sec) Avg Var Cut

Average Median Average Median

hole10 0.26 0.26 29.90 29.90

Urq3_9 0.09 0.08 64.59 63.57

grout-3.3-4 5.93 5.95 260.8 260.5

fpga10_8 0.18 0.17 31.91 32.00

chnl10_11 0.52 0.53 30.98 29.90

x1_24 0.36 0.42 27.31 27.14

2pipe 8.20 8.21 730.5 728.8

TABLE 6: Exploring the variability of orders returned by independent random starts 
of MINCE. 100 different variable orders were generated, using MINCE, for various 
instances in [Tab. 2]. The table shows the average and median of MINCE’s ordering 

run times and the average cutwidth of the SAT instances.
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To explore the variability of orders returned by independent random starts of MINCE,
we generated 100 different variable orders, using MINCE, for various instances in
[Tab. 2] . [Tab. 6]  reports the results of those tests. Specifically, the table shows the
average and median of MINCE’s ordering run times and the average cutwidth of the
SAT instances. MINCE’s algorithm has near-linear run time, and empirically the run
times on different starts are very close. 
CNF-to-BDD Experiments: [Tab. 7] and [Tab. 8] show the BDD construction run
times for circuit consistency functions (defined as a CNF formula consisting of the
union of sets of clauses representing each gate in the circuit, i.e., internal variables are
not quantified) of the ISCAS’89 circuit benchmarks. Note that this is not representative
of symbolic state traversal, but is a standard experimental procedure for evaluating
BDD packages [Janssen, 2001]. The table shows run times (sec) and BDD sizes, which
represent the maximum number of seen nodes at any point during the construction of
the BDD, using the original, original with sifting, MINCE, and MINCE with sifting
variable orderings, respectively. In addition, for each variable ordering, three clause or-

Var. 
Order:

Original MINCE MINCE

Clause 
Order:

Original Bottom-Up MINCE Original Bottom-Up MINCE VAR CL

Inst. Time Size Time Size Time Size Time Size Time Size Time Size Time Time

s27 0.09 181 0.12 256 0.1 181 0.1 60 0.1 60 0.12 60 0.05 0.06

s298 o/m o/m 307 6.9M 0.58 8792 0.24 8792 0.98 9K 0.2 0.37

s344 o/m o/m o/m 1.18 13K 0.22 9751 0.79 9130 0.33 0.41

s349 o/m o/m t/o 10.3 48K 0.22 16K 0.62 16K 0.29 0.4

s382 o/m o/m o/m 0.99 7492 0.18 6748 0.45 9051 0.31 0.45

s386 o/m o/m 92 608K 32.6 492K 2.2 94K 3.2 60K 0.31 0.5

s400 o/m o/m o/m 0.98 6641 0.18 6253 0.36 6177 0.23 0.55

s420 o/m o/m t/o 1.04 17K 0.22 7033 0.46 7823 0.3 0.57

s444 o/m o/m o/m 0.64 7000 0.3 9092 0.77 7189 0.72 0.6

s510 o/m o/m t/o o/m 2.87 108K 128 1.5M 0.86 0.64

s526 o/m o/m t/o 2.37 25K 0.52 25K 2.61 32K 0.45 0.68

s641 o/m o/m o/m 8.26 178K 3.61 106K 15.6 89K 0.54 0.84

s713 o/m o/m o/m 53.6 774K 9.5 450K 54.6 295K 0.56 0.98

s832 o/m o/m t/o o/m 34 310K t/o 1.29 1.09

s838 o/m o/m o/m 101 1M 6.1 92K 13.1 160K 0.61 1.17

s953 t/o o/m t/o o/m 134 4M t/o 0.77 1.13

s1196 t/o o/m t/o o/m 475 11M 505 3.4M 1.27 1.59

s1238 o/m o/m t/o o/m 151 4M t/o 1.27 1.82

Total 0.09 181 0.12 256 399 7.5M 214 2.6M 820 21M 727 5.7M 10.4 13.9

#Built 1 1 3 13 18 15

TABLE 7: Statistics for constructing the BDDs of the ISCAS89 CNF Benchmarks 
without Sifting. Size represents the maximum size during the construction of the BDD. 

o/m stands for out-of-memory. t/o stands for time-out.
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dering heuristics are used: original, bottom-up, and MINCE min-cut clause order. The
MINCE variable ordering leads to faster and smaller BDDs. In terms of circuits, this
can be explained by MINCE ordering the gates to minimize the “total length of wires”.
Using the original clause ordering, MINCE enabled the BDD construction for 16 IS-
CAS’89 circuits as opposed to only 10 with sifting and 1 with the original variable or-
dering. MINCE’s variable ordering time is negligible in most cases. MINCE reduced
the average variable cut for the ISCAS’89 circuits from 250 to 49.

In addition, combining the bottom-up or MINCE clause ordering heuristics with the
MINCE variable ordering allows the construction of more circuits as opposed to using
the original clause ordering. This is justified by the fact that, sorting the clauses helps
in localizing the BDD manipulations to specific levels of the BDD and keeps the BDD
depth as small as possible which helps in achieving better BDD construction run time
and memory results. The tables also show that enabling sifting will, in general, produce
BDDs with fewer nodes, but will require an overhead in run time. Despite the fact that
our tables show a higher number of instances solved without sifting, we believe most
instances will be solved with sifting given a longer run time limit. When comparing the

 
Var. 

Order: 
Original MINCE MINCE

Clause 
Order:

Original Bottom-Up MINCE Original Bottom-Up MINCE VAR CL

Inst. Time Size Time Size Time Size Time Size Time Size Time Size Time Time

s27 0.12 181 0.1 256 0.1 181 0.14 60 0.13 60 0.1 60 0.05 0.06

s298 8.84 28K 274 294K 1.4 6504 11.4 15K 1.16 6445 1.3 8513 0.2 0.37

s344 208 130K t/o 1.6 5423 158 98K 0.79 9039 3.6 13K 0.33 0.41

s349 90 83K t/o 1.9 8971 315 193K 1.87 11K 1.2 6698 0.29 0.4

s382 51.3 88K 87.2 118K 1.7 7688 19.2 28K 0.46 4752 1.9 12K 0.31 0.45

s386 99 96K 155 131K 5.0 18K 128 124K 8.37 18K 8.9 31K 0.31 0.5

s400 247 177K 106 68K 1.4 7665 97.6 107K 0.71 4513 1.2 4808 0.23 0.55

s420 136 94K 557 142K 2.7 8012 216 81K 1.24 6536 2.1 6116 0.3 0.57

s444 77.3 85K 943 508K 1.5 5360 166 136K 1.72 7684 21.4 40K 0.72 0.6

s510 t/o t/o 24 41K t/o 13 18K 18.4 66K 0.86 0.64

s526 t/o t/o 3.6 14K 297 155K 2.62 8959 3.1 14K 0.45 0.68

s641 t/o t/o 213 129K t/o 50.5 69K 239 202K 0.54 0.84

s713 t/o t/o 278 144K t/o 176 223K 184 152K 0.56 0.98

s832 t/o t/o t/o t/o 102 83K t/o 1.29 1.09

s838 t/o t/o 38.2 45K t/o 19.1 28K 34.5 60K 0.61 1.17

s953 t/o t/o t/o t/o t/o t/o 0.77 1.13

s1196 t/o t/o t/o t/o t/o t/o 1.27 1.59

s1238 t/o t/o t/o t/o t/o t/o 1.27 1.82

Total 917 783K 2123 1.2M 574 441K 1408 939K 379 500K 521 617K 10.4 13.9

#Built 9 7 14 10 15 14

TABLE 8: Statistics for constructing the BDDs of the ISCAS89 CNF Benchmarks with 
Sifting. Size represents the maximum size during the construction of the BDD. o/m 

stands for out-of-memory. t/o stands for time-out.
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bottom-up with MINCE clause ordering heuristic, bottom-up is successful in construct-
ing more circuits than MINCE, however for some instances, such as the ,
MINCE is able to build the BDD using less memory than the bottom-up approach. We
should note that MINCE is a randomized algorithm. Different runs can produce differ-
ent clause orderings which can lead to better solutions. On average, the new clause or-
dering heuristics combined with MINCE variable ordering are able to obtain significant
performance improvement in comparison with the original variable and clause order-
ings. The technique is simple and easy to use in practice. Its static nature allows for a
variety of applications where dynamic approaches fail.
Circuit-to-BDD Experiments: [Tab. 9] and [Tab. 10] summarize the run time and
memory results for constructing the BDDs for the PO functions of the ISCAS’85 cir-
cuits in terms of their PIs (internal variables are quantified). We used the nanotrav
tool (within the CUDD distribution, version 2.4.0) [Somenzi, 1997] to construct the
BDDs. In both tables, the columns represent the original, BFS, DFS, Fujita [Fujita et
al., 1988], Malik-level [Malik et al., 1988], Malik-fanin [Malik et al., 1988], and
MINCE orderings using the Circuit HG and the Dual HG, respectively. The tables also
include the run time needed by CAPO to generate the gate orderings. As the data clearly
illustrate, DFS, Fujita, Malik-level, and Malik-fanin successfully construct more cir-
cuits than the original or BFS ordering heuristic. However, in the non-sifting case, cir-
cuit HG and Dual HG orderings are able to construct more BDDs than all other
approaches. Out of 11 ISCAS’85 benchmarks, circuit HG and Dual HG constructed 10
BDDs as opposed to 9 BDDs by DFS, Fujita, Malik-level, and Malik-fanin. Further-
more, the Dual HG model was successful in solving more instances, using smaller run
times and BDD nodes, than the Circuit HG model. This can be attributed to the fact that
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c17 17 0 17 0 21 0 21 0 21 0 21 0 0.04 17 0 20 0

c432 6582 0.01 34K 0.03 149K 0.27 151K 0.28 161K 0.4 151K 0.28 0.23 7078 0.01 5748 0.01

c499 60K 0.07 141K 0.18 52K 0.06 61K 0.08 74K 0.1 63K 0.08 0.26 72K 0.11 43K 0.05

c880 1.2M 1.97 101K 0.15 27K 0.03 29K 0.02 29K 0 30K 0.02 0.48 257K 0.79 43K 0.04

c1355 184K 0.23 399K 0.57 165K 0.19 197K 0.24 251K 0.4 200K 0.25 0.62 188K 0.26 170K 0.22

c1908 90K 0.32 55K 0.08 43K 0.08 45K 0.09 127K 0.5 45K 0.07 1 59K 0.19 100K 0.22

c2670 o/m o/m 11M 35.2 11.4M 37.5 12.8M 72 11.5M 37.4 1.61 158K 0.29 86K 0.24

c3540 2.5M 6.64 2.2M 5.49 916K 1.76 757K 1.38 650K 1.6 757K 1.44 2.08 920K 2.49 4.1M 11.48

c5315 o/m o/m 74K 0.16 74K 0.15 50K 0.1 74K 0.16 3.15 245K 0.7 35K 0.06

c6288 o/m o/m o/m o/m o/m o/m (2.89) o/m o/m

c7552 o/m o/m o/m o/m o/m o/m 4.83 84K 0.16 488K 0.91

Total 4M 9.2 3M 6.5 12M 37.8 12.8M 39.8 14.1M 76 12.8M 40 14.3 1.9M 5.01 5.1M 13.2

#Built 7 7 9 9 9 9 10 10

TABLE 9: Statistics for constructing the BDDs of the ISCAS85 circuits without sifting 
using the nanotrav tool (from the CUDD distribution, version 2.4.0). 

o/m stands for out-of-memory. 
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constructing the BDD for a gate’s output is heavily dependent on the gate’s inputs
which are ordered more closely using the Dual HG model. When comparing the results
with sifting, the Dual HG model outperforms Malik-level and utilizes fewer BDD
nodes. As discussed earlier, building BDDs with sifting generally uses fewer BDD
nodes but requires longer run time. This can be illustrated by our results with the Dual
HG model, where all 10 instances were solved in 13 seconds without sifting as opposed
to 55 seconds with sifting. On the other hand, the total BDD size is only 409K nodes
for the sifting experiment, whereas it needs 5.1M nodes in the non-sifting experiment.
We believe the proposed static ordering should be very effective with applications that
do not allow dynamic sifting. 

We are currently working on further improving the performance by running multiple
independent starts of MINCE. The main advantage of our approach is the use of circuit
structure detected by global min-cut partitioning and placement algorithms with near-
linear worst-case run time. Note that as in the SAT experiments, MINCE is not expected
to perform well on complex circuits that exhibit no structural properties. 

6   Conclusions and Future Work

We proposed a static variable-ordering heuristic MINCE for CNF formulae with appli-
cations to SAT and BDDs. The main advantage of this heuristic is its very good perfor-
mance on standard benchmarks in terms of run time of SAT solvers, as well as memory
and run time of BDD construction. We believe that this is due to the fact that the pro-
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c17 17 0 17 0 21 0 21 0 21 0 21 0 0.04 17 0 20 0

c432 4933 0.04 4998 0.1 4856 0.13 5057 0.09 5213 0.1 5057 0.08 0.23 5284 0.05 5054 0.04

c499 39K 1.66 69K 2.37 42K 2.36 46K 2.98 50K 4.4 44K 1.77 0.26 54K 2.75 34K 1.14

c880 27K 1.01 41K 1.27 19K 0.59 20K 0.29 19K 0.7 20K 0.6 0.48 55K 5.72 18K 0.6

c1355 121K 17.7 144K 22.68 121K 18.1 124K 10.4 121K 22 140K 10.4 0.62 131K 12.2 132K 27.1

c1908 29K 0.62 25K 1.07 25K 1.04 27K 0.65 21K 1 28K 0.61 1 22K 0.92 24K 1.56

c2670 14K 1.07 11K 0.87 46K 6.23 27K 2.11 10K 0.5 40K 2.23 1.61 11K 0.94 10K 0.59

c3540 136K 10.3 267K 26.08 296K 58.2 292K 51 267K 27 292K 51.2 2.08 254K 40.7 130K 15.3

c5315 10K 0.47 11K 0.53 11K 0.52 12K 0.48 12K 0.4 12K 0.51 3.15 12K 0.41 10K 0.37

c6288 t/o t/o t/o t/o t/o t/o (2.89) t/o t/o

c7552 47K 3.29 46K 3.64 37K 3 37K 2.88 44K 3.1 38K 3.12 4.83 27K 3.71 45K 8.09

Total 427K 36.1 619K 58.6 601K 90.2 590K 70.9 550K 60 618K 70.5 14.3 571K 67.4 409K 54.8

#Built 10 10 10 10 10 10 10 10

TABLE 10: Statistics for constructing the BDDs of the ISCAS85 circuits with sifting 
using the nanotrav tool (from the CUDD distribution, version 2.4.0).

o/m stands for out-of-memory. t/o stands time-out.
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posed variable ordering is global and relies on high-performance hypergraph partition-
ing and placement (MLPart [Caldwell et al., 2000b] and CAPO [Caldwell et al.,
2000c]). Unlike problem-specific dynamic variable-ordering heuristics, such as VSIDS
and variable sifting, MINCE can be implemented once and used for different applica-
tions without modifying the application code. Given that MINCE shows strong im-
provements in seemingly unrelated applications (SAT and BDD) and for a wide variety
of standard benchmarks, we believe that it is able to capture structural properties of
CNF instances and circuits. We show that when “connected” variables, clauses, or gates
are ordered next to each other, SAT and BDD operations can achieve better perfor-
mance. For example, when a CNF formula is created from a circuit, it is not difficult to
see that MINCE essentially performs recursive partitioning and linear placement of this
circuit, and then orders variables so that respective circuit elements are located near
each other on average. One particular example is shown in [Fig. 7] where cut-profiles
of a particular circuit-derived CNF instance with the original and MINCE variable or-
derings are compared (a clause is “cut” by all variables ordered between its left- and
right-most variables). More significantly, MINCE reduces all cuts and exposes design
hierarchy of the original circuit. [Fig. 7] also shows the cutwidth profile for the original
and MINCE variable orderings of an FPGA routing instance. Interestingly, the five
variable clusters in [Fig. 7(f)] represent a one-to-one correspondence with the routing
channels in the FPGA interconnect fabric. In general, this technique should have better
impact on BDDs, since they are more sensitive to variable ordering than SAT. SAT
solvers can reduce the damage incurred by a bad variable ordering using the addition of
conflict-induced clauses (a conflict clause connects literals of related variables even if
they are very far from each other in the ordering).

We note that our use of a finely-tuned standard-cell placer CAPO results in better av-
erage cuts and clause spans than one expects from a “vanilla” recursive bisection (e.g.,
as commonly implemented with hMetis). This black-box software reuse is enabled by
the pure preprocessing nature of the proposed techniques (we use Chaff as a black-box
too). We hope that this will also enable its easy evaluation and adoption in the industry.
The work in [Jin et al., 2002], published after our initial workshop paper, successfully
used our proposed techniques as well as our implementation (available on the Web at
http://www.eecs.umich.edu/~faloul/Tools/mince) in a different application—conjunc-
tion scheduling for reachability analysis.

Our on-going work addresses additional types of benchmarks, better justifications of
the MINCE heuristic and also analyses of the cases when it fails to produce near-best
variable orderings. An important research question is to account for polarities of literals.
We are aware of work conducted in [Wang and Clarke, 2001] which is similar to ours.
Our colleagues use hMetis, modify the source-code of GRASP and attempt to account
for polarities of literals by post-processing. A comparison of results show that MINCE
is surprisingly successful without using polarities of literals. Other work includes com-
bining partitioning-based techniques like MINCE with very fast, entirely local tech-
niques used in SAT solvers. While our work does offer some evidence to usefulness of
this combination, a recent conference paper by [Huang and Darwiche, 2003] offers such
a combination, with strong empirical results against the original Chaff. However, their
techniques do not work on instances like pigeon-hole benchmarks (MINCE does). 
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