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Quantum-mechanical phenomena are playing an increasing role in information process-
ing, as transistor sizes approach the nanometer level, and quantum circuits and data
encoding methods appear in the securest forms of communication. Simulating such phe-
nomena efficiently is exceedingly difficult because of the vast size of the quantum state
space involved. A major complication is caused by errors (noise) due to unwanted in-
teractions between the quantum states and the environment. Consequently, simulating
quantum circuits and their associated errors using the density matrix representation is
potentially significant in many applications, but is well beyond the computational abili-
ties of most classical simulation techniques in both time and memory resources. The size
of a density matrix grows exponentially with the number of qubits simulated, rendering
array-based simulation techniques that explicitly store the density matrix intractable.
In this work, we propose a new technique aimed at efficiently simulating quantum cir-
cuits that are subject to errors. In particular, we describe new graph-based algorithms
implemented in the simulator QuIDDPro/D. While previously reported graph-based sim-
ulators operate in terms of the state-vector representation, these new algorithms use the
density matrix representation. To gauge the improvements offered by QuIDDPro/D,
we compare its simulation performance with an optimized array-based simulator called
QCSim. Empirical results, generated by both simulators on a set of quantum circuit
benchmarks involving error correction, reversible logic, communication, and quantum
search, show that the graph-based approach far outperforms the array-based approach
for these circuits.
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1 Introduction

Practical information-processing applications that exploit quantum-mechanical effects are be-
coming common. For example, MagiQ Technologies markets a quantum communications de-
vice that detects eavesdropping attempts and prevents them [1]. The act of eavesdropping can
be modeled as both making a quantum measurement and corruption by environmental noise
[2]. Additionally, quantum computational algorithms have been discovered to quickly search
unstructured databases [3] and to factor numbers in polynomial time [4]. Implementing quan-
tum algorithms has proved to be particularly difficult, however, in part due to errors caused
by the environment [5, 6]. Another related application is the design of reversible logic circuits.
Since the operations performed in quantum computation must be unitary, they are all invert-
ible and allow re-derivation of the inputs given the outputs [2]. This phenomenon gives rise
to a host of potential applications in fault-tolerant computation. In addition, reversible logic
gates can be used to completely specify search predicates in unstructured quantum search and
modular exponentiation in quantum number factoring [3, 4]. Since reversible logic, quantum
communication, and quantum algorithms can be modeled as quantum circuits [2], quantum
circuit simulation incorporating errors could be of major benefit to these applications. In
fact, any quantum-mechanical phenomenon with a finite number of states can be modeled
as a quantum circuit [2, 7]. It may seem at first glance that efficient simulation of quantum
circuits diminishes their value since they no longer offer a computational speed-up over clas-
sical computation. However, such simulation is extremely useful in that it offers insight into
quantum circuit design and provides a way to study error behavior and new ideas for error
correction, which may be applicable to other quantum circuits that cannot be simulated effi-
ciently. Furthermore, quantum communication circuits are intended to provide secure forms
of communication rather than computational improvements over classical computation. Sim-
ilarly, reversible circuits have applications in quantum algorithms that provide speed-ups over
classical computation and in fault-tolerant computing. Thus, efficient simulation of quantum
communication and reversible logic circuits can be particularly valuable.

We present a new technique that facilitates efficient simulation of the density matrix rep-
resentation of a class of quantum circuits. The density matrix representation is crucial in
capturing interactions between quantum states and the environment, such as noise. In ad-
dition to the standard set of operations required to simulate with the state-vector model,
including matrix multiplication and the tensor product, simulation with the density matrix
model requires the outer product and the partial trace. The outer product is used in the ini-
tialization of qubit density matrices, while the partial trace allows a simulator to differentiate
qubit states coupled to noisy environments or other unwanted states. The partial trace is in-
valuable in error modeling since it facilitates descriptions of single qubit states that have been
affected by noise and other phenomena [2]. Our techniques specifically target well-defined
quantum circuit applications which only require unitary evolutions of a state initialized in the
computational basis, and we are not dealing with explicitly specified Hamiltonians. Errors
can be injected into the unitary operations directly. As will be demonstrated later, the main
motivation for using the density matrix in this work is that the partial trace can be used
to isolate the effect of these errors on the data qubits, whereas this cannot be done in the
state-vector model.

Unfortunately, like the state-vector model, simulation with the density matrix is computa-
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tionally challenging on classical computers. The size of any density matrix grows exponentially
with the number of qubits or quantum states it represents [2]. Thus, simulation techniques
which require explicit storage of the density matrix in a series of arrays are inefficient and
generally intractable. However, the new simulation technique we propose is founded in graph-
based algorithms which can represent and manipulate density matrices very efficiently in many
important cases. A key component of our algorithms is the Quantum Information Decision
Diagram (QuIDD) data structure, which can represent and manipulate a useful class of ma-
trices and vectors commonly found in quantum circuit applications using time and memory
resources that are polynomial in the number of qubits [8, 9]. A limitation of our previous
QuIDD algorithms, and other graph-based techniques [10], is that they simulate the state-
vector representation of quantum circuits. In this work, we present new algorithms to perform
the outer product and the partial trace with QuIDDs. These algorithms enable QuIDD-based
simulation of quantum circuits with the density matrix representation.

We also describe a set of quantum circuit benchmarks that incorporate errors, error cor-
rection, reversible logic, quantum communication, and quantum search. To empirically eval-
uate the improvements offered by our new technique, we use these benchmarks to compare
QuIDDPro/D with an optimized array-based density matrix simulator called QCSim [11].
Performance data from both simulators show that our new graph-based algorithms far out-
perform the array-based approach for the given benchmarks. It should be noted, however,
that not all quantum circuits can be simulated efficiently with QuIDDs. A useful class of
matrices and vectors which can be manipulated efficiently by QuIDDs has been formally de-
scribed in previous work [8] and is restated below. For some matrices and vectors outside of
this class, QuIDD-based simulation can be up to three times slower due to the overhead of
following pointers in the QuIDD datastructure.

The paper is organized as follows. Section 2 provides background on decision diagram
data structures and previous simulation work. In Section 3 we present our new algorithms
along with a description of the QuIDDPro/D simulator. Section 3.3 describes the quantum
circuit benchmarks and presents performance results on each benchmark for QuIDDPro/D
and QCSim. Finally, in Section 4 we present our conclusions and ideas for future work.

2 Background and Previous Work

The simulation technique proposed in this work relies on the QuIDD data structure, which is
a type of graph called a decision diagram. This section presents the basic concepts of decision
diagrams, assuming only a rudimentary knowledge of computational complexity and graph
theory. It then reviews previous research on simulating quantum circuits.

2.1 Binary Decision Diagrams

Many decision diagrams are ultimately based on the binary decision diagram (BDD). The
BDD was introduced by Lee in 1959 in the context of classical logic circuit design [12]. This
data structure represents a Boolean function f(x1, x2, ..., xn) by a directed acyclic graph
(DAG) as shown in Fig. 1. By convention, the top node of a BDD is labeled with the name
of the function f represented by the BDD. Each variable xi of f is associated with one or
more nodes, each of which have two outgoing edges labeled then (solid line) and else (dashed
line). The then edge of node xi denotes an assignment of logic 1 to the xi, while the else edge
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denotes an assignment of logic 0. These nodes are called internal nodes and are labeled by
the corresponding variable xi. The edges of the BDD point downward, implying a top-down
assignment of values to the Boolean variables depicted by the internal nodes.

At the bottom of a BDD are terminal nodes containing the logic values 1 or 0. They
denote the output value of the function f for a given assignment of its variables. Each path
through the BDD from top to bottom represents a specific assignment of 0-1 values to the
variables x1, x2, ..., xn of f , and ends with the corresponding output value f(x1, x2, ..., xn).

f = x0 · x1 + x1

x0

x1x1

1 0 1 0

f

x0

x1

1 0

f

x1

1 0

f

(a) (b) (c) (d)

Fig. 1. (a) A logic function, (b) its BDD representation, (c) its BDD representation after applying
the first reduction rule, and (d) its ROBDD representation.

The memory complexity of the original BDD data structure conceived by Lee is exponen-
tial in the number of variables for a given logic function. Simulation of many practical logic
circuits with this data structure was therefore impractical. To address this limitation, Bryant
developed the Reduced Ordered BDD (ROBDD) [13], where all variables are ordered, and
assignment of values to variables are made in that order. A key advantage of the ROBDD is
that variable-ordering facilitates an efficient implementation of reduction rules that automat-
ically eliminate redundancy from the basic BDD representation. These rules are summarized
as follows:

(i) There are no nodes v and v′ such that the subgraphs rooted at v and v′ are isomorphic
(ii) There are no internal nodes with then and else edges that both point to the same node

An example of how the rules distinguish an ROBDD from a BDD is shown in Fig. 1. The
subgraphs rooted at the x1 nodes in Fig. 1b are isomorphic. By applying the first reduction
rule, the BDD in Fig. 1b becomes the BDD in Fig. 1c. Note that, in Fig. 1c, the then and
else edges of the x0 node now point to the same node. Applying the second reduction rule
eliminates the x0 node, resulting in the ROBDD in Fig. 1d. Intuitively it makes sense to
eliminate the x0 node since the output of the original function is determined solely by the
value of x1. In many Boolean functions, this type of redundancy is eliminated with varying
success depending on the order in which variables in the function are evaluated. Finding the
optimal variable ordering is an NP -complete problem, but efficient ordering heuristics have
been developed for specific applications. Moreover, it turns out that many practical logic
functions have ROBDD representations that are polynomial (or even linear) in the number of
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input variables [13]. Consequently, ROBDDs have become indispensable tools in the design
and simulation of classical logic circuits.

2.2 BDD Operations

Even though the ROBDD is often quite compact, efficient algorithms are also needed to
manipulate ROBDDs for circuit simulation. Thus, in addition to the foregoing reduction
rules, Bryant introduced a variety of ROBDD operations with complexities that are bounded
by the size of the ROBDDs being manipulated [13]. Of central importance is the Apply

operation, which performs a binary operation with two ROBDDs, producing a third ROBDD
as the result. It can be used, for example, to compute the logical AND of two functions.
Apply is implemented by a recursive traversal of the two ROBDD operands. For each pair of
nodes visited during the traversal, an internal node is added to the resultant ROBDD using
the three rules depicted in Fig. 2. To understand the rules, some notation must be introduced.
Let vf denote an arbitrary node in an ROBDD f . If vf is an internal node, V ar(vf ) is the
Boolean variable represented by vf , T (vf) is the node reached when traversing the then edge
of vf , and E(vf ) is the node reached when traversing the else edge of vf .

x i

Rule 1

Apply(T(v  ),v  ,op)f g

Apply(E(v  ),v  ,op)f g

x i

Rule 2

Apply(v  ,T(v  ),op)f

Apply(v  ,E(v  ),op)

g

gf

x i

Rule 3

Apply(T(v  ),T(v  ),op)gf

Apply(E(v  ),E(v  ),op)f g

xi ≺ xj xi � xj xi = xj

Fig. 2. The three recursive rules used by the Apply operation which determine how a new node
should be added to a resultant ROBDD. In the figure, xi = V ar(vf ) and xj = V ar(vg). The
notation xi ≺ xj is defined to mean xi precedes xj in the variable ordering.

Clearly the rules depend on the variable ordering. To illustrate, consider performing Apply

using a binary operation op and two ROBDDs f and g. Apply takes as arguments two nodes,
one from f and one from g, and the operation op. This is denoted as Apply(vf , vg, op). Apply

compares V ar(vf ) and V ar(vg) and adds a new internal node to the ROBDD result using the
three rules. The rules also guide Apply’s traversal of the then and else edges (this is the recur-
sive step). For example, suppose Apply(vf , vg, op) is called and V ar(vf ) ≺ V ar(vg). Rule 1 is
invoked, causing an internal node containing V ar(vf ) to be added to the resulting ROBDD.
Rule 1 then directs the Apply operation to call itself recursively with Apply(T (vf), vg, op)
and Apply(E(vf ), vg, op). Rules 2 and 3 dictate similar actions but handle the cases when
V ar(vf ) � V ar(vg) and V ar(vf ) = V ar(vg). To recurse over both ROBDD operands
correctly, the initial call to Apply must be Apply(Root(f), Root(g), op) where Root(f) and
Root(g) are the root nodes for the ROBDDs f and g.

The recursion stops when both vf and vg are terminal nodes. When this occurs, op is
performed with the values of the terminals as operands, and the resulting value is added to
the ROBDD result as a terminal node. For example, if vf contains the value logical 1, vg

contains the value logical 0, and op is defined to be ⊕ (XOR), then a new terminal with value
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1 ⊕ 0 = 1 is added to the ROBDD result. Terminal nodes are considered after all variables
are considered. Thus, when a terminal node is compared to an internal node, either Rule 1
or Rule 2 will be invoked depending on which ROBDD the internal node is from.

The success of ROBDDs in making a seemingly difficult computational problem tractable
in practice led to the development of ROBDD variants outside the domain of logic design. Of
particular relevance to this work are Multi-Terminal Binary Decision Diagrams (MTBDDs)
[14] and Algebraic Decision Diagrams (ADDs) [15]. These data structures are compressed
representations of matrices and vectors rather than logic functions, and the amount of com-
pression achieved is proportional to the frequency of repeated values in a given matrix or
vector. Additionally, some standard linear-algebraic operations, such as matrix multiplica-
tion, are defined for MTBDDs and ADDs. Since they are based on the Apply operation, the
efficiency of these operations is proportional to the size in nodes of the MTBDDs or ADDs
being manipulated. Further discussion of the MTBDD and ADD representations is deferred
to Sec. 3 where the general structure of the QuIDD is described.

2.3 Previous Simulation Techniques

Quantum circuit simulators must support linear-algebraic operations such as matrix multipli-
cation, the tensor product, and the projection operators. Simulation with the density matrix
model additionally requires the outer product and partial trace [2]. Many simulators typi-
cally employ array-based methods to facilitate these operations and so require exponential
computational resources in the number of qubits. Such methods are often insensitive to the
actual values stored, and even sparse-matrix storage offers little improvement for quantum
operators with no zero matrix elements, such as Hadamard operators. Previous work on these
and other simulation techniques is reviewed in this subsection.

One popular array-based simulation technique is to simulate k-input quantum gates on
an n-qubit state-vector (k ≤ n) without explicitly storing a 2n × 2n-matrix representation
[11, 16]. The basic idea is to simulate the full-fledged matrix-vector multiplication by a series
of simpler operations. To illustrate, consider simulating a quantum circuit in which a 1-qubit
Hadamard operator is applied to the third qubit of the state-space |00100〉. The state-vector
representing this state-space has 25 elements. A naive way to apply the 1-qubit Hadamard is
to construct a 25 × 25 matrix of the form I ⊗ I ⊗ H ⊗ I ⊗ I and then multiply this matrix
by the state-vector. However, rather than compute (I ⊗ I ⊗ H ⊗ I ⊗ I)|00100〉, one can
simply compute |00〉 ⊗ H |1〉 ⊗ |00〉, which produces the same result using a 2 × 2 matrix
H . The same technique can be applied when the state-space is in a superposition, such as
α|00100〉+β|00000〉. In this case, to simulate the application of a 1-qubit Hadamard operator
to the third qubit, one can compute |00〉⊗H(α|1〉+β|0〉)⊗|00〉. As in the previous example,
a 2× 2 matrix is sufficient.

While the above method allows one to compute a state space symbolically, in a realistic
simulation environment, state-vectors may be much more complicated. Shortcuts that take
advantage of the linearity of matrix-vector multiplication are desirable. For example, a single
qubit can be manipulated in a state-vector by extracting a certain set of two-dimensional vec-
tors. Each vector in such a set is composed of two probability amplitudes. The corresponding
qubit states for these amplitudes differ in value at the position of the qubit being operated
on but agree in every other qubit position. The two-dimensional vectors are then multiplied
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by matrices representing single qubit gates in the circuit being simulated. We refer to this
technique as qubit-wise multiplication because the state-space is manipulated one qubit at a
time. Obenland implemented a technique of this kind as part of a simulator for quantum
circuits [16]. His method applies one- and two-qubit operator matrices to state vectors of size
2n. Unfortunately, in the best case where k = 1, this only reduces the runtime and memory
complexity from O(22n) to O(2n), which is still exponential in the number of qubits.

Another implicit limitation of Obenland’s implementation is that it simulates with the
state-vector representation only. The qubit-wise technique has been extended, however, to
enable density matrix simulation by Black et al. and is implemented in NIST’s QCSim simu-
lator [11]. As in its predecessor simulators, the arrays representing density matrices in QCSim
tend to grow exponentially. This asymptotic bottleneck is demonstrated experimentally in
Sec. 3.3.

Gottesman developed a simulation method involving the Heisenberg representation of
quantum computation which tracks the commutators of operators applied by a quantum
circuit [17]. With this model, the state need not be represented explicitly by a state-vector
or a density matrix because the operators describe how an arbitrary state-vector would be
altered by the circuit. Gottesman showed that simulation based on this model requires only
polynomial memory and runtime on a classical computer in certain cases. However, it ap-
pears limited to the Clifford group of quantum operators, which do not form a universal gate
library. A recent extension to this technique enables simulation with any quantum operators,
but the complexity grows exponentially with every operator introduced that is not in the
Clifford group [18].

Other advanced simulation techniques including MATLAB’s “packed” representation, ap-
ply data compression to matrices and vectors, but cannot perform matrix-vector multiplica-
tion without first decompressing the matrices and vectors. A notable exception is Greve’s
graph-based simulation of Shor’s algorithm which uses BDDs [10]. Probability amplitudes
of individual qubits are modeled by single decision nodes. Unfortunately, this only captures
superpositions where every participating qubit is rotated by ±45 degrees from |0〉 toward |1〉.

3 Graph-Based Algorithms for Density Matrix Simulation

QuIDDPro/D utilizes new simulation algorithms with unique features that allow it to have
much higher performance than naive explicit array-based simulation techniques. These algo-
rithms are the subject of this section. In addition, we provide some implementation details
of the QuIDDPro/D simulator.

3.1 QuIDDs and New QuIDD Algorithms

Our density matrix simulation technique relies on the QuIDD data structure. Previous work
reported the use of QuIDDs in simulating the state-vector model of quantum circuits [8, 9].
We present new algorithms which use QuIDDs to efficiently perform the outer product and
the partial trace, both of which are needed to simulate density matrices. Before discussing
the details of these algorithms, we briefly review the QuIDD data structure.

The QuIDD was born from the observation that vectors and matrices which arise in
quantum computing contain repeated structure. Operators obtained from the tensor product
of smaller matrices exhibit common substructures which certain ROBDD variants can capture.
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The QuIDD can be viewed as an ADD [15] or MTBDD [14] with special properties [8, 9].

U|01><01|U
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C1 C1

-0.25 0.25
0 1

0 1
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U|01><01|U

Fig. 3. (a) QuIDD for the density matrix resulting from U |01〉〈01|U†, where U = H ⊗H, and (b)
its explicit matrix form.

Fig. 3a shows the QuIDD that results from applying U to an outer product as U |01〉〈01|U †,
where U = H ⊗ H . The Ri nodes of the QuIDD encode the binary indices of the rows in
the explicit matrix. Similarly, the Ci nodes encode the binary indices of the columns. Solid
lines leaving a node denote the positive cofactor of the index bit variable (a value of 1), while
dashed lines denote the negative cofactor (a value of 0). Terminal nodes correspond to the
value of the element in the explicit matrix whose binary row/column indices are encoded by
the path that was traversed.

Notice that the first and second pairs of rows of the explicit matrix in Fig. 3b are equal, as
are the first and second pairs of columns. This redundancy is captured by the QuIDD in Fig.
3a because the QuIDD does not contain any R0 or C0 nodes. In other words, the values and
their locations in the explicit matrix can be completely determined without the superfluous
knowledge of the first row and column index bits.

Measurement, matrix multiplication, addition, scalar products, the tensor product, and
other operations involving QuIDDs are variations of the well-known Apply algorithm discussed
in Sec. 2.2 [8, 9]. Vectors and matrices with large blocks of repeated values can be manipulated
in QuIDD form quite efficiently with these operations. In addition, it has been proven that
by interleaving the row and column variables in the variable ordering, QuIDDs can represent
and operate on a certain class of matrices and vectors using time and memory resources that
are polynomial in the number of qubits. This class includes, but is not limited to, any equal
superposition of n qubits, any sequence of n qubits in the computational basis states, n-qubit
Pauli operators, and n-qubit Hadamard operators. Specifically, this class includes any vector
or matrix created from the tensor product of vectors or matrices whose elements are in a
persistent set. Informally, a persistent set is a set of complex numbers whose set of all-pairs
products is the same size as the original set. Persistent sets have been explicitly characterized
in previous work [8] and can include, for example, arbitrary roots of unity, zero, and other
complex numbers.
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Outer Product(Q, numqubits) {
Q cctrans = Swap Row Col Vars(Q);
Q cctrans = Complex Conj(Q cctrans);
R = Matrix Multiply(Q, Q cctrans);
R = Scalar Div(Q cctrans, 2num qubits);
return R;

}

Complex Conj(Q) {
if (Is Constant(Q))

return New Terminal(Real(Q),
−1 ∗ Imag(Q));

if (Table Lookup(computed table, Q, R)
returnR;

v = Top Var(Q);
T = Complex Conj(Qv);
E = Complex Conj(Qv′);
R = ITE(v, T, E);
Table Insert(computed table, Q, R);
return R;

}
(a) (b)

Fig. 4. Pseudo-code for (a) the QuIDD outer product and (b) its complex conjugation helper
function Complex Conj. The code for Scalar Div is the same as Complex Conj, except that in
the terminal node case it returns the value of the terminal divided by a scalar. Other functions
are typical ADD operations [15, 19].

Since QuIDDs already have the capability to represent matrices and multiply them [8, 9],
extending QuIDDs to encompass the density matrix requires algorithms for the outer product
and the partial trace. The outer product involves matrix multiplication between a column
vector and its complex-conjugate transpose. Since a column vector QuIDD only depends on
row variables, the transpose can be accomplished by swapping the row variables with column
variables. The complex conjugate can then be performed with a DFS traversal that replaces
terminal node values with their complex conjugates. The original column vector QuIDD
is then multiplied by its complex-conjugate transpose using the matrix multiply operation
previously defined for QuIDDs [8, 9]. Pseudo-code for this algorithm is given in Fig. 4.
Notice that before the result is returned, it is divided by 2num qubits, where num qubits is
the number of qubits represented by the QuIDD vector. This is done because a QuIDD that
only depends on n row variables can be viewed as either a 2n × 1 column vector or a 2n × 2n

matrix in which all columns are the same. Since matrix multiplication is performed in terms
of the latter case [8, 9, 15], the result of the outer product contains values that are multiplied
by an extra factor of 2n, which must be normalized.

Although QuIDDs enable efficient simulation for a class of matrices and vectors in the
state-vector paradigm, it must be shown that the corresponding density matrix version of
this class can also be simulated efficiently. Since state-vectors are converted to density matri-
ces via the outer product, this can be shown by proving that the outer product of a QuIDD
vector in this class with its complex-conjugate transpose results in a QuIDD density matrix
with size polynomial in the number of qubits.

Theorem 1: Given an n-qubit QuIDD state-vector whose terminal values are in a persistent
set, the outer product of this QuIDD with its complex-conjugate transpose produces a QuIDD
matrix with polynomially many nodes in n.
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Proof: Since the given QuIDD state-vector’s terminal values are in a persistent set, the
number of nodes in the QuIDD is O(n) [8]. Consider the pseudo-code for the QuIDD outer
product shown in Fig. 4a. The first operation is to create a transposed copy of the QuIDD
state-vector. Transposition only requires remapping the internal variable nodes to represent
column variables instead of row variables. This can be done in one pass of all the nodes
in the QuIDD state-vector [8]. Since the number of nodes is O(n), this operation has O(n)
runtime complexity and creates a transposed copy with O(n) nodes. The next operation is to
complex-conjugate the transposed QuIDD copy. As evidenced by the pseudo-code for complex
conjugation of QuIDDs in Fig. 4b, this involves a single recursive pass over all nodes. All
internal nodes are returned unchanged with the O(1) ADD ITE operation [15], whereas the
complex-conjugate of the terminals are returned when they are reached. Since the number
of nodes in the transposed QuIDD copy is O(n), the runtime complexity of this operation is
O(n) and results in a new QuIDD with O(n) nodes. Next, QuIDD matrix multiplication is
performed on the QuIDD state-vector and its complex-conjugate transpose to produce the
QuIDD density matrix. It has been proven that QuIDD matrix multiplication of a QuIDD
with A nodes and a QuIDD with B nodes has runtime complexity O((AB)2) and results in
a QuIDD with O((AB)2) nodes [8]. Since the QuIDD state-vector and its complex-conjugate
transpose each have O(n) nodes, the matrix multiplication step has runtime complexity O(n4).
The final normalization step of the outer product is a scalar division of the terminal values.
Like QuIDD complex conjugation, this operation is a single recursive pass over the QuIDD,
but when the terminals are reached the scalar division result is returned. Since the QuIDD
density matrix has O(n4) nodes, this operation has runtime complexity O(n4). Based on the
complexity of all steps in the QuIDD outer product algorithm, the overall runtime complex-
ity of the QuIDD outer product is O(n4) and results in a QuIDD density matrix with O(n4)
nodes.

To motivate the QuIDD-based partial trace algorithm, we note how the partial trace can
be performed with explicit matrices. The trace of a matrix A is the sum of A’s diagonal
elements. To perform the partial trace over a particular qubit in an n-qubit density matrix,
the trace operation can be applied iteratively to sub-matrices of the density matrix. Each
sub-matrix is composed of four elements with row indices r0s and r1s, and column indices
c0dand c1d, where r, s, c, and d are arbitrary sequences of bits which index the n-qubit
density matrix.

Tracing over these sub-matrices has the effect of reducing the dimensionality of the den-
sity matrix by one qubit. A well-known ADD operation which reduces the dimensionality
of a matrix is the Abstract operation [15]. Given an arbitrary ADD f , abstraction of vari-
able xi eliminates all internal nodes of f which represent xi by combining the positive and
negative cofactors of f with respect to xi using some binary operation. In other words,
Abstract(f, xi, op) = fxi op fx′

i
.

For QuIDDs, there is a one-to-one correspondence between a qubit on wire i (wires are
labeled top-down starting at 0) and variables Ri and Ci. So at first glance, one may suspect
that the partial trace of qubit i in f can be achieved by a performing Abstract(f, Ri, +)
followed by Abstract(f, Ci, +). However, this will add the rows determined by qubit i in-
dependently of the columns. The desired behavior is to perform the diagonal addition of
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Ptrace(Q, qubit index) {
if(Is Constant(Q))

return Q;
top q = Top Var
if (qubit index < Index(top q)) {

R = Apply(Q, Q, +);
return R;

}

if (Table Lookup(computed table, (Q, qubit index), R)
return R;

T = Qtop q;
E = Qtop q′ ;

if (qubit index == Index(top q)) {
if (Is Constant(T ) || Index(T ) > Index(Q) + 1)

r1 = T ;
else {

top T = Top Var(T );
r1 = TtopT ;

}

if (Is Constant(E) || Index(E) > Index(Q) + 1)
r2 = E;

else {
top E = Top Var(E);
r2 = Etop E′ ;

}
R = Apply(r1, r2, +);
Table Insert(computed table, (Q, qubit index), R);
return R;

}

else { / ∗ (qubit index > Index(top q)) ∗ /
r1 = Ptrace(T, qubit index);
r2 = Ptrace(E, qubit index);
R = ITE(top q, r1, r2);
Table Insert(computed table, (Q, qubit index), R);
return R;

}
}

Fig. 5. Pseudo-code for the QuIDD partial trace. The index of the qubit being traced-over is
qubit index.

sub-matrices by accounting for both the row and column variables due to i simultaneously.
The pseudo-code to perform the partial trace correctly is depicted in Fig. 5. In comparing



124 Graph-based simulation of quantum computation in the density matrix representation

this with the pseudo-code for the Abstract algorithm [15], the main difference is that when
Ri corresponding to qubit i is reached, we take the positive and negative cofactors twice
before making the recursive call. Since the interleaved variable ordering of QuIDDs guaran-
tees that Ci immediately follows Ri [8, 9], taking the positive and negative cofactors twice
simultaneously abstracts both the row and column variables for qubit i, achieving the desired
result of summing diagonals. In other words, for a QuIDD f , the partial trace over qubit i

is Ptrace(f, i) = fRiCi + fR′
i
C′

i
. Note that in the pseudo-code there are checks for the spe-

cial case when no internal nodes in the QuIDD represent Ci. Not shown in the pseudo-code
is book-keeping which shifts up the variables in the resulting QuIDD to fill the hole in the
ordering left by the row and column variables that were traced-over.

As in the case of the outer product, the QuIDD partial trace algorithm has efficient run-
time and memory complexity in the size of the QuIDD being traced-over, as we now show.

Theorem 2: Given an n-qubit QuIDD density matrix with A nodes, any qubit represented in
the matrix can be traced-over with runtime complexity O(A) and results in a QuIDD density
matrix with O(A) nodes.

Proof: Consider the pseudo-code for the QuIDD partial trace algorithm in Fig. 5. The
algorithm performs a recursive traversal over the nodes in the QuIDD density matrix and
takes certain actions when special cases are encountered. If a node is encountered which cor-
responds to a qubit preceded by the traced-over qubit in the variable ordering,d then recursion
stops and the sub-graph is added to itself with the ADD Apply algorithm [13]. This operation
has runtime complexity O(A) and results in a new sub-graph with O(A) nodes. Next, if
the partial trace of the current sub-graph has already been computed, then recursion stops
and the pre-computed result is simply looked up in the computed table cache and returned.
This operation has runtime complexity O(1) and returns a sub-graph with O(A) nodes [13].
If there is no entry in the computed table cache, the algorithm checks if the current node’s
variable corresponds to the qubit to be traced-over. If so, Apply is used to add the node’s
children or children’s children, which again has O(A) runtime and memory complexity. If
the current node does not correspond to the qubit being traced-over, then the partial trace
algorithm is called recursively on the node’s children. Since all the other special cases stop
recursion and involve an Apply operation, then the overall runtime complexity of the partial
trace algorithm is O(A) and results in a new QuIDD density matrix with O(A) nodes.

3.2 QuIDDPro/D

QuIDDPro/D is the implementation of our simulation technique [20]. It was written in C++,
and the source code is approximately 17, 000 lines long. The density matrix is represented by
a QuIDD class with terminal node values of type complex < long double >. Gate operators
are also represented as QuIDDs. QuIDDPro/D utilizes our earlier QuIDDPro source code
[8, 9] and extends it significantly with an implementation of the outer product and partial
trace pseudo-code of Fig. 4 and Fig. 5. Additionally, the technique of using an epsilon to deal
with precision problems in QuIDDPro [8, 9] has been replaced with a technique that rounds

dRecall that there is a one-to-one correspondence between a qubit on wire i and variables Ri and Ci
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complex numbers to 25 significant digits. This enhancement allows an end-user to avoid
having to find an optimal value of epsilon for a given quantum circuit input. A front-end parser
was also created to accept a subset of the MATLAB language, which is ideal for describing
linear-algebraic operations in a text format. In addition to incorporating a set of well-known
numerical functions, the language also supports a number of other functions that are useful in
quantum circuit simulation. For example, there is a function for creating controlled-U gates
with an arbitrary configuration for the control qubits and user-defined specification of U .
Functions to perform deterministic measurement, probabilistic measurement, and the partial
trace, among others, are also supported. The current version of QuIDDPro/D contains over
65 functions.

3.3 Experimental Results

We consider a number of quantum circuit benchmarks which cover errors, error correction,
reversible logic, communication, and quantum search. We devised some of the benchmarks,
while others are drawn from NIST [11] and from a site devoted to reversible circuits [21].
For every benchmark, the simulation performance of QuIDDPro/D is compared with NIST’s
QCSim quantum circuit simulator, which utilizes an explicit array-based computational en-
gine. The results indicate that QuIDDPro/D far outperforms QCSim. All experiments are
performed on a 1.2GHz AMD Athlon workstation with 1GB of RAM running Linux.

3.4 Reversible Circuits

Here we examine the performance of QuIDDPro/D simulating a set of reversible circuits,
which we define as quantum circuits that perform classical operations [2]. Specifically, if the
input qubits of a quantum circuit are all in the computational basis (i.e. they have only
|0〉 or |1〉 values), there is no quantum noise, and all the gates are NOT variants such as
CNOT, Toffoli, X, etc, then the output qubits and all intermediate states will also be in the
computational basis. Such a circuit results in a classical logic operation which is reversible
in the sense that the inputs can always be derived from the outputs and the circuit function.
Reversibility comes from the fact that all quantum operators must be unitary and therefore
all have inverses [2].

The first reversible benchmark we consider is a reversible 4-bit ripple-carry adder which is
depicted in Fig. 6. Since the size of a QuIDD is sensitive to the arrangement of different values
of matrix elements, we simulate the adder with varied input values (“rc adder1” through
“rc adder4”). This is also done for other benchmarks. Two other reversible benchmarks
we simulate contain fewer qubits but more gates than the ripple-carry adder. One of these
benchmarks is a 12-qubit reversible circuit that outputs a |1〉 on the last qubit if and only if
the number of |1〉’s in the input qubits is 3, 4, 5, or 6 (“9sym1” through “9sym5”) [21]. The
other benchmark is a 15-qubit reversible circuit that generates the classical Hamming code
of the input qubits (“ham15 1” through “ham15 3”) [21].

Performance results for all of these benchmarks are shown in Tab. 1. QuIDDPro/D
significantly outperforms QCSim in every case. In fact for circuits of 14 or more qubits, QCSim
requires more than 2GB of memory. Since QCSim uses an explicit array-based engine, it is
insensitive to the arrangement and values of elements in matrices. Therefore, one can expect
QCSim to use more than 2GB of memory for any benchmark with 14 or more qubits, regardless
of the circuit functionality and input values. Another interesting result is that even though
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Fig. 6. (a) An implementation of a reversible full-adder (RFA), and (b) a reversible 4-bit ripple-
carry adder which uses the RFA as a module. The reversible ripple-carry adder circuit computes
the binary sum of two 4-bit numbers: x3x2x1x0⊕y3y2y1y0. cout is the final carry bit output from
the addition of the most-significant bits (x3 and y3).

Table 1. Performance results for QuIDDPro/D and QCSim on the reversible circuit benchmarks.
MEM-OUT indicates that a memory usage cutoff of 2GB was exceeded.

Benchmark No. of No. of QuIDDPro/D QCSim
Qubits Gates Runtime (s) Peak Memory (MB) Runtime (s) Peak Memory (MB)

rc adder1 16 24 0.44 0.0625 MEM-OUT MEM-OUT
rc adder2 16 24 0.44 0.0625 MEM-OUT MEM-OUT
rc adder3 16 24 0.44 0.0625 MEM-OUT MEM-OUT
rc adder4 16 24 0.44 0.0625 MEM-OUT MEM-OUT

9sym1 12 29 0.2 0.0586 8.01 128.1
9sym2 12 29 0.2 0.0586 8.02 128.1
9sym3 12 29 0.2 0.0586 8.04 128.1
9sym4 12 29 0.2 0.0586 8 128.1
9sym5 12 29 0.2 0.0586 7.95 128.1

ham15 1 15 148 1.99 0.121 MEM-OUT MEM-OUT
ham15 2 15 148 2.01 0.121 MEM-OUT MEM-OUT
ham15 3 15 148 1.99 0.121 MEM-OUT MEM-OUT

QuIDDPro/D is, in general, sensitive to the arrangement and values of matrix elements, the
data indicate that QuIDDPro/D is insensitive to varied inputs on the same circuit for error-
free reversible benchmarks. However, QuIDDPro/D still compresses the tremendous amount
of redundancy present in these benchmarks.

3.5 Error Correction and Communication

Now we analyze the performance of QuIDDPro/D on simulations that incorporate errors and
error correction. We consider some simple benchmarks that encode single qubits into Steane’s
7-qubit error-correcting code [22] and some more complex benchmarks that use the Steane
code to correct a combination of bit-flip and phase-flip errors in a half-adder and Grover’s
quantum search algorithm [3]. Secure quantum communication is also considered here because
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eavesdropping disrupts a quantum channel and can be treated as an error.
The first set of benchmarks, “steaneX” and “steaneZ,” each encode a single logical qubit

as seven physical qubits with the Steane code and simulate the effect of a probabilistic bit-
flip and phase-flip error, respectively [11]. “steaneZ” contains 13 qubits which are initialized
to the mixed state 0.866025|0000000000000〉+ 0.5|0000001000000〉. A combination of gates
apply a probabilistic phase-flip on one of the qubits and calculate the error syndrome and
error rate. “steaneX” is a 12 qubit version of the same circuit that simulates a probabilistic
bit-flip error.

A more complex benchmark that we simulate is a reversible half-adder with three logical
qubits that are encoded into twenty one physical qubits with the Steane code. Additionally,
three ancillary qubits are used to track the error rate, giving a total circuit size of twenty four
qubits. “hadder1 bf1” through “hadder3 bf3” simulate the half-adder with different numbers
of bit-flip errors on various physical qubits in the encoding of one of the logical qubit inputs.
Similarly, “hadder1 pf1” through “hadder3 pf3” simulate the half-adder with various phase-
flip errors.

Another large benchmark we simulate is an instance of Grover’s quantum search algorithm.
Grover’s algorithm searches for a subset of items in an unordered database of N items. Al-
lowed selection criteria are black-box predicates, called oracles, that can be evaluated on any
database record. This particular benchmark applies an oracle that searches for one element
in a database of four items. It has two logical data qubits and one logical oracle ancillary
qubit which are all encoded with the Steane code. Like the half-adder circuit, this results in
a total circuit size of twenty four qubits. “grover s1” simulates the circuit with the encoded
qubits in the absence of errors. “grover s bf1” and “grover s pf1” introduce and correct a
bit-flip and phase-flip error, respectively, on one of the physical qubits in the encoding of the
logical oracle qubit.

In addition to error modeling and error correction for computational circuits, another im-
portant application is secure communication using quantum cryptography. The basic concept
is to use a quantum-mechanical phenomenon called entanglement to distribute a shared key.
Eavesdropping constitutes a measurement of the quantum state representing the key, disrupt-
ing the quantum state. This disruption can be detected by the legitimate communicating
parties. Since actual implementations of quantum key distribution have already been demon-
strated [1], efficient simulation of these protocols may play a key role in exploring possible
improvements. Therefore, we present two benchmarks which implement BB84, one of the
earliest quantum key distribution protocols [23]. “bb84Eve” accounts for the case in which an
eavesdropper is present (see Fig. 7) and contains 9 qubits, whereas “bb84NoEve” accounts
for the case in which no eavesdropper is present and contains 7 qubits. In both circuits, all
qubits are traced-over at the end except for two qubits reserved to track whether or not the
legitimate communicating parties successfully shared a key (BasesEq) and the error due to
eavesdropping (Error).

Performance results for all of these benchmarks are show in Tab. 2. Again, QuIDDPro/D
significantly outperforms QCSim on all benchmarks except for “bb84Eve” and “bb84NoEve.”
The performance of QuIDDPro/D and QCSim is about the same for these benchmarks. The
reason is that these benchmarks contain fewer qubits than all of the others. Since each
additional qubit doubles the size of an explicit density matrix, QCSim has difficulty simulating
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Fig. 7. Quantum circuit for the “bb84Eve” benchmark.

Table 2. Performance results for QCSim and QuIDDPro/D on the error-related benchmarks.
MEM-OUT indicates that a memory usage cutoff of 2GB was exceeded.

Benchmark No. of No. of QuIDDPro/D QCSim
Qubits Gates Runtime (s) Peak Memory (MB) Runtime (s) Peak Memory (MB)

steaneZ 13 143 0.6 0.672 287 512
steaneX 12 120 0.27 0.68 53.2 128

hadder bf1 24 49 18.3 1.48 MEM-OUT MEM-OUT
hadder bf2 24 49 18.7 1.48 MEM-OUT MEM-OUT
hadder bf3 24 49 18.7 1.48 MEM-OUT MEM-OUT
hadder pf1 24 51 21.2 1.50 MEM-OUT MEM-OUT
hadder pf2 24 51 21.2 1.50 MEM-OUT MEM-OUT
hadder pf3 24 51 20.7 1.50 MEM-OUT MEM-OUT
grover s1 24 50 2301 94.2 MEM-OUT MEM-OUT

grover s bf1 24 71 2208 94.3 MEM-OUT MEM-OUT
grover s pf1 24 73 2258 94.2 MEM-OUT MEM-OUT

bb84Eve 9 26 0.02 0.129 0.19 2.0
bb84NoEve 7 14 <0.01 0.0313 <0.01 0.152

the larger Steane encoded benchmarks.

3.6 Scalability and Quantum Search

To test scalability with the number of input qubits, we turn to quantum circuits containing
a variable number of input qubits. In particular, we reconsider Grover’s quantum search
algorithm. However, for these instances of quantum search, the qubits are not encoded with
the Steane code, and errors are not introduced. The oracle performs the same function as the
one described in the last subsection except that the number of data qubits ranges from five
to twenty.

Performance results for these circuit benchmarks are shown in Tab. 3. Again, QuID-
DPro/D has significantly better performance. These results highlight the fact that QCSim’s
explicit representation of the density matrix becomes an asymptotic bottleneck as n increases,
while QuIDDPro/D’s compression of the density matrix and operators scales extremely well.
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Table 3. Performance results for QCSim and QuIDDPro/D on the Grover’s quantum search
benchmark. MEM-OUT indicates that a memory usage cutoff of 2GB was exceeded.

No. of No. of QuIDDPro/D QCSim
Qubits Gates Runtime (s) Peak Memory (MB) Runtime (s) Peak Memory (MB)

5 32 0.05 0.0234 0.01 0.00781
6 50 0.07 0.0391 0.01 0.0352
7 84 0.11 0.043 0.08 0.152
8 126 0.16 0.0586 0.54 0.625
9 208 0.27 0.0742 3.64 2.50
10 324 0.42 0.0742 23.2 10.0
11 520 0.66 0.0898 151 40.0
12 792 1.03 0.105 933 160
13 1224 1.52 0.141 5900 640
14 1872 2.41 0.125 MEM-OUT MEM-OUT
15 2828 3.62 0.129 MEM-OUT MEM-OUT
16 4290 5.55 0.145 MEM-OUT MEM-OUT
17 6464 8.29 0.152 MEM-OUT MEM-OUT
18 9690 12.7 0.246 MEM-OUT MEM-OUT
19 14508 18.8 0.199 MEM-OUT MEM-OUT
20 21622 28.9 0.203 MEM-OUT MEM-OUT

4 CONCLUSIONS AND FUTURE WORK

We have described a new graph-based simulation technique that enables efficient density
matrix simulation of quantum circuits. We implemented this technique in the QuIDDPro/D
simulator [20]. QuIDDPro/D uses the QuIDD data structure to compress redundancy in
the gate operators and the density matrix. As a result, the time and memory complexity of
QuIDDPro/D varies depending on the structure of the circuit. However, we demonstrated
that QuIDDPro/D exhibited superior performance on a set of benchmarks which incorporate
qubit errors, mixed states, error correction, quantum communication, and quantum search.
This result indicates that there is a great deal of structure in practical quantum circuits that
graph-based algorithms like those implemented in QuIDDPro/D exploit.

We are currently seeking to further improve quantum circuit simulation. For example,
algorithmic improvements directed at specific gates could enhance an existing simulator’s
performance. With regard to QuIDDPro/D in particular, we are also exploring the possibil-
ity of using “read-k” ADDs and edge-valued diagrams (EVDDs) in an attempt to elicit more
compression. We are also studying technology-specific circuits for quantum-information pro-
cessing. Optionally incorporating technology-specific details may lead to simulation results
that are more meaningful to physicists building real devices, particularly with regard to error
modeling.

Lastly, QuIDD terminal values are computed to within available machine precision. How-
ever, the computational complexity of a number of other physical simulation techniques has
been greatly reduced by introducing approximations. We are exploring the possibility of in-
troducing approximation into the terminal values such that values which are equal to within
some small epsilon are compressed into the same terminal. Such an approximation could serve
to reduce the size of QuIDDs quite substantially in the face of small errors.
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