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Abstract

Applications of reversible circuits can be found in the fields of low-power computation,

cryptography, communications, digital signal processing, and the emerging field of quan-

tum computation. Furthermore, prototype circuits for low-power applications are already

being fabricated in CMOS. Regardless of the eventual technology adopted, testing is sure

to be an important component in any robust implementation.

We consider the test set generation problem. Reversibility affects the testing problem

in fundamental ways, making it significantly simpler than for the irreversible case. For

example, we show that any test set that detects all single stuck-at faults in a reversible

circuit also detects all multiple stuck-at faults. We present efficient test set constructions

for the standard stuck-at fault model as well as the usually intractable cell-fault model.

We also give a practical test set generation algorithm, based on an integer linear program-

ming formulation, that yields test sets approximately half the size of those produced by

conventional ATPG.

∗This work was supported by the DARPA QuIST program. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing official policies of endorsements, ei-
ther expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.
A preliminary version of this paper was presented at the VLSI Test Symposium , Napa, CA in April 2003.
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1 Introduction

A primary motivation for the study of reversible circuits is the possibility of nearly energy-free

computation. Landauer [18] showed that traditional irreversible circuits necessarily dissipate

energy due to the erasure of information. On the other hand, in principle, reversible computa-

tion can be performed with arbitrarily small energy dissipation [2, 11]. Though the fraction of

the power consumption in current VLSI circuits attributable to information loss is negligible,

this is expected to change as increasing packing densities force the power consumption per gate

operation to decrease [24], making reversible computation an attractive alternative.

Many applications in the fields of cryptography, communications and digital signal pro-

cessing require computations that transform the data without erasing any of the original infor-

mation. These applications are particularly well-suited to a reversible circuit implementation.

However, the applicability of reversible circuits is not limited to inherently reversible appli-

cations. Conventional irreversible computation can be implemented reversibly using limited

overhead [19, 5]. Furthermore, reversible circuits are not just a theoretical area of study: De

Vos et al. [9] have built reversible CMOS circuits that are powered entirely from the input pins

without the assistance of additional power supplies.

A major new motivation for the study of reversible circuits is provided by the emerging field

of quantum computation [21]. In a quantum circuit the operations are performed on quantum

states or qubits rather than bits. Since quantum evolution is inherently reversible, the resulting

quantum computation is as well. Classical reversible circuits form an important subclass of

these quantum circuits.

While logic synthesis, and hardware implementations for reversible circuits have been stud-

ied in previous work, very little research has considered reversibility in the context of testing.

One exception is research at Montpellier, where reversibility was used to synthesize on-line

test structures for irreversible circuits [3, 4]. In contrast, our focus is on testing inherently

reversible circuits, particularly, generating efficient test sets for these circuits. Though this is
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a hard problem for conventional irreversible circuits, it can be significantly simplified in our

case. Agrawal [1] has shown that fault detection probability is greatest when the information

output of a circuit is maximized. This suggests that it may be easier to detect faults in reversible

circuits, which are information lossless, than in irreversible ones. While this previous work fo-

cused on probabilistic testing, here we are concerned with complete deterministic testing. We

show that surprisingly few test vectors are necessary to fully test a reversible circuit under the

multiple stuck-at fault model, with the number growing at most logarithmically both in the

number of inputs and the number of gates. This provides additional motivation for studying

reversible circuits, namely they may be much easier to test than their irreversible counterparts.

In Section 2 we give some basic background on reversible circuits. We then present some

theoretical results on complete test sets for reversible circuits in Section 3, and results on such

sets for worst-case circuits in Section 4. In Section 5 we give a practical algorithm for gen-

erating efficient complete test sets, present simulation results, and make comparisons to con-

ventional ATPG (automatic test pattern generation). We extend our results to the more general

cell-fault model in Section 6, and conclude in Section 7.

2 Reversible Circuits

A logic gate is reversible if the mapping of inputs to outputs is bijective, that is, every distinct

input yields a distinct output, and the numbers of input and output wires are equal. If it has k

inputs (and outputs), we call it a reversible k×k gate. Three commonly used gates, composing

the NCT -gate library, are shown in Figure 1. The NOT gate inverts the input, the C-NOT gate

passes the first input through and inverts the second if the first is 1, and the Toffoli gate passes

the first two inputs through and inverts the third if the first two are both 1.

A well-formed reversible circuit is constructed by starting with n wires, forming the basic

circuit, and iteratively concatenating reversible gates to some subset of the output wires of the

previous circuit. The outputs of each reversible gate replace the wires at its input. This iterative

3



b

(b)(a)

a

a a

a a

c c    ab

b b

(c)

a a    b

Figure 1: Examples of reversible logic gates: (a) NOT, (b) C-NOT, and (c) Toffoli.

construction naturally gives us the notion of levels in the circuit; the inputs to the circuit are

at level 0, and the outputs of any gate are at one plus the highest level of any of its inputs.

For convenience in cases where a wire at the input of a gate is at level i and the outputs are at

level j > i+1, we say the input is at all levels between i and j−1 inclusively. This gives us n

wires at each level. Figure 2 shows an example of a reversible circuit with the levels denoted

by dotted lines. The propagation of an input vector through the circuit is shown to illustrate

the circuit’s operation. The depth d of the circuit is the maximum level, which can be no larger

than the number of gates in the circuit. We will often find it convenient to use an n-bit vector

to refer to the values of the wires at a given level in the circuit. A binary vector has weight k if

it contains exactly k 1’s, and we denote the all-0’s and all-1’s vectors by 0 and 1, respectively.

The foregoing iterative construction also leads to the notion of a sub-circuit, the part of the

original circuit between levels i and j, or more specifically, the circuit formed by the gates with

outputs at level greater than i and less than j + 1. We denote the function computed by the

sub-circuit as fi, j and its inverse as f−1
i, j . If we omit the first subscript i it should be assumed to

be 0. The function of the entire circuit is then fd .

We say a reversible circuit is L-constructible, if it can be formed using the L-gate library.

Some important gate libraries used here are the NCT -gate library mentioned above, the C-NOT

gate library consisting of only C-NOT gates, and the universal or U -gate library which consists

of all possible reversible n×n gates. These three gate libraries compute the set of even permu-

tations, the set of linear reversible functions, and the set of all permutations respectively [22].
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Figure 2: Reversible circuit example. The dotted lines represent the levels in the circuit, and the
small open dots represent possible stuck-at fault sites. The diagram also shows the propagation
of input vector 0110 through the circuit.

In order to compute any function that is not an even permutation, at least one gate that spans

all n wires is required. Unlike the U -library, practical gate libraries are unlikely to contain such

large gates. The NCT -gate library has been well studied [23, 22] and computes essentially all

functions that are practically realizable. Consequently, we will focus on it for most of our work.

3 Complete Test Sets

Given a reversible circuit C and a fault set F , we want to generate a set of test vectors that detect

all faults in F . We call such a test set complete. A complete test set with the fewest possible

vectors is minimal.

Two important properties of reversibility simplify the test set generation problem. The first

is controllability: there is a test vector that generates any given desired state on the wires at any

given level. The second is observability: any single fault that changes an intermediate state in

the circuit also changes the output. Neither property holds, in general, for irreversible circuits.

To illustrate these two properties, consider the reversible circuit shown in Figure 2. The

controllability property enables us to set the wires at any level in the circuit to any desired

set of values using a unique input vector, found by reversing the action of the circuit. For
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example, to find the input vector necessary to set the wires at level 2 to the vector 0101, we first

backtrack through the three-input gate between levels 1 and 2. This gives us the vector 0111

at level 1. Backtracking once more gives the vector 0110 at the input. Reversibility guarantees

that this backtracking is always possible and always yields a unique vector at the input. The

observability property enables us to observe any intermediate change in the circuit at the output.

This is because each vector at any level in the circuit corresponds to exactly one output vector.

For example, only the vector 0101 at level 2 in the circuit yields the output vector 1001; any

other vector at this level will yield a different output.

For most of this paper we adopt the standard stuck-at fault model used in testing conven-

tional circuits, which includes all faults that fix the values of wires in the circuit to either 0 or

1. For reversible circuits we show that any test set that detects all single stuck-at faults, also de-

tects any number of simultaneous faults. In Section 6 we extend our results to the more general

cell-fault model, where the fault set consists of single gate failures.

3.1 General Properties

The following proposition provides a simple necessary and sufficient condition for a test set to

be complete for the stuck-at fault model.

Proposition 1 Under the single stuck-at fault model a test set is complete if and only if each

wire at every level can be set to both 0 and 1 by the test set.

Proof Assume without loss of generality that a test set does not set a wire at level i to 0. A

stuck-at 1 fault at this point in the circuit is then undetectable, since the outputs from the test

set are unaffected. On the other hand, if all wires at every level can be set to both 0 and 1 by

the test set, then a stuck-at fault must affect at least one test vector, changing the value of the

wire at that level from a 0 to a 1 or vice versa. By the observability property this change will

affect the output.
�
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To illustrate this proposition consider the fault site on the second wire at level 4 in the circuit

in Figure 2. In order to detect a stuck-at 0 fault, the test set must be able to set this wire to 1,

otherwise the fault would not have any effect on the test set, and would therefore be undetected.

If a stuck-at 0 fault does occur, then a test vector that sets the wire to 1 would generate an

incorrect output, namely a 1 instead of a 0 on the second wire at the output. Similarly, to detect

a stuck-at 1 fault on this wire, the test set must be able to set the wire to 0.

The next proposition shows that the single stuck-at and the multiple stuck-at fault models

are essentially identical for reversible circuits; specifically, a test set that is complete for one

model is also complete for the other. The intuition behind this property is that in the case of

multiple faults the final fault(s), i.e., those closest to the outputs, can be detected by working

backwards from the outputs.

Proposition 2 Any test set that is complete for the single stuck-at fault model is also complete

for the multiple stuck-at fault model.

Proof Suppose we have a counter-example. Then there must be a complete test set T for some

reversible circuit under the single fault model, which is not complete for multiple faults. So at

least one multiple fault M is undetectable by T . Since M is undetectable, the response of the

circuit to T must be the same as those of the fault-free circuit. Now M is composed of faults at

various levels. Let i be the deepest level containing a sub-fault of M. Since no sub-faults occur

at any level greater than i, the reversible sub-circuit between level i and the outputs is identical

to the corresponding sub-circuit in the fault-free circuit. Therefore, since the response to T

and the reversible sub-circuit between level i and the outputs are the same as for the fault-free

circuit, the values of the wires at level i must also be the same as for the fault-free circuit. Since

T is complete under the single fault model, by Proposition 1 each wire at level i must take both

the value 0 and 1. However this is a contradiction, since there is at least one sub-fault at level i

that fixes the value of a wire.
�
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This correspondence between the single and multiple stuck-at fault models allows us to

restrict our attention to the conceptually simpler case of single faults. If we have an n-wire

circuit with l gates of sizes k1, . . . ,kl , then a total of 2(n + ∑l
i=1 ki) single stuck-at faults can

occur: stuck-at 0 and stuck-at 1 faults for each gate input and circuit output. Reversibility then

implies the following result, which will be useful later.

Lemma 1 Each test vector covers exactly half of the possible faults, and each fault is covered

by exactly half of the possible test vectors.

Proof Each test vector t sets the bit at each fault site to either 0 or 1, detecting either a stuck-

at 1 or stuck-at 0 fault, respectively. Therefore, t detects precisely half of the possible single

stuck-at faults. For a given stuck-at fault there are 2n−1 possible bit vectors at that level that can

detect the fault, namely those that set the faulty bit to the opposite of the stuck-at value. Since

the circuit is reversible, each of these can be traced back to a distinct input vector. Therefore,

half of the 2n input vectors detect the fault.
�

We can obtain some properties of a minimal test set of a circuit by decomposing the circuit

into sub-circuits. For example, the size of a minimal test set for a reversible circuit is greater

than or equal to that of any of its sub-circuits. On the other hand, the size of a minimal test set

for a circuit formed by concatenating reversible circuits C1,. . ., Ck is no greater than the sum of

the sizes of minimal test sets for the individual Ci’s. Finally if two reversible circuits C1 and

C2, with minimal test sets of sizes |T1| and |T2| respectively, act on a disjoint set of input/output

bits, then the size of the minimal test set of the circuit formed by concatenating C1 and C2 is

equal to max{|T1|, |T2|}. These properties can be used to bound the size of the minimal test set,

and in some cases, to simplify the problem of finding a minimal test set.

3.2 Test Set Construction

The following proposition gives a number of complete test set constructions, implicitly provid-

ing upper bounds on the size of a minimal test set.
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Proposition 3 A complete test set for an n-wire reversible circuit with depth d and a total of l

gates with sizes k1, . . . ,kl is given by:

a. any 2n−1 +1 distinct test vectors

b. the following d +2 test vectors

{

0, 1, f−1
1 ( f1(0)), . . . , f−1

d ( fd(0))
}

(1)

c. some set of
⌊

log2

(

n+∑l
i=1 ki

)⌋

+2 test vectors.

Proof

(a) The value of a wire at a given level is set to 0 (or 1) by exactly 2n−1 input vectors. Therefore,

if the test set contains 2n−1 +1 vectors, then at least one will set it to 1 (or 0). Since this is true

for all fault sites, by Proposition 1 the test set is complete.

(b) The vector f−1
i ( fi(0)) sets the wires at level i to the bitwise inverse of the values set by

the 0 vector. Therefore each wire at every level can be set to both 0 and 1 by the test set. By

Proposition 1 the test set is complete.

(c) To prove this part we first prove that given a reversible circuit and an incomplete set of test

vectors, there is a test vector that can be added that covers at least half of the remaining faults.

Let m be the number of test vectors given, FC be the faults covered by this set, and C the

size of FC. If none of the remaining 2n −m input vectors cover at least half of the remaining

faults, then they must each cover more than half of the faults in FC. By Lemma 1 every test

vector covers exactly n + ∑l
i=1 ki faults and every fault is covered by exactly 2n−1 test vectors.

Therefore, the number of times faults in FC are covered by all input vectors cumulatively is

2n−1 ·C, implying the following inequalities:

(2n −m)

(

C
2

)

< 2n−1 ·C−m

(

n+
l

∑
i=1

ki

)

(2)
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2

(

n+
l

∑
i=1

ki

)

< C (3)

The second inequality is false since the number of faults covered cannot be larger than the total

number of faults that can occur. Therefore we have a contradiction, and there must be a test

vector that can be added to cover at least half of the remaining faults.

Recursively applying this observation we can eliminate all uncovered faults in no more than

⌊

log2

(

n+
l

∑
i=1

ki

)⌋

+2 (4)

steps (test vectors).
�

Proposition 3 limits the size of the minimal test set based on the size of the reversible circuit

both in terms of its depth and the number of input/output bits. For the circuit in Figure 2, parts

a-c of the proposition give upper bounds of 9, 7, and 6 test vectors, respectively. The final part

of the proposition implies that a reversible circuit can be tested by a very small set of tests. As

an example, a reversible circuit on 64 wires with a million 3× 3 gates can be tested using no

more than 23 input vectors. However, while the first two parts of Proposition 3 give practical

constructions, the last one does not; consequently, it may not be easy to find such a test set.

4 (L,n)-Complete Test Sets

We say a test set is (L,n)-complete for gate library L acting on n wires, if it is complete for all

circuits formed by the library. The following proposition shows that a circuit requiring such a

test set exists for any gate library.

Proposition 4 Any reversible gate library L acting on n wires has an (L,n)-complete set of test

vectors that is minimal for some circuit in the set.
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Proof Let C1, . . . ,CN be a set of circuits that computes the set of all functions computable using

L, and C = C1C−1
1 · · ·CNC−1

N . Then any test set that is complete for C must be complete for any

circuit formed by L. Therefore, a minimal test set for C is (L,n)-complete.
�

The following proposition characterizes (L,n)-complete test sets for three classes of re-

versible circuits: C-constructible, U -constructible, and NCT -constructible.

Proposition 5

a. A (C,n)-complete test set must have at least n + 1 vectors. One such set comprises the

all-0’s vector and the n weight-1 vectors.

b. A (U,n)-complete test set must have at least 2n−1 + 1 vectors, and any 2n−1 + 1 test

vectors will give such a set.

c. An (NCT,n)-complete test set must have at least 2n−1 +1 vectors, and any 2n−1 +1 test

vectors will give such a set.

Proof

(a) Any input to the circuit can be written as a linear combination of the n weight-1 vectors.

Furthermore, since the gate library is linear (under the operation of bitwise XOR), the corre-

sponding values of the wires at the ith level can be written as the same linear combination of the

values for these weight-1 vectors. If any input vector sets the value of a wire at the ith level to

1, then so must at least one weight-1 vector. Since there are inputs that do, the weight-1 vectors

are sufficient for setting all wires to 1. Furthermore, since the circuit is linear, the all-0’s vector

sets all wires at all levels to 0. Therefore, this is a (C,n)-complete test set. In general any n

linearly independent vectors along with the all-0’s vector forms a (C,n)-complete test set.

On the other hand, if the test set consists of only n input vectors, we have two possibilities:

either the set spans the n-dimensional space or it does not. If the latter is true, a linear reversible

circuit can be constructed that maps the test set into the (n−1)-dimensional subspace 0X · · ·X ,

implying that the test set is not complete. If the test set spans the entire n-dimensional space,
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we can construct a linear reversible circuit that maps them to the following linearly independent

vectors:

v1 → 1 0 0 0 · · · 0

v2 → 1 1 0 0 · · · 0

v3 → 1 1 1 0 · · · 0
...

...
...

...

vn → 1 1 1 1 · · · 1

Since the first wire cannot be set to 0, the test set is not complete for this circuit.

(b) Suppose we have a (U,n)-complete test set with 2n−1 test vectors. Because the gate library

computes all permutations, we can generate a circuit mapping all 2n−1 test vectors to output

vectors of the form 0XX · · ·X. This test set does not set the first output bit to 1, and thus is not

complete for this U -gate circuit. This implies it is not (U,n)-complete. By Proposition 3a, any

2n−1 +1 test vectors will give (U,n)-completeness.

(c) Any permutation can be composed from a series of transpositions. The NCT gate library

can construct circuits computing any even permutation of the input values [22], that is, a per-

mutation that can be composed from an even number of transpositions. Following the proof

for part b, a permutation can map any 2n−1 test vectors to output vectors of the form 0XX · · ·X .

If this permutation is even we have shown that this is an incomplete test set, otherwise we can

add a transposition that exchanges the outputs 00 · · ·0 and 00 · · ·1. This new permutation is

even and still maps the test vectors to the set of outputs 0XX · · ·X , and therefore, the test set

is not complete for this NCT -circuit. By Proposition 3a, any 2n−1 + 1 test vectors will give

(NCT,n)-completeness.
�

Note that any two gate libraries that can compute the same set of functions are equivalent

with respect to (L,n)-completeness. This is because the function of every gate of one library

can be computed by the other. Therefore, if a test set is not (L,n)-complete for one library, it

cannot be for the other either, implying that the two libraries share the same (L,n)-complete

test sets. This means that the above result for the U -gate library is applicable to any library that
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can compute all n-bit reversible functions.

C-constructible circuits are analogous to XOR-trees, since C-NOT gates are simply XOR

gates with an additional output that is equal to one of the inputs. Consequently, part (a) of

the above proposition can be considered the reversible analog of the well-known result that

any XOR-tree can be tested for single stuck-at faults using no more than four tests [14]. We

consider linear reversible circuits separately here, primarily because they can be tested with a

very simple set of tests just as XOR-trees in conventional irreversible circuit testing [8].

5 ILP formulation

While Proposition 3c guarantees that an efficient test set exists for any reversible circuit, it gives

no practical construction. In this section, we formulate the problem of constructing a minimal

test set as an integer linear program (ILP) with binary variables. We then use this to find a

practical heuristic for generating efficient test sets.

5.1 ILP Model

We can formulate the minimal test set problem as an ILP with binary decision variables ti

associated with each input vector Ti; ti takes a value of one if the corresponding input vector

is in the test set, and zero otherwise. A fault is detected if a decision variable with value one

corresponds to a vector that detects the fault. The values of the wires at the j-th level for input Ti

are f j (Ti), so to detect all stuck-at 0 faults at level j the following inequalities must be satisfied

2n−1

∑
i=0

f j (Ti) · ti ≥ 1

These inequalities guarantee that each wire at the j-th level is set to 1 by some test vector.

A similar set of inequalities ensures that all stuck-at 1 faults are also detected. A total of

2n(d + 1) linear inequality constraints guarantees completeness. We determine a minimal test
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t0 ⇒
0 0 0
0 0 0
0 0 0

t1 ⇒
0 0 0
0 0 0
1 1 1

t2 ⇒
0 0 0
1 1 1
0 0 1

t3 ⇒
0 0 0
1 1 1
1 1 0

t4 ⇒
1 1 1
0 1 1
0 0 1

t5 ⇒
1 1 1
0 1 1
1 1 0

t6 ⇒
1 1 1
1 0 0
0 0 0

t7 ⇒
1 1 1
1 0 0
1 1 1

(a) (b)

Figure 3: (a) Reversible circuit example. Possible stuck-at fault sites are represented by small
open dots. (b) Propagation of each of the possible input vectors through the circuit. A complete
test set must set each of the nine fault sites to both 0 and 1. An example of a complete test set
for this circuit is {t0, t2, t7}

set by minimizing the sum of the ti’s subject to these constraints.

Minimize t0 + t1 + · · ·+ t2n−1

subject to the constraints
2n−1

∑
i=0

f j (Ti) · ti ≥ 1

2n−1

∑
i=0

f j (Ti) · ti ≥ 1, for all 0 ≤ j ≤ d

where ti ∈ {0,1} , 0 ≤ i ≤ 2n −1, and

Ti is the n-bit binary expansion of integer i

Each feasible solution gives a complete test set composed of those vectors i for which ti = 1. For

relatively small circuits this ILP can be solved efficiently using an off-the-shelf optimization

tool such as CPLEX [16].

As an example consider the circuit shown in Figure 3. The ILP formulation for the minimal

test set problem is

Minimize t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7

subject to the constraints
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


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




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









where ti ∈ {0,1} , 0 ≤ i ≤ 7

The first set of inequalities guarantees that each of the fault sites can be set to 1 and the second

set guarantees that each can be set to 0. Solving the ILP, we find that three test vectors are

required to detect all stuck-at faults in the circuit. One such solution is t0 = t7 = t2 = 1.

Using the ILP formulation and CPLEX 7.0, we obtained minimal test sets for all optimal

3-wire NCT -circuits. CPLEX was able to solve the ILP for each circuit in a fraction of a

second on a Sun SPARC. Table 1 gives a distribution of minimum test set size with respect to

the number of gates in the circuit. The optimal NCT implementation of a given function is not

unique, and therefore the distribution in Table 1 may be dependent on the particular optimal set

chosen.

As expected, the size of the minimal test set generally increases with the length of the

circuit. However, there are long circuits that have smaller minimal test sets than much shorter

circuits. The largest minimal test set has 4 vectors, however suboptimal circuits requiring 5 test
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T
es

t
Si

ze

Circuit Length (gates)
0 1 2 3 4 5 6 7 8

2 1 6 24 67 134 155 105 21 -
3 - 6 78 558 2641 8727 16854 10185 577
4 - - - - 5 39 90 47 -

Table 1: Minimal test set size distribution for optimal 3-wire NCT -circuits as a function of
circuit length.

vectors can be constructed.

5.2 Circuit Decomposition Approach

Solving the ILP exactly is feasible for small circuits; however, since the number of variables

increases exponentially with the number of input/output bits, it is impractical for large circuits.

An alternative approach is to decompose the original circuit into smaller sub-circuits acting on

fewer input/output bits, and use the ILP formulation iteratively for these sub-circuits combining

the test vectors dynamically; a similar approach has been used for irreversible circuits [13].

While the resulting test set is not guaranteed to be minimal, it is generally small enough to

enable efficient testing. Furthermore, it may be possible to use lower bounds to ensure the test

set is not much larger than a minimal one. For example, the size of the minimal test set of a

sub-circuit can be used to bound that of the larger circuit.

The algorithm shown in Figure 4 uses this decomposition approach. First the circuit is

decomposed into a series of circuits acting on a smaller number of wires. One way to do this

is to start at the input of the circuit and add gates to the first sub-circuit C0 until no more can

be added without having C0 act on more than m wires. Then we continue with C1, and so on

until the entire circuit has been decomposed. The remaining steps in the algorithm are best

illustrated by an example.

Consider the decomposition of the reversible circuit in Figure 5. Though the entire circuit

acts on six wires, each sub-circuit acts on no more than four. Using the ILP formulation on C0
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1) Partition circuit into disjoint sub-circuits
C0, . . . ,Cl each acting on ≤ m wires

2) Initialize test set = {} and i = 0
3) Generate ILP for Ci as in Section 5.1
4) Add constraints for each vector in test set
5) Solve ILP
6) Incorporate new test vectors into test set,

setting any unused wires of new vectors to
don’t cares

7) Apply Ci to test set, setting don’t cares at
inputs of Ci to 0

8) If i < l, i = i+1 and go to Step 3
9) Set remaining don’t cares in test set to 0
10) Apply C−1 to test set to get complete test set

Figure 4: Algorithm for complete test set generation based on circuit decomposition.

gives test vectors:

x0 x1 x2 x3 x4 x5

v0 = X 0 1 X 1 1

v1 = X 1 0 X 0 0

v2 = X 1 1 X 1 0

C0
=⇒

x0 x1 x2 x3 x4 x5

X 1 1 X 0 0

X 1 0 X 1 0

X 0 0 X 1 1

where the X’s represent don’t cares and the left and right halves represent the test vectors at the

input and output of C0, respectively. Sub-circuit C1 acts on wires x0, x1, x4 and x5. We generate

the ILP for C1, and add the following constraints:

x0 x1 x4 x5

X 1 0 0

X 1 1 0

X 0 1 1

∈ T ⇒

Constraints

t4 + t12 ≥ 1

t6 + t14 ≥ 1

t3 + t11 ≥ 1

Solving this ILP gives the solution t6 = t11 = t12 = 1. Incorporating these values into the
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Figure 5: Circuit decomposition example.

previous test vectors we have:

x0 x1 x2 x3 x4 x5

1 1 1 X 0 0

0 1 0 X 1 0

1 0 0 X 1 1

C1
=⇒

x0 x1 x2 x3 x4 x5

0 1 1 X 0 0

1 1 0 X 1 0

1 0 0 X 1 1

Sub-circuit C2 acts on wires x0, x1, x2, and x3. We generate the ILP for this sub-circuit, and

incorporate the current test set using the following constraints:

x0 x1 x4 x5

0 1 1 X

1 1 0 X

1 0 0 X

∈ T ⇒

Constraints

t6 + t7 ≥ 1

t12 + t13 ≥ 1

t8 + t9 ≥ 1

Solving this ILP gives solutions t5, t7, t8, and t12. The last three can be incorporated into the
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previous test set, however the first test vector must be added:

x0 x1 x2 x3 x4 x5

0 1 1 1 0 0

1 1 0 0 1 0

1 0 0 0 1 1

0 1 0 1 X X

C2
=⇒

x0 x1 x2 x3 x4 x5

0 1 1 0 0 0

0 1 0 0 1 0

1 1 0 0 1 1

1 0 0 1 X X

Filling the don’t cares with 0’s and applying C−1 to the test set yields a complete test set for C.

While the resulting test set is not guaranteed to be minimal, in this case it is, as can be shown

by applying the ILP method on the entire circuit.

5.3 Test Set Compaction

The circuit decomposition method in the previous section generally produces redundant test

sets. One way to reduce this redundancy is to compact the test set, that is, find the smallest

complete subset. This approach has been used previously in ATPG algorithms for conventional

circuits [15, 7, 10]. The ILP formulation in Section 5.1 can be used to perform the test set

compaction. We simply eliminate all test vectors that are not in the original complete test

set, along with the corresponding columns in the constraint matrix. Generally, this ILP can

be solved more efficiently than the ILP for the minimal test set, since it has fewer variables.

Consider the example in the previous section. Since the circuit decomposition method yields a

complete test set with four test vectors the ILP formulation for the test set compaction problem

only requires four variable, significantly less than the 64 required in the ILP formulation for

the minimal test set problem.
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Figure 6: Simulations results for circuit decomposition algorithm limiting sub-circuit size to
8 wires. (a) Average test set size (after compaction) versus circuit length. Staircase graph
represents the upper bound given in Proposition 3c. (b) Execution time versus circuit length.

5.4 Simulation Results

We conducted a set of simulations to evaluate the performance of our algorithm. We generated

random NCT -circuits of various lengths over 8, 16, 24 and 32 wires. The circuits were gener-

ated by selecting at random from the set of all allowable NOT, C-NOT, and Toffoli gates. Each

circuit was decomposed into sub-circuits acting on at most 8 wires, and our algorithm was used

to find a complete test set. Figure 6a shows the average number of test vectors needed as a

function of the circuit length. At least 150 circuits were generated for each data point.

The average execution time for the algorithm seems to increase linearly with circuit length

and does not vary very much with the number of input/output wires, with the exception of the

8-wire case for which execution time appears to increase exponentially with circuit length (Fig-

ure 6b). This latter case is most likely because the number of constraints increases linearly with

the number of gates, yielding increasingly difficult ILPs. On the other hand, for the circuits on

more than 8 wires, an increase in the length of circuit does not generally lead to significantly

harder individual ILPs, rather only a (linearly) larger number of them to solve.
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Figure 7: Simulation results for Atalanta [20]. (a) Average test set size versus circuit length.
Staircase graph represents the upper bound given in Proposition 3c. (b) Execution time versus
circuit length.

Test compaction, as expected, is most effective for longer circuits, eliminating an average

of approximately one redundant test vector for circuits containing 800 or more gates.

5.5 Comparison to Conventional ATPG

A number of ATPG software packages are available for generating test sets for conventional

combinational circuits, and some of these can be readily modified for the reversible case. Here

we used the ATPG tool Atalanta [20], because of its ease of use and the availability of its source

code. Since the Toffoli gate used in our reversible circuits is not a standard combinational logic

gate, we had to make some minor modification to the code to handle this gate. Basically, we re-

placed each Toffoli gate by an equivalent combinational circuit using conventional irreversible

gates, and modified the code to ignore faults in the internal nodes of these sub-circuits.

Figure 7 shows the average size of test sets generated by Atalanta as a function of the

number of gates in the reversible circuit. Results are shown for 8, 16, 24 and 32 input/output

wires. As the figure illustrates, the test sets given by Atalanta are, on average, almost twice as

large as those given by our circuit decomposition algorithm, and their average size is greater
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than the upper bound of Proposition 3c. However, Atalanta is significantly faster than our

algorithm requiring an average of less than 10 seconds for circuits with 32 wires and 1600

gates; this compares to approximately 30 minutes for the circuit decomposition algorithm.

However, the execution time for Atalanta appears to increase at a much faster rate with respect

to the circuit length than that of the circuit decomposition algorithm.

6 Cell Fault Model

While the use of the stuck-at fault model has been very effective in conventional circuit testing,

other fault models may be more appropriate for reversible circuits, especially in the quantum

domain. For example, the cell fault model [17], where the function of the faulty k × k gate

changes arbitrarily from the desired function, may be more realistic. In this section we extend

some of our results to this model.

The following proposition provides a basic necessary and sufficient condition for a test set

to be complete for the cell fault model. While this condition is also necessary for irreversible

circuits, in that latter case it is not sufficient.

Proposition 6 Under the cell fault model a test set is complete if and only if the inputs of every

k× k gate in the circuit can be set to all 2k possible values by the test set.

Proof If a test set does not set the input wires of a gate to a particular value say a, then it would

not be able to detect a failure in this gate that only affects the output of a. On the other hand, if

the input wires of every gate in the circuit can be set to all possible values by the test set, then

any single-gate failure will affect at least one test vector, changing the value at the output of the

gate. By the observability property of reversible circuits, this will be reflected in a change at

the output.
�

As an example, consider a circuit with a C-NOT gate. In order to detect any fault in the C-NOT

gate the test set should be able to set the inputs of the gate to {00, 01, 10, and 11}. If the
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gate is faulty, it will operate incorrectly on at least one of these input values which will then be

reflected in an incorrect circuit output.

Let g1, . . . ,gl be the gates in a reversible circuit, and k1, . . . ,kl the respective gate sizes. If

we consider every possible value at the input of each gate as representing a distinct fault, the

total number of faults that need to be covered is ∑l
i=1 2ki . Under this definition, we have the

following lemma.

Lemma 2 Each input vector covers exactly l faults, and a fault associated with a k× k gate is

covered by exactly 2n−k input vectors.

Proof Each input vector sets the bits at the inputs of each gate to some value. Therefore, since

there are l gates, the vector can detect l faults. For a given fault associated with a k× k gate

there are 2n−k possible values for the n bits at that level that can detect it. Since the circuit is

reversible, each of these can be traced back to a distinct input vector.
�

The following proposition, which is analogous to Proposition 3, gives upper bounds on the

size of the minimal test set under the cell fault model.

Proposition 7 A complete test set under the cell fault model for an n-wire reversible circuit

with a total of l gates with sizes k1 ≥ k2 ≥ . . . ≥ kl is given by

a. any 2n −2n−k1 +1 distinct test vectors

b. a set of
(

∑l
i=1 2ki

)

− l +1 test vectors

c. some set of at most ∑l
i=1

⌈

2ki

i

⌉

test vectors

Proof

(a) For any k× k gate in the circuit there are 2n−k distinct inputs that yield a particular value at

its input. Therefore, if the test set has 2n−2n−k1 +1 vectors (implying that fewer than 2n−k are

not included) then it must include at least one such input. Since this is true for all gates in the

circuit, by Proposition 6, the test set is complete.
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(b) Any input vector will cover l faults leaving ∑l
i=1 2ki − l. By the controllability property we

can cover these with one test vector each. Therefore, all of the faults can be covered with no

more than ∑l
i=1 2ki − l +1 test vectors.

(c) We first prove that given an incomplete set of m test vectors covering faults in the set FC,

there must be a test vector that covers at least

l−

⌊

∑
f∈FC

2−k( f )

⌋

(5)

of the remaining faults, where k( f ) is the size of the gate associated with fault f .

Suppose this is false. By Lemma 2 every test vector covers exactly l faults and a fault f

is covered by exactly 2n−k( f ) input values. Therefore the number of times faults in FC can be

covered is ∑ f∈FC
2n−k( f ) and the current test set accounts for ml of these. Furthermore, each of

the remaining input vectors must cover more than ∑ f∈FC
2−k( f ) of the already covered faults,

otherwise our assertion would be true. Combining these we have the following inequalities.

(2n −m)

(

∑
f∈FC

2−k( f )

)

< ∑
f∈FC

2n−k( f ) −m · l (6)

l < ∑
f∈FC

2−k( f ) (7)

The second inequality is false since the right side can be no larger than l. Therefore, we have a

contradiction, and our proposition must be true.

Iteratively removing l −
⌊

∑ f∈FC
2−k( f )

⌋

faults from the set of uncovered faults eventually

leaves the set empty. The number of iterations needed to do this is an upper bound on the

number of test vectors needed for completeness. The floor function in the equation makes it

difficult to obtain a closed form for the bound, but we can weaken the above result to do this.

To cover the first 2kl faults we need at most d2kl/le test vectors, since each test vector we add

covers l faults. To cover the next 2kl−1 faults we need at most d2kl−1/(l − 1)e test vectors, and

so on. Thus, we can cover all single cell faults using no more than ∑l
i=1

⌈

2ki/i
⌉

test vectors.
�
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For a reversible circuit on 64 wires with a million 3× 3 gates, parts a-c of Proposition 7

give upper bounds of approximately 1019, 7 · 106 and 106 test vectors, respectively. However,

since part c uses the property illustrated in Equation (5) very conservatively in order to obtain

a closed form, a much tighter bound can be obtained by applying this property directly. In

fact, by iteratively applying this property, one can show that no more than 108 test vectors are

needed for complete testing. In general we can approximate this tighter bound if we assume

that the number of faults covered after any given iteration when taken mod 2k is uniformly

distributed on the integers 0 through 2k −1 inclusively. The expected value of (5) is then

E

[

l −

⌊

∑
f∈FC

2−k( f )

⌋]

= E

[

l −

⌊

|FC|

2k

⌋]

= l −
|FC|

2k +
2k −1
2k+1 (8)

This then gives the following recursion on C(n), the minimum number of faults that can be

covered by n test vectors:

C(n) = C(n−1)+

(

l −
C(n−1)

2k +
2k −1
2k+1

)

(9)

=
2k −1

2k ·C(n−1)+ l +
2k −1
2k+1 (10)

Letting a = (2k −1)/2k and b = l +(2k −1)/2k+1,

C(n) = a2 ·C(n−2)+a ·b+b (11)

= an ·C(0)+
(

an−1 +an−2 + · · ·+1
)

·b (12)

=
1−an

1−a
·b = 2k ·

(

1−

(

2k −1
2k

)n
)

·

(

l +
2k −1
2k+1

)

(13)

In order to cover all faults, C(n) must be greater than or equal to the total number of faults:

C(n) = 2k ·

(

1−

(

2k −1
2k

)n
)

·

(

l +
2k −1
2k+1

)

≥ l ·2k (14)
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Figure 8: Simulation results for cell fault model. (a) Average test set size (after compaction) vs.
circuit length for circuit decomposition algorithm using the cell fault model. The sub-circuit
sizes are limited to 8 wires in the decomposition. The staircase graph represents the upper
bound given by iterating the property in (5). (b) Execution time versus circuit length.

On rearranging we have

n ≥
log2

(

2k+1

2k−1
· l +1

)

k− log2

(

2k −1
) (15)

This result strongly suggests the number of test vectors needed for completeness under the cell

fault model grows logarithmically in the number of gates, just as in the stuck-at fault case.

To obtain an ILP formulation for the cell fault model only the constraints given in Section 5

need to be modified. For each k× k gate at each level we generate 2k constraints, one for each

of the possible inputs to the gate. The circuit decomposition method from Section 5.2 as well

as the test set compaction method in Section 5.3 can be applied as in the stuck-at fault case.

Figure 8 shows simulation results for the circuit decomposition algorithm under the cell fault

model. The staircase graph represents the upper bound obtained by iterating (5). The average

size of the generated test set is generally below this bound. Test set compaction results in the

elimination of 4-5 test vectors on average, with more vectors eliminated for longer circuits and

fewer for shorter ones.

26



Empirically, the algorithm requires half the execution time of the stuck-at fault case, with

the exception of the 8-wire case for which we were unable to obtain results due to prohibitive

execution times.

7 Conclusions

We have considered the test set generation problem for reversible circuits, and shown that the

property of reversibility fundamentally simplifies the problem. For example, a test set that de-

tects all single stuck-at faults in a reversible circuit also detects all multiple faults. We have

derived test set completeness conditions under both the stuck-at and cell fault models. We

have then used these to find general test set constructions that implicitly yield upper bounds

on the number of test vectors needed for completeness. One bound shows that the test set size

increases at most logarithmically with the length of circuit, strengthening our assertion that

reversible circuits are easier to test than conventional ones. We have also given a practical al-

gorithm for finding complete test sets. Our algorithm generates test sets that are approximately

half the size of those produced by conventional ATPG.

In addition to the fault detection problem we have investigated here, we also plan to study

fault diagnosis, that is, using test sets to localize faults. As with the detection problem, fault

diagnosis may be easier for reversible circuits than for irreversible ones. Finally, though we

have focused on testing for classical reversible circuits, we also hope to extend our work to the

quantum case. The latter is likely to be very different from the former: while fault-free classical

circuits are deterministic, fault-free quantum ones are inherently probabilistic. Thus, the goal

for the quantum case may be to determine as efficiently as possible, and with a given degree of

confidence, whether the circuit contains a fault or not. A step towards this goal may be to find

a small set of test vectors that sufficiently exercises the internal gates in the circuit. Our results

for the cell fault model studied in Section 6 may be particularly useful for this.
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