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Abstract

A reversible computation does not change the information
content of its input, and is a permutation of input bit-strings.
Reversible logic has been studied since 1980, following a
thermodynamic argument that every lost or duplicated bit
causes energy loss [2]. When a computational system erases
a bit of information, it must dissipate(ln2)kT energy, where
k is the Boltzmann’s constant andT is the temperature.1

Toffoli shows [12] that any finite mapping can be com-
puted in three steps: (i) padding with zeros, (ii) permutation
of bit-strings, and (iii) projection of some bit-strings onto
others. Steps (i) and (iii) can be made particularly simple,
and this technique can be viewed as performing an arbitrary
computation by pre- and post-processing a reversible com-
putation. To compactly represent permutations of bit-strings
by logic circuits, Toffoli uses elementary reversible gates.
Every reversible gate has as many inputs as outputs, and an
output pin of a gate must drive exactly one input pin of an-
other gate. Common elementary gates pass all of their inputs
x1, . . . ,xk to outputs, except for one inputy, where the return
value isy⊕ (x1x2 . . .xk). The Controlled-NOT (CNOT) gate
corresponds tok = 1, and the Toffoli gate (T) tok = 2.

In a combinational (acyclic) reversible circuit, every cir-
cuit input can be traced to a circuit output, and such circuits
are drawn by connecting horizontal “signal lines” with gates
represented by vertical lines. Following Feynman, control-
ling inputsx1, . . . ,xk are indicated by• and controlled in-
puts y are indicated by⊕. Inverters (N gates) are shown
with disconnected⊕. Different circuits can implement the
same computation, e.g., the four-gate circuit in Figure 1 can
be simplified to one gate. Three non-cancelling CNOTS on
two lines implement a wire-swap.2 Such circuit identities
can be proven by exhaustive simulation or by more subtle
algebraic arguments.

Synthesis formulations for combinational reversible cir-
cuits may ask for a circuit that implements a given permu-
tation, fully-specified by a table as in Figure 2 [7] or using
the cycle notation [11]. Another popular formulation [6]
specifies, for every input, only the most significant bit of
the output, leaving other bits as don’t-cares. The latter kind
of synthesis can be reduced to the two-level XOR-sum de-
composition [13]. Some circuits, in addition to their inputs,
use several temporary-storage lines (ancilla bits).3 The cir-
cuit in Figure 1 whose truth table is shown in Figure 2 can
be used as an illustration. Toffoli points out [12] that a cir-
cuit implementing an odd permutation must use at least one

1Ralph Merke from Xerox estimates that for T = 300 Kelvins (room tem-
perature), this energy is about 2.9e−21 joules, i.e., roughly the kinetic energy
of a single air molecule at room temperature.

2This identity is illustrated in Figure 2 of the paper “Scalable Simplifica-
tion of Reversible Circuits” by Shende et al. in this IWLS handout. Con-
ceptually, the identity is similar to exchanging the contents of two registers
without additional memory by performing three XOR operations [10].

3In applications one may also have input lines with constant 0 or 1.
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Figure 1: A 3× 3 reversible circuit with two Toffoli gates
and two inverters. The circuit performs the same computa-
tion as one Controlled-NOT gate on linesy andz.

x y z x′ y′ z′
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Figure 2: Truth table for the circuit in Figure 1. Observe that
the value of inputx does not affect the result. Therefore, the
line x can be viewed as one bit of temporary storage.

line of temporary storage, under certain fairly general con-
ditions. A more recent work by Shende et al [11] shows
that (i) any even permutation can be implemented without
temporary storage, and (ii) any odd permutation can be im-
plemented with just one line of temporary storage. An op-
timal synthesis procedure is described in [11], based on dy-
namic programming. That work also contributes (i) circuit
identities that can be viewed as reversible versions of De
Morgan’s rules, and (ii) a circuit decomposition (TCTN) in
which gates of the same type are collected in groups — Tof-
foli, followed by CNOT, followed by Toffoli, followed by
inverters. Three of those groups are relatively small, and
for two of them (C and N) the synthesis task can be solved
fairly efficiently. The authors of [6] propose a heuristic that
simplifies a given reversible circuit by performing a series
of local transformations.

Other interesting EDA problems can be formulated for
reversible circuits, e.g., fault testing [9] and equivalence
checking. However, empirical evaluation may be uncon-
vincing until circuit benchmarks are available. Such bench-
marks may have to wait until reversible EDA tools appear
because large hand-crafted circuit examples are difficult to
procure and may be super-optimized or untypical.

In the 1990s, implementation proposals were put for-
ward at MIT for CMOS circuits whose energy consump-
tion approaches zero as computation time increases to the
infinity [14]. Recently, unrelated reversible CMOS adders
have been built at Universiteit Ghent, Belgium [4]. Yet irre-
versibility seems an unlikely concern for commercial VLSI
circuits in the next five years, thanks to other, more signifi-
cant energy-dissipation mechanisms.



An entirely independentraison d’être for reversible
logic is due to quantum circuits [8], which are already be-
ing used in commercial products for secure communica-
tion and in experimental quantum computers [5] at IBM,
Los Alamos, NIST and many universities. Quantum gates
[1] and quantum circuits must be reversible but can handle
“superposition” states such as the “half-zero/half-one” state
(mathematically, quantum gates and computations are de-
scribed by complex unitary matrices). Surprisingly, circuit
composition rules for the two types of circuits are essen-
tially the same. Because of this, non-quantum reversible
logic embeds into quantum logic (the same graphical nota-
tion is used) — a quantum version of an existing gate can be
applied to a complex linear combination of any or all pos-
sible inputs. This simply applies the non-quantum version
to every component of the linear combination. For exam-

ple, the matrix describing a quantum inverter is

(
0 1
1 0

)

because it exchanges the basis states zero and one. In con-

trast, the Hadamard gate 1/
√

2

(
1 1
1 −1

)
is not derived

from a conventional reversible gate and is therefore purely
quantum. Finally, since any conventional computation can
be performed reversibly (with an overhead), such a compu-
tation can also be embedded into the quantum domain [8].

Consider a quantum gate that maps zero-one states into
zero-one states, i.e., cannot create superposition states (good
examples are given by permutation matrices, such as the in-
verter matrix above). In terms of circuit identities and circuit
synthesis, such a gate behaves exactly like a non-quantum
reversible gate. Therefore, if we can reduce non-quantum
reversible circuits, we may be able to reduce some quan-
tum circuits as well, e.g., those that implement classical al-
gorithms as subroutines. However, greater savings may be
achievable by manipulating purely quantum gates [3].
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