
Fast Simulation and Equivalence Checking Using OAGear

Kai-hui Chang, David A. Papa, Igor L. Markov and Valeria Bertacco
CSE Division, University of Michigan, Ann Arbor, MI 48109-2121

{changkh, iamyou, imarkov, valeria}@umich.edu

ABSTRACT
The OpenAccess Gear package addresses several key tasks in syn-
thesis, verification and layout of digital logic, and encourages syn-
ergies between such optimizations. Primitives for logic simulation
and equivalence-checking are particularly useful in both verifica-
tion and logic synthesis, as exemplified by the AIG algorithms im-
plemented in OAGear.

We describe our re-design of simulation and equivalence-checking
engines in OpenAccess Gear, and our empirical results show that
our simulator runs 100 times faster on large netlists than the current
implementation. To ensure a broad adoption of these core engines
in the user community, we provided adequate GUI support using
OAGear standard user interface.

1. INTRODUCTION
Combinational equivalence-checking is important in both formal

verification and logic synthesis, where merging equivalent nodes
can reduce circuit area. Equivalence proofs, usually performed by
a SAT solver, are expensive. However, disproving equivalence can
be much easier — counterexamples selected from logic simulation
runs on random inputs often distinguish most pairs of candidate
signals [5]; faster simulation allows one to avoid more SAT calls.
Additionally, if assertions are falsified during sequential simula-
tion, the need for expensive bounded model checking is reduced.

The current equivalence-checker in OAGear is based on And-
Inverter Graphs (AIGs) [3]. While powerful and easy to use, that
checker has limited flexibility because (1) building an AIG for a
circuit may be costly, and (2) no counterexamples are returned
by failed checks. To address these limitations, we implemented
a lightweight equivalence checker based on random simulation and
Satisfiability (CNF-SAT). We also improved the interface, allowing
one to request counterexamples and obtain additional information.

After realizing that the OAGear simulator scaled poorly, we im-
plemented our own simulator based on oblivious and event-driven
algorithms, which sped up simulation by 100 times in some cases.
Our Graphical User Interface (GUI) for equivalence-checking and
simulation enhances the OAGear Bazaar package, allowing the user
to (1) conduct random simulation, (2) specify input patterns, (3)
view simulation results, (4) check equivalence of two given sig-
nals, and view a counterexample if the check fails, (5) check the
equivalence of two circuits and view counterexamples. With this
GUI, circuit debugging becomes much easier.

The rest of the paper is organized as follows. Section 2 describes
our algorithms for equivalence checking and simulation. Section 3
illustrates the new enhancements to the user interface. Software en-
gineering concerns are addressed in Section 4 and empirical results
are shown in Section 5.

2. EQUIVALENCE CHECKER
Our equivalence checker first uses random simulation to quickly

detect signals that are not equivalent. For the signals that can-
not be distinguished by random simulation, SAT-based equivalence

checking is used, and counterexamples found during SAT-solving
are reused as additional simulation patterns to distinguish more sig-
nals [5]. Our implementation and its interface also support incre-
mental verification, as explained below.

Simulation Algorithms: our simulator first extracts logic infor-
mation (an AIG) for each cell used in the design from OAGear’s
Func package. Next, we simulate all possible input combinations
of each cell to construct its truth-table. Using such look-up tables
during simulation is far more efficient than traversing AIGs of in-
dividual cells. To further improve speed, our simulator employs
bit-parallel simulation (32 or 64 patterns simulated at once depend-
ing on the definition of SimulationVector) and treats most
common gate types as special cases. In order to efficiently simulate
patterns with different event activity, we implemented an oblivious
algorithm as well as an event-driven algorithm [4].

SAT-based Equivalence Checking: our equivalence checker
first generates the CNF of every cell in the cell library. This is
accomplished by traversing the AIG of each cell and converting
the ANDs and INVERTERs to their corresponding circuit-CNFs.
Next, we build a miter for the signals to be checked for equiva-
lence and convert it to CNF. A miter is a circuit consisting of an
XOR gate combining the signals and their fanin cones with depth
such that the inputs to each cone are the same. We set the output
of the miter to 1 and use MiniSAT [2] to determine satisfiability.
If the CNF is not satisfiable, the signals are equivalent, alterna-
tively, a counterexample is returned by the SAT solver. We employ
a simple interface to a SAT-solver so that MiniSAT can be easily
replaced and CNF conversion can be improved. This interface al-
lows one to (1) add a clause, (2) add multiple clauses, (3) solve the
CNF, (4) check whether the CNF is satisfiable, and (5) obtain the
value of any literal in a satisfying solution. The user can adjust the
number of initial patterns used by random simulation. Setting that
number to 0 turns off random simulation and resorts to SAT-based
equivalence checking.

Incremental Verification: our equivalence checker is suitable
for incremental verification in that we provide an interface to per-
form equivalence checking on a portion of the design. The user can
specify two sets of gates, connect their corresponding inputs and
outputs, and perform equivalence checking between them. This is
especially useful when small changes to the netlist must be verified.

We define an estimate of the similarity between two netlists, ckt1
and ckt2, that utilizes fast simulation, called the similarity factor.
This metric is based on simulation signatures of individual signals,
i.e. the k-bit sequences holding signal values computed by simula-
tion on each of k input patterns (e.g., k=1024). Let N be the total
number of signals (wires) used by the two circuits. Out of those
N signals, we distinguish M matching signals — a signal is con-
sidered matching if and only if both circuits include signals with
an identical signature. The similarity factor between ckt1 and ckt2
is then M/N. This metric is computed very quickly using our fast
simulation tool and returned to the user.

Intuitively, the similarity factor of two identical circuits should



Figure 1: Design of plug-in interface incorporated into Bazaar.

be 1. If a circuit is changed slightly but is still equivalent to the
original version, then its similarity factor should drop only slightly.
However, if the change breaks the equivalence, the similarity factor
can drop significantly, depending on the number of signals affected
by the change. The new similarity metric relies on fast simula-
tion but not on SAT solvers, and therefore can be computed very
quickly. However, two equivalent circuits may be dissimilar, e.g., a
Carry-Look-Ahead adder and a Kogge-Stone adder.

3. IMPROVED USER INTERFACE
The OAGear graphical user interface, Bazaar, now supports the

following use-cases, (1) conducting random simulation, (2) spec-
ifying input patterns, (3) viewing simulation results, (4) checking
equivalence of two given signals, and viewing a counterexample if
the check fails and (5) checking the equivalence of two circuits and
viewing counterexamples.

To minimize the impact of integrating our tools into Bazaar, we
created a plug-in that can be loaded optionally by the user at run-
time. Previously, Bazaar had no interface for loading plug-ins,
therefore we developed such an interface. Figure 1 shows the over-
all design of Bazaar with its new plug-in interface shaded.

Bazaar adheres to the Model-View-Controller design pattern [1],
where an integrated circuit is represented in an underlying data
model (OpenAccess) and can be viewed and modified using a graph-
ical user interface (Bazaar). To facilitate dynamic loading of plug-
ins, we added two additional components to the design above, a
plug-in API object (piAPI) and a loader object.

When the user loads a plug-in into Bazaar, the loader creates
a piAPI object and supplies it with a pointer to Bazaar. A user-
provided function MyPlugIn::load(auto ptr<piAPI>) is
then called by the loader. This function takes possession of the pi-
API object and creates menus, toolbars, windows, and commands
in Bazaar. Thus, we decouple Bazaar from plug-ins since the loader
prevents Bazaar from accessing the piAPI object, and the plug-
in can only access Bazaar through the provided API. This allows
Bazaar to safely load various configurations of plug-ins on demand.

4. SOFTWARE ENGINEERING DETAILS
Our simulator and equivalence checker are both implemented

natively in OpenAccess and follow the OAGear coding standards.
Our new software includes documentation and is supplied with re-
gression tests, just as other OAGear packages. The algorithms we
employ scale at least as well as the existing OAGear algorithms.

Additionally, we provide a variety of convenient ways to use
these tools including standalone binaries, point-and-click use-cases
in Bazaar, and a library API. To encourage adoption of our new
tools, their interfaces are designed to be compatible with the ex-
isting versions. Our package has some limitations, specifically (1)
it only supports the datamodel of OA’s block domain as opposed
to the module or occurrence domains and (2) the netlist must be
mapped to a cell library.

Benchmark Gate Simulator runtime (sec) EQcheck
count OAGear Our simulators runtime

orig. custom native (sec)
s27 19 9.8e0 0.4 0.4 0.3
s344 132 4.0e1 0.4 0.7 0.6

s1196 483 9.5e1 0.5 1.7 1.6
s15850 685 5.0e3 0.6 2.0 1.8
s9234 1 974 2.4e3 0.7 2.9 2.8
s13207 1218 1.7e4 0.8 3.3 3.4
s38417 8278 3.0e5 2.0 21.0 1.4e2
vga lcd 124031 time-out 20.2 3.3e2 2.5e4

Table 1: A runtime comparison among the simulator included
in OAGear, our simulator using custom data structures, and
our native simulator. 3200 random patterns were considered
for each benchmark, and time-out was set to 1 week. Run-
times of our equivalence checking tool are also reported. The
comparisons show that our simulator outperforms the OAGear
simulator by far on all benchmarks.

5. EXPERIMENTAL RESULTS
We compared the performance of our simulator with the one in-

cluded in OAGear by simulating 3200 random vectors with each
tool and measuring runtime. We also handcrafted an optimized
simulator that runs on OpenAccess and employs the same algo-
rithms but uses custom data structures, and present it for compari-
son. Empirical results in Table 1 show that both of our simulators
perform asymptotically better than the one currently in OAGear;
our runtime grows linearly with respect to gate count, whereas
OAGear’s current implementation appears to grow exponentially.
Our handcrafted version optimizes netlist traversal by merging equiv-
alent nets and avoids a hash look-up by storing simulation values in
the wire object. In our OA-based code, we attempted to avoid this
hash look-up by using oaAppDef, but that was too slow.

The existing simulator in OAGear would take several days to
perform the aforementioned task on the modestly sized benchmark
s38417, versus 20 seconds taken by our new simulator. Clearly the
existing tool takes an impractical amount of runtime and simply
does not scale to realistic circuit sizes. In addition to simulation, we
report the runtime of our SAT-based equivalence checker in Table
1. We arranged for all equivalence checks in this experiment to be
successful since completing such instances usually takes longer.

Conclusions: we have identified a major component of OAGear
with poor scalability — the logic simulation engine. Our new im-
plementation uses different algorithms and reduces runtime by up
to 100 times in our experiments. We also evaluated five use-cases
and extended OAGear’s graphical user interface accordingly. Ap-
plying fast logic simulation, we defined a new metric of circuit sim-
ilarity that can be useful in incremental verification and debugging.

6. REFERENCES
[1] S. Burbeck, “Applications Programming in Smalltalk-80(TM):

How to use Model-View-Controller”,
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[2] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and
Applications of Satisfiability Testing, SAT, 2003, pp. 502-518.

[3] A. Kuehlmann, V. Paruthi, F. Krohm and M. K. Ganai, “Robust
Boolean Reasoning for Equivalence Checking and Functional
Property Verification,” IEEE Trans. CAD, Vol. 21(12), 2002, pp.
1377-1394.

[4] D. M. Lewis, “A Hierarchical Compiled-Code Event-Driven Logic
Simulator”, IEEE Transactions on Computer-Aided Design, Jul.
1987, pp.601-617.

[5] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M.
Chrzanowska-Jeske, ”Simulation and Satisfiability in Logic
Synthesis”, IWLS 2005, pp. 161-168.


