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ABSTRACT

Despite the increasing research effort in formal verifioaticonstraint-
based random simulation remains an integral part of desigli+ v
dation, especially for large design components where foteth-
niques do not scale. However, effective simulation ofteuires
the construction of complex constraints to stimulate inguatr as-
pects of the design.

In this paper we present Toggle, a novel solution which auto-
matically identifies those regions of the design which aresuifi-
ciently exercised in random simulation. Toggle then getesrée-
gal random stimulus of the primary inputs of the design torone
coverage over those regions, by augmenting the toggliniyigct
of the signals internal to the region. In addition, Togglencaso
be used to toggle a set of user-specified signals anywheiegein t
design. Experimental results indicate that Toggle canstite re-
gions of a design in much fewer simulation cycles than random
simulation, leading to simulation runs which can poteryiaixpose
bugs sooner.

1. INTRODUCTION

Verification costs greatly affect time-to-market, and gasingly
complex hierarchical designs exacerbate the inherergdtability
of common verification algorithms. Although exhaustive sia
tion is infeasible, simulation allows for partial validai of large
designs whose error states are logically deep. This obsenvaas
exploited in [7] to guide formal verification algorithms atitereby
increase the scalability and coverage of their hybrid apgino

Maximizing verification coverage through simulation or higb
strategies motivates the development of fast cycle-baseé@eent-
based simulators. In [2], a parallel simulation approagiré@osed
that uses circuit partitioning to reduce interprocessanicwnica-
tion. However, fast random simulation must be coupled with-c
strained simulation because random simulation will noessarily
stimulate important parts of the design.

Constrained random simulation typically involves reging in-
puts to certain ranges of values or asserting that certaiditions
are true. Modeling more complex constraints is more prokibi
for two reasons: 1) it necessitates detailed knowledge @fdts
sign and complex specification languages by the enginee2pand
it requires an efficient mechanism for generating randommuti
that satisfy these constraints. The latter concern wasafigrad-
dressed in [14], where constraints are modeled as BDDs amd si
ulation vectors can be obtained by randomly traversing tb®B
However, this approach still requires a constraint speatifion and
is limited by the size of the BDD.

1.1 Contributions

We present Toggle as a solution for quantifying and imprgvin
simulation coverage while decreasing engineering effoftsygle
enables efficient identification of regions in a design tixpegience
low activity and provides an efficient strategy for stimirgtthese
regions while satisfying the input constraints of the desig

Consider Figure 1. First, we perform low-effort synthesisa
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Figure 1: Toggle framework which monitors and evenly dis-
tributes stimulation in the design. First, individual signals are
monitored and then groups of signals are monitored. Signal
groups that experience low activity are then stimulated whie
satisfying the input constraints.

design so that we can exploit efficient gate-level tools laiste.
Then, we monitor the toggle activity of each signal. We uss th
information to intelligently organize the signals into ses parti-
tions. The partitioning allows us to target regions with lagtivity
for simulation. To this end, we develop a coverage metrit¢hp-
tures signal correlations and distributions of multi-tebinations
of internal wires. The coverage analysis suggests whictitioais
should be stimulated more. Our flow requires minimal useuinp
with the goal of evenly distributing activity throughoutthlesign.

To perform guided re-simulation, we implement a novel SAT-
based technique to toggle certain signals in a designs \shtie-
fying the design’s input constraints. In the case where tigi-e
neer specifies certain properties that need to be asserteedaw
specifically toggle these checkers through our targetedlsiiion
strategy. We show that generating even distributions ofikition
vectors with SAT can be orders of magnitudes faster thanaiand
simulation.

In Section 2, we review previous work in simulation and refine
ment and constrained random simulation. In Section 3, we-int
duce Toggle as well as our partitioning and re-simulationhoe-
ologies. In Section 4, we describe in detail how we monitor ac
tivity in a design. Finally, in section 5, we describe how vee r
simulate areas of a circuit to increase its toggling agtiviResults
are given in Section 6 that show considerable improvemevis o
random simulation on several benchmarks.

2. PREVIOUS WORK

Simulation is an integral part of verification methodologycan
efficiently evaluate different input sequences in largegteswhich
can be specified by designers much more easily than complex fo
mal properties. Several techniques exist for improvingloan sim-
ulation and are outlined in the following paragraphs.

Constrained random simulation has been developed where de-
sired properties are checked by asserting and constraggrtgin
values in a design or by using formal methods like BDDs in [14]
There has also been work in using SAT to solve constraint][8,
For the Boolean formul& (V), the satisfiability problem involves
finding an assignment to the set of variableso thatr (V) = 1 or



discovering that no such assignment exists. A combinaltimirauit
can be transformed into a SAT instance where a solution t&ha
instance gives the behavior of the circuit for a certain tngtim-
uli. Both BDD or SAT-based strategies often require the toldiof
engineer-specified constraints. Also, the size and coriiplekthe
constraints can make such strategies infeasible. Togglesses
some of these limitations by performing automatic re-satioh
using a novel extension to SAT.

At the instruction-level, Markov models can be used [13] tmim
ify instruction sequences to effectively stimulate cerfaarts of the
design. Simulation can also be refined at the gate level a0 [
where counter-examples derived from SAT create dynamialsim
tion patterns that help check equivalence of two circuitishdugh
automated, this simulation is very application-specifid & pri-
marily useful for deriving input patterns that distinguisko de-
signs.

Finally, simulation is used extensively with formal metka
form hybrid verification strategies that can find bugs in &arglocks
of a design [7, 11]. However, formal methods still suffemfréim-
ited scalability, while their effective deployment recsrspecial-
ized training and a relatively rare skill-set.

3. TOGGLE

As shown in Figure 1, the input to our framework is a behaviora
design description which can be transformed to a gate-lep!
resentation so that signals can be monitored at a finer gratyul
However, we note that our strategies can be abstracted to dior
rectly at the RTL level. Toggle has two main components: caye
analysis and guided simulation.

We first monitor the toggle activity of each signal in the desi
This information can be used to guide a min-cut partitiorafgp-
rithm which divides a circuit into several interacting cooments.
This technique can extract a hierarchy from a flattened de$igr
a large component with no obvious logic hierarchy, this téghe
can discover a hierarchy that reflects the switching agtiVife can
then examine the inputs to each partition and monitor itiaet
This provides a more powerful metric than simple toggle cage
because we are correlating several signals together amdixg
their collective toggling.

Using this coverage analysis, we can evenly distributeiagin
a design through a SAT-based simulation strategy. Sincgoran
simulation does not usually achieve equal coverage ofreififiede-
sign partitions, we seek to stimulate partitions with lowiaty,
since this is more likely to expose hard-to-find bugs. Our SAT
based simulation targets these low-activity partitionslevhatis-
fying the design’s input constraints. In particular, we c@m-
strain the primary inputs to certain instructions to randogener-
ate streams of instructions. The SAT-based simulatioregyade-
scribed can also be used to generate input patterns sagsfjien
constraints or properties. Also, unlike the strategies8in4]], our
approach can use state-of-the-art SAT solvers [6] whilémrizing
unwanted simulation bias.

In Section 4, we introduce our coverage analysis technigods
describe our mechanism for design patrtitioning. Then intiSec
5 we will discuss the theoretical underpinnings of our SAiEéd
simulation along with how we perform re-simulation speeifig
in Toggle.

4. FINDING INACTIVE PARTS
OF A CIRCUIT

In this section, we describe how to automatically find regioha
design that are inadequately stimulated. Specifically, ¥¢toggle
activity to develop a more descriptive means of coveragéysisa

4.1 Toggle Activity of a Signal

Among the many coverage metrics used in verification, toggle
coverage specifies the activity of a particular signal in raut.
To determine the activity of a given sigmain a circuitC, we use
Shannon entropywhich estimates the amount of information asso-
ciated with a signal. The entropy is calculated using thifghg
formula:

nOne nOne nZeroe nZeroe
Es=— K Slogz( K Sﬁ* K ﬁ'092( K 3 1

whereEs is the entropy of, nOnesis the number of simulations
wheres= 1, andK is the number of simulation vectors examined.
The formula gives values that range from 0 to 1. Notice thglhér
entropy indicates more activity and would occur when the beim
of ones and zeroes are evenly distributed. The primary spader
random simulation will have the highest entropy. Howevandom
simulation does not stimulate all parts of the circuit efyual

For signals with low entropy, we can derive simulation that i
creases the activity of a given signal. For instancef1 for most
simulation vectors, one can asser= 0 and derive several solu-
tion via a SAT solver. The solutions derived will not necesgde
well-distributed but the entropy afwould increase.

As a practical example, consider the effect of random sitraria
on an 8-bit bidirectional counter as shown in Figure 2. Notitat
increasing the number of random simulation vectors stidsinot
generate activity at the most significant bit. Thereforadam sim-
ulation inadequately sensitizes the circuit. We show thaguiding
the simulation using signal entropy, we can stimulate thenter in
a way that produces more uniform coverage across all of tise bi
First, we identify the bit with the smallest entropy, andrthee de-
rive a sequence of counter increments and decrements thatda
this bit. Figure 3 shows that after 300 guided simulationtwec
we can achieve a relatively even distribution of entropyasrthe
8 bits.

This analysis has certain limitations. By considering cigaal
at a time, one cannot tell if two signals with uniform actyére
equivalent (perfectly correlated) or independent. A betteerage
analysis would identify small groups of signals and conségire
combinations in terms of coverage and frequency bias (pytro

4.2 Toggle Activity of a Partition

For designs that are broken down hierarchically, the taskeef
lecting signals for activity analysis is straightforwatdamely, an-
alyze the input activity of each component to assess wheither
quate coverage is obtained. However, even in hierarchesibds,
several internal points in a component may be inadequatihy s
ulated. Furthermore, even if one knows at which level of gran
larity to perform coverage analysiBpw to perform this analysis
can be challenging in the presence of complex constrainesna
discuss a circuit partitioning strategy that works well onagiety
of designs for locating where to analyze in the circuit. \iiag
signal entropy discussed previously to identify areas efdasign
most amenable to coverage analysis. We then describe apgntr
based coverage estimation that can be used to identifyitciyarti-
tions that experience low activity. In the next section, wepose
a more powerful SAT-based strategy that can analyze biasitigp
presence of constraints. We use this strategy to refine thétse
given by the entropy-based estimation.

Automatic circuit partitioning.  Circuit partitioning has been
explored considerably in physical placement applicatioiere
net-cut minimization leads to smaller wirelength. The FEida-
Mattheyses min-cut partitioning algorithm [5] is commonlged
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Figure 2: Random simulation for an 8-bit bidirectional counter. The entropy is given for each bit. Notice the bias that eists for

smaller values even with10000simulation vectors.
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Figure 3: Guiding simulation with entropy for an 8-bit bidir ectional counter. The counter is first simulated with100initial random
simulation vectors. Notice that the entropy is almost evenl distributed after only 300guided simulation vectors.

and runs in linear time per pass. Furthermore, multi-levétie-

sions of this algorithm scale near-linearly to very largsiges. In

our work, we only perform partitioning once on a design anddee
the runtime is easily amortized by verification costs, aadtintime
overhead is negligible in the overall simulation flow.

We perform recursive-bisection, i.e., make multiple FMséd
partitions, until we partition a circuit to a desired graauity ei-
ther specified by the user or dynamically derived. Our gartihg
objective is to minimize the total number of incident edgesl
partitions while ensuring balance between the size of eacti-p
tion. Poor partitioning results in an enormous search sf@ctne
component whereas a good partition can allow one to fullyrexa
ine a larger region with a much smaller component solutiatsp
As described before, the solution space of a component dmild
significantly smaller in practice with respect to the wholeait
because of the correlations between the inputs. As a resint;
mizing the number of inputs to a component mitigates thecetié
this correlation.

To realize our objective, we construchgpergraphwhere each
wire in the circuit represents one hyperedge that conneatspie
vertices/gates. We weight the hyperedges by the signad@ntte-
rived in the previous section. Namely, we can derive a weight
1/Es to weight wires with low-entropy higher to encourage cugtin

low-entropy wires. In this way, the inputs to our partiticstsould
contain signals with lower entropy than not weighting theesi
Recursive partitioning is then performed as implemente@jro
minimize the cut wires under this weight constraint. We #yec
that each hyperedge is reconstituted after each partigonihis
means that an edge that is cut is not removed from the grapis but
rather redrawn around remaining nodes that are in the santie pa
tion. This is done to minimize the introduction of additibimguts
for new partitions.

ExampLE 1. Consider a simple circuit with gates;sAAND(C, D)
and B= AND(C,E). Assume the following partition is created
{A,B}{C,D,E}. In this case The partitio{A,B} has 3 inputs,
C,D,E. We reconstitute an edge aroundBAto penalize an addi-
tional partition like {A} and {B} where each would hav&inputs
resulting in4 total inputs for all partitions.

Estimating cut activity and biasing through entropy. The cuts
can be analyzed for activity to assess the amount of coverage
each partition. Consider the following simple metric fot agtiv-

ity:

A} = numdif f_vecg< fi,---, fm >) (2)



wherenumdi f f _vecs is the number of different simulation pat-
terns on partitionf’s input cut. Notice though that this formula
does not factor in the frequency of certain simulation vestdt
only provides the number of different simulation vectorsl as
therefore of limited value.

To improve upon this, we can measure the amount of informatio
associated with the signals along the partition cut by ugifudl ex-
pression for Shannon entropy. This measure accounts fdipieul
seensimulation vectors along the cut which indicates simulatio
bias. We compute the entropy &fwith m cut inputs as:

2n-_1
B = freq(veg o

om
vec freq(veg#0

freq(veo
2m

9a( ) (3)

wheref r eq is the frequency of a particular vectoec represented
by an integer value. Fof, we need to consider the frequency of
simulation for each of the™input combinations. For input combi-
nations that do not occur, the frequency is 0 and there iscrease
in entropy. For frequent input combinations, the entropil de-
crease because of bias. In this calculation, the entropgases
when there are several different simulation vectors andmthe
vector frequencies are very low. Because the numbéegsl in-
put combinations to the cut, i.e., those combinations thiésfy the
input constraints of the design, can be less much less tHaout
entropy calculation is an approximation. The approximatan be
improved by randomly sampling this input cut and estimatimg
percentage of input combinations that are legal.

We observe that with small input cuts we can perform our ap-
proximate entropy computation very efficiently with compte
linear to the number of vectors simulated. We now outline alur
gorithm:

double entropycalculation(Partition part, Activicount freq)
double entropy = 0;
max.vecs = 2< part.numinputs;
while(vec++ maxvecs)
if(freq(vec) > 0){
double prob = freq(vec)/maxecs;
entropy -= prob * log(prob);

}

return entropy;

}

Figure 4: Calculating entropy of a cut.

The functionent r opy_cal cul at i on takes the partition and
the frequency of each possible simulation vector as inphé ffe-
quency can be computed by just traversing each simulatiotove

and counting the number of times each vector occurs which can

be trivially accomplished during a calculation of Equat@&nNo-
tice thatmax_vecs determines the complexity of this procedure
if it is greater than the number of simulation vectors. If then-
ber of inputs is small, each vector can be stored efficierglgex
quence of successive integers from Ortax vecswhich allows for
quick O(1)-time lookup of frequencies. When the cuts are large,
we can alternatively employ hash techniques to quickly asenp
frequency.

Often, the number of input combinations possible over ai-part
tion’s inputs is much greater than the number of simulatiectors
applied. Also, there is often a great difference in the nundfe
inputs to each partition resulting in entropy that is desmdnore
on the number of inputs to each partition than to the inpuatgte
activity. As a result, we modify Equation 3 by calculatingrepy

with respect to the number of simulation vect&rsvhich we define
as:

271 freg(veq )
K

EX Fred(ved 1oy @)

vec freq(veg#0

This approximation is useful in our environment becausetrabs
the partition cuts that we examine have solution spaces angar
than number of simulation vectors applied.

In the next section, we leverage these coverage metricside gu
a fast, SAT-based simulation approach that produces ewarnage
in the presence of complex constraints and design hieeschi

5. TARGETED RE-SIMULATION

In this section, we describe how we can perform guided simula
tion using SAT. First, we discuss the theoretical underipigs of
our SAT-based simulation approach and show that we canvachie
random simulation via SAT using any commercially availaBher
solver. Then, we explain how properties can be stimulatéagus
our simulation approach. Finally, we explain how to use ghisled
simulation to target partitions with low entropy in Toggtereduce
simulation bias.

5.1 Random Simulation with SAT

For the Boolean formul& (V), the satisfiability problem involves
finding an assignment to the set of variabléso thatF (V) =1
or discovering that no such assignment exists. SAT problams
typically expressed in CNF, and combinational circuits barcon-
verted to a CNF with complexity linear to the size of the citcu
For a circuit withn inputs, there would logically be"2satisfying
assignments possible for the corresponding SAT instaneendw
discuss how to derive these satisfying assignments rarydoml

Theoretical background. It has been shown in [12] that the
number of solutions to a SAT problem does not change the éntter
difficulty of solving the problem. More specifically, [12] sivs that
a randomized polynomial-time reduction of an arbitrary Bem
formula can generate a set of corresponding formulas whezeb
them has only one solution, i.e., unique SAT (U-SAT) withlpe

. 1 . .
bility > =. In the following paragraphs, we discuss only an aspect

of this result that is relevant to our work. Specifically, weokain
that random constraints or Boolean clauses can be addedA®d a S
problem that partitions the solution space in roughly eduzves
with high probability.

Assume a SAT instancé with variablesxy, Xy, ..., Xy that has
solutionsv € {0,1}". To partition this space, we randomly pick
an assignmentv € {0,1}" and add the following constraint tb:
vew = 0 in base-2 arithmetic.

This can be expressed as follows:

fAX, ®&X, & &X, &1) (5)

whereij represents the indices &f wherew is 1. In other words,
this adds arK ORconstraint whereby an even polarity gf deter-
mined byw need to be assigned to 1.

Alternatively, a CNF representation can be given as:

fFA(YLE X, ®Xi,) A (Y2 < Y1 B Xip) A~

AYj-1 € Yj—2DX;) A (Yj-1©1) (6)

EXAMPLE 2. Consider the SAT formuléa+ b+ c')(b+ d).
This solution space can be partitioned by generating an Xl@&se



#sims Random SAT-based
#diff_sims  entropy  (s)|| #diff_sims entropy (s)
64 64 1.00 0 64 1.00 2
128 128 1.00 0 128 1.00 5
256 253 1.00 0 256 1.00 11
512 499 0.99 0 506 1.00 30
1024 991 0.99 0 1003 1.00 98

Table 1: The quality of simulation for random and SAT-based
random simulation on circuit alu4. Notice that SAT-based sim-
ulation is comparable to random simulation at evenly stimuét-

ing a design because the entropy of the primary inputs is simi
lar for both approaches. 1 is the highest entropy possiblealu4

has2403gates andl4inputs.

for the randomly generated wa=1,b=1,c=0,d =0. The re-
sulting CNF would béa+b+c)(b+d)(y < a®db)(y® 1).

As mentioned, [12] shows that this roughly partitions a cear
space evenly with high probability. However, very uneventipa
tions are possible with low probability. By is the set of all solu-
tions of f, then the addition of constraints frokrandomw vectors
reduces the solution space to roughly<S; .

Random simulation with SAT. Partitioning a solution space via
Valiant-Vazirani can be adapted to generate an even disiwit of
simulation vectors. According to this formulation, eachdeamly
generated constraint randomly reduces the solution spHoere-
fore, ignoring the case where an all O solution exists, anyipa
ular solution can be generated througl®ORbased reductions to
U-SAT.

In the simple case, where random simulation is desired over

the primary inputs of a circuit with no constraints, we can-pe
form SAT-based simulation in a straightforward manner. &air-

cuit C with n inputs, we can approximate that the additionnof
XORconstraints will produce a randomized U-SAT. Because we
are modifying the SAT instance, any SAT solver can be used to
derive the solution. Our approximation might result in UNISIA-
stances or instances with many solutions; however, we é&xec
decent distribution of simulation.

To demonstrate this even distribution, we show the entromy a
number of different simulation vectorsli(f f _si ns) derived us-
ing SAT-based simulation on the circatu4 in Table 1. We also
show the entropy for random simulation. The results indichat
the SAT-based strategy achieves competitively high egttopra-
ditional random simulation.

Notice, however, that the runtimes can become large usieg th
SAT-based approach. This is due, in part, to the large nurober
XORbased clauses added (in this case 14). In other words,»appro
imately finding U-SAT solutions can be computationally exgee
because several of the reductions will be UNSAT. For ins#aB69
UNSAT instances were derived in the process of solving f&410
different vectors for the circuit in Table 1. The non-linéacrease
in runtime can be attributed to the use of the SAT solver imene-
tally where the cost of disabled old constraints in the SAVeso
can negatively impact future SAT runs and sometimes outweig
the benefit of incrementality.

If only 64 evenly distributed input vectors are desired fiocuait
C where 2 > 64, a more efficient procedure can be used. In this
case, X ORconstraints can be added to approximately partition the
solution space into /64 of the original size with high probability.
By adding different random sets oD6ORconstraints 64 times, we
can achieve a distribution of values for the circuit. We define
addition of moreX OR constraints as increasing thesolution of
the solution space. More formally, we say that resolutioagsal
to 2UMXOR) \where the inverse of this is the probabilistic size of

#sims | #4XORs  #diff_lsims  entropy  (S)
64 6 60 0.98 0
128 7 120 0.98 1
256 8 243 0.99 1
512 9 466 0.98 5
1024 | 10 960 0.99 25

Table 2: The distribution of entropy using SAT-based random
simulation using fewerX ORconstraints than in Table 1 . Notice
that we improve the runtime considerably while still retaining
high entropy.

the partitioned solution space.

In Table 2, we show the entropy and runtimes for deriving simu
lation vectors wher¢og, (#simg XORconstraints are added. The
results indicate a considerable improvement in runtimé wami-
nal impact to the entropy/quality of the simulation.

5.2 Stimulating Specified Properties

The previous section demonstrated that SAT randomizatian v
the addition of randonX OR constraints can be used to randomly
stimulate a design’s inputs. However, our technique is loiepa
of handling any type of engineer-specified constraint wagran-
dom simulation might not scale. For simple constraints sagh
input biasing, random simulation is clearly sufficient. Hawsr,
the designer may wish to find simulation that asserts cesfadti-
fied properties in the middle of desigh Random simulation may
rarely assert this value. Also, solving for multiple sotuts using
SAT with no randomization could produce biased simulation.

With our SAT-based strategy, achieving simulation unifilym
while asserting a property is a trivial extension of the jwes sce-
nario. The main difference is that the constrai@dwill contain
an often unknown fewer solutions th@ni.e.,|Sc-| < || If [So|
is similar in size to the number of desired simulation vestane
can just exhaustively enumerate all solutions in the SATaimse.
Otherwise, we can addORconstraints to achieve the desired res-
olution. We can reduce SAT solving runtimes by minimizing th
number of addeXX ORconstraints with similar effect as in Table 2.

The trade-off between stimulating a design with random simu
lation versus SAT-based simulation is illustrated in Feg6a. In
this example, we show the original solution spaceCoéis a su-
perset of the reduced solution spaceCéfwhich is sparse due to
adding engineer-specified constraints. By randomly pigldalu-
tions inC, one rarely achieves a solution@f. However, ifC* is
randomized by addin ORconstraints, we can derive legal inputs
that satisfy these constraints. By adjusting the numb&@Rcon-
straints added, we can maximize the chance that solutiddsaoe
found while still achieving a distribution of simulation.

Addition of XOR constraint
partitions C’s solution space |

~
l
i
C*s sparse\ & (
solutionspace \ _, @

L CirouitC

C’s original solution space

ninputs: S¢| = 2"

b)

Figure 5: a) A sparse solution space from adding constraint
C. b) Simulating componentA within circuit C.



5.3 Partition Targeted Simulation

In Toggle, we strive to improve the activity of partitionsathex-
perience low entropy with the goal of exploiting new behavio
the circuit. We have shown that SAT can be used to generate eve
distributions of simulation in the presence of constraiftewever,
we now desire to automatically stimulate internal panig®f the
design while satisfying the design’s input constraints.

Simulating a component within a design.From Figure 5b., we
show the problem of stimulating componehtfrom the primary
inputs of circuitC. Notice that componerk with minputs is posi-
tioned far away from tha primary inputs ofC where simulation is
performed. It is possible thdtis not adequately stimulated in this
example. One possible solution would be to randomly find a-sol
tion to A and check whether this satisfies the input constrain® to
However, this procedure would tend to be costly becauseraleve
input combinations foA would be impossible due to the interac-
tion with the rest ofC. In other words, the number of solutions of
A with respect taC or |Sy/c| is much smaller than2 A sparse
solution space would require prohibitive amounts of SATscal

To mitigate this problem, we derive an extension to the SAT-
based simulation theory presented previouslgan be considered
a sub-space of. The CNF ofC can be defined as @NF(C —

A) ACNF(A). Therefore a solution t€ implies a solution toA.
By randomly generatingva to createX OR constraints specific to
A, we can partitionA’s solution space and conjoin the result with
CNF(C—A). Any derived solution t&€ will produce a solution té\
with the resolution determined by the numberXd®R constraints
added. This approach could also produtE SAT instances due
to very sparse or uneven solution spaces. However, theutésol
can be dynamically decreased to reduce these occurrentsslibu
ensure a distribution of solutions.

Algorithm. Functionpartiti on_si mul at e takes a parti-
tion where even stimulation is needed along with the numlber o
simulation vectors desired and the circuit as arguments rék-
olution gives the number dfins a solution space can be divided
into and is derived from the number of desired simulatiornteec
In other words, if we desire 16 simulation vectors, a resoiubf
4 is required and 2 OR constraints are needed. We then con-
struct the SAT instance of the circuit witobnst r uct .cnf and
add additional constraints. Although we do not do this here
could assert several conditions about the solution spatestiould
be additionally checked. Also, one could add constrairftecgng
the correlations of the inputs to the partition to better eiathe
partition’s solution space with respect to the whole design

void partitionsimulate(Partition part, Circuit C, int nwsims)
num.xor = logz (num.sims);
CNF = constructcnf(C);
add.additionalconstrs(CNF);
while(num.sims—)
add xor_constrs(numxor, part, CNF);
if(Solve(CNF, solution){
add solution(solution);
add blocking_ clause(solution, CNF);
}
}
}

Figure 6: Evenly simulating a partition.

We thenderivenumsi ns solutions that satisfy the constraints
of the circuit along with the resolution gbart. Different con-
straints are added for each pass of the while loop by funetaboh.
xor _const r s. If a satisfying solution is foundadd_sol ut i on
adds the derived solutioradd_bl ocki ng_cl ause adds a con-

Py

circuit #gates #parts avg. entropy lowest entro
spi 3010 30 0.95 0.63
systemcdes 3196 31 0.92 0.57
tv80 6847 68 0.89 0.17
systemcaes 7453 74 0.98 0.52
ac9zctrl 10284 102 1.00 0.95
ushfunct 11889 118 1.00 0.86
aescore 20277 202 0.75 0.41
wb_conmax 28409 284 0.91 0.67
ethernet 37634 376 0.99 0.54
desperf 94002 940 0.91 0.50

Table 3: Entropy analysis for circuits partitioned so that the
average partition size is approximatelyl00. The maximum en-
tropy for each circuitis 1.0

straint to the CNF called hlocking clausethat assures that the
solution cannot be rederived. Implicit in this algorithmtie fact
that we are incrementally calling a SAT solver to utilizeanmha-
tion learned that is consistent across many calSabve.
Dynamically constraining a partition. It is possible that the
SAT solver will not find solutions to the constrained spacee W
propose as future work a technique to automatically miggats
occurrence. When a call to a SAT solver returns UNSAT, we can
analyze the conflicts that occurred during the SAT solvirgpal
rithm. In particular, we can examine the input cut of the itiart
and check when an assignment of a subset of the inputs necessa
ily implies a conflict outside of the partition. This woulddicate
a situation where inputs are correlated in a way that woultema
solutions of the partition’s solution space inconsisteith\the rest
of the circuit. We could add a constraint to model this catieh
to prune the false solution space of the partition. The cairgt
added with this type of analysis would be independent okt
constraints and be used for future analysis of the partition

6. EXPERIMENTS

We have already shown some results indicating that SATebase
simulation can evenly stimulate a design. In this sectioa,will
demonstrate the effectiveness of Toggle. We will show thtkgsign
can be stimulated unevenly when using unguided random atmul
tion and that our guided simulation strategy reduces théesses.
Furthermore, we will show the effectiveness of stimulatngarti-
tion using SAT versus random simulation.

The SAT algorithms that we developed were built on MiniSAT
[6] and required only a few lines of code. We used hMetis [9] to
perform the recursive bisections needed for our circuitif\@aning.

We simulated the circuit using bit-parallel simulation az@hsid-
ered only the combinational portions of the design. Ounsiscare
from the IWLS 2005 suite [15].

6.1 Assessing Simulation Bias in a Circuit

In this section, we show that the entropy varies between each
design and that the worst partition in a design has relatiley
entropy making it a good candidate for re-simulation. A jbiart
with low entropy suggests that a part of the design is not gngp
stimulated under random simulation. By focusing on thesasr
for re-simulation, we hope to expose new circuit behaviat tan
expose bugs more quickly.

In Table 3, we show a set of circuits ordered by their size. We
partitioned each design using signal entropy so that eacthipa
would be approximately 100 gates in size. The number oftars
that were used is given byparts. The average entropy of all
entropy. The maximum
possible entropy is.00. The entropy for the partition with the
most inactivity is given by owest entr opy.

of the partitions is given aavg.



circuit our SAT-based sim random sim entropy
#SAT calls  (s) #SAT calls  (s) (s)
spi 32 1 11168 6 0
systemcdes 43 2 - time-out 0
tv80 38 6 - time-out 1
systemcaes 44 9 12163 10 1
ac97ctrl 32 17 402 14 1
ushfunct 32 19 32 17 0
aescore 67 15 662655 209 1
wb_conmax 32 170 969723 200 1
ethernet 33 375 141043 1429 3
desperf 216 1582 14669 1578 2

Table 4: Comparing SAT-based re-simulation with random re-

simulation over a partition for generating 32 vectors. The run-

time is also shown for the entropy analysis performed. Time-
out is 10000seconds.

Notice that for most of the circuits, the average entropyrétty
close to 100; however, there is usually at least one partition that is
considerably worse as inv80 andaes_cor e. We have also ob-
served that there are usually a small number of partitioasshow
very low activity. We can exploit this by performing re-sifation
mainly over this small number of poorly covered partitions.

6.2 Randomyvs. _
SAT-guided Simulation

We show that evenly simulating a partition via random simula
tion at the partition’s inputs is often much slower than gsBAT-
guided simulation. In Table 4, we perform re-simulation qfeati-
tion using 32 vectors. The partition with the worst entropyho-
sen.

We show the number of calls to a SAT engine and the runtime
required for the SAT-based simulation strategy to genedatsim-
ulation vectors under th8AT- based si mcolumns. Notice that
close to a minimal number of SAT calls are required for moghef
circuits to generate 32 simulation vectors. The only sigaift ex-
ception is the circuitles_per f . By performing conflict analysis
on failed SAT attempts in future work, we can mitigate the Aum
ber of extra SAT calls. In the next set of columngndomsi m
we show that random simulation over a partition’s input kasat-
isfies the constraints of the entire design resulting in mailgd
SAT calls. Notice in several cases, we achieve orders of magn
tude runtime improvement, or random simulation times ouinas
syst entdes andt v80.

We also show the runtime for the entropy calculation given by
entropy(s) in the last column. The runtime for the coverage
analysis is very fastin general and scales well for the ladlgsigns.

7. CONCLUSION

We proposed Toggle to automatically stimulate areas of mdes
that experience low coverage. To achieve this goal, 1) weldev
oped a strategy for analyzing the toggling of several sguaing
entropy and 2) we developed a novel simulation frameworkgisi
SAT that allows for an even distribution of simulation in thes-
ence of complex constraints.

We show results that indicate that our SAT-based simulatéon
be useful for improving the activity of parts of the desigattlare
inadequately stimulated. We also show that adding only S¢@BR
constraints is often sufficient for evenly stimulating aigashus
mitigating the complexity of our original SAT formulationOur
results also indicate that guided simulation is useful éanoving
biases in random simulation and outperforms random sinaumat
considerably in several benchmarks.

Our efforts to improve simulation quality could also be mst
mental in improving hybrid verification strategies guidgdgimu-

lation and synthesis approaches that require high-qusiitylation
to guide their optimizations.
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