
Toggle: A Coverage-guided Random Stimulus Generator

Stephen M. Plaza, Igor L. Markov, Valeria Bertacco
EECS Department, University of Michigan, Ann Arbor, MI 48109-2121

{splaza, imarkov, valeria}@umich.edu

ABSTRACT
Despite the increasing research effort in formal verification, constraint-
based random simulation remains an integral part of design vali-
dation, especially for large design components where formal tech-
niques do not scale. However, effective simulation often requires
the construction of complex constraints to stimulate important as-
pects of the design.

In this paper we present Toggle, a novel solution which auto-
matically identifies those regions of the design which are not suffi-
ciently exercised in random simulation. Toggle then generates le-
gal random stimulus of the primary inputs of the design to improve
coverage over those regions, by augmenting the toggling activity
of the signals internal to the region. In addition, Toggle can also
be used to toggle a set of user-specified signals anywhere in the
design. Experimental results indicate that Toggle can stimulate re-
gions of a design in much fewer simulation cycles than random
simulation, leading to simulation runs which can potentially expose
bugs sooner.

1. INTRODUCTION
Verification costs greatly affect time-to-market, and increasingly

complex hierarchical designs exacerbate the inherent intractability
of common verification algorithms. Although exhaustive simula-
tion is infeasible, simulation allows for partial validation of large
designs whose error states are logically deep. This observation was
exploited in [7] to guide formal verification algorithms andthereby
increase the scalability and coverage of their hybrid approach.

Maximizing verification coverage through simulation or hybrid
strategies motivates the development of fast cycle-based and event-
based simulators. In [2], a parallel simulation approach isproposed
that uses circuit partitioning to reduce interprocessor communica-
tion. However, fast random simulation must be coupled with con-
strained simulation because random simulation will not necessarily
stimulate important parts of the design.

Constrained random simulation typically involves restricting in-
puts to certain ranges of values or asserting that certain conditions
are true. Modeling more complex constraints is more prohibitive
for two reasons: 1) it necessitates detailed knowledge of the de-
sign and complex specification languages by the engineer and2)
it requires an efficient mechanism for generating random stimuli
that satisfy these constraints. The latter concern was partially ad-
dressed in [14], where constraints are modeled as BDDs and sim-
ulation vectors can be obtained by randomly traversing the BDD.
However, this approach still requires a constraint specification and
is limited by the size of the BDD.

1.1 Contributions
We present Toggle as a solution for quantifying and improving

simulation coverage while decreasing engineering efforts. Toggle
enables efficient identification of regions in a design that experience
low activity and provides an efficient strategy for stimulating these
regions while satisfying the input constraints of the design.

Consider Figure 1. First, we perform low-effort synthesis on a

Figure 1: Toggle framework which monitors and evenly dis-
tributes stimulation in the design. First, individual signals are
monitored and then groups of signals are monitored. Signal
groups that experience low activity are then stimulated while
satisfying the input constraints.

design so that we can exploit efficient gate-level tools available.
Then, we monitor the toggle activity of each signal. We use this
information to intelligently organize the signals into several parti-
tions. The partitioning allows us to target regions with lowactivity
for simulation. To this end, we develop a coverage metric that cap-
tures signal correlations and distributions of multi-bit combinations
of internal wires. The coverage analysis suggests which partitions
should be stimulated more. Our flow requires minimal user input
with the goal of evenly distributing activity throughout the design.

To perform guided re-simulation, we implement a novel SAT-
based technique to toggle certain signals in a designs whilesatis-
fying the design’s input constraints. In the case where the engi-
neer specifies certain properties that need to be asserted, we can
specifically toggle these checkers through our targeted simulation
strategy. We show that generating even distributions of simulation
vectors with SAT can be orders of magnitudes faster than random
simulation.

In Section 2, we review previous work in simulation and refine-
ment and constrained random simulation. In Section 3, we intro-
duce Toggle as well as our partitioning and re-simulation method-
ologies. In Section 4, we describe in detail how we monitor ac-
tivity in a design. Finally, in section 5, we describe how we re-
simulate areas of a circuit to increase its toggling activity. Results
are given in Section 6 that show considerable improvements over
random simulation on several benchmarks.

2. PREVIOUS WORK
Simulation is an integral part of verification methodology.It can

efficiently evaluate different input sequences in large designs which
can be specified by designers much more easily than complex for-
mal properties. Several techniques exist for improving random sim-
ulation and are outlined in the following paragraphs.

Constrained random simulation has been developed where de-
sired properties are checked by asserting and constrainingcertain
values in a design or by using formal methods like BDDs in [14].
There has also been work in using SAT to solve constraints [8,4].
For the Boolean formulaF(V), the satisfiability problem involves
finding an assignment to the set of variablesV so thatF(V) = 1 or

discovering that no such assignment exists. A combinational circuit
can be transformed into a SAT instance where a solution to that SAT
instance gives the behavior of the circuit for a certain input stim-
uli. Both BDD or SAT-based strategies often require the addition of
engineer-specified constraints. Also, the size and complexity of the
constraints can make such strategies infeasible. Toggle addresses
some of these limitations by performing automatic re-simulation
using a novel extension to SAT.

At the instruction-level, Markov models can be used [13] to mod-
ify instruction sequences to effectively stimulate certain parts of the
design. Simulation can also be refined at the gate level as in [10]
where counter-examples derived from SAT create dynamic simula-
tion patterns that help check equivalence of two circuits. Although
automated, this simulation is very application-specific and is pri-
marily useful for deriving input patterns that distinguishtwo de-
signs.

Finally, simulation is used extensively with formal methods to
form hybrid verification strategies that can find bugs in larger blocks
of a design [7, 11]. However, formal methods still suffer from lim-
ited scalability, while their effective deployment requires special-
ized training and a relatively rare skill-set.

3. TOGGLE
As shown in Figure 1, the input to our framework is a behavioral

design description which can be transformed to a gate-levelrep-
resentation so that signals can be monitored at a finer granularity.
However, we note that our strategies can be abstracted to work di-
rectly at the RTL level. Toggle has two main components: coverage
analysis and guided simulation.

We first monitor the toggle activity of each signal in the design.
This information can be used to guide a min-cut partitioningalgo-
rithm which divides a circuit into several interacting components.
This technique can extract a hierarchy from a flattened design. For
a large component with no obvious logic hierarchy, this technique
can discover a hierarchy that reflects the switching activity. We can
then examine the inputs to each partition and monitor its activity.
This provides a more powerful metric than simple toggle coverage
because we are correlating several signals together and examining
their collective toggling.

Using this coverage analysis, we can evenly distribute activity in
a design through a SAT-based simulation strategy. Since random
simulation does not usually achieve equal coverage of different de-
sign partitions, we seek to stimulate partitions with low activity,
since this is more likely to expose hard-to-find bugs. Our SAT-
based simulation targets these low-activity partitions while satis-
fying the design’s input constraints. In particular, we cancon-
strain the primary inputs to certain instructions to randomly gener-
ate streams of instructions. The SAT-based simulation strategy de-
scribed can also be used to generate input patterns satisfying given
constraints or properties. Also, unlike the strategies in [8, 4], our
approach can use state-of-the-art SAT solvers [6] while minimizing
unwanted simulation bias.

In Section 4, we introduce our coverage analysis techniquesand
describe our mechanism for design partitioning. Then in Section
5 we will discuss the theoretical underpinnings of our SAT-based
simulation along with how we perform re-simulation specifically
in Toggle.

4. FINDING INACTIVE PARTS
OF A CIRCUIT

In this section, we describe how to automatically find regions of a
design that are inadequately stimulated. Specifically, We use toggle
activity to develop a more descriptive means of coverage analysis.

4.1 Toggle Activity of a Signal
Among the many coverage metrics used in verification, toggle

coverage specifies the activity of a particular signal in a circuit.
To determine the activity of a given signals in a circuitC, we use
Shannon entropywhich estimates the amount of information asso-
ciated with a signal. The entropy is calculated using the following
formula:

Es = −
nOnes

K
log2(

nOnes
K

)−
nZeroes

K
log2(

nZeroes
K

) (1)

whereEs is the entropy ofs, nOnesis the number of simulations
wheres= 1, andK is the number of simulation vectors examined.
The formula gives values that range from 0 to 1. Notice that higher
entropy indicates more activity and would occur when the number
of ones and zeroes are evenly distributed. The primary inputs under
random simulation will have the highest entropy. However, random
simulation does not stimulate all parts of the circuit equally.

For signals with low entropy, we can derive simulation that in-
creases the activity of a given signal. For instance, ifs= 1 for most
simulation vectors, one can asserts = 0 and derive several solu-
tion via a SAT solver. The solutions derived will not necessarily be
well-distributed but the entropy ofs would increase.

As a practical example, consider the effect of random simulation
on an 8-bit bidirectional counter as shown in Figure 2. Notice that
increasing the number of random simulation vectors still does not
generate activity at the most significant bit. Therefore, random sim-
ulation inadequately sensitizes the circuit. We show that by guiding
the simulation using signal entropy, we can stimulate the counter in
a way that produces more uniform coverage across all of the bits.
First, we identify the bit with the smallest entropy, and then we de-
rive a sequence of counter increments and decrements that targets
this bit. Figure 3 shows that after 300 guided simulation vectors
we can achieve a relatively even distribution of entropy across the
8 bits.

This analysis has certain limitations. By considering one signal
at a time, one cannot tell if two signals with uniform activity are
equivalent (perfectly correlated) or independent. A better coverage
analysis would identify small groups of signals and consider entire
combinations in terms of coverage and frequency bias (entropy).

4.2 Toggle Activity of a Partition
For designs that are broken down hierarchically, the task ofse-

lecting signals for activity analysis is straightforward.Namely, an-
alyze the input activity of each component to assess whetherade-
quate coverage is obtained. However, even in hierarchical designs,
several internal points in a component may be inadequately stim-
ulated. Furthermore, even if one knows at which level of granu-
larity to perform coverage analysis,how to perform this analysis
can be challenging in the presence of complex constraints. We now
discuss a circuit partitioning strategy that works well on avariety
of designs for locating where to analyze in the circuit. We utilize
signal entropy discussed previously to identify areas of the design
most amenable to coverage analysis. We then describe an entropy-
based coverage estimation that can be used to identify circuit parti-
tions that experience low activity. In the next section, we propose
a more powerful SAT-based strategy that can analyze biasingin the
presence of constraints. We use this strategy to refine the results
given by the entropy-based estimation.

Automatic circuit partitioning. Circuit partitioning has been
explored considerably in physical placement applicationswhere
net-cut minimization leads to smaller wirelength. The Fiduccia-
Mattheyses min-cut partitioning algorithm [5] is commonlyused

Figure 2: Random simulation for an 8-bit bidirectional counter. The entropy is given for each bit. Notice the bias that exists for
smaller values even with10000simulation vectors.

Figure 3: Guiding simulation with entropy for an 8-bit bidir ectional counter. The counter is first simulated with100 initial random
simulation vectors. Notice that the entropy is almost evenly distributed after only 300guided simulation vectors.

and runs in linear time per pass. Furthermore, multi-level exten-
sions of this algorithm scale near-linearly to very large designs. In
our work, we only perform partitioning once on a design and hence
the runtime is easily amortized by verification costs, and its runtime
overhead is negligible in the overall simulation flow.

We perform recursive-bisection, i.e., make multiple FM-based
partitions, until we partition a circuit to a desired granularity ei-
ther specified by the user or dynamically derived. Our partitioning
objective is to minimize the total number of incident edges to all
partitions while ensuring balance between the size of each parti-
tion. Poor partitioning results in an enormous search spacefor the
component whereas a good partition can allow one to fully exam-
ine a larger region with a much smaller component solution space.
As described before, the solution space of a component couldbe
significantly smaller in practice with respect to the whole circuit
because of the correlations between the inputs. As a result,mini-
mizing the number of inputs to a component mitigates the effect of
this correlation.

To realize our objective, we construct ahypergraphwhere each
wire in the circuit represents one hyperedge that connects multiple
vertices/gates. We weight the hyperedges by the signal entropy de-
rived in the previous section. Namely, we can derive a weightas
1/Es to weight wires with low-entropy higher to encourage cutting

low-entropy wires. In this way, the inputs to our partitionsshould
contain signals with lower entropy than not weighting the wires.
Recursive partitioning is then performed as implemented in[9] to
minimize the cut wires under this weight constraint. We specify
that each hyperedge is reconstituted after each partitioning. This
means that an edge that is cut is not removed from the graph butis
rather redrawn around remaining nodes that are in the same parti-
tion. This is done to minimize the introduction of additional inputs
for new partitions.

EXAMPLE 1. Consider a simple circuit with gates A= AND(C,D)
and B= AND(C,E). Assume the following partition is created
{A,B}{C,D,E}. In this case The partition{A,B} has 3 inputs,
C,D,E. We reconstitute an edge around A,B to penalize an addi-
tional partition like{A} and{B} where each would have2 inputs
resulting in4 total inputs for all partitions.

Estimating cut activity and biasing through entropy. The cuts
can be analyzed for activity to assess the amount of coveragein
each partition. Consider the following simple metric for cut activ-
ity:

Ac
f = num di f f vecs(< fi , · · · , fm >) (2)

wherenum diff vecs is the number of different simulation pat-
terns on partitionf ’s input cut. Notice though that this formula
does not factor in the frequency of certain simulation vectors; it
only provides the number of different simulation vectors and is
therefore of limited value.

To improve upon this, we can measure the amount of information
associated with the signals along the partition cut by usinga full ex-
pression for Shannon entropy. This measure accounts for multiple
seensimulation vectors along the cut which indicates simulation
bias. We compute the entropy off with m cut inputs as:

E f = −
2m−1

∑
vec: f req(vec) 6=0

f req(vec)
2m log2(

f req(vec)
2m) (3)

wherefreq is the frequency of a particular vectorvec represented
by an integer value. Forf , we need to consider the frequency of
simulation for each of the 2m input combinations. For input combi-
nations that do not occur, the frequency is 0 and there is no increase
in entropy. For frequent input combinations, the entropy will de-
crease because of bias. In this calculation, the entropy increases
when there are several different simulation vectors and when the
vector frequencies are very low. Because the number oflegal in-
put combinations to the cut, i.e., those combinations that satisfy the
input constraints of the design, can be less much less than 2m, our
entropy calculation is an approximation. The approximation can be
improved by randomly sampling this input cut and estimatingthe
percentage of input combinations that are legal.

We observe that with small input cuts we can perform our ap-
proximate entropy computation very efficiently with complexity
linear to the number of vectors simulated. We now outline oural-
gorithm:

double entropycalculation(Partition part, Activitycount freq){
double entropy = 0;
max vecs = 2≪ part.numinputs;
while(vec++ 6= max vecs){
if(freq(vec)> 0){
double prob = freq(vec)/maxvecs;
entropy -= prob * log2(prob);

}
}
return entropy;
}

Figure 4: Calculating entropy of a cut.

The functionentropy calculation takes the partition and
the frequency of each possible simulation vector as input. The fre-
quency can be computed by just traversing each simulation vector
and counting the number of times each vector occurs which can
be trivially accomplished during a calculation of Equation2. No-
tice thatmax vecs determines the complexity of this procedure
if it is greater than the number of simulation vectors. If thenum-
ber of inputs is small, each vector can be stored efficiently as se-
quence of successive integers from 0 tomaxvecswhich allows for
quick O(1)-time lookup of frequencies. When the cuts are large,
we can alternatively employ hash techniques to quickly compute
frequency.

Often, the number of input combinations possible over a parti-
tion’s inputs is much greater than the number of simulation vectors
applied. Also, there is often a great difference in the number of
inputs to each partition resulting in entropy that is dependent more
on the number of inputs to each partition than to the input’s toggle
activity. As a result, we modify Equation 3 by calculating entropy

with respect to the number of simulation vectorsK which we define
as:

EK
f = −

2m−1

∑
vec: f req(vec) 6=0

f req(vec)
K

log2(
f req(vec)

K
) (4)

This approximation is useful in our environment because most of
the partition cuts that we examine have solution spaces muchlarger
than number of simulation vectors applied.

In the next section, we leverage these coverage metrics to guide
a fast, SAT-based simulation approach that produces even coverage
in the presence of complex constraints and design hierarchies.

5. TARGETED RE-SIMULATION
In this section, we describe how we can perform guided simula-

tion using SAT. First, we discuss the theoretical underpinnings of
our SAT-based simulation approach and show that we can achieve
random simulation via SAT using any commercially availableSAT
solver. Then, we explain how properties can be stimulated using
our simulation approach. Finally, we explain how to use thisguided
simulation to target partitions with low entropy in Toggle to reduce
simulation bias.

5.1 Random Simulation with SAT
For the Boolean formulaF(V), the satisfiability problem involves

finding an assignment to the set of variablesV so thatF(V) = 1
or discovering that no such assignment exists. SAT problemsare
typically expressed in CNF, and combinational circuits canbe con-
verted to a CNF with complexity linear to the size of the circuit.
For a circuit withn inputs, there would logically be 2n satisfying
assignments possible for the corresponding SAT instance. We now
discuss how to derive these satisfying assignments randomly.

Theoretical background. It has been shown in [12] that the
number of solutions to a SAT problem does not change the inherent
difficulty of solving the problem. More specifically, [12] shows that
a randomized polynomial-time reduction of an arbitrary Boolean
formula can generate a set of corresponding formulas where one of
them has only one solution, i.e., unique SAT (U-SAT) with proba-

bility ≥
1
2

. In the following paragraphs, we discuss only an aspect

of this result that is relevant to our work. Specifically, we explain
that random constraints or Boolean clauses can be added to a SAT
problem that partitions the solution space in roughly equalhalves
with high probability.

Assume a SAT instancef with variablesx1,x2, ...,xn that has
solutionsv ∈ {0,1}n. To partition this space, we randomly pick
an assignmentw ∈ {0,1}n and add the following constraint tof :
v•w = 0 in base-2 arithmetic.

This can be expressed as follows:

f ∧ (xi1 ⊕xi2 ⊕·· ·⊕xi j ⊕1) (5)

wherei j represents the indices ofxi wherew is 1. In other words,
this adds anXORconstraint whereby an even polarity ofxi j deter-
mined byw need to be assigned to 1.

Alternatively, a CNF representation can be given as:

f ∧ (y1 ⇔ xi1 ⊕xi2)∧ (y2 ⇔ y1⊕xi3)∧·· ·

∧(y j−1 ⇔ y j−2⊕xi j)∧ (y j−1⊕1) (6)

EXAMPLE 2. Consider the SAT formula(a+ b+ c′)(b+ d).
This solution space can be partitioned by generating an XOR clause

#sims Random SAT-based
#diff sims entropy (s) #diff sims entropy (s)

64 64 1.00 0 64 1.00 2
128 128 1.00 0 128 1.00 5
256 253 1.00 0 256 1.00 11
512 499 0.99 0 506 1.00 30
1024 991 0.99 0 1003 1.00 98

Table 1: The quality of simulation for random and SAT-based
random simulation on circuit alu4. Notice that SAT-based sim-
ulation is comparable to random simulation at evenly stimulat-
ing a design because the entropy of the primary inputs is simi-
lar for both approaches. 1 is the highest entropy possible.alu4
has2403gates and14 inputs.

for the randomly generated w: a = 1,b = 1,c = 0,d = 0. The re-
sulting CNF would be(a+b+c′)(b+d)(y⇔ a⊕b)(y⊕1).

As mentioned, [12] shows that this roughly partitions a search
space evenly with high probability. However, very uneven parti-
tions are possible with low probability. IfSf is the set of all solu-
tions of f , then the addition of constraints fromk randomw vectors
reduces the solution space to roughly 2−k|Sf |.

Random simulation with SAT. Partitioning a solution space via
Valiant-Vazirani can be adapted to generate an even distribution of
simulation vectors. According to this formulation, each randomly
generated constraint randomly reduces the solution space.There-
fore, ignoring the case where an all 0 solution exists, any partic-
ular solution can be generated throughXOR-based reductions to
U-SAT.

In the simple case, where random simulation is desired over
the primary inputs of a circuit with no constraints, we can per-
form SAT-based simulation in a straightforward manner. Fora cir-
cuit C with n inputs, we can approximate that the addition ofn
XOR-constraints will produce a randomized U-SAT. Because we
are modifying the SAT instance, any SAT solver can be used to
derive the solution. Our approximation might result in UNSAT in-
stances or instances with many solutions; however, we expect a
decent distribution of simulation.

To demonstrate this even distribution, we show the entropy and
number of different simulation vectors (diff sims) derived us-
ing SAT-based simulation on the circuitalu4 in Table 1. We also
show the entropy for random simulation. The results indicate that
the SAT-based strategy achieves competitively high entropy to tra-
ditional random simulation.

Notice, however, that the runtimes can become large using the
SAT-based approach. This is due, in part, to the large numberof
XOR-based clauses added (in this case 14). In other words, approx-
imately finding U-SAT solutions can be computationally expensive
because several of the reductions will be UNSAT. For instance, 399
UNSAT instances were derived in the process of solving for 1024
different vectors for the circuit in Table 1. The non-linearincrease
in runtime can be attributed to the use of the SAT solver incremen-
tally where the cost of disabled old constraints in the SAT solver
can negatively impact future SAT runs and sometimes outweigh
the benefit of incrementality.

If only 64 evenly distributed input vectors are desired for circuit
C where 2n ≫ 64, a more efficient procedure can be used. In this
case, 6XORconstraints can be added to approximately partition the
solution space into 1/64 of the original size with high probability.
By adding different random sets of 6XORconstraints 64 times, we
can achieve a distribution of values for the circuit. We define the
addition of moreXORconstraints as increasing theresolution of
the solution space. More formally, we say that resolution isequal
to 2num(XOR) where the inverse of this is the probabilistic size of

#sims #XORs #diff sims entropy (s)
64 6 60 0.98 0
128 7 120 0.98 1
256 8 243 0.99 1
512 9 466 0.98 5
1024 10 960 0.99 25

Table 2: The distribution of entropy using SAT-based random
simulation using fewerXORconstraints than in Table 1 . Notice
that we improve the runtime considerably while still retaining
high entropy.

the partitioned solution space.
In Table 2, we show the entropy and runtimes for deriving simu-

lation vectors wherelog2(#sims) XORconstraints are added. The
results indicate a considerable improvement in runtime with nomi-
nal impact to the entropy/quality of the simulation.

5.2 Stimulating Specified Properties
The previous section demonstrated that SAT randomization via

the addition of randomXORconstraints can be used to randomly
stimulate a design’s inputs. However, our technique is capable
of handling any type of engineer-specified constraint whereas ran-
dom simulation might not scale. For simple constraints suchas
input biasing, random simulation is clearly sufficient. However,
the designer may wish to find simulation that asserts certainspeci-
fied properties in the middle of designC. Random simulation may
rarely assert this value. Also, solving for multiple solutions using
SAT with no randomization could produce biased simulation.

With our SAT-based strategy, achieving simulation uniformity
while asserting a property is a trivial extension of the previous sce-
nario. The main difference is that the constrainedC∗ will contain
an often unknown fewer solutions thanC, i.e.,|SC∗ |< |SC|. If |SC∗ |
is similar in size to the number of desired simulation vectors, one
can just exhaustively enumerate all solutions in the SAT instance.
Otherwise, we can addXORconstraints to achieve the desired res-
olution. We can reduce SAT solving runtimes by minimizing the
number of addedXORconstraints with similar effect as in Table 2.

The trade-off between stimulating a design with random simu-
lation versus SAT-based simulation is illustrated in Figure 5a. In
this example, we show the original solution space ofC as a su-
perset of the reduced solution space ofC∗ which is sparse due to
adding engineer-specified constraints. By randomly picking solu-
tions inC, one rarely achieves a solution inC∗. However, ifC∗ is
randomized by addingXORconstraints, we can derive legal inputs
that satisfy these constraints. By adjusting the number ofXORcon-
straints added, we can maximize the chance that solutions toC∗ are
found while still achieving a distribution of simulation.

Figure 5: a) A sparse solution space from adding constraintsto
C. b) Simulating componentA within circuit C.

5.3 Partition Targeted Simulation
In Toggle, we strive to improve the activity of partitions that ex-

perience low entropy with the goal of exploiting new behavior in
the circuit. We have shown that SAT can be used to generate even
distributions of simulation in the presence of constraints. However,
we now desire to automatically stimulate internal partitions of the
design while satisfying the design’s input constraints.

Simulating a component within a design.From Figure 5b., we
show the problem of stimulating componentA from the primary
inputs of circuitC. Notice that componentA with m inputs is posi-
tioned far away from then primary inputs ofC where simulation is
performed. It is possible thatA is not adequately stimulated in this
example. One possible solution would be to randomly find a solu-
tion toA and check whether this satisfies the input constraints toC.
However, this procedure would tend to be costly because several
input combinations forA would be impossible due to the interac-
tion with the rest ofC. In other words, the number of solutions of
A with respect toC or |SA/C| is much smaller than 2m. A sparse
solution space would require prohibitive amounts of SAT calls.

To mitigate this problem, we derive an extension to the SAT-
based simulation theory presented previously.A can be considered
a sub-space ofC. The CNF ofC can be defined as aCNF(C−
A)∧CNF(A). Therefore a solution toC implies a solution toA.
By randomly generatingwA to createXORconstraints specific to
A, we can partitionA’s solution space and conjoin the result with
CNF(C−A). Any derived solution toC will produce a solution toA
with the resolution determined by the number ofXORconstraints
added. This approach could also produceUNSAT instances due
to very sparse or uneven solution spaces. However, the resolution
can be dynamically decreased to reduce these occurrences but still
ensure a distribution of solutions.

Algorithm. Functionpartition simulate takes a parti-
tion where even stimulation is needed along with the number of
simulation vectors desired and the circuit as arguments. The res-
olution gives the number ofbins a solution space can be divided
into and is derived from the number of desired simulation vectors.
In other words, if we desire 16 simulation vectors, a resolution of
4 is required and 2XOR constraints are needed. We then con-
struct the SAT instance of the circuit withconstruct cnf and
add additional constraints. Although we do not do this here,one
could assert several conditions about the solution space that should
be additionally checked. Also, one could add constraints reflecting
the correlations of the inputs to the partition to better model the
partition’s solution space with respect to the whole design.

void partition simulate(Partition part, Circuit C, int numsims){
num xor = log2(num sims);
CNF = constructcnf(C);
add additionalconstrs(CNF);
while(num sims–){
add xor constrs(numxor, part, CNF);
if(Solve(CNF, solution)){
add solution(solution);
add blocking clause(solution, CNF);
}
}
}

Figure 6: Evenly simulating a partition.

We thenderivenum sims solutions that satisfy the constraints
of the circuit along with the resolution ofpart. Different con-
straints are added for each pass of the while loop by functionadd
xor constrs. If a satisfying solution is found,add solution
adds the derived solution.add blocking clause adds a con-

circuit #gates #parts avg. entropy lowest entropy
spi 3010 30 0.95 0.63
systemcdes 3196 31 0.92 0.57
tv80 6847 68 0.89 0.17
systemcaes 7453 74 0.98 0.52
ac97ctrl 10284 102 1.00 0.95
usb funct 11889 118 1.00 0.86
aescore 20277 202 0.75 0.41
wb conmax 28409 284 0.91 0.67
ethernet 37634 376 0.99 0.54
desperf 94002 940 0.91 0.50

Table 3: Entropy analysis for circuits partitioned so that the
average partition size is approximately100. The maximum en-
tropy for each circuit is 1.0

straint to the CNF called ablocking clausethat assures that the
solution cannot be rederived. Implicit in this algorithm isthe fact
that we are incrementally calling a SAT solver to utilize informa-
tion learned that is consistent across many calls toSolve.

Dynamically constraining a partition. It is possible that the
SAT solver will not find solutions to the constrained space. We
propose as future work a technique to automatically mitigate this
occurrence. When a call to a SAT solver returns UNSAT, we can
analyze the conflicts that occurred during the SAT solving algo-
rithm. In particular, we can examine the input cut of the partition
and check when an assignment of a subset of the inputs necessar-
ily implies a conflict outside of the partition. This would indicate
a situation where inputs are correlated in a way that would make
solutions of the partition’s solution space inconsistent with the rest
of the circuit. We could add a constraint to model this correlation
to prune the false solution space of the partition. The constraint
added with this type of analysis would be independent of theXOR-
constraints and be used for future analysis of the partition.

6. EXPERIMENTS
We have already shown some results indicating that SAT-based

simulation can evenly stimulate a design. In this section, we will
demonstrate the effectiveness of Toggle. We will show that adesign
can be stimulated unevenly when using unguided random simula-
tion and that our guided simulation strategy reduces these biases.
Furthermore, we will show the effectiveness of stimulatinga parti-
tion using SAT versus random simulation.

The SAT algorithms that we developed were built on MiniSAT
[6] and required only a few lines of code. We used hMetis [9] to
perform the recursive bisections needed for our circuit partitioning.
We simulated the circuit using bit-parallel simulation andconsid-
ered only the combinational portions of the design. Our circuits are
from the IWLS 2005 suite [15].

6.1 Assessing Simulation Bias in a Circuit
In this section, we show that the entropy varies between each

design and that the worst partition in a design has relatively low
entropy making it a good candidate for re-simulation. A partition
with low entropy suggests that a part of the design is not properly
stimulated under random simulation. By focusing on these areas
for re-simulation, we hope to expose new circuit behavior that can
expose bugs more quickly.

In Table 3, we show a set of circuits ordered by their size. We
partitioned each design using signal entropy so that each partition
would be approximately 100 gates in size. The number of partitions
that were used is given by#parts. The average entropy of all
of the partitions is given asavg. entropy. The maximum
possible entropy is 1.00. The entropy for the partition with the
most inactivity is given bylowest entropy.

circuit our SAT-based sim random sim entropy
#SAT calls (s) #SAT calls (s) (s)

spi 32 1 11168 6 0
systemcdes 43 2 - time-out 0
tv80 38 6 - time-out 1
systemcaes 44 9 12163 10 1
ac97ctrl 32 17 402 14 1
usb funct 32 19 32 17 0
aescore 67 15 662655 209 1
wb conmax 32 170 969723 200 1
ethernet 33 375 141043 1429 3
desperf 216 1582 14669 1578 2

Table 4: Comparing SAT-based re-simulation with random re-
simulation over a partition for generating 32 vectors. The run-
time is also shown for the entropy analysis performed. Time-
out is 10000seconds.

Notice that for most of the circuits, the average entropy is pretty
close to 1.00; however, there is usually at least one partition that is
considerably worse as intv80 andaes core. We have also ob-
served that there are usually a small number of partitions that show
very low activity. We can exploit this by performing re-simulation
mainly over this small number of poorly covered partitions.

6.2 Random vs.
SAT-guided Simulation

We show that evenly simulating a partition via random simula-
tion at the partition’s inputs is often much slower than using SAT-
guided simulation. In Table 4, we perform re-simulation of aparti-
tion using 32 vectors. The partition with the worst entropy is cho-
sen.

We show the number of calls to a SAT engine and the runtime
required for the SAT-based simulation strategy to generate32 sim-
ulation vectors under theSAT-based sim columns. Notice that
close to a minimal number of SAT calls are required for most ofthe
circuits to generate 32 simulation vectors. The only significant ex-
ception is the circuitdes perf. By performing conflict analysis
on failed SAT attempts in future work, we can mitigate the num-
ber of extra SAT calls. In the next set of columns,random sim,
we show that random simulation over a partition’s input rarely sat-
isfies the constraints of the entire design resulting in manyfailed
SAT calls. Notice in several cases, we achieve orders of magni-
tude runtime improvement, or random simulation times out asin
systemcdes andtv80.

We also show the runtime for the entropy calculation given by
entropy(s) in the last column. The runtime for the coverage
analysis is very fast in general and scales well for the larger designs.

7. CONCLUSION
We proposed Toggle to automatically stimulate areas of a design

that experience low coverage. To achieve this goal, 1) we devel-
oped a strategy for analyzing the toggling of several signals using
entropy and 2) we developed a novel simulation framework using
SAT that allows for an even distribution of simulation in thepres-
ence of complex constraints.

We show results that indicate that our SAT-based simulationcan
be useful for improving the activity of parts of the design that are
inadequately stimulated. We also show that adding only someXOR
constraints is often sufficient for evenly stimulating a design thus
mitigating the complexity of our original SAT formulation.Our
results also indicate that guided simulation is useful for removing
biases in random simulation and outperforms random simulation
considerably in several benchmarks.

Our efforts to improve simulation quality could also be instru-
mental in improving hybrid verification strategies guided by simu-

lation and synthesis approaches that require high-qualitysimulation
to guide their optimizations.

8. REFERENCES
[1] F. Aloul, B. Sierawski, and K. Sakallah, “Satometer: howmuch have

we searched?”,TCAD, pp. 995-1004, 2003.
[2] K.-H. Chang, H. Wang, Y. Yeh, and S. Kuo, “Automatic partitioner

for distributed parallel logic simulation”,IASTED, 2004.
[3] A. Das, P. Basu, A. Banerjee, P. Dasgupta, P. Chakrabarti, C. Mohan,

L. Fix, and R. Armon, “Formal verification coverage: computing the
coverage gap between temporal specifications”,ICCAD, pp.
198-203, 2004.

[4] R. Dechter, K. Kask, E. Bin, and R. Emek, “Generating random
solutions for constraint satisfaction problems”,AAAI, pp. 15-21,
2002.

[5] C. Fiducia and R. Mattheyses, “A linear-time heuristic for improving
network partitions”,DAC, pp. 175-181, 1982.

[6] N. Een and N. Sorensson, “An extensible SAT-solver”,SAT ’03,
http://www.cs.chalmers.se/∼een/Satzoo.

[7] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J.
Taylor, and J. Long, “Smart simulation using collaborativeformal
and simulation engines”,ICCAD, pp. 120-126, 2000.

[8] W. Jordan, “Towards efficient sampling: exploiting random walk
strategies”,AAAI, pp. 670-676, 2004.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain”,TVLSI, pp.
69-79, 1999.

[10] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton,“FRAIGs:
A unifying representation
for logic synthesis and verification”,ERL Technical Report, Berkeley.
http://www.eecs.berkeley.edu/∼alanmi/publications/.

[11] S. Shyam and V. Bertacco. “Distance-guided hybrid verification with
GUIDO”, DATE., pp. 1211-1216, 2006.

[12] L. Valiant and V. Vazirani. “NP is as easy as detecting unique
solutions”,Theor. Comput. Sci., pp. 85-93, 1986.

[13] I. Wagner, V. Bertacco, T. Austin, “StressTest: an automatic
approach to test generation via activity monitors”.DAC, pp.
783-788, 2005.

[14] J. Yuan, A. Aziz, C. Pixley, and K. Albin, “Simplifying Boolean
constraint solving for random simulation-vector generation”, TCAD,
pp. 412-420, 2004.

[15] http://www.opencores.com/

