# Solving Difficult SAT Instances In The Presence of Symmetry 

Fadi A. Aloul, Arathi Ramani
Igor L. Markov and Karem A. Sakallah University of Michigan

## Highlights of Our Work

- No new SAT solvers are proposed
- We improve performance of existing complete SAT solvers by preprocessing
- Evaluate on carefully chosen SAT benchmarks
- ignore easy benchmarks
- only worry about benchmarks with symmetries (but the symmetries may not be given!)
- show applicability to chip layout (200x speed-ups) and derive new hard SAT benchmarks
- show asymptotic improvements


## Outline

- Symmetries and permutations
- Compact representations of symmetries
- Computational group theory
- Symmetries of CNF instances
- Detection via Graph Automorphism
- Syntactic versus semantic symmetries
- Using symmetries to speed up search

Opportunistic symmetry detection
Empirical results

## Symmetries and Permutations

## not a symmetry



Symmetries of the triangle:


$$
\begin{align*}
& 1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 1 \\
& 1 \rightarrow 3,3 \rightarrow 2,2 \rightarrow 1 \\
& 1 \rightarrow 2,2 \rightarrow 1,3 \rightarrow 3  \tag{12}\\
& 1 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 2 \\
& 1 \rightarrow 3,3 \rightarrow 1,2 \rightarrow 2 \tag{13}
\end{align*}
$$

(123) Permutations
(132) can have(23)
(13)multiple(disjoint)
cycles
$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3$ "do nothing"

## Symmetries and Permutations (2)

 apply (123) and then again (123): get (132) apply (123) and then (12) : get (23) all non-trivial symmetriesare products of (123) and (12) - "generators"


DAC 2002

## Symmetries and Permutations (3)

- Idea: represent symmetries of an object by permutations that preserve the object
- Composition of symmetries is modeled by composition of permutations
- Composition is associative
- Every symmetry has an inverse
- The do-nothing symmetry is the identity
- This enables applications of group theory


## Compact Representations

- Represent the group of all symmetries
- Do not list individual symmetries
- List generating permutations (generators)
- Elementary group theory proves:
- If redundant generators are avoided,
- A group with $N$ elements can be represented by at most $\log _{2}(N)$ generators
- Guaranteed exponential compression


## Compact Representations (2)

- Sometimes can do better than $\log _{2}(N)$
- E.g., consider the group $S_{k}$ of all $k!$ permutations of $1 . . k$ - Can be generated by (12) and (123..k) - Or by (12), (23), (34),..., (k-1 k)
- To use this guaranteed compression, we need algorithms in terms of permutation generators


## Computational Group Theory

- Algorithms for group manipulation in terms of generators are well known
- Published by Sims, Knuth, Babai and others
- Especially efficient for permutation groups
- High-quality implementations available
- The GAP package - free, open-source (GAP="Groups, Algebra, Programming")
- The MAGMA package - commercial


## Finding Symmetries of Graphs

- Symmetry (automorphism) of a graph
- Permutation of vertices that maps edges to edges
- Additional constraints

- Vertex colors (labels): integers
- Every vertex must map into a vertex of same color
- Computational Graph Automorphism
- Find generators of a graph's group of symmetries
- GraphAuto $\in$ NP, and is believed to $\notin \mathrm{P}$ and $\notin \mathrm{NPC}$
- Linear average-case runtime (but that's irrelevant!)

Algorithms implemented in GAP(GRAPE(NAUTY))
DAC 2002

## Symmetries of CNF Formulae

-Permutations of variables
that map clauses to clauses

- E.g., symmetries of (a+b+c)(d+e+f) include (ab), (abc) as well as (ad)(be)(cf)
- Considering single swaps only is not enough

Ditto for variable negations ( $a \rightarrow a^{\prime}$ ) and compositions with permutations

- E.g., symmetries of $(a+b+c)\left(d+e^{\prime}+f^{\prime}\right)$ include (de') as well as (ad)(be')(cf')


## Reduction to Graph Automorphism

- CNF formula $\rightarrow$ colored graph
- Linear time and space
- Find graph's [colored] symmetries
- Worst-case exponential time
- Interpret graph symmetries found as symmetries of the CNF formula
- Permutational symmetries
- Phase-shift symmetries


## Reduction to Graph Automorphism

 - Vertices of two colors: clauses and vars - One vertex per clause, two per variable - Edges of three types: (i) incidence, (ii) consistency, and (iii) 2-literal clauses

## Syntactic and Semantic Symmetries

- CNF formula versus Boolean function
- Syntactic symmetries
- symmetries of representation
- Semantic symmetries of the object
- E.g., permutations and negations of variables that preserve the value of the function for all inputs
- Any syntactic symmetry is also semantic
- but not vice versa, example: $(a)\left(a^{\prime}\right)(a+b)$ Michigen Engineerthe


## Speeding up SAT Search

- Search space may have symmetries
- May have regions that map 1:1
- This makes search redundant
- $(\underline{a}+d)(b+d)(a+b)(\ldots) . . .(\ldots)$
- Ideas for speed-ups
- Consider equivalence classes under symmetry
- Pick a representative for each class
- Search only one representative per class
- This restricted search is $\Leftrightarrow$ to original


## Symmetry-breaking Predicates

- To restrict search
- Add clauses to the original CNF formula ("symmetry-breaking" clauses)
- They will pick representatives of classes and restrict search
- Our main task is to find those clauses
- Use only permutations induced by generators
- Permutation $\rightarrow$ group of clauses (a "symmetry-breaking" predicate)


## Construction of S.-b. Predicates

- Earlier work:
- By Crawford, Ginsberg, Roy and Luks $(92,96)$
- Not based on cycle notation for permutations

Our construction is more efficient

- Every cycle considered separately
- In practice almost all cycles are 2- or 3-cycles
- Two types of 2-cycles: (aa') and (ab)
- Symm.-breaking predicates: (a) and (a'+b) resp.
- For multiple cycles
- Procedure to chain symmetry-breaking predicates


## Details: Individial Cycles (1)

- Use an ordering of all variables (arbitrary)
- To prevent transitivity violations: $\left(a+b^{\prime}\right)\left(b+c^{\prime}\right)(c+a)$ (the construction by CGRL uses an ordering as well)
- Symmetry-breaking predicate for cycle (ab):
- $(a \Rightarrow b)$ aka $(a \leq b)$, if a precedes $b$ in the ordering
- Think of partial variable assignments to $b$ and $a$
- Must choose one from 01 and 10

```
\(\longrightarrow 00\)
\(\longrightarrow 01\)
10 (a'+b)
```

$\longrightarrow 11$

## Details: Individial Cycles (2)

$$
\begin{array}{lll}
000 & 100 & \left(a^{\prime}+b\right)\left(b^{\prime}+c\right) \\
001 & 101 & \\
010 & 110 & \\
011 & 111 &
\end{array}
$$

-S.-b. predicate for cycle ( $a b c$ ) is ( $a \leq b \leq c$ )

- For 3-var partial assignments, can cycle all 0s to front
- For longer cycles, still can improve upon CGRL
- Does ordering affect overall performance?


## Details: Multiple Cycles(1)

-Solution space reduction

- By $\mathbf{2 x}$ when (a) is added to break cycle ( $\mathrm{aa}^{\prime}$ )
- Still by $\mathbf{2 x}$ if permutation has cycles (aa') and (bb')

Next slide

- By 4/3x when ( $a^{\prime}+b$ ) is added to break cycle (ab) What if a permutation has cycles (ab) and (cd) ?
- By $\mathbf{2 x}$ when $(a \leq b \leq c)$ is added to break ( $a b c$ )
- Suppose you have cycles (aa') and (uvt)
- Adding both predicates cuts solution space by $\mathbf{4 x}$
- Rule of thumb: after breaking a 2-cycle, symmetry-break the square of the permutation


## Details: Multiple Cycles(2)

- Rule of thumb: after breaking a 3-cycle, symmetry-break the cube of the permutation
- What if we have both (xy) and (uv) ?
- Squaring will kill the second cycle, so don't square!
- Look at partial assignments for $x, y$ : 00, 01, 10 and 11
- For 10 or $01,\left(x^{\prime}+y\right)$ is all we can do
- For 00 or 11, can add ( $u^{\prime}+v$ )
- Adding $(x \leq y)$ and $(x=y) \Rightarrow(u \leq v)$
cuts the solution space by 8/5x (better than 4/3x)
$\star$ For 3 -cycles, add $(x=y=z) \Rightarrow(u \leq v \leq w)$ or the like
$\diamond$ For multiple cycles $((x=y=z) \&(a=b)) \Rightarrow(u \leq v)$, etc
Mlahligen Bigimeertice


## Discussion

* We detect syntactic symmetries only
- If more semantic symmetries available, can use them in the same way
- Symmetry-detection can take long time
- Sometimes longer than solving SAT
- In some cases the only symmetry is trivial
- Symm. detection is often fast in these cases
- Symmetry-breaking using generators only is not exhaustive (remark by CGRL)
- But makes symmetry-breaking practical (our result)
- Pathological cases are uncommon:why?(future work)


## Evaluation and Benchmarks

- Most of DIMACS benchmarks are easy for existing solvers
- We focus on difficult CNF instances
- Pigeon-hole-n (PHP-n), Urquhart, etc.
- Observe that PHP-n can appear in apps
- EDA layout apps (routing) $\rightarrow$ symmetry
- We generate satisfiable and unsatisfiable CNF instances related to PHP-n


## FPGA Routing Benchmarks ${ }_{\text {© }} \mathrm{f}_{\mathrm{f}} \mathrm{s} \mid \mathrm{n}$



## Global Routing Benchmarks

- Construct difficult grid-routing instances by "randomized flooding"
- Then convert to CNF



## Empirical Results - Chaff

| Instance | S/ | \#V | \#CL | Plain Time- <br> Chaff out <br> sec $\%$ |  | Symmetries |  |  |  |  | Speedup |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Finding sec | Number of | \#genera cycles | ators | Search <br> Time | Total | Search only |
| hole7 | U | 56 | 204 | 0.37 | 0\% | 0.1 | $2.03 \mathrm{E}+08$ | all | 13 | 0.01 | 3.32 | 36.50 |
| hole8 | U | 72 | 297 | 1.27 | 0\% | 0.07 | $1.46 \mathrm{E}+10$ | all | 15 | 0.01 | 15.22 | 94.15 |
| hole9 | U | 90 | 415 | 3.79 | 0\% | 0.1 | 1.32E+12 | all | 17 | 0.02 | 32.00 | 204.97 |
| hole10 | U | 110 | 561 | 22.44 | 0\% | 0.15 | $1.45 \mathrm{E}+14$ | all | 19 | 0.02 | 130.07 | 997.18 |
| hole11 | U | 132 | 738 | 212.73 | 0\% | 0.13 | $1.91 \mathrm{E}+16$ | all | 21 | 0.03 | 1329.54 | 7090.88 |
| hole12 | U | 156 | 949 | 1000 | 100\% | 0.24 | $2.98 \mathrm{E}+18$ | all | 23 | 0.04 | 3597.12 | 26315.79 |
| Urq3_5 | U | 46 | 470 | 232.44 | 10\% | 0.48 | 5.37E+08 | all | 29 | 0.00 | 484.16 | 2.32E+06 |
| Urq4_5 | U | 74 | 694 | 250.01 | 25\% | 1.35 | $8.80 \mathrm{E}+12$ | all | 43 | 0.00 | 185.18 | $2.50 \mathrm{E}+06$ |
| Urq5_5 | U | 121 | 1210 | 1000 | 100\% | 13.15 | 4.72E+21 | all | 72 | 0.00 | 76.05 | $1.00 \mathrm{E}+07$ |
| Urq6_5 | U | 180 | 1756 | 1000 | 100\% | 62.93 | 6.49E+32 | all | 109 | 0.00 | 15.89 | 1.00E+07 |
| Urq7_5 | U | 240 | 2194 | 1000 | 100\% | 176.62 | $1.12 \mathrm{E}+43$ | all | 143 | 0.00 | 5.66 | 1.00E+07 |

## Empirical Results - Chaff

| Instance | S/U | \#V | \#CL | Plain Time <br> Chaff out <br> sec $\%$ |  | Symmetries |  |  |  |  | Speedup |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Finding sec | Number of | \#generators cycles |  | Search Time | Total | Search only |
| grout3.3-01 | S | 864 | 7592 | 19.01 | 0\% | 4.79 | 8.71E+09 | 10 | 26 | 0.67 | 3.48 | 28.37 |
| grout3.3-03 | S | 960 | 9156 | 44.35 | 0\% | 8.94 | $6.97 \mathrm{E}+10$ | 10 | 29 | 0.40 | 4.75 | 110.89 |
| grout3.3-04 | S | 912 | 8356 | 19.36 | 0\% | 6.81 | $2.61 \mathrm{E}+10$ | 10 | 27 | 0.36 | 2.70 | 53.79 |
| grout3.3-08 | S | 912 | 8356 | 21.30 | 0\% | 7.14 | $3.48 \mathrm{E}+10$ | 10 | 28 | 0.67 | 2.73 | 31.80 |
| grout3.3-10 | S | 1056 | 10862 | 28.18 | 0\% | 10.65 | $3.48 \mathrm{E}+10$ | 10 | 28 | 0.85 | 2.45 | 33.15 |
| chnl10x11 | $\cup$ | 220 | 1122 | 22.17 | 0\% | 0.45 | $4.20 \mathrm{E}+28$ | all | 39 | 0.11 | 39.91 | 210.13 |
| chnl10x12 | U | 240 | 1344 | 81.88 | 0\% | 0.61 | $6.04 \mathrm{E}+30$ | all | 41 | 0.12 | 111.63 | 663.00 |
| chnl10x15 | U | 300 | 2130 | 657.61 | 25\% | 1.28 | $4.50 \mathrm{E}+37$ | all | 47 | 0.17 | 454.78 | 3961.49 |
| chnl11x12 | $\cup$ | 264 | 1476 | 207.37 | 0\% | 0.75 | 7.31E+32 | all | 43 | 0.15 | 231.31 | 1415.51 |
| chnl11x13 | U | 286 | 1742 | 788.32 | 20\% | 1.08 | $1.24 \mathrm{E}+35$ | all | 45 | 0.16 | 633.45 | 4792.24 |
| chnl11x20 | U | 440 | 4220 | 1000 | 100\% | 4.4 | $1.89 \mathrm{E}+52$ | all | 59 | 0.31 | 212.49 | 3267.97 |

## Empirical Results - Chaff

| Instance | S/U | \#V | \#CL |  Time <br> Plain - <br> Chaff out <br> sec $\%$ |  | Symmetries |  |  |  |  | Speedup |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Finding <br> sec | Number <br> of | \#generators cycles |  | Search <br> Time | Total | Search only |
| fpga10_8 | S | 120 | 448 | 7.56 | 0\% | 0.63 | $6.00 \mathrm{E}+71$ | all | 62 | 0.05 | 11.15 | 157.56 |
| fpga10_9 | S | 135 | 549 | 3.80 | 0\% | 0.88 | $6.33 \mathrm{E}+77$ | all | 68 | 0.03 | 4.16 | 113.39 |
| fpga12_11 | S | 198 | 968 | 694.00 | 50\% | 3.76 | $7.18 \mathrm{E}+77$ | all | 95 | 0.06 | 181.63 | 11377.05 |
| fpga12_12 | S | 216 | 1128 | 80.20 | 0\% | 5.31 | $7.44 \mathrm{E}+77$ | all | 104 | 0.13 | 14.74 | 616.92 |
| fpga12_8 | S | 144 | 560 | 246.70 | 10\% | 1.23 | $8.41 \mathrm{E}+77$ | all | 72 | 0.08 | 188.39 | 3103.14 |
| fpga12_9 | S | 162 | 684 | 885.00 | 80\% | 1.7 | $2.25 E+77$ | all | 79 | 0.05 | 504.56 | 16388.89 |
| fpga13_9 | S | 176 | 759 | 550.00 | 85\% | 2.57 | $2.56 \mathrm{E}+77$ | all | 84 | 0.06 | 208.81 | 8593.75 |
| fpga13_10 | S | 195 | 905 | 1000 | 100\% | 4.04 | $5.76 \mathrm{E}+77$ | all | 93 | 0.08 | 242.60 | 12195.12 |
| fpga13_12 | S | 234 | 1242 | 1000 | 100\% | 6.9 | 8.85E+77 | all | 110 | 0.08 | 143.23 | 12195.12 |
|  | 88 | 3 | $106$ | 10 |  | DAC 2 |  |  |  |  |  | 28 |

## Empirical Results - Chaff

| Instance | S/U | \#V | \#CL | Plain <br> Chaff <br> sec | Timeout \% | Symmetries |  |  |  | Speedup |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Finding <br> sec | Number <br> of | \#generators <br> cycle | Search <br> Time | Tot | Search only |
| 2dlx_ca_mc | U | 3250 | 24640 | 6.54 | 0\% | 38.36 | $9.36 \mathrm{E}+77$ | 1066 | 6.30 | 0.15 | 1.04 |
| 2pipe | U | 892 | 6695 | 2.08 | 0\% | 10.74 | $2.26 E+45$ | 1038 | 1.56 | 0.17 | 1.33 |
| 2pipe_1_000 | U | 834 | 7026 | 2.55 | 0\% | 9.37 | 8.00E+00 | 103 | 1.80 | 0.23 | 1.41 |
| 2pipe_2_000 | U | 925 | 8213 | 3.43 | 0\% | 11.14 | $3.20 \mathrm{E}+01$ | 105 | 2.82 | 0.25 | 1.22 |
| 3 pipe | U | 2468 | 27533 | 36.44 | 0\% | 463.57 | 7.29E+77 | 1085 | 19.65 | 0.08 | 1.85 |
| 2dlx_ca_mc | U | 3250 | 24640 | 6.54 | 0\% | 3.17 | $2.34 \mathrm{E}+77$ | 1064 | 5.42 | 0.76 | 1.21 |
| 2pipe | U | 892 | 6695 | 2.08 | 0\% | 10.47 | $2.26 \mathrm{E}+45$ | 1038 | 1.30 | 0.18 | 1.60 |
| 2pipe_1_000 | U | 834 | 7026 | 2.55 | 0\% | 9.02 | 8.00E+00 | 103 | 1.80 | 0.24 | 1.41 |
| 2pipe_2_000 | U | 925 | 8213 | 3.43 | 0\% | 11.09 | $3.20 \mathrm{E}+01$ | 105 | 2.80 | 0.25 | 1.23 |
| 3 pipe | U | 2468 | 27533 | 36.44 | 0\% | 3.63 | 1.42E+77 | 1078 | 36.20 | 0.91 | 1.01 |
| 4pipe | U | 5237 | 80213 | 337.61 | 0\% | 9.32 | 1.03E+78 | 10142 | 334.00 | 0.98 | 1.01 |
| 5pipe | U | 9471 | 195452 | 325.92 | 0\% | 29.42 | $3.64 \mathrm{E}+78$ | 10227 | 290.50 | 1.02 | 1.12 |

## Domain-specific <br> Symmetry-Breaking Predicates

- We looked at symmetry generators for global routing benchmarks
- Those symmetries were permutations of routing tracks
- Symmetry-breaking clauses can be added when converting to CNF
- Serious speed-up for Chaff in all cases
- No symmetries left after that


## Fast Symmetry Detection



Symmetry:
Michigen En inimeerflice $\left(x x^{\prime}\right)\left(y z^{\prime}\right)\left(y^{\prime} z\right)$

## Conclusions

- Pre-processing speeds up SAT solvers on difficult instances with symmetries
- Strong empirical results on new and old BMs
- Improved constructions
- Reduction to graph automorphism
- Symmetry-breaking predicates
- Cycle-based construction
- Using generators only
- Many important questions not answered
- Significant on-going work


Mchlesn Enofineertice

| Instance | S/U | \#V | \#CL | Plain <br> Chaff <br> sec | Timeout \% | Symmetries |  |  |  | Speedup |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Finding sec | Number of | \#generators cycles | Search Time | Total | Search only |
| grout3.3-01 | S | 864 | 7592 | 19.01 | 0\% | 4.79 | 8.71E+09 | 1026 | 0.67 | 3.48 | 28.37 |
| grout3.3-03 | S | 960 | 9156 | 44.35 | 0\% | 8.94 | $6.97 \mathrm{E}+10$ | 1029 | 0.40 | 4.75 | 110.89 |
| grout3.3-04 | S | 912 | 8356 | 19.36 | 0\% | 6.81 | $2.61 \mathrm{E}+10$ | 1027 | 0.36 | 2.70 | 53.79 |
| grout3.3-08 | S | 912 | 8356 | 21.30 | 0\% | 7.14 | $3.48 \mathrm{E}+10$ | 1028 | 0.67 | 2.73 | 31.80 |
| grout3.3-10 | S | 1056 | 10862 | 28.18 | 0\% | 10.65 | $3.48 \mathrm{E}+10$ | $10 \quad 28$ | 0.85 | 2.45 | 33.15 |
| chnl10x11 | U | 220 | 1122 | 22.17 | 0\% | 0.45 | $4.20 \mathrm{E}+28$ | all 39 | 0.11 | 39.91 | 210.13 |
| chnl10x12 | U | 240 | 1344 | 81.88 | 0\% | 0.61 | $6.04 \mathrm{E}+30$ | all 41 | 0.12 | 111.63 | 663.00 |
| chnl10x15 | U | 300 | 2130 | 657.61 | 25\% | 1.28 | $4.50 \mathrm{E}+37$ | all 47 | 0.17 | 454.78 | 3961.49 |
| chnl11x12 | U | 264 | 1476 | 207.37 | 0\% | 0.75 | $7.31 \mathrm{E}+32$ | all 43 | 0.15 | 231.31 | 1415.51 |
| chnl11x13 | U | 286 | 1742 | 788.32 | 20\% | 1.08 | $1.24 \mathrm{E}+35$ | all 45 | 0.16 | 633.45 | 4792.24 |
| chnl11x20 | U | 440 | 4220 | 1000 | 100\% | 4.4 | $1.89 \mathrm{E}+52$ | all 59 | 0.31 | 212.49 | 3267.97 |
| fpga10_8 | S | 120 | 448 | 7.56 | 0\% | 0.63 | $6.00 \mathrm{E}+71$ | all 62 | 0.05 | 11.15 | 157.56 |
| fpga10_9 | S | 135 | 549 | 3.80 | 0\% | 0.88 | $6.33 \mathrm{E}+77$ | all 68 | 0.03 | 4.16 | 113.39 |
| fpga12_11 | S | 198 | 968 | 694.00 | 50\% | 3.76 | 7.18E+77 | all 95 | 0.06 | 181.63 | 11377.05 |
| fpga12_12 | S | 216 | 1128 | 80.20 | 0\% | 5.31 | $7.44 \mathrm{E}+77$ | all 104 | 0.13 | 14.74 | 616.92 |
| fpga12_8 | S | 144 | 560 | 246.70 | 10\% | 1.23 | $8.41 \mathrm{E}+77$ | all 72 | 0.08 | 188.39 | 3103.14 |
| fpga12_9 | S | 162 | 684 | 885.00 | 80\% | 1.7 | $2.25 \mathrm{E}+77$ | all 79 | 0.05 | 504.56 | 16388.89 |
| fpga13_9 | S | 176 | 759 | 550.00 | 85\% | 2.57 | $2.56 \mathrm{E}+77$ | all 84 | 0.06 | 208.81 | 8593.75 |
| fpga13_10 | S | 195 | 905 | 1000 | 100\% | 4.04 | $5.76 \mathrm{E}+77$ | all 93 | 0.08 | 242.60 | 12195.12 |
| fpga13_12 | S | 234 | 1242 | 1000 | 100\% | 6.9 | $8.85 \mathrm{E}+77$ | all 110 | 0.08 | 143.23 | 12195.12 |
| 2dlx_ca_mc | U | 3250 | 24640 | 6.54 | 0\% | 38.36 | $9.36 \mathrm{E}+77$ | 1066 | 6.30 | 0.15 | 1.04 |
| 2dlx_ca_mc | U | 3250 | 24640 | 6.54 | 0\% | 3.17 | $2.34 \mathrm{E}+77$ | 1064 | 5.42 | 0.76 | 1.21 |
| 2pipe | U | 892 | 6695 | 2.08 | 0\% | 10.47 | $2.26 \mathrm{E}+45$ | 1038 | 1.30 | 0.18 | 1.60 |
| 2pipe_1_000 | U | 834 | 7026 | 2.55 | 0\% | 9.02 | $8.00 \mathrm{E}+00$ | 103 | 1.80 | 0.24 | 1.41 |
| 2pipe_2_000 | U | 925 | 8213 | 3.43 | 0\% | 11.09 | $3.20 \mathrm{E}+01$ | 105 | 2.80 | 0.25 | 1.23 |
| 3 pipe | U | 2468 | 27533 | 36.44 | 0\% | 3.63 | 1.42E+77 | 1078 | 36.20 | 0.91 | 1.01 |
| 4pipe | U | 5237 | 80213 | 337.61 | 0\% | 9.32 | 1.03E+78 | $10 \quad 142$ | 334.00 | 0.98 | 1.01 |
| 5 5ipe | U | 9471 | 195452 | 325.92 | 0\% | 29.42 | $3.64 \mathrm{E}+78$ | $10 \quad 227$ | 290.50 | 1.02 | 1.12 |

