Solving Hard Instances
of Floorplacement

Aaron Ng, Igor Markov uUniversity of Michigan
Rajat Aggarwal Xilinx, Inc.
Venky Ramachandran cCalypto Design Systems, Inc.

000
Outline

m Motivation and previous work
Design trends and placement tools: RTL placement
Floorplacement techniques

m Difficult floorplacement instances
Empirical analysis of existing techniques

m Scaling floorplacement up with SCAMPI
Techniques to improve floorplacement
Empirical results
Advantages and drawbacks

m Conclusions

Motivation & previous work

N
Design trends & placement tools

m [raditional placement is bit-level
Relatively late in the design flow
Relatively slow

m Layout of final implementations
IP modules, memory, SoCs
— hard macro modules

m System-level design & high-level synthesis
Fast performance estimations, prototyping

Build custom RTL library — pre-characterized area,
timing, power

— soft macro modules

"
Support for larger scale & greater complexity

m Moving away from bit-level design — more macros

m Floorplanning
Std cell placement & floorplanning have similar objectives
m hon-overlapping module locations
m optimization of interconnect, but
More expensive algorithms required for floorplanning
m std cells fit in rows and are relatively similar in size
m macro modules can span rows & vary greatly in size

— Floorplanning algorithms do not scale well

Unification of floorplanning and placement

m Floorplacement [Adya, ICCADO04]

Simultaneous placement
+ floorplanning
Various combinatorial
+ analytic techniques
(PATOMA, Capo, APlace)

m Shortcomings of unified frameworks
Placement + floorplanning integration is not seamless

IBMO1 HPWL= 2.491e+06, #Cells= 12

752, #Nets= 14111

—

=T
&)

Tradeoff between scalability & accuracy
(e.g., sacrificed strength of floorplanning algorithms)

To illustrate these effects, we introduce a suite of

hard floorplacement benchmarks

500 1000

1500

2000

Difficult floorplacement instances

.
Difficult iInstances
m 81 to 8827 RTL modules
m Hard & soft modules, some std cells

m Area,qest Up to 50% of total cell area

B Area gest / Ar€agmajest 690 to 185330
m http://vlsicad.eecs.umich.edu/BK/ISPD06bench

:Hﬂsggégaggg

Empirical analysis
of existing techniques

=
Partitioning & fast block-packing
m PATOMA [J.Cong et. al, ASPDAC 2005]
m Hierarchical min-cut partitioning
Bears the burden of minimizing interconnect

m Fast block-packing on resulting partitions
Check area feasibility
Weak wirelength optimization

m Contingency plan
Best legal packing is saved at every level
If partitioning cannot continue, best legal packing is used

10

"
Partitioning & fast block-packing (cont’d)

8000
| ' J Fast block-packing solutions used too early
&0 F ——
5000 f 1
am E it Bad wirelength in some cases
- — (9.7x worse in this case)
10l ————————— ‘,E,_
2000
a0 .
1000 | : R
‘ B0 m
:] — — - 11
i 1000 2000 3000 4000 5000 G&000 7000 8000 g
B0
Fast lookahead block packers check

500

area feasibility of floorplanning instancesﬂ e :
- produce false negatives - e
- bail out too early e S
100 e i umni
0 ' i S2SE:

0 100 20 300 400 500 600 700 BOD =00 1000

11

=
Partitioning & strong block-packing
m Capo (with Parquet) [J. A. Roy et. al, TCAD 2000]

m Top-down min-cut placement framework

Dynamically invoke floorplanner using heuristics
(e.g., when a block is too large to fit in child partitions)

Can undo partitioning decisions and perform FP instead

m Floorplanning by simulated annealing

Floorplan representations capture large solution space
(e.g., SeqgPair, B*-tree)

Multi-objective optimization (area & wirelength)
Hard & soft blocks with any aspect ratios
Limited effective operating range (up to ~100 modules)

12

Partitioning & strong block-packing (cont’'d)

4000 F

2nd cut l 5300 :,[
5000 |
QEE‘&I

floorplanning on
bottom-left bin,

but discovers that 't,, L

it cannot find a TR R —

Capo invokes 3000 |
>;ZI:]:]

10300 |

J
legal solution /\

The bottom-left bin is merged with the top-
left bin, and floorplanning is retried.
Capo still fails to floorplan and cannot
proceed because only one level of
backtracking is allowed. This is an example
of area misallocation discovered too late.

000

oo aood

- -
300 F
200

100

in either subpartition.
Capo invokes the

floorplanner on 8827

(too many) modules

At the very top level, the
largest macro cannot fit

100 200 300 400 500

0
Analytical placement, cell spreading

m APlace [A. B. Kahng et. al, ICCAD 20095]

m Non-linear optimization
DensityWeight*DensityPenalty + WLweight*TotalWL
DensityPenalty = 3 , (3. Potential(c,g) — ExpPotential(g))

(Potential is a bell-shaped function of:
module dims, a radius of influence & module’s distance from grid cells)

WL(t) = a(In(3 &) + In(3 e/ %))
+ a(In(}> eY’®) + In(> eVi?)) (for a net t)

m Simultaneous handling of macros and std cells
Clustering for scalability and better solution quality

m Legalization usually required after cell-spreading

14

N
Analytical plcmnt, cell spreading (cont’d)

00

250

] JI Cell-spreading != legalization

L]

150 f

100 |
5 \ El \| -
| B— -) = =
. 7000
[L 100 150 200 i 300 !

5000

=
B

G000
5000
When multiple modules are clustered, o
the shape and area of clusters is hard -

to predict. This results in overlaps.

2000 T

1000 \
0

¥ 1000 2000 3000 4000 5000 6000 700D 8000 g

Scaling floorplacement up

N
Scaling floorplacement up

m Hierarchical framework: coarse view — fine view
Approximations more tolerable at the coarse level
Accurate/detailed algorithms required at the fine level
Our work bridges the gap between coarse & detail levels

s SCAMPI

Scalable Advanced Macro Placement Improvements

Selective macro placement and clustering
Obstacle handling

Look-ahead floorplanning
Whitespace allocation by block densities

17

N
Selective macro placement & clustering

m Place large modules early

A module is placed & fixed when it becomes large
relative to its bin (partition)

Cluster smaller modules & std cells into soft blocks

Old way Selective
1 macros
K O std cells

=== Bin size/time

time time

size
size

m Specific locations are determined
at the right level of spatial hierarchy

18

" J
Obstacle handling
m Necessity

Macros placed early become obstacles
Obstacles can also appear in input

m Our approach
Modify well-known B*-tree evaluation procedure

-, m =

A=t B
DFS B*-tree to Contour data Block C wants to Shift C to
evaluate packing structure for fast go above A, but closest position
from an ordering evaluation obstacle present past obstacle

19

000
Other improvements

m Ad hoc look-ahead floorplanning
Quick area feasibility check for a bin
Fast block-packing of large blocks
Aggressive clustering to reduce the problem size

m \Whitespace allocation by block densities

Sum of area underestimates area of packed blocks
(assumes zero deadspace)

Estimate deadspace by using sum of module perimeters
(e.g., surface area)

VS VS

no deadspace some deadspace no deadspace

Compare bins and adjust cutlines after partitioning

20

[Best legal solutions

Elnplrlca results [lllegal or no solution

— PATOMA 1.0 Capo 9.4 APlace 2.0 |{ FengShui 5.1 SCAMPI

cal
HPWL | ovlp | ume | HPWL | ovlp time HPFWL ovIp time HPWL | ovlp time HPWL | ovlp time VT e

bench | “es04y | @) | @) % | (s o) | %) | o | 08 | @ | o Y| @09 | @ | o | EWD | dtwn
040 177.2 0.0 0.6 0.0 454 0.3@ | 230.0 2 0.0 37.0 0.0 449 0.11x 1.00x
098 2.3 0.0 11.2 1.3 788.2 0.3 271.6 0.0 6.0 ﬁ 0.0 | 3024 | 0.59% S
336 # 00 | 12 01 | 225 0.1® | 835 00 | 02 0.0 | 304 | 1.20x
333 : 0.0 1.0 0.5 52.6 0.3 211.8 1.6 @ 0.8 0.0 44.5 0.83x
523 123.7 0.0 34 0.3 240.2 0.3 020.3 EELN 0.0 2.8 0.0 | 460.1 0.30x S
542 0.9 0.0 0.1 0.0 3.3 0.1 42.8 * * 0.0 2.4 0.80x 1.00x
566 83.6 0.0 4.9 1.9 225.7 0.5 341.1 38& 3.2 0.0 162.8 0.83x S
583 47.0 0.0 2.3 0.6 100.6 0.2 421.2 x x 0.0 | 3426 0.53x
588 8.8 0.0 0.7 1.1 60.4 0.3 41.5 * * 0.0 102.7 0.78x
643 0.0 0.6 0.9 18.8 0.4 20.3 02 0.5 0.0 40.0 0.76x
DCT ﬁ x | x % | >1800 7@ | 7194 | 1847 | 00 | 80 00 | 1235 | - i

» indicates time-out, crash, or a run completed without producing a solution; & indicates an out-of-core solution Average 0.68x 1.00x

Table 4: Runs on proprietary designs. Best legal solutions are emphasized in bold.

—— PATOMA 1.0 Capo 9.4 APlace 2.0 | FengShui 5.1 SCAMPI
-HB~ [[HPWL | ovlp | ume | HPWL] ovip Time HFWT ovIp Time HPWL | ovlp time HPWL | ovlp time PATEMA o
bench {e+06) (%) (s) e+06 (%) (s) e+06 (9%) (s) e+06 (%) is) e+06 (%) (s) (HPWL) (HPWL)
01 00 | 56 _ T4 | 6513 27 | 680 025 | 166 00 [620 [087x | -
62 x x 10.1 0.0 1530.7 2.6 101.5 09@ | 436 0.0 130.6 S 0.42x
03 * b X = 1800 2.1 101.3 * * 0.0 104.6 -
04 * b ! X = 1800 2.8 113.9 0.2® 41.4 0.0 144.1
) *® 3 * = 1800 1.0 122.5 1.4 @ 36.0 0.0 170.0 - -
07 0.0 13.6 3. 0.0 115.31 1.4 2184 0.0 3.1 0.0 00.9 0.93x 0.90x
08 * e x = 1800 1.0&@ 2042 0.5 60.6 0.0 188.4 2 2
09 x x 0.2 188.0 0.9 2224 1.2@ | 42.9 0.0 182.0
10 x x 2.7 263.7 0.3 520.5 x x 0.0 310.9 - -
11 0.0 40.2 2 0.0 140.5 1.1 270.3 0.2 @ H3.8 27.8 0.0 144.7 1.10x 0.90x
12 x | x # 00 | 4822 x| >1800 00w | 302 [676 | 0o | 4061 i 1.07x
13 0.0 4.7 34, 0.0 221.5 0.5 240.4 3 * 42.2 0.0 200.6 1.13x 1.07x
14 g 0.0 70.9 2 0.0 320.7 1.0@ 302.0 2.7 80.7 0.0 268.3 0.97x 0.97x
s x | x ﬁ x| 1800 15 | 4222 002 | 1003 E 0.0 | 3759 | - :
16 0.0 | 744 106.9 0.0 431.5 0.3 528.1 x x 106, 0.0 306.3 1.06x 0.99x
17 0.0 95.9 0.1 397.1 0.5 7003 X x 152.7 0.0 3837 1.08x S
18 0.0 67.2 0.7 220.1 0.6 344.0 * * 77.8 0.0 192.3 1.07x =
* indicates time-out, crash, or a run completed without producing a solution; & indicates an out-of-core solution Average 1.03x 0.93x

Table 5: Runs on IBM-HB. Best legal solutions are emphasized in bold.

"
Empirical results (cont’d)
m Success rates

APLACE 2.0 SCAMPI
PATOMA 1.0 Capo 9.4 0% 100%
6% 32%
64% ggo,
100% 0%

[successful [l unsuccessful

m Wirelength comparison

1 Averaged over successful runs of Capo 9.4 & PATOMA
1 SCAMPI achieves 3.5% and 14.5% better HPWL, resp.

22

N
Advantages & drawbacks of SCAMPI

m Advantages

Robust (68% and 36% better success rates than
Capo9.4 and PATOMA)

Handles soft & hard macros, and std. cells
Handles obstacles & wide ranges of block dimensions
Good routability [J. A. Roy et. al, ISPD 2006]

m Potential drawbacks
Worse wirelength than some tools (e.g., APlace)
But APlace currently produces illegal floorplans

Stronger legalization can make APlace more competitive
(see next slide)

23

" JJEE
Ongoing work: floorplan assistant
m Al-based floorplan legalizer

m Preliminary results:
Removes overlaps quickly, e.g., from APlace placements
Preserves placement
Some increase in wirelength seems inevitable

fige] 14 T 107 o
St 1 1108 895
1046 995
7 1066
BG6
- 9589
o —
333333 5 ::‘;m 70
el Red:
- overlaps 2
(] asn
S B0 q drpopess
C_ﬁ 823 L
(al 855842) 555 549
< 511 758 B|Ue TES
B0 Teml displacement B30 T
DG E o = 4 B
3 3
BGU' 02 547399
=5)
R
021 19
i il
1 017 l%k
- 107

24

.
Conclusions

m RTL placement includes
Numerous hard & soft blocks, and standard cells
Macros, IP blocks, memories of very different sizes
Fixed obstacles

m SCAMPI solves hard instances using
Selective floorplanning & macro clustering _
Support for obstacles in the B*-tree representation
Ad hoc look-ahead floorplanning
Whitespace allocation by block densities

m Suite of hard floorplacement instances
http://visicad.eecs.umich.edu/BK/ISPD06bench

m SCAMPI is available in source code

25

"

Questions?

26

N
Reproducing difficult instances

m In general, difficulties are from scale and/or
large variations in module sizes

m \We take IBM-HB (which were from IBM/ISPD'98)
Std cells — macros

m \We introduce IBM-HB+ (derived from IBM-HB)

An example of how to re-create difficult instances
Largest macro inflated 100%
Smaller macros shrunk to preserve total cell area

27

"

Benchmark characteristics

Proprietary | Movable modules Aredigees | Arediarges/] Movable modules Areaipees | Aredimges
u:la.]:signsr} Cells Macros Nets (%;x :i;l'ea_;mf;m Benchmarks —re1is T Macros Nets (%) Ared gpailes:
cal040 1 4605 4607 0.1 650 ibm-HB™ 01 0 011 3829 6.4 5416
cal0gs 3200 1212 4673 0.1 520 ibm-HB= 02 0 1471 8508 11.3 3004.3
caliie 17 103 147 22 11556 ibm-HB™ 03 0 1289 10270 10.8 33088
caliss 217 459 0ns 7.0 11556 ibm-HB™ 04 0 1584 12456 0.2 13206.5
cal523 034 1036 4350 0.3 3080 ibm-HB~06 0 749 0063 13.6 18173.8
cal542 7 74 02 0.1 11556 ibm-HB™ 07 0 1120 15047 4.8 300.5
cal566 03 1553 5500 1.2 11556 ibm-HB™ 08 0 1269 16075 12.1 50880
cal583 j’;r_; 1530 3300 0.4 2016 ibm-HB™ 09 0 1113 18013 5.4 20707
cal588 203 405 1111 0.6 000 ibm-HB~ 10 0 1505 27508 4.8 71290
cal643 139 316 508 6.5 6162 ibm-HB™ 11 0 1497 2?4?? 4.5 gg{]j}
calDCT | 0 8827 | 11463 | 500 185330 om-HB"12 1 0 12331 26320) 6.4 74256

ibm-HB™ 13 0 054 27011 4.2 33088
ibm-HB™ 14 0 1635 43062 2.0 17860
Table 2: Characteristics of the proprietary designs. ibm-HB™ 15 0 1412 52779 11.0 62781.3
ibm-HB™ 16 0 1001 47421 1.0 31003
ibm-HB—17 0 14432 56517 0.9 12441
ibm-HB™ 18 0 043 42200 1.0 3384

Table 3: Characteristics of the IBM-HB™ benchmarks.

28

=
IBM-HB+

m http://visicad.eecs.umich.edu/BK/ISPD06bench

I 300 1000 1SE0 2000 250D 2011 50D 4001 =D T N0 231 XD 4008 I 0N OO0 eDED

IBM-HB*08 IBM-HB™ 10
IBM-HB* 14 IBM-HB* 16 IBM-HB18

Figure 2: Six of the seventeen IBVM-HB™ benchmarks.

29

=
Floorist
m Constraint-driven floorplan repair®

m Build constraint graphs from placement ordering
Represent pair-wise relationships between modules

m Perform conflict-directed iterative repair on graphs
Overlapping pairs are initially constrained
Induce constraints to resolve overlaps, or

|dentify blocks on critical paths,
modify their relationships with other modules

m [ranslate constraint graphs back
m APlace + Floorist = best-seen results for IBM-HB

* M. Moffitt, A. N. Ng, “Constraint-driven floorplan repair”, DAC 2006
30

1200

3500

FengShui placements

3000

2500 |

00 1000 1200

I HE

200

200

il

A500 400D

000

2500

2000

i

50

1

1000

500

31

