
1

Solving Hard Instances
of Floorplacement

Aaron Ng, Igor Markov University of Michigan

Rajat Aggarwal Xilinx, Inc.

Venky Ramachandran Calypto Design Systems, Inc.

2

Outline
Motivation and previous work

Design trends and placement tools: RTL placement
Floorplacement techniques

Difficult floorplacement instances
Empirical analysis of existing techniques

Scaling floorplacement up with SCAMPI
Techniques to improve floorplacement
Empirical results
Advantages and drawbacks

Conclusions

3

Motivation & previous work

4

Design trends & placement tools
Traditional placement is bit-level

Relatively late in the design flow
Relatively slow

Layout of final implementations
IP modules, memory, SoCs

→ hard macro modules
System-level design & high-level synthesis

Fast performance estimations, prototyping
Build custom RTL library – pre-characterized area,
timing, power

→ soft macro modules

5

Support for larger scale & greater complexity
Moving away from bit-level design → more macros
Floorplanning

Std cell placement & floorplanning have similar objectives
non-overlapping module locations
optimization of interconnect, but

More expensive algorithms required for floorplanning
std cells fit in rows and are relatively similar in size
macro modules can span rows & vary greatly in size

→ Floorplanning algorithms do not scale well

6

Unification of floorplanning and placement
Floorplacement [Adya, ICCAD04]

Simultaneous placement
+ floorplanning
Various combinatorial
+ analytic techniques
(PATOMA, Capo, APlace)

Shortcomings of unified frameworks
Placement + floorplanning integration is not seamless
Tradeoff between scalability & accuracy
(e.g., sacrificed strength of floorplanning algorithms)
To illustrate these effects, we introduce a suite of
hard floorplacement benchmarks

7

Difficult floorplacement instances

8

Difficult instances
81 to 8827 RTL modules
Hard & soft modules, some std cells
Arealargest up to 50% of total cell area
Arealargest / Areasmallest 650 to 185330
http://vlsicad.eecs.umich.edu/BK/ISPD06bench

9

Empirical analysis
of existing techniques

10

Partitioning & fast block-packing
PATOMA [J.Cong et. al, ASPDAC 2005]
Hierarchical min-cut partitioning

Bears the burden of minimizing interconnect
Fast block-packing on resulting partitions

Check area feasibility
Weak wirelength optimization

Contingency plan
Best legal packing is saved at every level
If partitioning cannot continue, best legal packing is used

11

Partitioning & fast block-packing (cont’d)

Fast block-packing solutions used too early

Bad wirelength in some cases
(9.7x worse in this case)

Fast lookahead block packers check
area feasibility of floorplanning instances
- produce false negatives
- bail out too early

12

Partitioning & strong block-packing
Capo (with Parquet) [J. A. Roy et. al, TCAD 2006]
Top-down min-cut placement framework

Dynamically invoke floorplanner using heuristics
(e.g., when a block is too large to fit in child partitions)
Can undo partitioning decisions and perform FP instead

Floorplanning by simulated annealing
Floorplan representations capture large solution space
(e.g., SeqPair, B*-tree)
Multi-objective optimization (area & wirelength)
Hard & soft blocks with any aspect ratios
Limited effective operating range (up to ~100 modules)

13

Partitioning & strong block-packing (cont’d)
1st cut

2nd cut

Capo invokes
floorplanning on
bottom-left bin,

but discovers that
it cannot find a
legal solution

The bottom-left bin is merged with the top-
left bin, and floorplanning is retried.

Capo still fails to floorplan and cannot
proceed because only one level of

backtracking is allowed. This is an example
of area misallocation discovered too late.

At the very top level, the
largest macro cannot fit

in either subpartition.
Capo invokes the

floorplanner on 8827
(too many) modules

14

Analytical placement, cell spreading
APlace [A. B. Kahng et. al, ICCAD 2005]
Non-linear optimization

DensityWeight*DensityPenalty + WLweight*TotalWL

DensityPenalty = ∑g (∑c Potential(c,g) – ExpPotential(g))2

(Potential is a bell-shaped function of:
module dims, a radius of influence & module’s distance from grid cells)

WL(t) = α(ln(∑exi/α) + ln(∑e-xi/ α))
+ α(ln(∑eyi/α) + ln(∑e-yi/α)) (for a net t)

Simultaneous handling of macros and std cells
Clustering for scalability and better solution quality

Legalization usually required after cell-spreading

15

Analytical plcmnt, cell spreading (cont’d)

Cell-spreading != legalization

When multiple modules are clustered,
the shape and area of clusters is hard

to predict. This results in overlaps.

16

Scaling floorplacement up

17

Scaling floorplacement up
Hierarchical framework: coarse view → fine view

Approximations more tolerable at the coarse level
Accurate/detailed algorithms required at the fine level
Our work bridges the gap between coarse & detail levels

SCAMPI
Scalable Advanced Macro Placement Improvements
Selective macro placement and clustering
Obstacle handling
Look-ahead floorplanning
Whitespace allocation by block densities

18

Selective macro placement & clustering
Place large modules early

A module is placed & fixed when it becomes large
relative to its bin (partition)
Cluster smaller modules & std cells into soft blocks

Specific locations are determined
at the right level of spatial hierarchy

Macros
Std cells
Bin size / time

Selective

si
ze

time

Old way

time

si
ze

19

Obstacle handling
Necessity

Macros placed early become obstacles
Obstacles can also appear in input

Our approach
Modify well-known B*-tree evaluation procedure

A B

C

DFS B*-tree to
evaluate packing
from an ordering

Contour data
structure for fast
evaluation

Block C wants to
go above A, but
obstacle present

Shift C to
closest position
past obstacle

20

Other improvements
Ad hoc look-ahead floorplanning

Quick area feasibility check for a bin
Fast block-packing of large blocks
Aggressive clustering to reduce the problem size

Whitespace allocation by block densities
Sum of area underestimates area of packed blocks
(assumes zero deadspace)
Estimate deadspace by using sum of module perimeters
(e.g., surface area)

Compare bins and adjust cutlines after partitioning

vs vs

no deadspace no deadspacesome deadspace

21

Empirical results
Best legal solutions
Illegal or no solution

PATOMA 1.0

PATOMA 1.0

Capo 9.4

Capo 9.4

APlace 2.0

APlace 2.0

FengShui 5.1

FengShui 5.1 SCAMPI

SCAMPI

22

Empirical results (cont’d)
Success rates

Wirelength comparison
Averaged over successful runs of Capo 9.4 & PATOMA
SCAMPI achieves 3.5% and 14.5% better HPWL, resp.

PATOMA 1.0

64%

36%

Capo 9.4

32%

68%

APLACE 2.0
0%

100%

SCAMPI
100%

0%
successful unsuccessful

23

Advantages & drawbacks of SCAMPI
Advantages

Robust (68% and 36% better success rates than
Capo9.4 and PATOMA)
Handles soft & hard macros, and std. cells
Handles obstacles & wide ranges of block dimensions
Good routability [J. A. Roy et. al, ISPD 2006]

Potential drawbacks
Worse wirelength than some tools (e.g., APlace)
But APlace currently produces illegal floorplans
Stronger legalization can make APlace more competitive
(see next slide)

24

Ongoing work: floorplan assistant
AI-based floorplan legalizer
Preliminary results:

Removes overlaps quickly, e.g., from APlace placements
Preserves placement
Some increase in wirelength seems inevitable

AP
la

ce

Red:
overlaps

Blue:
displacement

25

Conclusions
RTL placement includes

Numerous hard & soft blocks, and standard cells
Macros, IP blocks, memories of very different sizes
Fixed obstacles

SCAMPI solves hard instances using
Selective floorplanning & macro clustering
Support for obstacles in the B*-tree representation
Ad hoc look-ahead floorplanning
Whitespace allocation by block densities

Suite of hard floorplacement instances
http://vlsicad.eecs.umich.edu/BK/ISPD06bench

SCAMPI is available in source code

26

Questions?

27

Reproducing difficult instances
In general, difficulties are from scale and/or
large variations in module sizes
We take IBM-HB (which were from IBM/ISPD‘98)

Std cells → macros
We introduce IBM-HB+ (derived from IBM-HB)

An example of how to re-create difficult instances
Largest macro inflated 100%
Smaller macros shrunk to preserve total cell area

28

Benchmark characteristics

29

IBM-HB+
http://vlsicad.eecs.umich.edu/BK/ISPD06bench

30

Floorist
Constraint-driven floorplan repair*
Build constraint graphs from placement ordering

Represent pair-wise relationships between modules
Perform conflict-directed iterative repair on graphs

Overlapping pairs are initially constrained
Induce constraints to resolve overlaps, or
Identify blocks on critical paths,
modify their relationships with other modules

Translate constraint graphs back
APlace + Floorist = best-seen results for IBM-HB

* M. Moffitt, A. N. Ng, “Constraint-driven floorplan repair”, DAC 2006

31

FengShui placements

