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Motivation … 

SAT Solvers
Apps: Verification, Routing, 

ATPG, Timing Analysis
Problem Type: CSP
Problem Format: CNF
Example: Chaff, GRASP, SATO

Generic ILP Solvers
Apps: Routing, Planning, 

Scheduling
Problem Type: CSP/Optimization
Problem Format: ILP
Example: CPLEX, LP_Solve

Specialized 0/1 ILP Solvers
Apps: Verification, Routing, 

Binate Covering
Problem Type: CSP/Optimization
Problem Format: CNF/PB (0/1 ILP)
Example: Satire, BSOLO, OPBDP, WSAT
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Motivation …

SAT Solvers Generic ILP 
Solvers

Specialized 0-1 
ILP Solvers

Introduce a new specialized 0-1 ILP SAT solver
Describe Pseudo-Boolean (PB) search algorithms
Adapt SAT applications expressed in pure CNF to CNF/PB format
Empirically demonstrate effectiveness in EDA applications

Many applications require “Counting Constraints” that impose 
upper/lower bounds on number of objects
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Backtrack Search (DPLL)
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Decision Strategy
Significantly improves the 
search performance
Classified as:

Static
Dynamic

Chaff introduced dynamic 
VSIDS:

Shown to be effective on most 
benchmarks
Selects most common literal 
and emphasizes variables in 
recent conflicts
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Improved BCP
Keeps track of any two 
unresolved literals in 
each clause instead of  
keeping track of all 
literals
Leads to significant 
improvements over 
conventional BCP
[Moskewicz et al., 
Zhang et al.]
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Conflict Diagnosis and 
Clause Deletion
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Add conflict-induced clauses 
to avoid regenerating similar 
conflicts in future parts of the 
search process
Very effective in expediting 
the search process
Allows non-chronological 
backtracking
1UIP learning scheme shown 
to perform best among other 
learning schemes 
[Zhang et al.]
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Random Restarts and 
Backtracking
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Solver often gets stuck in 
local non-useful search space
Random restarts periodically 
unassigns all decisions and 
randomly selects a new 
decision sequence
Restarts ensures that 
different sub-trees are 
searched at every restart
Randomization can be 
combined with backtracking
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Pseudo-Boolean Constraints

Clauses can be generalized as a PB constraint:  
(x + y) (x + y ≥ 1)
None of the presented algorithms rely on the 
integrality of ci and can be implemented for 
floating-point ci

gxcxc nn ~11 ++L

Zgci ∈,
},,{~ ≥≤=∈

Literalsxi ∈
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Motivating Example
Objective: 

limit the true assignments 
to k vars out of the n vars

Solution:
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CNF: 

clauses
Each of size

PB: single PB constraint 

“at most 2 out of v1, v2,
v3, v4, v5, can be true”

Pure CNF:

PB form:
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PB Constraint Data Structure
Struct PBConstraint {

Goal n; constraint type ~; list of ci and xi’s;
initLHS;   // sum of all ci’s
LHS;       // value of LHS based on current variable  

assignment
maxLHS; // maximal possible value of LHS given the current 

variable assignment }

For efficiency:
Sort the list of cixi in order of increasing ci

Convert all negative ci to positive:
i.e.

22211

2211

2211
)1(
cnxcxc
nxcxc

nxcxc

+≤+
≤−−
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Algorithms for PB Search
Assigning vi to 1:
For each literal xi of vi

If positive xi, LHS += ci

If negative xi, maxLHS -= ci

Unassigning vi from 1:
For each literal xi of vi

If positive xi, LHS -= ci

If negative xi, maxLHS += ci

PB constraint state:
≥ type

SAT:  LHS ≥ goal
UNS: maxLHS < goal

≤ type
SAT: maxLHS ≤ goal
UNS: LHS > goal

5x1+6x2+3x3 ≤ 12

LHS = 0
maxLHS = 14

LHS = 5
maxLHS = 14

5x1+6x2+3x3 ≤ 12

LHS = 5
maxLHS = 8
SATISFIABLE

5x1+6x2+3x3 ≤ 12
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Algorithms for PB Search 
Identifying implications

≤ type 
if ci > goal – LHS, xi = 0
Implied by literals in PB 
assigned to 1

5x1+6x2+3x3 ≤ 12

LHS = 0
maxLHS = 14
goal - LHS = 12

5x1+6x2+3x3 ≤ 12

LHS = 8
maxLHS = 14
goal - LHS = 4
Imply x2=0

≥ type
if ci > maxLHS – goal, 
xi =1
Implied by literals in PB
assigned to 0



© 2002 Fadi A. Aloul, University of Michigan

Algorithms for PB Search 
Identifying implications

≤ type 
if ci > goal – LHS, xi = 0
Implied by literals in PB 
assigned to 1

5x1+6x2+3x3 ≥ 10

LHS = 0
maxLHS = 14
maxLHS - goal = 4
Imply x1=x2=1

≥ type
if ci > maxLHS – goal, 
xi =1
Implied by literals in PB
assigned to 0
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Applications - CSP
Global Routing

2-D grid of cells arranged in rows/columns
Cell boundaries are edges
Capacity C is associated with each edge 
(no more than C routes can pass)
Goal: route number of 2-pin connections 
in the grid with edge capacities
Generate satisfiable instances using 
randomized flooding

S

EE

E

S

SS

E
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Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected 
at start/end point
If cell is a mid-point, 
either two or no edges are 
selected

Capacity constraints
A net can use a single 
track across an edge
No two nets can use the 
same track across an edge

S

E S

E

vN vN

vE 
vE

vW 
vW

• Create a variable for each edge/net
2 x 12 = 24 variables
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))()((
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Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected 
at start/end point
If cell is a mid-point, 
either two or no edges are 
selected

Capacity constraints
A net can use a single 
track across an edge
No two nets can use the 
same track across an edge

S

E S

E

vN vN

vE 
vE

vW 
vW

• Create a variable for each edge/net
2 x 12 = 24 variables
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Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected 
at start/end point
If cell is a mid-point, 
either two or no edges are 
selected

Capacity constraints
A net can use a single 
track across an edge
No two nets can use the 
same track across an edge

S

E S

E

vN vN

vE 
vE

vW 
vW

• Create a variable for each edge/net
2 x 12 = 24 variables

pureCNF            CNF/PB
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Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected 
at start/end point
If cell is a mid-point, 
either two or no edges are 
selected

Capacity constraints
A net can use a single 
track across an edge
No two nets can use the 
same track across an edge

S

E S

E

vN1 vN1 vN2 vN2

vE1
vE1
vE2 
vE2

vW1 
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vW2
vW2

• Create Cap variables per edge/net
2 x 2 x 12 = 48 variables
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Applications - optimization
Max-ONEs

Seeks an assignment that
Satisfies all constraints  
Maximizes the number of variables assigned to true

Useful to represent “Max-Clique” problems
“Vertex Cover” can be reduced to Min-ONEs
Use a single PB constraint of type “≥” that includes 
each variable with coefficient “1”
Iteratively increase the lower bound until the 
problem becomes unsatisfiable
Extendable to “Weighted Max-ONEs”
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Applications - optimization
Max-SAT

Finds an assignment that
Satisfies maximum possible number of clauses

Generalization of SAT
Provides more info for unsatisfiable instances

Used to represent “Max-CUT” problems
Expressed using a single PB constraint
Solved using PBS
Addressed indirectly using WalkSAT
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Experimental Setup
Platform: Pentium-II 300 MHz with 512MB RAM 
running Linux
Runtime limit: 5000 sec
PBS Implemented in C++
PBS settings:

VSIDS decision heuristic
Optimized BCP
Random Restarts
1st UIP conflict analysis learning scheme
Clause deletion/random backtracking disabled
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Global Routing Experiment

V C #PB PBS SATIRE OPBDP V C Chaff Satire OPBDP Chaff
grout3.3-1 216 572 12 1.72 0.41 4.51 864 7592 40.43 0 3 24
grout3.3-2 264 700 12 0.33 0.96 4.65 1056 10864 11.3 3 14 34
grout3.3-3 240 636 12 0.09 1.1 6.65 960 9156 37.21 12 74 413
grout3.3-4 228 604 12 1.29 0.2 4.73 912 8356 103.13 0 4 80
grout3.3-5 240 634 12 0.84 0.35 6.88 960 9154 71.21 0 8 85
grout4.3-1 672 2004 24 3.46 109.7 5000 2688 33924 1361.6 32 1445 394
grout4.3-2 648 1928 24 1.92 32.13 5000 2592 31736 5000 17 2604 2604
grout4.3-3 648 1930 24 5.52 319.47 5000 2592 31738 5000 58 906 906
grout4.3-4 696 2072 24 16.3 3772 5000 2784 36176 2523 231 307 155
grout4.3-5 720 2144 24 2.06 567.12 5000 2880 38504 3915 275 2427 1900
grout4.3-6 624 1860 24 134 5000 5000 2496 29628 5000 37 37 37
grout4.3-7 672 2006 24 55 5000 5000 2688 33926 772.6 91 91 14
grout4.3-8 432 1280 24 2.9 177.8 5000 1728 15320 125 61 1724 43
grout4.3-9 840 2502 24 376 5000 5000 3360 51222 3203 13 13 9
grout4.3-10 840 2504 24 7.4 5000 5000 3360 51224 3465 676 676 468

PBS SpeedupInstance pure CNF CNF + pseudo-Boolean
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MaxONE Experiment

SATIRE OBPDP
DIMACS aim-50-1_6-yes1-1 50 80 29 0.01 0.01 0.02 1 2

aim-100-1_6-yes1-1 100 160 43 0.01 0.02 7.19 2 719
aim-200-2_0-yes1_1 200 400 96 0.01 0.06 5000 6 500000
ii8b1 336 2068 275 4.69 3180 56.2 678 12
jnh1 100 850 55 0.32 2.2 0.12 7 0.38
jnh204 100 800 58 0.28 1.63 0.14 6 0.50
par8-1 350 1149 79 0.01 0.06 0.05 6 5
par8-2-c 68 270 20 0.01 0.02 0.01 2 1

Beijing 3blocks 283 9690 63 4.83 49.53 4494 10 930
QG qg7-09 729 22060 81 0.1 5.41 9.8 54 98

qg6-09 729 21844 81 0.21 5.56 45 26 214
Planning bw_a 459 4675 73 0.03 0.43 0.21 14 7

bw_b 1087 13772 136 0.58 6.39 17.86 11 31
bw_c 3016 50457 272 24.37 315.5 5000 13 205

PBS SpeedupBench-
mark

Satisfiable 
Instance V OPBDPC Max-

ONEs PBS SATIRE
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Conclusions
Adapting SAT apps to use CNF/PB constraints

leads to memory savings and runtime reductions
Proposed new specialized 0-1 ILP solver, PBS
Confirmed effectiveness on real world examples:

Global routing consistency instances
Max-ONEs optimization problems (extendable to 
Max-SAT, Min-ONEs)
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Future Works
Compare state-of-the-art Generic ILP solvers, 
such as CPLEX, to specialized 0-1 ILP solvers
Apply PBS to Max-SAT and Min-ONEs problems
Study applications to Max-Clique, Max 
Independent Set, and Min Vertex Cover


