On Proof Systems Behind Efficient SAT Solvers

DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor

Motivation

- Best complete SAT solvers are based on DLL
\square Runtime (on unSAT instances) is lower-bounded by the length of resolution proofs
\square Exponential lower bounds for pigeonholes
- Previous work: we introduced the Compressed Breadth-First Search algorithm (CBFS/Cassatt)
\square Empirical measurements: our implementation of Cassatt spends $\Theta\left(n^{4}\right)$ time on $\mathrm{PHP}_{\mathrm{n}}{ }^{\mathrm{n}+1}$
- This work: we show analytically that CBFS refutes pigeonhole instances $\overline{\mathrm{PHP}}_{\mathrm{n}}{ }^{\mathrm{n}+1}$ in poly time
\square Hope to find a proof system behind Cassatt

Empirical Performance

Related Work

- We are pursuing novel algorithms for SAT facilitated by data structures with compression
\square Zero-suppressed Binary Decision Diagrams (ZDDs)
- Existing algorithms can be implemented w ZDDs
\square The DP procedure: Simon and Chatalic, [ICTAI 2000]
\square DLL: Aloul, Mneimneh and Sakallah, [DATE 2002]
- We use the union-with-subsumption operation
- Details of the Cassatt algorithm are in
\square Motter and Markov, [ALENEX 2002]

Outline

- Background
- Compressed BFS
\square Overview
\square Example
\square Algorithm
- Pigeonhole Instances
- Outline of Proof
\square Some bounds
- Conclusions and Ongoing Work

Background

$$
(a+c+d)(-g+-h)(-b+e+f)(d+-e)
$$

Cut clause

Background: Terminology

- Given partial truth assignment
- Classify all clauses into:

\square Satisfied

- At least one literal assigned true
\square Violated
- All literals assigned, and not satisfied

\square Open
- 1+ literal assigned, and no literals assigned true
- Open clauses are activated but not satisfied
\square Activated
- Have at least one literal assigned some value
\square Unit
- Have all but one literal assigned, and are open
- A valid partial truth assignment $\Leftrightarrow \underline{\text { no violated clauses }}$

Open Clauses

- Straightforward Breadth-First Search
\square Maintain all valid partial truth assignments of a given depth; increase depth in steps
- Valid partial truth assignments \rightarrow sets of open clauses
\square No literals assigned \Rightarrow Clause is not activated
\square All literals assigned \Rightarrow Clause must be satisfied
- Because: assignment is valid \Rightarrow no clauses are violated
- "Cut" clause = some, but not all literals assigned
\square Must be either satisfied or open
\square This is determined by the partial assignment

Binary Decision Diagrams

- BDD: A directed acyclic graph (DAG)
\square Unique source
\square Two sinks: the $\mathbf{0}$ and $\mathbf{1}$ nodes
- Each node has
\square Unique label
\square Level index
\square Two children at lower levels
- T-Child and E-Child
- BDDs can represent Boolean functions
\square Evaluation is performed by a single DAG traversal
- BDDs are characterized by reduction rules

\square If two nodes have the same level index and children
- Merge these nodes

Zero-Supressed BDDs (ZDDs)

- Zero-supression rule
\square Eliminate nodes whose T-Child is 0
\square No node with a given index \Rightarrow assume a node whose T-child is 0
- ZDDs can store a collection of subsets
\square Encoded by the collection's characteristic function
$\square \mathbf{0}$ is the empty collection \varnothing
$\square \mathbf{1}$ is the one-collection of the empty set $\{\varnothing\}$
- Zero-suppression rule enables compact representations of sparse or regular collections

Compressed BFS: Overview

- Maintain collection of subsets of open clauses
\square Analogous to maintaining all "promising" partial solutions of increasing depth
\square Enough information for BFS on the solution tree
- This collection of sets is called the front
\square Stored and manipulated in compressed form (ZDD)
\square Assumes a clause ordering (global indices)
- Clause indices correspond to node levels in the ZDD
- Algorithm: expand one variable at a time
\square When all variables are processed two cases possible
- The front is $\varnothing \Rightarrow$ Unsatisfiable
- The front is $\{\varnothing\} \Rightarrow$ Satisfiable

Compressed BFS

Front $\leftarrow 1 \quad \#$ assign $\{\varnothing\}$ to front foreach $v \in \operatorname{Vars}$

Front2 \leftarrow Front
Update (Front, $\quad \mathrm{v} \leftarrow 1$)
Update (Front2, v $\leftarrow 0$)
Front \leftarrow Front \cup_{s} Front2
if Front == 0 return Unsatisfiable
if Front == 1 return Satisfiable

Compressed BFS: An Example

- Process variables in the order $\{a, b, c, d\}$
- Initially the front is set to 1
\square The collection should contain one "branch"
\square This branch should contain
 no open clauses $\Rightarrow\{\varnothing\}$

Compressed BFS: An Example

- Processing variable a
\square Activate clauses $\{3,4,5,6\}$
- Cut clauses: $\{3,4,5,6\}$
$\square \mathrm{a}=0$
- Clauses $\{3,4\}$ become open
$\square a=1$
- Clauses $\{5,6\}$ become open
- ZDD contains $\{\{3,4\},\{5,6\}\}$

Compressed BFS: An Example

$$
(\underbrace{(b+c+d)}_{1}(\underbrace{-b+c+-d}_{2})(\underbrace{(a+c+d)}_{3}(\underbrace{(a+b+-c)}_{4}
$$

- Processing variable b
\square Activate clauses $\{1,2\}$
- Cut clauses: $\{1,2,3,4,5,6\}$
$\square \mathrm{b}=0$
- No clauses can become violated
$\square \mathrm{b}$ is not the end literal for any clause
- Clause 2 is satisfied
\square Don't need to add it
- Clause 1 first becomes activated

Compressed BFS: An Example

- Processing variable b
\square Activate clauses $\{1,2\}$
- Cut clauses: $\{1,2,3,4,5,6\}$
$\square b=1$
- No clauses can become violated
$\square \mathrm{b}$ is not the end literal for any clause
- Existing clauses 4, 6 are satisfied
- Clause 1 is satisfied
\square Don't need to add it
- Clause 2 first becomes activated

Compressed BFS: An Example

- Processing variable b
\square Activate clauses $\{1,2\}$
- Cut clauses: $\{1,2,3,4,5,6\}$
$\square b=1$
- No clauses can become violated
\square b is not the end literal for any clause
- Existing clauses 4, 6 are satisfied
- Clause 1 is satisfied
\square Don't need to add it
- Clause 2 first becomes activated

Compressed BFS: An Example

Compressed BFS: An Example

$$
(\underbrace{(b+c+d)}_{1}(\underbrace{-b+c+-d}_{2})(\underbrace{a+c+d)}_{3}(\underbrace{(a+b+-c)}_{4}
$$

- Processing variable c
\square Finish clause 4
- Cut clauses: $\{1,2,3,5,6\}$
$\square \mathrm{C}=0$
- No clauses become violated
\square cends 4 , but $\mathrm{c}=0$ satisfies it
- Clauses 4,5 become satisfied
- No clauses become activated

Compressed BFS: An Example

- Processing variable c
\square Finish clause 4
- Cut clauses: $\{1,2,3,5,6\}$
$\square \mathrm{C}=1$
- Clause 4 may be violated \square If c appears in the ZDD, then it is still open
- Clauses 1, 2, 3 are satisfied
- No clauses become activated

Compressed BFS: An Example

- Processing variable d
\square Finish clauses $\{1,2,3,5,6\}$
- Cut clauses: $\{1,2,3,5,6\}$
$\square \mathrm{d}=0, \mathrm{~d}=1$
- All clauses are already satisfied
- Assignment doesn't affect this
- Instance is satisfiable

Compressed BFS: Pseudocode

```
CompressedBfs(Vars, Clauses)
    front }\leftarrow
    for i=1 to |Vars| do
        front'}\leftarrow\mathrm{ front
        //Modify front to reflect }\mp@subsup{x}{i}{}=
        Form sets Uxi,1
        front }\leftarrow\mathrm{ front }\cap\mp@subsup{\mathbf{2}}{}{\mathrm{ Cut - Uxi,1}
        front}\leftarrow\mathrm{ ExistAbstract(front, S S (xi,1)
        front }\leftarrow\mathrm{ front }\otimes\mp@subsup{A}{\textrm{x},1}{
        //Modify front' to reflect }\mp@subsup{x}{i}{}=
        Form sets Uxi,0
        front'}\leftarrow\leftarrow\mathrm{ front'` }\cap\mp@subsup{2}{}{\mathrm{ Cut - Uxi,0}
        front'}\leftarrow\mathrm{ ExistAbstract(front', S S (xi,0)
        front'}\leftarrow\mathrm{ front' }\otimes\mp@subsup{\textrm{A}}{\textrm{xi},0}{
        //Combine the two branches via Union with Subsumption
        front }\leftarrow\mathrm{ front }\mp@subsup{\cup}{\mathrm{ s }}{}\mathrm{ front'
    if front = 0 then
        return Unsatisfiable
    if front = 1 then
        return Satisfiable
```


The Instances $\overline{\mathrm{PHP}_{\mathrm{n}}{ }^{\mathrm{n}+1}}$

- Negation of the pigeonhole principle
\square "If $n+1$ pigeons are placed in n holes then some hole must contain more than one pigeon"
- Encoded as a CNF
$\square \mathrm{n}(\mathrm{n}+1)$ Boolean variables
- v_{ij} represents that pigeon i is in hole j
$\square \mathrm{n}+1$ "Pigeon" clauses: $\left(\mathrm{v}_{\mathrm{i} 1}+\mathrm{v}_{\mathrm{i} 2}+\ldots+\mathrm{v}_{\mathrm{in}}\right)$
- Pigeon i must be in some hole
$\square \mathrm{n}(\mathrm{n}+1)$ "Pairwise Exclusion" clauses (per hole): $\left({\overline{\mathrm{v}} \mathrm{i} 1 \mathrm{j}}+\overline{\mathrm{v}}_{\mathrm{i} 2 \mathrm{j}}\right)$
- No two pigeons can be in the same hole
- Unsatisfiable CNF instance
- Use the "hole-major" variable ordering
$\square\left\{x_{1}, x_{2}, \ldots x_{n(n+1)}\right\} \Leftrightarrow\left\{v_{11}, v_{21}, \ldots, v_{(n+1) 1}, v_{12}, v_{22}, \ldots\right\}$

The Instances $\mathrm{PHP}_{\mathrm{n}}{ }^{\mathrm{n}+1}$

Outline of Proof

- Bound the size of the ZDD-based representation throughout execution
\square With most ZDD operations:
- h = zdd_op(ZDD f, ZDD g)
- h is built during a traversal of ZDDs f, g
- The execution time is bounded by poly(|f|, |g|)
- Do not consider all effects of reduction rules
\square These obscure underlying structure of the ZDD
\square Reduction rules can only eliminate nodes
- This will still allow an upper bound on ZDD size

Outline of Proof

- Main idea: Bound the size of the partially reduced ZDD
\square First compute a simple bound between "holes"
\square Prove that the size does not grow too greatly inside "holes"
- Show the ZDD at given step has a specific structure

Bounds Between H_{k}

- Lemma. Let $\mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}$. After assigning values to variables $\mathrm{x}_{1}, \mathrm{x}_{2}$, $\ldots, x_{k(n+1)}$, we may satisfy at most k of the $n+1$ pigeon clauses.
\square Valid partial truth assignment to the first $k(n+1)$ variables
\Rightarrow Must set only one variable in H_{i} true, for each i<k.
- For CBFS
\square Remove subsumed sets
\Rightarrow front contains all sets of ($n+1-k$) pigeon clauses
\square How many nodes does this take?

ZDD of all k-Element Subsets

- To reach $\mathbf{1} \Rightarrow$ function must select the T-Child on exactly k indices
\square Less than $\mathrm{k} \Rightarrow$ Traverse to 0
\square More than $\mathrm{k} \Rightarrow$ Zero-Supression Rule
- Contains ($n+1-k$) k nodes
- ZDDs are a canonical representation
\square When this is encountered in CBFS, we are assured of this structure
\Rightarrow CBFS uses $(\mathrm{n}+1-\mathrm{k})(\mathrm{k}+1)$ nodes after variable $\mathrm{x}_{\mathrm{k}(n+1)}$

The front within H_{k}

- After variable $x_{k(n+1)+i}$ the ZDD contains (i+1) "branches"
- Main branch corresponds to all $x_{k(n+1)+1}, \ldots, x_{k(n+1)+i}$ false
- i+1 other branches correspond to one of $\mathrm{x}_{\mathrm{k}(n+1)+}$ $1, \ldots, x_{k(n+1)+i}$ true
- Squares correspond to ZDDs of all subsets of a given size
- Can show this structure is correct by induction
- Bound comes from counting nodes in this structure

Analytical vs. Empirical

Conclusions and Ongoing Work

- Understanding why CBFS can quickly solve pigeonhole instances depends on recognizing structural invariants within the ZDD
- We hope to understand exactly what proof system is behind CBFS
- We hope to improve the performance of CBFS
\square DLL solvers have been augmented with many ideas (BCP, clause subsumption, etc)
\square These ideas may have an analogue with CBFS giving a performance increase

Thank you!!!

The Utility of Subsumption

- Cassatt empirically solves pigeonhole instances in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ without removing subsumptions
- Without subsumption removal
\square Instead of ZDD's for all k element subsets
\square ZDDs for all (k or greater)element subsets
- Still O($\left.\mathrm{n}^{2}\right)$
- To find a bound, need to factor in the additional nodes due to keeping all (k or greater)
 element subsets

Opportunistic Subsumption Finding

- 'Subsume'-able sets can occur as the result of Existential Abstraction or Union
\square In pigeonhole instances, this only occurs when we satisfy 1 pigeon clause
\Rightarrow Smaller sets will have only one less element than larger sets they subsume
- Can detect some subsumptions by recursively searching for nodes of the form
\square Captures subsumptions which occur in CBFS's solution of pigeonhole instances

Thanks again!!!

Processing a Single Variable

- Given:
\square Assignment of 0 or 1 to a single variable x
- It violates some clauses: $\mathrm{V}_{\mathrm{x} \leftarrow\{0,1\}}$
$\square \mathrm{V}_{\mathrm{x} \leftarrow\{0,1\}}$: Clauses which are unit, and this assignment makes the remaining literal false
- If any clause in $\mathrm{V}_{\mathrm{x}-\{0,1\}}$ is open then the partial truth assignment for that set of open clauses cannot yield satisfiability
\square Remove all such sets of open clauses
\Rightarrow Can use ZDD Intersection

Processing a Single Variable

■ Given:
\square Assignment of 0 or 1 to a single variable x

- It satisfies some clauses: $S_{x \leftarrow\{0,1\}}$
$\square \mathrm{S}_{\mathrm{x} \leftarrow\{0,1\}}$: Clauses in which x appears, and the assignment makes the corresponding literal true
- If any clause in $\mathrm{S}_{\mathrm{x}-\{0,1\}}$ is open, it should no longer be
\square Remove all such clauses $S_{x \leftarrow\{0,1\}}$ from any set
\Rightarrow ZDD \exists Abstraction

Processing a Single Variable

- Given:
\square Assignment of 0 or 1 to a single variable x
- It activates some clauses, $A_{x \leftarrow\{0,1\}}$
$\square A_{x \leftarrow\{0,1\}}$: Clauses in which x is the first literal encountered, and x does not satisfy
- These clauses are open in any branch of the search now
\square Add these clauses $A_{x \leftarrow\{0,1\}}$ to each set
\Rightarrow ZDD Cartesian Product

