
On Proof Systems Behind
Efficient SAT Solvers

DoRon B. Motter and Igor L. Markov

University of Michigan, Ann Arbor

Motivation

� Best complete SAT solvers are based on DLL
� Runtime (on unSAT instances) is lower-bounded

by the length of resolution proofs
� Exponential lower bounds for pigeonholes

� Previous work: we introduced the Compressed
Breadth-First Search algorithm (CBFS/Cassatt)
� Empirical measurements: our implementation

of Cassatt spends Θ(n4) time on PHPn
n+1

� This work: we show analytically that CBFS
refutes pigeonhole instances PHPn

n+1 in poly time
� Hope to find a proof system behind Cassatt

Empirical Performance

Related Work

� We are pursuing novel algorithms for SAT
facilitated by data structures with compression
� Zero-suppressed Binary Decision Diagrams (ZDDs)

� Existing algorithms can be implemented w ZDDs
� The DP procedure: Simon and Chatalic, [ICTAI 2000]
� DLL: Aloul, Mneimneh and Sakallah, [DATE 2002]

� We use the union-with-subsumption operation
� Details of the Cassatt algorithm are in

�Motter and Markov, [ALENEX 2002]

Outline

� Background
� Compressed BFS

� Overview
� Example
� Algorithm

� Pigeonhole Instances
� Outline of Proof

� Some bounds
� Conclusions and Ongoing Work

Background

(a+c+d)(-g + -h)(-b + e + f)(d + -e)
Cut clause

Not cutNot cut

Background: Terminology

� Given partial truth assignment
� Classify all clauses into:

� Satisfied
� At least one literal assigned true

� Violated
� All literals assigned, and not satisfied

� Open
� 1+ literal assigned, and no literals assigned true
� Open clauses are activated but not satisfied

� Activated
� Have at least one literal assigned some value

� Unit
� Have all but one literal assigned, and are open

� A valid partial truth assignment ⇔ no violated clauses

di
sj

oi
nt

Open Clauses
� Straightforward Breadth-First Search

�Maintain all valid partial truth assignments
of a given depth; increase depth in steps

� Valid partial truth assignments
→ sets of open clauses
� No literals assigned ⇒ Clause is not activated
� All literals assigned ⇒ Clause must be satisfied

� Because: assignment is valid⇒ no clauses are violated

� “Cut” clause = some, but not all literals assigned
�Must be either satisfied or open
� This is determined by the partial assignment

Binary Decision Diagrams

� BDD: A directed acyclic graph (DAG)
� Unique source
� Two sinks: the 0 and 1 nodes

� Each node has
� Unique label
� Level index
� Two children at lower levels

� T-Child and E-Child

� BDDs can represent Boolean functions
� Evaluation is performed by a single DAG traversal

� BDDs are characterized by reduction rules
� If two nodes have the same level index and children

� Merge these nodes

0 1

A

1

i

n

∞

Zero-Supressed BDDs (ZDDs)

� Zero-supression rule
� Eliminate nodes whose T-Child is 0
� No node with a given index ⇒

assume a node whose T-child is 0

� ZDDs can store a collection of subsets
� Encoded by the collection’s characteristic function
� 0 is the empty collection ∅
� 1 is the one-collection of the empty set {∅}

� Zero-suppression rule enables compact
representations of sparse or regular collections

Compressed BFS: Overview
� Maintain collection of subsets of open clauses

� Analogous to maintaining all
“promising” partial solutions of increasing depth

� Enough information for BFS on the solution tree
� This collection of sets is called the front

� Stored and manipulated in compressed form (ZDD)
� Assumes a clause ordering (global indices)

� Clause indices correspond to node levels in the ZDD

� Algorithm: expand one variable at a time
�When all variables are processed two cases

possible
� The front is ∅ ⇒ Unsatisfiable
� The front is {∅}⇒ Satisfiable

Compressed BFS

Front ← 1 # assign {∅∅∅∅} to front
foreach v ∈ Vars

Front2 ← Front
Update(Front, v ← 1)
Update(Front2, v ← 0)
Front ← Front ∪∪∪∪s Front2

if Front == 0 return Unsatisfiable
if Front == 1 return Satisfiable

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Process variables in the order {a, b, c, d}
� Initially the front is set to 1

� The collection should
contain one “branch”

� This branch should contain
no open clauses ⇒ {∅}

1

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable a
� Activate clauses {3, 4, 5, 6}

� Cut clauses: {3, 4, 5, 6}
� a = 0

� Clauses {3, 4} become open
� a = 1

� Clauses {5, 6} become open

� ZDD contains { {3, 4}, {5, 6} }

3

4

5

6

10

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable b
� Activate clauses {1, 2}

� Cut clauses: {1, 2, 3, 4, 5, 6}
� b = 0

� No clauses can become violated
� b is not the end literal for any clause

� Clause 2 is satisfied
� Don’t need to add it

� Clause 1 first becomes activated

1

2

3

4

5

6

1010

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable b
� Activate clauses {1, 2}

� Cut clauses: {1, 2, 3, 4, 5, 6}
� b = 1

� No clauses can become violated
� b is not the end literal for any clause

� Existing clauses 4, 6 are satisfied
� Clause 1 is satisfied

� Don’t need to add it
� Clause 2 first becomes activated

1

2

3

4

5

6

10 10

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable b
� Activate clauses {1, 2}

� Cut clauses: {1, 2, 3, 4, 5, 6}
� b = 1

� No clauses can become violated
� b is not the end literal for any clause

� Existing clauses 4, 6 are satisfied
� Clause 1 is satisfied

� Don’t need to add it
� Clause 2 first becomes activated

1

2

3

4

5

6

10 10

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

1

2

3

4

5

6

1010

b=1b=0

10

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable c
� Finish clause 4

� Cut clauses: {1, 2, 3, 5, 6}
� c = 0

� No clauses become violated
� c ends 4, but c=0 satisfies it

� Clauses 4,5 become satisfied
� No clauses become activated

1

2

3

4

5

6

10 10

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable c
� Finish clause 4

� Cut clauses: {1, 2, 3, 5, 6}
� c = 1

� Clause 4 may be violated
� If c appears in the ZDD,

then it is still open
� Clauses 1, 2, 3 are satisfied
� No clauses become activated

1

2

3

4

5

6

10 1

Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

� Processing variable d
� Finish clauses {1, 2, 3, 5, 6}

� Cut clauses: {1, 2, 3, 5, 6}
� d = 0, d=1

� All clauses are already satisfied
� Assignment doesn’t affect this
� Instance is satisfiable

1

2

3

4

5

6

11

Compressed BFS: Pseudocode
CompressedBfs(Vars, Clauses)

front ← 1
for i = 1 to |Vars| do

front’ ← front
//Modify front to reflect xi = 1
Form sets Uxi,1, Sxi,1, Axi,1
front ← front ∩ 2Cut - Uxi,1

front ← ExistAbstract(front, Sxi,1)
front ← front ⊗ Axi,1
//Modify front' to reflect xi = 0
Form sets Uxi,0, Sxi,0, Axi,0
front’ ← front’ ∩ 2Cut - Uxi,0

front’ ← ExistAbstract(front’, Sxi,0)
front’ ← front’ ⊗ Axi,0
//Combine the two branches via Union with Subsumption
front ← front ∪s front'

if front = 0 then
return Unsatisfiable

if front = 1 then
return Satisfiable

The Instances PHPn
n+1

� Negation of the pigeonhole principle
� “If n+1 pigeons are placed in n holes

then some hole must contain more than one pigeon”

� Encoded as a CNF
� n(n+1) Boolean variables

� vij represents that pigeon i is in hole j

� n+1 “Pigeon” clauses: (vi1 + vi2 + … + vin)
� Pigeon i must be in some hole

� n(n+1) “Pairwise Exclusion” clauses (per hole): (vi1j + vi2j)
� No two pigeons can be in the same hole

� Unsatisfiable CNF instance
� Use the “hole-major” variable ordering

� {x1, x2, … xn(n+1)} ⇔ {v11, v21, …, v(n+1)1,v12,v22, …}

The Instances PHPn
n+1

Outline of Proof

� Bound the size of the ZDD-based representation
throughout execution
�With most ZDD operations:

� h = zdd_op(ZDD f, ZDD g)
� h is built during a traversal of ZDDs f, g
� The execution time is bounded by poly(|f|, |g|)

� Do not consider all effects of reduction rules
� These obscure underlying structure of the ZDD
�Reduction rules can only eliminate nodes

� This will still allow an upper bound on ZDD size

Outline of Proof

� Main idea: Bound the size of
the partially reduced ZDD
� First compute a simple bound

between “holes”

� Prove that the size does not
grow too greatly inside “holes”

� Show the ZDD at given step
has a specific structure

Bounds Between Hk

� Lemma. Let k ∈ {1, 2, …, n}. After
assigning values to variables x1, x2,
…, xk(n+1), we may satisfy at most k
of the n+1 pigeon clauses.
� Valid partial truth assignment to the

first k(n+1) variables
⇒Must set only one variable in Hi true,

for each i<k.

� For CBFS
� Remove subsumed sets
⇒ front contains all sets of (n+1-k)

pigeon clauses
� How many nodes does this take?

ZDD of all k-Element Subsets

� To reach 1 ⇒ function must
select the T-Child on exactly k
indices
� Less than k⇒ Traverse to 0
� More than k⇒ Zero-Supression

Rule
� Contains (n+1-k)k nodes
� ZDDs are a canonical

representation
� When this is encountered in CBFS,

we are assured of this structure
⇒ CBFS uses (n+1-k)(k+1) nodes

after variable xk(n+1)

The front within Hk

� After variable xk(n+1)+i the ZDD
contains (i+1) “branches”

� Main branch corresponds to
all xk(n+1) + 1, …, xk(n+1) + i false

� i+1 other branches
correspond to one of xk(n+1) +

1, …, xk(n+1) + i true
� Squares correspond to ZDDs

of all subsets of a given size
� Can show this structure is

correct by induction
� Bound comes from counting

nodes in this structure

Analytical vs. Empirical

Conclusions and Ongoing Work

� Understanding why CBFS can quickly solve
pigeonhole instances depends on recognizing
structural invariants within the ZDD

� We hope to understand exactly what proof
system is behind CBFS

� We hope to improve the performance of CBFS
� DLL solvers have been augmented with many ideas

(BCP, clause subsumption, etc)
� These ideas may have an analogue with CBFS giving

a performance increase

Thank you!!!

The Utility of Subsumption

� Cassatt empirically solves
pigeonhole instances in O(n4)
without removing subsumptions

� Without subsumption removal
� Instead of ZDD’s for all k-

element subsets
� ZDDs for all (k or greater)-

element subsets
� Still O(n2)

� To find a bound, need to factor
in the additional nodes due to
keeping all (k or greater)
element subsets

Opportunistic Subsumption Finding

� ‘Subsume’-able sets can occur as the result
of Existential Abstraction or Union
� In pigeonhole instances, this only occurs when

we satisfy 1 pigeon clause
⇒Smaller sets will have only one less element than

larger sets they subsume

� Can detect some subsumptions by
recursively searching for nodes of the form
� Captures subsumptions which occur in CBFS’s

solution of pigeonhole instances

Thanks again!!!

Processing a Single Variable

� Given:
�Assignment of 0 or 1 to a single variable x

� It violates some clauses: Vx←{0,1}
�Vx←{0,1} : Clauses which are unit, and this

assignment makes the remaining literal false
� If any clause in Vx←{0,1} is open then the partial truth

assignment for that set of open clauses cannot yield
satisfiability

�Remove all such sets of open clauses
⇒ Can use ZDD Intersection

Processing a Single Variable

� Given:
� Assignment of 0 or 1 to a single variable x

� It satisfies some clauses: Sx←{0,1}

� Sx←{0,1}: Clauses in which x appears, and the
assignment makes the corresponding literal true
� If any clause in Sx←{0,1} is open, it should no longer be

� Remove all such clauses Sx←{0,1} from any set
⇒ ZDD ∃Abstraction

Processing a Single Variable

� Given:
� Assignment of 0 or 1 to a single variable x

� It activates some clauses, Ax←{0,1}

� Ax←{0,1}: Clauses in which x is the first literal
encountered, and x does not satisfy
� These clauses are open in any branch of the search now

� Add these clauses Ax←{0,1} to each set
⇒ ZDD Cartesian Product

