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o bjectStoreisanobject-orienteddatabasemanagementsystem
(OODBMS) thatprovidesa tightly integratedlanguage
interfaceto the tradition DBMS featuresof persistent

storage,transactionmanagement(concurrencycontrol and recove~),
distributeddataaccess,andassociativequeries.ObjectStorewasdesigned
to provide a unified programmatic interfaceto both persistently
allocateddata (i.e.,data thatlivesbeyond the executionof an applica-
tion program) and transientlyallocateddata (i.e.,data thatdoesnot
survivebeyond an application’sexecution),with object-accessspeedfor
persistentdatausuallyequal to that of an in-memory dereferenceof a
pointer to transientdata.—

These goals were derived from
the requirements of ObjectS1ore’s
@rget applications, wh!ch are typi-
cally data-lntensxveprowams that
perform complex manipulationson
large dambasesofob]ects with !ntrl-
cate structure, e.g., CAD, CAE:,
CAP, CASE, and geoWapblc infor-
mation systems ((;1S) This struc-
tural complexity ISgenerally real-
ized by inter-obJectreferences, e.g ,
pointers from one obJect to an-
other. Objects are lmated, ~ssibly
with the intent to update them, by
traversing these references and by
ass~latlve queries,

We selected C++ as the primary
language through wh,ch O&
JectStOre 1s accessed &cause It is
kcomlng a very popular language
among the developrs of Ob-
jectStore’s target appbcations. Ob-
JectStore can also & used from C
programs—provldlng access from
C ISeasy because lhe data mtiel of
C )s a subse( of that of C++. use of
ObJectStore from otber program-
ming languages IS discussed later.

The key 10ObJectStore’sintegra-
tion with C++ ISthat persistence is
not part of the type of an obJect
Objects of any C++ dab type
whatsoever can k allocated tran.
siendy (on the ordinary heap) or
persistently (In a dambase), from
budt-in types such as Integers and
character strings, to arbltraq user-
defined structures (which may con-

@in pointers, use C++ virtual
functions and multlple inherimnce,
etc), In particular, there ISno need
to ,nherlt from a special “persistent
obJect” base class. Different oblects
of the same ty~ may be persistent
or transient wtthln the same pro.
Warn.

There are several motlvattonsfor
our goal of making ObjectStore
closelv Integrated with [he Dro-

,“

grammlng language Tbese ln-
cblde.

M* of learning: It was intention-
ally designed so that a C++ user
would only have to learn a btde bit
more In order to try out Ob-
JectStore and smrt to use it effec-
tively. After that, a user can learn
more, and tike advanmge of more
of the capabilities the database of-
fers. In particular, there is no need
to learn a new type system or a new
way to define objects. The declara-
tive and prmedural parts of the
lan~age are used for bth kinds of
obJects. By provldlng a gradual
learning path and making It easy
for users to get started, we hc)pe to
make ObJectStore accessible to a
w,der ra”gc of developers, a“d
help case tbe transition Into the use
of object-or! ented dambase tech-
nology.

No tinslation cde: We wanted to
save tbe programmer from bavlng

to wr!te code that translates &
tween the disk-resident representa-
tion of data, and the representation
used during execution. For exam-
ple, t<)~torea C++ object Into a re-
Iat!<)naldatahase, the programmer
must construct a mapping between
tbe two, and write code that picks
fields out oftuples and copies them
Into data memkrs ofob)ects (’fhis
ISpart of the problem tbat has heen
called the “Impedance mlsmatcb”
ktween a programming ktn~age
and a da~base access language [2,
13].) Wltb O~ectStore, no translat-
ing and no copying is needed Per-
sistent data IS just hke ordinary
heap-allmated (transient) data
once a pointer is obtained to It, the
user -n Iust use It In the ordtnary
way. ObJectStore automatically
takes care of locking, and keepa
track of what ba$ ken mdlfied

Expressive pwer: We wanted the
Interface to persistently allmated
obJects to supprt all of the power
of the host programming language
This contrasts with the traditional
data manipulation capabihtles of
languages such as SQL, whlcb are
much less pwerful than a general-
purpose programming language

Reumbili~: We wanted to promote
reusabdlty of code, by allowlng the
same code to operate on eltber per-
sistent or transient data, and 10
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a l l o whbrarles that were developd
for manipulating trans]enl data to
work on persistent data without
change For example, Ifa pro~am-
mer has a hbrary routine that tikes
an array of floatlng-point numbers
and computes the fast Fourier
transform, he or she can pass it an
ObjectStore persistentarray, and it
wdl work. Usually, if a library does
not need to do any persistent allo-
cation of is own, the library can &
applled to persistent dam w!tho”l
even king recompiled.

&nversiOn: Many programmers
who are Interested In using object-
orlented DBMSSwould hke to add
persistence to exlsttng apphcattons
that deal with transient objects,
rather tban budd new applications
from scratcb. We wanted to make it
as easy as possible to convert an ex-
isting apphcatlon to use persistent
objects throughout. In particular,
this means that basic data opera-
tions such as derefcrencing point-
ers and getting and setting dam
members should be synmcticallytbe
same for persistent and transient
obJects, and that variables sbould
not have to have their type declara-
tions changed when perslslent ob-
jects are used.

~ ch=bg: We wanted the
compile-time type-checktng of
C++ to apply to persistent dam as
well as transient dam, with the en-
tire application using a single type

system. The cOmpller’s type check-
ing apphes to ObJectsin the dati-
base. For example, a variable refer-
ring to an object of class employee
would have type ‘employee *’, Such
a variablecould refer toa persistent
employee or a transient employee,
at different times during pro~am
execution. A function that takes a
reference to an employee as an ar-
pment can therefore operate on a
persistent or a transient employee.

The second goal of ObjectStore
IS to provide a very high perfo-
rmancefor the kinds ofapphcations
to which ObjectStore is mrgetted.
From the potnt of view of perfor.

mance, the target applications are
very different from traditlo”al
datibase applications s“ch as pay-
roll programs and o“.line transac-
tion prmessing systems, in several
ways, as we fo”nd from l“temiew-
Ing developers of such appbcatl”n~

Tempml Imality: Whe” ma”y
users access a shared database, very
often the next user of a data Item
wdl be the same as the previo”z
user. In other words, whaleconcur.
re”t access musl be allo”ed and
must work correctly, many data
items will be used ‘mostly’ by one
user over a short span of time.

Spatial lwality: Often an appbca-
tlon wdl use only a portion of a
daubase, and that portion will be
(or can be arranged to be) ina small
section of the dambase that IScon.
ti~ous, or mostly so.

Fine interleaving: Apphcatlons
often interleave small database op-
erations (I.e., go from one obJect to
a reference object) with small
amounts of computation. That is,
there are many very small database
OperatiOns rather than relatively

few large ones. If every dambase
operation required a significant
per-operation overhead cost (such
as the cost of sending a network
message), overhead costs would
become prohlbtttve,

Developers told us that it is im-
perative that ordinary data manip-
ulation be as fast as possible. For
example, an ECAD circuit simula-
tion ISCPU-lntenslve, traversing a
network of objects representing a
circuit, carrying out compumtions
on the way. These simulations are
quite expensive. Any approach to
dam management that penahzes
the running time of such an appli-
cation is impractical. This means
that one critical opration must &
as fast as possible: the o~ratlon of
obmining dam from an object,
given a pointer or reference to tbe
object. This o~ration might be
called ‘fetching an object’; more
precisely, it is dereferencing a
pinter. ObjectStore is designed to

make the speed ofdereferenclng of
plnters to persistent obJects be as
close as possible to that of transient
objects, namely the speed of a sin-
gle load InstructIon.

ObJectStore also has some of tbe
same performance goals as ordi-
nary relational DBMSS, and it gen-
erally accomplishes these using
famdlar techniques s“ch as l“dexes,
query optimlzatlon, log-based re-
covery, and so on. The lmplemen-
tat!on section expla!ns how we ap-
proached all of these performance
goals, focusing on the aspects of
ObJectStore that differ from con-
ve”tlonal techniques.

Another goal Of ObJectStore ISto
provide several feat”res that are
missing from C++ and from most
DBMSS: a collection facdlty (sets,
lists, and so on), a way to express
bldlrectlonal relatlonshlps, and
support for groupware based on
versioned data,

Application Intetiace
In addltlon to the data defin]tl””
and manlpulatton facdltles pro-
vided by the host languages, C and
C++, O~ectStore provides sup-
prt for accessing persistent data
Inside transactions, a library of col-
lection types, bidirectional relatlo”-
ships, an optimizing query facdity,
and a version facihty to support col-
Iabrative work. Tools supporting
datibase schema design, dambase
browsing, database adm]nlstratlon,
and apphcatlon compdatlon and
debugging, are also provided.

There are three programming
Interfaces s“pported, a C hbrary
Interface, a C++ libra~ interface,
and an extended C++ which pro-
vides a tighter language integration”
to the query and relationship facih.
ties. This interface isaccessibleonly
through ObjectStore’s C++ com-
piler, while the two library inter-
faces are accessible through other
third-party C or C++ compilers,
thus providing maximum pormbil-
ity, All of the feat”res a“d perfor.
mance knefim of the ObjectStore
architecture are realized In all of
the interfaces.



Accessing PeBiSteflt Dam
A simple C+ + program which uses
the extended C++ interface to the

system is presented in Figure 1
This program opens an exlst]ng
database, creates a new persistent
obJect of class employee, adds the
new employee to an existtng de-
partment, and sets the salaryof the
employee to 1,000. The keyword
persiswnt specifies a storage class,
saying that this variable resides in
the specified database. Persistent
variables associate names with per-
sistent obJects, provldlng the start-
ing point from which navlptlons or
queries begin The db argument to
the nm operator spec]fies that the
employee obJect being created
should & allocated In dambase db

It sbould be noted that the ma-
nipulation of data looks Just like an
ordinary C++ pro~am, even
though the obJecU are persistent
They also compile Into the same
machine InstructIons.the update of
the salary field Just uses a Simple
store Instruction ObjectStore auto-
matically sets read and write locks,
and automatically keeps track of
what has been modified, helping to
protect the integrityof the dambase

against the pOssLbilityOf Program-
mer error. Access to persistentdata
IS ~aranteed to be transaction-
conslstent (i.e., all-or-none update
semantics), and recoverable in the
event of system failure.

It should & noted that in Fig-
ure 1 the variable eweer%
dep-ent is not expbcidy initial-
ized. This is &cause It ISa persis-
tent variable, whicb refers to an
obJect stored in the ‘c/compml
recor~” database. The object IS
looked up by name, ‘en-
gneerlng-department’, In the dam-
base, and the program variable is
inltiahzed to refer to the named
object in the dambase. (It would
have ken an error if there had
ken no sucb object in the dam-
base.) Tbe persistent keyword in
the ObjectStore extended C++ in-
ferface simply provides a short-
hand for Iwking up an object in the
daabase by name, and binding a

#ticlude (objmWdobjetiWm.H)
#ticlude (wo-.H)

- ()
{

// me nefi -e sW-en@ maw ad mtip@aW a
// pers@@nt object mpresenu a person n-cd Wd
employee *emp = nm (db) empl~ee (<’~ed”);
e~meeti~dep~ent-> ti~emplqee (emp);
emp–>s~~ = 1000;

-

I* merecor&.H .1

clwe employee
{
wb~c.

chin* -e;
ht Stim;

};
01=s dep-ent
{
pubJto:

O~t(emplOyee*) employees;

void ti~empl~e (empl~ee *e)
{ .mplqees–>@eti (e); }

tit wor~aem (employee *e)
{ mwn empl~ees–>con= (e);}

);

Using colletilons
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Iwal program variable to the ~r-
s!stent database object.

Colletilons
ObjectStore provides a collection
facdity In the form of an objeticlass
Iibraq. CoO~tions are abstract
structures which rewmble amays in
traditional prOWamming lan-
Wages, or mbles in relational
DBMSS. Unlike amys or tibles,
bowever, ObjmtStore collections
provide a variety of khavlors, in-
cluding ordered collections (hsts),
and collections witb or witbout
duplicates (bags or sets).

Performance t“ning often in-
volves replaclng simple data struc-

tures, sucb as lis~, with more effi.
cient but more complex stmctures
such as b-trees or hash ~bles. This
as~ct of application development
is also handled by the collection li-
brary, Users may optionally de-
Krik intendd usage by estlmati”g
frquenties of various o~ratio”s,
(e.g., iteration, insenion, and re.
moval), and tbe collection libra~
will transparently select an appro-
priate represenmtion. Funher-
more, apoltq can be assmiated witb
tbe collection, dlcmtlng how the
represe”mtion sbo”ld change in
respnse to changes in the collec-
tion’s cardinality, These ~rfor.
mance-tuning facilities reduce tbe

dep~enta d;

fomti (empl~e. e, d–>emplqeaa)
e—>std~ *= 1.1;

Iteration over a collection

01=s employee
{
pub~o:

s- -e;
tit etiq;
dep-enw dept

timmeaember d~ent::ern@~ea;
};

voti ti&empl~e (emplWee *e)
{ employees–>~efi (e); )

void wor~~em (employee *e)
{ empl~es–>conw (e) ; }

};

Using relationships

developer’s involvement from cod-
ing dam structures m dewrlbing
access patterns.

FiWre 2 shows the user-writte”
include file remti.H, used in this
example. Note that tbe class de.
partment declares a dam memkr
of type O~~empl~*) .otiet
is a (parametrized) collection class,
found in the ObjectStore coll~tio”
class Iibraq. If d is a department,
then d–>tiempl~e(e) simply
adds e into d’s set of employees.
d–>worhaem(e) returns t~ if
e ISconmined in d’s set of employ-
ees, fake othewise.

ObjectStore includes a Iwping
construct to iterate over seu. For
example, the cde In FiWre 3 ~ves
a 10% raise to each employee i“
department d. In the loop, e is
hund to eacb element of d–>em-
plqees in turn.

me Relationship FaciliN
Complex objects sucb as parts hier.
archies, designs, dmumenm, a“d
multimedia l“formation can &
modeled using ObjectStore’s rela-
tionship facility. Relationships can
& thougbt of as a pair of Inverse
pinters, so tbat if one object pints
to another, tbe swond object has an
inverse pinter back to the first.
Relationships mainmln the inte@ty
of these ~!nters. For example, if
one participant in a relationship is
deleted, then tbe pinter to that
object, from the other pamicipant,
is set to n“ll. One-to-one, one-to.
many, and many-to-many relation.
ships are supprted.

To continue the example in Fig-
ure 3, we could create a relation-
ship &tween employees and de-
patiments, as in FiWre 4. The dept
dah memkr of emplqm and the
emplqees dan memkr of de-
p-ent are declared to k in-
verses ofo”e another. Because one
dam memkr is a single Winter and
tie other is a ~t, the relationship is
one-to-many, Whenever an em.
ployee is insertd into a depart-
ment’s set of employees, the em-
ployee is automatically updated to
refer to the department (and vice-
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versa) Similarly,when an employee
15deleted from a department’? set
of employees, the pointer from the
employee to the department 13set
to null, guaranteeing referential
Integrity.

Syntactically, relatlonshjps are
accessed just hke data memhrs In
C++, hut updating the value of a
relatlon~hlpcauses the Inverse rela-
tionship to he updated as well, so
that the two sides are alwaysconsis-
tent with one another. This means
that after d–>ti~employee(e) In
the code example given In Figure 1,
e’s dept would & enaeerti
dep~ment, even though thjs field
was not exphclt]y set by tbe apph-
catton. Th\s ufiate of e would K-
cur as a result of Inserting e Into
d–>employees, kcause of the ti-
versenember declaratlon~. Slml-
Iarly, lf e–>dept is set to another
department, ti, then e ISremoved
from d–>employees, and Inserted
to ~–>empl~ees. In general,
maintenance actions can Involve
simply unsetttng the Inverse, or ac-
tuallydeletlng the ohJecton the in-
verse, at the schema-definer’s dis-
cretion. The latter behavior IS
useful for deleting hierarchies of
ohjects, so that, for example, delet-
lng an assembly would cause all of
Its subassemblies to he deleted,
along with their suhassemhhes,re-
cursively

Associative QUerieS
In relational DBMSS, queries are
expressed in a special language,
usually SQL. SQL has Itsown vari-
ahles and expressions, which differ
In syntax and semantics from the
varlahles and expressions in the
host language. Bindings ktween
varlahlesIn the two lan~ages must
& estahhshed exphcitly. Oh-
jectStOre queries are more closely
Integrated with the ho~t language.
A que~ IS simply an expression
that operates on one or more col-
lections and produces a collection
or a reference to an ohJect.

Selection predicates, which ap-
pear within que~ expressions, are
also expressions, either C++ ex-

pressions or quer,es. Continuing
the previou~ example, ~tippo~? that
&employees is a set of employee
ob]ects:

OsSet(emplOyee*) Uemployees;

The following statement u~es a
query against ~Lemployeea to
find employees earntng over
$100,000, and as~lgn the re%tl!tto
meqti&emplOyees:

OsSet(emplOyee*)@
meqal~employees =
&employees
[. s~a~ >= 100,000 .],

[ :1 15 OhJectStOre ,y”t.Y for
queries The contained expre~%lon
is a selectton predicate, that ,s (con-
ceptually) apphed to each element
of &employees in turn (In fact,
the query wdl k optjm17ed If an
Index on salary ,s pre%ent This IS
discussed later )

Any collection, even one r??&]lt-
Ing from an expres510n,can k qtle-
ried. For example, this query finds
overpaid employees of department
d:

d–>employees
[: sd~ >= 100000:]

Query expressions can also he
nested, to form more complex que-
ries The following query Imates
employees who work In the same
department .s Fred:

tiemployeea
[: dept–>employees
[: n~e ‘= ‘wed’:1 :1,
Each memher of&employee8 has
a department, d8pt, which has an
embedded set of employees. The
nested query IT true for depart-
ments having at least one employee
whose name ISFred.

All of these examples make u~e
of the language extenslon~avadahle
only through the ObJectStore C++
compiler; the [ :] syntax, for exam-
ple, IS a language exten~lon The
same queries can & exprr~~ed vIa
the lihrary tnterface. The prev,ous
que~ would be restated ,n the
C++ hbrarv Interface as

osSet(emplOyee*)>
@ workti-ed =
fiemployees->quew(
cemplOyee*’,
“dept->employees
[: nme == \’Fmd’\ ]“);

The first argument tc) query,
employee*, Indicates the type of
the collection elements. The second
argument ISsimply the string rep-
resenting the query expression. It 1?
al~oposs!ble to use the hhrary inter-
face to store precompded and optl-
m17ed queries tn the database for
later executton.

In )t~ current form, the Ob-
JectStOre query language can ex-
pre?s ‘semqolns’ hut not full jo]ns,
Ie., the result of a query IYa subset
of the collection king queried.

vemlons

OblectStore provides facdltle~ for
multlple users to share data in a
cooperative fashion (~ometlmes re-
ferred to as ~oupware) With these
facdltles, a user can check out a ver-
sion of an obJect or group of ob-
Ject5, make changes (perhaps en-
tadlng a long series of Individual
update transactions), and then
check changes back in to the main
development pro]ect so that they
are vlslble to other members of the
cwperating team. In the interim,
other users can continue to use the
previous versions, and therefore
are not impeded by concurrency
conflicts on their shared data, re-
gardless of the duration of the edit-
ing sessions Involved. These ex-
tended edltlng sessions on private,
checked-out versions are “fte” re.
ferred to as long tran~actlons.The
design was influenced by [3, 6, 9,
lo].

If other users want to make con-
current parallel changes, they can
checkout alternativeversions of the
~ame object or groups of objects,
and work on their versions In pri-
vate Again, the result ISthat there
are no concurrency con fllcts, even
though the u~ers are operating on
(d,fferent versions of) the same
obJects Alternative ver~lons can



l be merged kck together to
r=oncile differences resulting
from this parallel development.
This merging operation is a diffi-
cult problem and is left to the user
to implement on an applicatiOn-

s~ciflc basis [81.In supportOfthls,
ObjectStore allows simultaneous
access to kth versions of an obJect
during the merge.

Users can control exactly which
versions to use, for eacb ohject or
~oup of objects of interest, by set-
ting up pr!vate workspaces that

s~clfy the desired verslOn. This
might & tbe most r=ent version,
or a particular previous version
(such as tbe previous release), or
even a version on an alternative
branch. Users can also use
workspaces to selectively share their
work in pro~ess. Workspaces can
inherit from other workspaces, so
that one designer could specify tiat
his or her workspace should by de-
fault inhetit “whatever is in the
team’s shared workspace”; he or
she could then add Indlvldual new
versions as changes are made, over-
riding this default.

For example, a team of designers
working on a CPU design might set

UP a wOrkspace in which all Of their
new versions are created. Only
when their CPU design is com-
pleted would tbe finished version(s)
& checked in to tbe corporate
workspace, making them available
to, say, the manufacturing ~oup.
Within tbe design team’s work-

space, there might ~ multiPle
subworkspaces, wh]ch are used by
subWoups of the design team or
Individual team memkrs, Just as
tbe entire uoup makes its work
available to manufacturing by
checking In a completed verston to
the cor~rate workspace, individ-
ual designers or teams of designers
can make their work-in-pro~ess
available to one another hy check-
ing their intermediate versions In to
their shared workspaces. This is il-
Iustratd in Fi~re 5.

Just as the ~rsistence of an ob
ject is inde~ndentoftyp, the ver.
sioning of an object is independent

of ty~ This means that instinces
of any type may be versioned, and
that versioned and nonversioned
instinces can & operated on by the
same user cde. Tbis makes it easy
to mke an exlst]ng piece of code,
which has nonotion ofversioning—
for example, a circuit-design simu-
lator—and use it on versioned data.
The simulator does not have to &
rewritten, because opcratlng on a
particular version of a circuit de-
sign is Identical to o~rating on a
nonversloned design.

Pro~ams using versioned data
need not distln~isb among
versioned, persistent, and transient
dam in accordance with Ob
jectStore’s design principles.

Anhitetira and
Implementation

StO~9eSYS@MandMeMOW.
MaVpetfarchltetiure
One fundamenml operation of a
dambase programming language is
dereferencing: finding and using a
target object that is referred to by a
source obJect. ObjectStore’s inter-
face goals state that th]s must work
Just as in ordina~ C++, to provide
transparent integration wltb the
language and to make dereferenc-

ing as fast as possible. Th]s means
that ordinary pinters from the
host lan~age must& able to serve
as references from one persistent
object to another.

ObjectStore’s performance goals
demand that once the mrget obJect
has ken retrieved from the dam-
base, subsequent references should
be just as fast as dereferenclng an
ordinary pointer in tbe language.
This means that dereferenclng a
pointer to a persistent mrget must
compde exactly the same as
dereferenclng a pointer to a tran-
s]ent target, (i.e., as a single ‘load’
instruction), without any extra in-
structions to check whether the tar-
get obJect has ken retrieved from
the database yet. This creates a dk-
Iemma, since It is ~ssible that the
target object really has not yet ken
retrieved from the databaw.

Fortunately, these design goals
are analogous to those of virtual
memory systems, which supprt
uniform memo~ references to
dam, wbether that dati is l~ated in
primary or secondary memory.
ObjectStore mkes advanmge of the
CPU’s virtual memory hardware,
and the operating system’s inter-
faces that allow ordina~ software
to utdlze that hardware. The virtual
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memory system allows Ob]ectStore
to set tbe protection for any page of
virtual memory to no access, read
only, or readlwr]te Wben an Ob-
JectStoreapphcatlon dereferences a
pointer whose target has not ken
retrieved Into the chent (!.e , a page
set to no access), the hardware de-
tects an access vlolatlon, and tbe
Operatlng system reflects th,s back
to ObJectStore, as a memory fault
ObjectStore retr]evesthe page from
the server and places It ]n tbe ch-
ent’s cacbe. It tben calls the operat-
!ng system to set the protect!c)n of
the page to allow accesses to suc-
ceed (Ie , read only) Finally, It re-
turns from the memory fault,
which causes the dereference to
res~rt This ttme,It succeeds.Sub=
sequent reads to tbe same target
obJect,or to <)theraddresses <)ntbe
same page, WI]]run In a s]ngle ln-
structlc>n,w]thout cau?,ng a fault
Writes tc]tbe target page wdl resuh
In fautts that cause the page access
mode and tock to be upgraded to
read-write Alt virtual memory
mapping and address space manlp-
ulatl(]nIn the apphcatlc)nISbandied
by the opcratlng system under the
dlrectlon of Ob]ectStore, using nor-
mal system calls

The ObJectStore server provides
the long-term repository for persis-
tent data Databases can be stored
eltber of two ways wllhln fites pr<]-
vlded by the operating system’s fite
system,or w]tbln partitionsof disks,
using ObJectStOre’%own file system.
The latter provides bigher perfor-
mance, by keeping datahases as
contiguous as possible even as they
graduatty grow, and by avoldlng

varlOus Operatlng system Over-
heads. Tbe server and tbe client
communicate vla Iocatarea network
when tbey are running on different
hosts, and by faster facdltles such as
sbared memory, and Imal sxkets
when they are running on the same
host

Tbe server stores and retrieves
pages of data In respon$e to re-
quests from chents. The server has
no knowtedge of tbe contents of a
page It simply passes pages to and

from tbe cbent, and stores tbem on
disk The server ISalso respon~lbie
for concurrency control and recov-
ery, using techniques simdar to
tbose used In conventional DBMSS.
It provides two-phase linking with
a readlwrlte tmk fur each page.
Recove~ IS based on a log, using
tbe write-ahead log protocot
Transactions Involv]ng more than
one server are coordinated using
the two-phase commit protocol
The server also provides backup to
tong-term storage media such as
tapes, allowlng full dumps as well as
c<]nt,nu<>usarchive Iogglng

S,nce the server has no knowl-
edge (>f the content~ of the page,
mulchof the query and DBMS pro-
cessntgISdone on the chent sideof
the network This contrasts with
traditional relatlonat DBMS sys-
tem~ In wblch the server IStargely
responsible for handhng all query
processing, opt,mlzatlon, and for-
mdttlng Although such offloading
of work from [he server ISnot Ideat
for atl apphcatlons, this arcbltec-
ture doe~ nc]t prectude bav,ng the
server handle more of the work.

ObjectStore malntalns a cbent
cacbe, a pool of databasepages that
have recently hen u$ed, In tbe vir-
tual memory of lhe chent best
When tbe apphcat]on signals a
memory fault, ObJectStore deter-
mines whetber tbe page being ac-
ces~ed ISIn the cbent cache If not,
It asks the ObJectStore sewer to
transm,t the page to tbe ctient, and
puts the page Into tbe cbent cache
Then, the page oftbe chent cache IS
mapped Into vlrtuat address space,
so tbat the apphcatlon can access It.
E’lnally,the faultlng instruction IS
restarted, and tbe apphcat]on con-
tinues.

Many appbcat]on~ tend to refer-
ence large numhrs of smatt ob-
Jects, but networks are, In general,
more efficient for bulk data. To
compensate for this, whole pages of
data are brought from the server to
the client and ptaced In the cache
and mapped Into virtual memory.
Ob]ects are stored on tbe server In
tbe same format In wh]cb tbey are

seen by the language In virtual
memory. This avoids potent]at per-
obJect overhead such as calhng a
dynamic memory atlocator, creat-
ing entries In ohJecttahles,or refor-
matting the nonpolnter elements of
the ob]ect.

When a transaction finishes, all
pages are removed from the ad-
dress space and modified pages are
written back to the server (the chent
waits for an acknowledgment from
tbe server tbat the pages have been
safety written to disk). However,
the pages remain In the cbent
cache, so that If the next transaction
u~esthose pages, It wdt not bave to
communicate wltb tbe server to re-
trieve them; they wdl atready be
present In the cacbe This improves
performance when several succes-
sive transactions use many of the
same pages. Typlcat ObJeLtStOre
appllcatlOnsInterleavecomp”tatlon
very tlghdy w,th database access,
dc)]ng some computation, then
dereferenclng a po!nter and read-
ing or chan~ng a few values, then
doing some m<>recomputat,c]n, etc.
Iflt were necessary to communicate
with a remote server for each of
tbcse $Lmpledatabase o~rat]ons,
the cost of the network and scbed-
uter overhead would & enormous
By making the data directly avall-
abte to the apphcat,on and attowlng
ordinary ]nstructlons to manlputate
the data, such apphcatlons perform
faster

Since a page can reside ,n the ct%-
ent cacbe without blng Iwked,
some other chent might modify the
page, lnvabdat,ng the cached copy.
The mechanism for making sure
tbat transactions always see vabd
copies of pages IScalted ‘cache co-
herence’. A copy of a page In a cb-
ent cache is marked e,ther as shred
or exclartue mode The server keeps
track of which pages are In the
caches of wh!ch chents, and with
which modes. When a chent re-
quests a page from tbe server and
the server notices that the page ISIn
tbe cache of some other cbent (tbe
hotitng cbent), the sewer wdl cbeck
to see If tbe modes conflict. If they



Applications can fimprove
performance by exercEsfing control

over the p~acement of objects
wfithin a database.

do, the server sends a message to
the holding chent, asking It to re-
move the page from 11scache. This
is called a callback message, since It
goes In the opposite dlrectlon from
the usual request the server IS
making a request of tbe cbent.

When tbe holding chent receives
the callback, It checks to see If the
page ,s Imked, and If not, agrees to
Immediately rebnq”isb the page,
and removes the copy of the page
from Itscache. If the page ISlocked,
the chent repbes negatively to the
server, and the server forces the
requesting cbent to wait untd [be
holder ISfinlsbed with the transac-
tion. When the holdlng chent corn-
mlts or aborts, rt then removes tbe
copy oftbe page from Itscache, and
the server can allow tbe original cli-
ent to proceed. Tbe use of callback
messages was inspired by the An-
drew Fde System [11]. Related
cacbe coherency algorithms are dis-
cussed in [4].

In an Ideal computer architec-
ture wltb unhmlted virtual address

space, every ObJectin every data-
base could have a unique address,
and virtualaddresses could serve as
uncbang!ng object Identlflers.
Modern computers have virtual
address spaces that are veq large,
but not unhmlted. Single damhases
can exceed the size of the virtual
address space Also, two indepen-
dent databases might eacb use the
same address for their own obJects.
This !s the fundamental problem
tbat must & solved by any virtual
memory-mapping approach to a
DBMS

ObJectStore solves this problem
by dynamically asslgnlng portions
of address space 10 correspond to
~rtkons of the databases used by

tbe appbcatlo”, It matntal”s a v,r-
tual address map that shows wb,ch
database arid which o~ect w,tbl”
the databdse 15 represented by any
addres5. As the apphcatlon refer-
ences nlore databases a“d more
oblects, additional address space is
assigned, and tbe new obJects are
[napped Into these new addresses,
At tbe end of eacb transaction the
virtual address map IS reset, a“d
wben the next transaction smrts,
new assignments are made,

.1hls solutl”n does “ot place any
bmlts on the s,ze ofa database. Nat-
urally, each transaction”is limited to
acccsslng 110more data tha” ca” fit
Into the v,rt”al address space. 1“
practice, tbls hmit ISrarely reached,
since nlodern computers have very
large virtual address spaces, and
transact)ol>s are generally sbort
enuugh thal tbey do not access
nearly ASnlucb data as can fit A“
operatlo!l large enougb to ap-
proach th,s bm,t would be dlvlded
Into 5everal transactions, and
checked out Into a workspace to
provide Isolatlon from other “sers.

Wben a page ISmapped i“to v,r-
tual memory, tbe corresp”de”ce
OfObJectsand virtualaddresses may
have changed, The value of each
pointer stored In the page m“st &
updated. to follow the new vlrt”al
address of the object, This IScalled
relocationof tbe pointers, Whe”
possible, O~ectStore arranges to
assign the address space so tbat
pointers as stored on the server
happen to be the same as tbe values
they o“ght to have ,“ v,rt”al mem.
ory. In this case, relmatlo” IS“ot
needed, whlcb Improves ~rfor.
mance. But sometimes relmatlo”
cannot be avoided. For example,
wben the database size exceeds tbe

size of the available address space,
relocation is req”lred.

ObjectStore ma!”tal”s a“ a“xd-
lary data struct”re called the tag
table that keeps track of the Ioca.
tion and type of every obJect1“ the
daubase. Whe” a page ISmapped
Into virtual address space and
plnter relocation IS needed, Ob-
JectStore consults the tag table to
find o“t what obJects reside on the
page, and then uses the datibase
schema to learn wblcb Iocatlons
wttbln each ob)cct contain pointers,
It tben adj”sts the value of the
pointer to account for the new as-
signments of data to the vlrt”al
address space To mlnlmlze space
overhead whalekeeping access fast,
the tag table ISheavily compressed,
and ISIndexed, Each tag table e“try
contains a 16-blt type code, wblch
lndexe~ i“to a type table stored tn
the database’s schema, The type
mble entry Indicateswhich words of
the type contain pointers, Tag table
pages are brought Into the chent
cache as needed, and managed ,n
the cacbe like ordinary database
pages.

Apphcatio”s can Improve per-
formance by exerc,slng control
over the placement of obJects
wlthln a database, By clustering
together objects tbat are frequently
referenced together, Iocahty is In.
creased, the client cache IS used
more efficiently, and fewer pages
need to ~ transferred In order to
access the objects, ObjectStore d,.
vldes a database Into areas called
segme”ts, and whenever a“ appli.
cation creates a new persistent ob.
Ject, it can specify tbe segment )“
wblch tbat object should be created,
Apphcatio”s can create as ma”y
segme”ts as are n~ded, Segments
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Sflnce IockEng granularity is on a
per-page basis, the advantages

O* c~uster~ng are rea~ized
in decreased iockfing overhead.

may & transferred from sewer to
client either en masw, or one page
at a time, depending on the setting
of an application-controlled per-
se~ent flag.

Objects can cross page bunda-
ries, and an & much larger than a
page. Image dati, for example, can
k stored ,n ve~ large arrays that

span many pages. If an application
needs to accessonly a small portion
of such a huge object, It can use
page-~anularity transfer, to trans-
fer only the pages of the object tbat
are actually uwd. Conversely, many
small ohjects can reside on a s]ngle
page, Since Imking granularity IS
on a ~r-page basis, the advantages
of clustering are also realized in
decreased Imking overhead.

ObjmtStore depnds on the op-
erating system to control the map-
ping and protection of pages, and
to allow access violations to & han-
dled by software. The most stan-
dard versions of Unix, such as
SVR4, OSF/1, Berkeley bsd 4,3,
and SunOS all provide these facili.
ties. For other versions of Unix,
ObjecStore includes a device
driver that must be linked with the
kernel when ObjectStore IS in-
stilled. ObJectstore never modifies
tbe Unix kernel imelf. Future ver-
sions of these operating systems are
ex~cted to provide thew memo~
manipulation facihties. ObjectStore
currently runs on Sun 3 and
SPARC, under SunOS, IBM RS/
6000, under AIX, DEC DS31OO,
under Ultrix, HP series 300, 400,
and 700, under HP/UX. By the e“d
of 1991, ObjwtStore should also &
running on DEC under VMS, and
SGI. Most other ~pular kernel-
based operating systems, Including
VMS and 0s/2, provide the facdi.

ties that ObjectStore needs. Ob-
jectStore is also available on MicrO-
soft Windows 3.0. Windows does
not have a protected kernel like
Unix, so ObJectStore controls vir-
tual memory directfy.

colletiions
In designing tbe collmtion facihty,
an importint design goal was that
performance must & comparable
to that of hand<oded data struc-
tures, across a wide range of appli-
cations and cardinality. Often, Ok
jects have embedded collections.
For example, a Person obJect might
conmln a set of chddren. In these
cases, cardinalities are usually
small, often Oor 1, and only mca-
sionally abve 5-10. Collections are
also usedto storeallObJmtsof some
ty~, e.g., all employees, and sucb
collations can & arbitrarily large.
Furthermore, access patterns differ
greatly among applications, and
even over time within a single ap-
phmtion. Clearly, a single repre-
senmtion type will & inadequate
when ~rformance is a concern, so
multiple represenmtions of collec-
tions must & supprted. However,
it is not desirable for the user to
have to deal with these represenm-
tions directly. The u=r should be
able to work through an interface
that reflects khavior, not repre-
senmtion.

The ObjectStore collection facili-
ties are arrangd into two class hi-
erarchies: one for collections, and
anotber for curwrs. The base of
the collection hierarchy is oscollec-
tian, which is actually the base for
two hierarchies. One of these con-
wins o=et, osbag, and odlst.
These provide familiar combina-
tions of bhavior. Other combina-

tion: .~n & obtiined by specifying
combinations of bhavior for an
os-collection, (e.g., a list without

duplicates, or a set that raises an
exception upon InsertIon of a du-
plicate, instead of sdendy ignoring
1[).

The other hierarchy under os
collection provides for various rep-
resenmtions of collections. Each
represenmtion sup~fis the entire
o~collectton Interface, but with dif-
ferent performance characteristics.
The= classes are available for di-
rmt use, but it should never b nec-
essary to work with representitlons
dirmtly. Instead, a representation is
normally selected automatically,
based on user-supplied estimatesof
accesspatterns (1.e.,how frequently
various operations wdl & carried
out).

O~ratiOns on collections appar
as wthd, (or memkr functions, to
use the C++ terminology). As is
typical of object-oriented lan.
Wages, there is a run-time function
dispatch, to Imate the appropriate
implementation of each function,
based on the collection’s behavior
and represenatlon. When a coOec-
tion mdifies i~elf to employ a dif-
ferent representation, It actually
modifies its own (represenmtion)

type description, so function dis.
patches will continue to work cor-
rectly.

auedes
Syntactically,queries are treated as
ordinary expressions in an ex-
tended C++. However, que~

expressions are handled quite dif-
ferently from other kinds of ex-
pressions. The obvious implemen-
mtlon strategy-iterate and check
the prediate—wottld provide ve~
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poor performance for large cOllec- variable or call.by.reierence pa-
tlons. In relational DBMSS, Indexes rameter), or result from the eval”a.
can be suppbed to permit more ef- tlo” of a“ expression. This means
ficlent implementations. A query that m“ltiple strategies m“st &
optimizer examines a variety of generated, with the final selection
strategies and chooses the least ex- Ieft untd the moment the collectlo”
pensive. ObjmtStore also uses in- king queried is known, and the
dexes and a query optimizer. The query is to k r“n.
indexes are more complex than Relational database whereas are
indexes in a relational DBMS, since heavdy normalized—there are “o
they may index paths thro”gh ok such things as embdded sets or
jects and collections, not Just fields pinters. As a result, queries in-
directly conta,ned in objects. The volve multiple tables whose con-
query optimization and index tents are related to one another by
maintenance Ideas presented here )oin terms’, i.e., expressions involv-
were insp,red by [14]. Similar Ideas Ing rows from a pair of tables (e. g.,
on lndexlng and paths ap~ar in the department Identifier column
[12, 15, 16]. In the Employee table and the iden-

Optlmlzation techniques devel- tdier column in the Department

Oped fOr relational DBMSS do not table). Consequently, optimizers
seem well-suited for ObjectStore. spend mOst Of their time figuring
[n a relational DBMS, relations are out the &st way to evaluate queries
always identified by name. As a re- with multiple join terms, In Ob
suit, snformatlon akutthe relation, jectstore, queries tend to ~ over a
e.g., the available indexes, is avail- small num~r of top-level (1.e.,
able when the query is optimized, nonembedded) collections, “s”ally
and a single strategy can b gener- one. SelectIon predicates Involve
ated. In ObjectStore, collections are paths through obj~ts and embd.
often not known by name. They ded collections. These paths ex-
may be pointed at (e.g., by a prnter press the same sort of connections

“

oodbl ObjectStore oodb3 oodb4 rdbmsl lnOeX
System

Warm andcoldcachetravemalwsults
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that join terms expressed in rela-
tional queries. Stnce the path IS
materiahzed In the dawbase, with
inter-object references and embed-
ded collections, join optlmlzatlon IS
less of a problem.

In ObjectStore, a parse tree rep-
resenting the q“ery is constricted
at compde-time. Information con-
cerning paths that appear in the
query IS propagated up the tree to
the nodes representing queries.
During cde generation, a pair of
functions IS generated for each
nde in the que~’s parse tree One
IS used to implement a scan-based
strategy (visit each element and
check the predicate), and the other
Implements an index-based strat-
e~. Functions correspo”di”g to
query nodes also conmin code to
examine the collection bing que-
ried, (e.g., what indexes are pres-
ent? what is the cardlnality?) a“d
make final choices abut strategy.
Th}s approach allows for flexibdlty
at run time, yet still carries out
much expensive work (analysis of
the que~) at compile time.

If ObjectStore’s C++ compiler is
used, then query parsrng and opti-
mization occurs during compile
time. Queries expressed using the
library Interface are actually parsed
and optimized at run time, The
same run-time library supporting
query exsution is used in kth
cases.

As noted earlier, paths can &
viewed as precomputed Joins. 1“
ObjectStore, indexes can b created
on paths. As a result, the join opti-
mization problem faced by rela-
tional DBMS optimizers ISreplaced
by a much simpler index selection
problem. Analysis of the que~ in-
dicates which indexes could be rele-
vant, For example, this query finds
employees who earn over $100,000
and work in the same department
as Fred.

empl~ees[: sd~ >100000 &&
dept–>employees[:
me == ‘Red’ :] :]

There are two paths here~”e
on salary, and another start]ng at



a n e m p h ) v e e -through the
department of the cmpl”yee, the
set of emplovees c>f that depart-
ment, and the name of each such
emplovee An Index for each path
either exists or it does not—the
choice can k made q“,ckly at r“”
time There IS “o need to reaso”
about strategies hased on the pres.
ence or abse”ce of an Index for
each step of each patb, as In a rela-
tional optlm)zer

Tbls IS not to say that queries
over paths avo,d all q“cry process-
ing problems d“e to tbe presence of
JoIns. In general, a comparison of a
path to a constant (e g., dept–>
nme == ‘Mse=ch,), InVOIVCS

Index selectlon only Jo,” optlmlza-
[ion problems recur whe” [WO
paths are compared, as In this
query (not based on any object
classes descr~~d prev,o”slj).

projecw[
eweers[.
projAd == worti-on @@
nme == ‘~ed’ :] ,]

Tbls query find project~ ,“VOIV.
ing Fred There IS“o stored co”.
nectlon betwee” pr”jccts a“d engi-
neers They are matched “p by
comparing the projdd of a W0j8ct
and theworks_on field of a” E@.
neer ObJectStore would eval”atc
thisJoin using Iteration over proj-
ecti, and an Index lookup o“ e~i-
neers, (assuml”g the l“dex ISava,l-
ahle). An l“dex on engi”eers’
names could also be used

Whale this query IS a vahd Ob-
JectStOre q“e~, It 1s an un”s”al
one, and It reflects an unus”al Ob-
jectStore scbema. Normally, the
connection between proJects and
enflneers wo”ld be represented by
inter-obJectreferences, i.e., theJo,”
wo”ld be precomputed and stored
In the parttclpatlng ObJects.This IS
Justified by a“alysjs of programs ,“
our apphcat,on doma,”s, True
joins, as In the earlier query, are
quite rare, For this reason we have
not yet tmplementedjoln optlmiza-
tlon. It ISun”s”al to have queries
Involvlng multiple ‘top-level’ ctdlec-
lions, (e.g., classextents) whose ele-

ment~are related by comparjng at-
tributes. It ISmore c(>mmonto have
queries over a 5,ngle top-fe,,el col-
Iectlon, with nested querle$ o“
embedded collections (Ie., queries
over paths that may go thro”gh COI.
Iectlons). The ObJectStore querv

Optimizer reflects this.
WhaleJoin optlmlzallon ISle?s {>f

a prOblem.cOmpared tOa relatlOnal
DBMS, l“dex malnte”ance is m“ch
more difficult. In a relational
DBMS, “pdatcs affecting Indexes
are expres~cd in SQ1,. 1“ Ob-
jectStore, where tbe lnte~att”n
ktweer] the DBMS and the host
Iangtlage ]$ much t)ghter, updates
are ord,nary expres~lons that have
certain s,dc cflects For example

Person* p,

p–>age = p–>age + 1,

The a551gnment statement “p-
alates the age of perso” p If
P–>@e happens to & tbe key to
some Index, Lben that Index m“st
& updated It 13 not practical to
check If Index maintenance 15Fe-
q“lred f“r every statement that
modifies an ob]ect 1be perfc,r-
mance consequences wo”ld be d,s.
astrous. Instead, ObjectSt<>re re-
quires the declarat,o” of data
members that could polentnl~ k
used as Index keys. Index mainte-
nance checks are perf”rmed for
tbese data memhers o“ly Example.

CIMSPerson
t

ht agetidemble;
titheight;

}; “’”

Tbe declaratlo” of ~e as tidex-
able tndlcates tha[ updates of me
need to k checked f“r l“dex main-
tenance. Updates of height do “ot
have to be cbecked The tidexable
declaration does not affect type, A5
a re$ult, most charlges in i“-
dexabibty (addtng or remov,”g a
declaration of tidexable to an ex.
Istlng data member do not affect

the schema of the database (But
recompdatlon %<)uldalwavs be re-
qu,red )

Irldex nlalntenance 13 furtber
comphcaced by the pre$el]cc of Rn-
dexes on paths. For example, con-
sider an Index on ch]tdren’s r>ames
for a set of peopte Sucb arl Index ]s
useful for quer1e5 stxch a5 “Find
people who have a chdd named
Fred.” Index “palates arc req”,rcd
when a per50n ,5 added t“ the c“l-
Iect!on, a person in (he ctdlect]or]
has a chdd, or when one ofthls per-
son’s chddren changes hls or her
n.me

Indexes on pathscould k s!ngle-
step, with an access method (e g ,
hash tahle) used to represent each
step of the patb, or there coutd b
one structure recording the associa-
tion f(>r the enore path These al-
ternat,,c~ have been d,scussed In
[14] ObjectSt”rc USC5a ser,es of
?Ingle-$tep Indexes. When an ln-
dexable data member IS “pdated,
all affected dccess mctb<>ds are
updated. Tben, .11access mcth,,ds
downstream Inaffected Index paths
are updated t<)<)Slmdarlv, an up-
date to a cotlectjon triggers upda[es
that mav affect all ac’ess methods
of all Indexes of the collection

Applications
I he perlormartce and productlvjtv
&nefits of ObJectStore have been
demc)n~tratedIn a numkr of Ob-
jrctSt<>reapphcatlons

Peflormanceaentits
The {;attell Benchmark [5] was de.
s,gned to reflect the access patterns
of engineering (e.g., CASE and
CAD) apphcatlons Tbe benchmark
consistsof several te?ts, but only the
traverse test results are show” here
since It &st illustrates Lhe perfor-
mance benefits of ObJectSl(>re’?
architecture. The test traverse~ a
graph of oh]ects slmdar t<,C>”Cthat
mlgbl b fc)und In a typicat engi-
neering apphcat]an (e g , a
schema). The graph #n Figure 6
sbows that the warm and cold cache
traversalresultswben tbe cbent and
server are on dtfferent machines
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(i.e., the remote rose).
A cold ache is an empty cache,

as would exist when a client stirts
accessing part of the damhase for
the first time in recent histo~. A
warm cache ISthe same cache after
a numkr of iterations have ke”
run. If the next iteration accesses
the same part of the damhase, the
cache is said to k warm. The dif-
ference htween cold and warm
cache times demonstrates that bth
the client cache and the virtual
memory-mapping architecture
have a significant ~rformance
henefit.

Cold cache times are dominated
hy the time required to get data
from the disk of the server into the
client’s address space. Warm times
reflect prmessing speed of data
that is already present at the client
and mappd Into memory. We b-
Iieve this to & the most imptint
performance concern for our mr-
get appbcatlon areas.

P~dudlvIN BenM&
The productivity henefiti are dem-
onstrated by the experiences of
Luctd, Inc., wblch is developing an
extensible C++ programming en-
vironment named Cadillac [7]. The
environment has hen under devel-

opment since Ig8g and will ~ re-
Ieaxd as a product. The system is
king implemented in C++.

Before Obj&tStore was available,
the developrs of Caddlac used a
C++ ohject class which, when in-
herited, prov,ded persistence.
Classes that might have ~rsistent
insmnces had to inherit from tbis
class. For each such class, methods
(i.e., functions) for storing a“d rc.
trieving the object from the dam-
base had to& defind. A reference
to an object resulted in a retrieval
from the database, ,fthe ohject had
not already hen retrieved. While
reads were transparent in tbat no

special functiOns had tObe called by
tbe class user, writes had to & ex-
plicitly specified as function calls—

a pr~ess that was prOne tO errOr.
This mechanism was supprted hy
a conventional Index Squentiai

Access Methd (ISAM)-hsed file

system.
Porting Cadillac to ObjectStore

took one developr one week. The
mdificatlons were limited to three
source files out of several dozen
and involved, for the most part, dis-
abling the persistence mechanism
that had ken in use. The simplicity
of the prt was due in large part to
the architecture of OhJectStore,
which treau persistence as a storage
class rather than as an aspect of

tYPe. The conversion wo”ld have
ken much more difficult If func-
tions that manipulated objmts had
to & modified to distinguish &-
tween ~rsistent and transient ob-
jects.

In order to sped the prting
prmess, the developers chose to al-
locate all o~ects in the dambase,
even those that did not “eed to b
~rsistent. Once fine-Waind tun-
)ng commencd, however, objects
and values that could be allwated
transiently were allmated on the
transient heap. Tranmction kund-
aries were alm added to shorten
transactions, minimizing commit
time and reducing concurrent con-
flies.

The performance of Cadillac
improved considerably followlng
the insmllation of ObjectStore.
Compilation from witbin the Cadil-
lac environment ran three to five
times faster with ObjectStore than
with the original ISAM-basd per-
sistence mmhanism. Compilation is
a write-intensive o~ration, split
into two transactions, one for each
pass of the compiler. Read-inten-
sive oprations showed even more
improvement, running 10 times
faster using ObjectStore,

Wrk in Progrsss
Object Design, Inc. was founded in
August 1988, and vers!on 1.0 of
Ob]ectStore was released in Octo-
&r 1990. Version 1.1, descri~d
here, was released in March 1991
and was the result of approximately
30 prwn-years of effort.

We are extending this work in a
numkr of ways. New features

under development Include:

. Whe- evolution:When a type
definition changes, insmnces of
the type, stored In the dambase,
need to b mdified to reflect the
change.

● Suppti for hekm~ous mhi-
ktims: Some applications re-
quire access to a datibase from
mult]ple architectures with vary-
ing memory layouts (e.g., differ-
ent byte orderings and floating-
point represenmt,ons).

. Gmmutication with existig
dambses: Many applications
requtre the abdity to access exist.
ing, nonobject-orie”ted databases
(e.g., SQL and IMS databases),
To retiln the productivity bene-
fits of ObjectStore, it ]s necessary
to provide transparent access to
these databases, I.e., througb the
existing ObJectStore interface.

Conclusions
ObJectStOre was designed for use In
applications that perform complex
manipulations on large databases of
obJects with Intricate structure.
Developers of these apphcatlons
require bigh productivity through
ease of use, expressive ~wer, a
reumble cde base, and tight lnte-
~ation with tbe host environment.
However, even more imprmnt is
the need for high ~rformance.
Sped cannotk sacrificed to obtain
these knefits.

The key to meeting these re-
quirement is the virtual memo~-
mapping architecture. Becauw of
this architecture, ObjectStore uwrs
deal witb a single type system. This
~rmlts tight Integration with the
host environment, eaw of use, and
the reuse of existing Iibranes.
Other approaches to ~rsistence
mken by other object-oriented
DBMSS require transient and pr-
sistent objects to & ty~d differ-
ently. As a result, conversion k-
tween transient and persistent
represenmtlons are required, or
software that had ken develo~d
to deal with transient objwtt must
& modified or duplicated to ac-



c persistent objects. In a
relational DBMS, all persistent data
is accessed wlthln the scope of the
SQL Iang”age with Its own Inde-
pendent type system,

The virtual memory -mappl”g
architecture also leads to high per.
formance. References to transle”t
and persistent obJects are ha”dled
by the same machine cde se.
quences, Other architectures re-
quire references to potentially per-
sistent objects 10 b handled ln
software, and this IS necessary
slower.

ObjectStore’s collecoon, relatio”.
sbip, and query facditles prov!de
support for conceptual nlodehng
constructs such as multlvalued at-
tributes, and many-to-many rela-
tionships can k translated dire’tly
into declarative ObJectStOre co”.
structs ❑
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