

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ETPURM/D
5/2004
REV 1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

 Enhanced Time Processing Unit (eTPU)
Preliminary Reference Manual

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573, Japan
81-3-3440-3569
ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334
TECHNICAL INFORMATION CENTER:

1-800-521-6274
HOME PAGE:
http://motorola.com/semiconductors/

Information in this document is provided solely to enable system and
software implementers to use Motorola products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits or integrated circuits based on the information
in this document.

Motorola reserves the right to make changes without further notice to
any products herein. Motorola makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular
purpose, nor does Motorola assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola
products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and
its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim
Motorola and the Stylized M Logo are registered in the U.S. Patent and
Trademark Office. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

© Motorola, Inc. 2004

ETPURM/D 5/2004 REV 1

of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Section
Number Title

 Page
Number

Contents
Paragraph
Number Title

 Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 1
Enhanced Time Processing Unit (eTPU) Overview

1.1 Overview.. 1-2
1.1.1 eTPU Block Components .. 1-3
1.1.2 eTPU Operation Overview .. 1-4
1.1.3 eTPU Engine.. 1-5
1.1.3.1 Time Bases... 1-6
1.1.3.2 eTPU Timer Channels ... 1-7
1.1.3.3 Host Interface... 1-8
1.1.3.4 Shared Parameter RAM (SPRAM).. 1-8
1.1.3.5 Scheduler ... 1-9
1.1.3.6 Microengine... 1-9
1.1.3.7 Dual eTPU engine System... 1-10
1.2 Features .. 1-10
1.2.1 eTPU Feature Summary... 1-10
1.2.2 eTPU Enhancements over TPU3 ... 1-13
1.3 Modes of Operation ... 1-14
1.3.1 eTPU Mode Selection.. 1-15

Chapter 2
External Signal Description

2.1 Introduction.. 2-1
2.2 eTPU Signals ... 2-1
2.2.1 Output and Input Channel Signals ... 2-1
2.2.2 TCRCLK_[A:B], Time Base Clock Signal (TCRCLK) 2-3
2.2.3 Channel Output Disable Signals .. 2-4

Chapter 3
Memory Map

3.1 Introduction.. 3-1
3.2 Memory Map ... 3-1
MOTOROLA Contents iii
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 4
Programming Model

4.1 Introduction.. 4-1
4.2 System Configuration Registers .. 4-1
4.2.1 eTPU Module Configuration Register (ETPUMCR) 4-1
4.2.2 eTPU Coherent Dual-Parameter Controller Register (ETPUCDCR).............. 4-4
4.2.3 eTPU MISC Compare Register (ETPUMISCCMPR)..................................... 4-5
4.2.4 eTPU Engine Configuration Register (ETPUECR)... 4-6
4.3 Time Base Registers... 4-9
4.3.1 eTPU Time Base Configuration Register (ETPUTBCR) 4-9
4.3.2 eTPU Time Base 1 (TCR1) Visibility Register (ETPUTB1R)...................... 4-12
4.3.3 eTPU Time Base 2 (TCR2) Visibility Register (ETPUTB2R)...................... 4-12
4.3.4 STAC Bus Configuration Register (ETPUREDCR) 4-13
4.4 Channel Registers Layout .. 4-15
4.5 Global Channel Registers .. 4-16
4.5.1 eTPU Channel Interrupt Status Register (ETPUCISR) 4-16
4.5.2 eTPU Channel Data Transfer Request Status Register (ETPUCDTRSR)..... 4-16
4.5.3 eTPU Channel Interrupt Overflow Status Register (ETPUCIOSR).............. 4-18
4.5.4 eTPU Channel Data Transfer Request Overflow Status Register

(ETPUCDTROSR) .. 4-19
4.5.5 eTPU Channel Interrupt Enable Register (ETPUCIER)................................ 4-19
4.5.6 eTPU Channel Data Transfer Request Enable Register (ETPUCDTRER) ... 4-20
4.5.7 eTPU Channel Pending Service Status Register (ETPUCPSSR).................. 4-21
4.5.8 eTPU Channel Service Status Register (ETPUCSSR) 4-22
4.6 Channel Configuration and Control Registers... 4-23
4.6.1 eTPU Channel x Configuration Register (ETPUCxCR) 4-24
4.6.2 eTPU Channel x Status Control Register (ETPUCxSCR)............................. 4-26
4.6.3 eTPU Channel x Host Service Request Register (ETPUCxHSRR) 4-28

Chapter 5
Host Interface

5.1 System Configuration .. 5-1
5.2 Interrupts and Data Transfer Requests... 5-1
5.2.1 Interrupt Types and Sources .. 5-1
5.2.2 Interrupt and Data Transfer Request Overflow ... 5-2
5.3 Parameter Access ... 5-3
5.3.1 Parameter Access Widths .. 5-3
5.3.2 Parameter Addresses and Endianess.. 5-3
5.3.3 Parameter Concurrency.. 5-3
5.3.4 Parameter Sign Extension Area ... 5-3
iv eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4 SPRAM Organization .. 5-4
5.5 Host Service Requests ... 5-6
5.6 SCM Access... 5-6
5.6.1 SCM RAM Implementations ... 5-7
5.6.2 SCM Low Power ... 5-7
5.7 Parameter Sharing and Coherency .. 5-7
5.7.1 Host Side Atomic Access .. 5-8
5.7.2 Microengine Side Atomic Accesses .. 5-8
5.7.2.1 Microengine Single Parameter Atomicity ... 5-8
5.7.2.2 Microengine Dual Parameter Atomicity.. 5-9
5.7.2.3 Microengine Side Multiple Atomicity... 5-9
5.7.3 Coherent Dual-parameter Controller (CDC) ... 5-9
5.7.3.1 CDC Programming .. 5-11
5.7.4 Hardware Semaphores ... 5-11
5.7.5 SPRAM Arbitration ... 5-12
5.8 Enhanced Channels ... 5-13
5.8.1 Channel Registers and Flags ... 5-17
5.8.1.1 Event Registers (ER) ... 5-18
5.8.1.1.1 Match1 and Match2 Registers ... 5-20
5.8.1.1.2 Capture1 and Capture2 Registers .. 5-20
5.8.1.1.3 Time Base Selection Registers (TBS1) and (TBS2).............................. 5-21
5.8.1.2 Pin Control Registers... 5-21
5.8.1.2.1 Input and Output Pin Action Control Registers (IPAC1), (IPAC2),

(OPAC1), and (OPAC2) .. 5-22
5.8.1.2.2 Output Pin Control Logic and Pin State Output Register (PSTO) 5-22
5.8.1.2.3 Pin State Input and Pin Sampled State Registers (PSTI) and (PSS)...... 5-23
5.8.1.3 General Channel Registers .. 5-23
5.8.1.3.1 Channel Selection Register (CHAN)... 5-24
5.8.1.3.2 Pre-Defined Channel Mode (PDCM) .. 5-25
5.8.1.3.3 Match/Transition Service Request Inhibit Latch (SRI) 5-26
5.8.1.3.4 Channel ‘State Resolution’ Flags (Flag1), (Flag0)................................ 5-27
5.8.2 Match Recognition... 5-27
5.8.2.1 Match Recognition Latches (MRL_A/B) .. 5-28
5.8.2.2 Match Enable Flag (MEF) ... 5-29
5.8.2.3 Match Recognition Latch Enable (MRLE1/2) .. 5-29
5.8.3 Transition Detection and Time Base Capture .. 5-30
5.8.3.1 Transition Detect Latches (TDL_A/B) .. 5-31
5.8.4 Channel Modes .. 5-32
5.8.4.1 Channel Modes Overview ... 5-32
5.8.4.2 Either Match, Blocking Modes (em_b_st, em_b_dt)................................. 5-33
5.8.4.3 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)..................... 5-33
MOTOROLA Contents v
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.4.4 Match2 Request Modes (m2_st, m2_dt).. 5-33
5.8.4.5 Both Match Request Modes (bm_st, bm_dt)... 5-33
5.8.4.6 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt) 5-34
5.8.4.7 Single Match Modes (sm_st, sm_dt) ... 5-34
5.8.4.8 Single Match Enhanced Mode (sm_st_e) .. 5-34
5.8.4.9 Channel Modes on Input Signal Processing .. 5-34
5.8.4.10 Either Match, Blocking, Single Transition (em_b_st) 5-35
5.8.4.11 Either Match, Blocking, Double Transition (em_b_dt) 5-35
5.8.4.12 Either Match, Non Blocking, Single Transition (em_nb_st) 5-35
5.8.4.13 Either Match, Non Blocking, Double Transition (em_nb_dt) 5-35
5.8.4.14 Match2 Request, Single Transition (m2_st) .. 5-36
5.8.4.15 Match2 Request, Double Transition (m2_dt) .. 5-37
5.8.4.16 Both Match Request, Single Transition (bm_st) 5-37
5.8.4.17 Both Match Request, Double Transition (bm_dt) 5-37
5.8.4.18 Ordered Mode with Match2 Request, Single Transition (m2_o_st).......... 5-37
5.8.4.19 Ordered Mode with Match2 Request, Double Transition (m2_o_dt)........ 5-38
5.8.4.20 Single Match Enhanced Mode (sm_st_e) .. 5-38
5.8.4.21 Single Match, Single Transition (sm_st) ... 5-39
5.8.4.22 Single Match, Double Transition (sm_dt) ... 5-39
5.8.4.23 Channel Modes on Output Signal Generation ... 5-39
5.8.4.24 Either Match, Blocking Modes (em_b_st, em_b_dt)................................. 5-39
5.8.4.25 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)..................... 5-40
5.8.4.26 Match2 Request Modes (m2_st, m2_dt).. 5-40
5.8.4.27 Both Match Request Modes (bm_st, bm_dt)... 5-40
5.8.4.28 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt) 5-41
5.8.4.29 Single Match Modes (sm_st, sm_dt, sm_st_e) .. 5-41
5.8.4.30 Match/Transition Pin Action Conflict Resolution 5-41
5.8.4.31 Combining Input and Output Signals .. 5-42
5.8.5 Channel Link.. 5-44
5.8.6 Enhanced Digital Filter (EDF)... 5-45
5.8.6.1 Two-Sample Mode... 5-45
5.8.6.2 Three-Sample Mode .. 5-45
5.8.6.3 Continuous Mode... 5-46
5.8.6.4 Filter Clock Prescaler .. 5-46
5.9 Time Bases .. 5-47
5.9.1 Timer Count Register 1 (TCR1) .. 5-47
5.9.1.1 Externally Clocked Mode .. 5-48
5.9.1.2 Internally Clocked Mode ... 5-48
5.9.2 Timer Count Register 2 (TCR2) .. 5-48
5.9.2.1 TCR2 Clock Prescaling ... 5-50
5.9.2.2 TCR2 Gated Mode... 5-50
vi eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9.2.3 TCR2 Signal Transition Modes ... 5-50
5.9.2.4 TCR2 Bus in Angle Clock Mode... 5-51
5.9.3 Shared Time and Angel Count (STAC) Bus Interface................................... 5-51
5.9.4 Global Time Base Enable (GTBE)... 5-52
5.9.5 TCRCLK Digital Filter.. 5-52
5.10 eTPU Angle Counter (EAC) ... 5-53
5.10.1 General... 5-53
5.10.2 Angle Mode Registers ... 5-53
5.10.2.1 Tooth Program Register (TPR) .. 5-54
5.10.2.2 Timer Counter 2 (TCR2) ... 5-57
5.10.2.3 Tick Rate Register (TRR) .. 5-57
5.10.3 Acceleration and Deceleration... 5-61
5.10.4 Angle Tick Generator .. 5-61
5.10.4.1 Calculating the Angle Tick Period Integer and Fraction 5-62
5.10.4.2 Generating the Angle Ticks ... 5-63
5.10.5 Count Control and High Rate Logic .. 5-64
5.10.5.1 Normal Mode... 5-65
5.10.5.2 Halt Mode (Deceleration) .. 5-66
5.10.5.3 High Rate Mode (Acceleration)... 5-67
5.10.6 Special Cases of Missing Teeth and Last Tooth .. 5-68
5.10.6.1 Handling the Last Tooth .. 5-68
5.10.6.2 Handling Missing Teeth... 5-69
5.10.6.3 Combining Missing Teeth and Last Tooth... 5-70
5.10.7 Handling Mechanical Tooth Correction .. 5-70
5.10.8 Handling Mis-detected Tooth .. 5-71
5.10.9 Handling False Tooth Detection .. 5-71

Chapter 6
Scheduler

6.1 Channel Enabling and Priority Assignment... 6-1
6.2 Channel Priority Schemes.. 6-2
6.2.1 Primary Scheme: Priority Among Channels on Different Levels 6-3
6.2.2 Secondary Scheme: Priority Among Channels on the Same Level................. 6-4
6.2.3 Priority Scheme Example .. 6-5
6.3 Time Slot Latency.. 6-6

Chapter 7
Functions and Threads

7.1 Introduction.. 7-1
7.2 Entry Points.. 7-2
MOTOROLA Contents vii
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.2.1 Entry Table... 7-2
7.2.2 Entry Point Address Generation .. 7-4
7.2.3 Standard Condition Encoding Scheme .. 7-6
7.2.4 Alternate Condition Encoding Scheme.. 7-7
7.2.5 Entry Point Format .. 7-9
7.3 Time Slot Transition .. 7-10

Chapter 8
Microengine

8.1 Introduction.. 8-1
8.2 Registers... 8-3
8.2.1 Preload Register (P) ... 8-3
8.2.2 DIOB Register ... 8-3
8.2.3 Event Register Temporary (ERT_A) and (ERT_B)... 8-4
8.2.4 Shift Register (SR)... 8-4
8.2.5 Multiply Accumulate High/Low Register (MACH) and (MACL).................. 8-4
8.2.6 LINK Register.. 8-4
8.2.7 Return Address Register (RAR) .. 8-5
8.2.8 CHAN Register.. 8-5
8.2.9 Counter Registers: TCR1, TCR2, TPR, and TRR ... 8-5
8.2.10 General Purpose Registers: A, B C and D... 8-5
8.3 ALU and Post-ALU Shifter ... 8-5
8.3.1 ALU Flags.. 8-6
8.3.1.1 Carry Flag (C).. 8-6
8.3.1.2 Negative Flag (N) .. 8-7
8.3.1.3 Overflow (V) ... 8-7
8.3.1.4 Zero Flag (Z).. 8-7
8.3.2 ALU ADD Operation with and without Shifting... 8-8
8.3.3 ADC Operation .. 8-9
8.3.4 Bitwise Operations... 8-10
8.3.5 Set Bit/Clear Bit Operations .. 8-10
8.3.6 Exchange Bit.. 8-11
8.3.7 Multibit Shift/Rotate Operations ... 8-12
8.3.8 Absolute Value Operation.. 8-12
8.4 MAC and Divide Unit (MDU)... 8-13
8.4.1 Multiply and Multiply-Accumulate Operation Length.................................. 8-14
8.4.2 Divide Operation Length ... 8-14
8.4.3 Signed Multiplication (mults).. 8-15
8.4.4 Unsigned Multiplication (multu) ... 8-15
8.4.5 Signed Multiply-Accumulate (macs)... 8-15
8.4.6 Unsigned Multiply-Accumulate (macu) .. 8-15
viii eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.7 Signed Fractional Multiplication (fmults) ... 8-16
8.4.8 Unsigned Fractional Multiplication (fmultu)... 8-16
8.4.9 Unsigned Divide (div) ... 8-17
8.4.10 MDU Flags .. 8-17
8.4.10.1 MDU Negative Flag (MN) .. 8-17
8.4.10.2 MDU Carry Flag (MC).. 8-17
8.4.10.3 MDU Zero Flag (MZ).. 8-17
8.4.10.4 MDU Overflow Flag (MV) ... 8-18
8.4.10.5 MDU Busy Flag (MB)... 8-18
8.5 Branch Conditions ... 8-18

Chapter 9
Microinstruction Set

9.1 Introduction.. 9-1
9.2 SPRAM Microoperations .. 9-1
9.2.1 SPRAM Addressing Modes... 9-1
9.2.1.1 Absolute Addressing Mode ... 9-2
9.2.1.2 Selected Channel Relative Addressing Mode.. 9-2
9.2.1.3 Indirect Addressing Mode ... 9-2
9.2.2 SPRAM Source/Destination Registers .. 9-2
9.2.3 SPRAM Operation Size ... 9-3
9.2.4 SPRAM Access Direction ... 9-3
9.2.5 Zero SPRAM Operation .. 9-4
9.2.6 DIOB Stack Operation... 9-4
9.2.7 Semaphore Operations... 9-4
9.3 ALU/MDU Operations .. 9-5
9.3.1 A-Source and Destination Register Set Selection.. 9-5
9.3.1.1 Microinstructions With Fields ABSE and ABDE 9-6
9.3.1.2 Microinstructions Without Fields ABSE and ABDE 9-6
9.3.2 Selecting Sources and Destination... 9-6
9.3.2.1 Max Const Generation With T4BBS=111 ... 9-9
9.3.2.2 Special T4ABS Source Operation: Read Match Registers.......................... 9-9
9.3.2.3 CHAN_BASE as a Source... 9-9
9.3.3 Flags Sampling Control ... 9-10
9.3.4 B-Source Inversion .. 9-11
9.3.5 Carry-in Control... 9-11
9.3.6 Generating “Max” Constant... 9-12
9.3.7 Shift Operations ... 9-12
9.3.8 Shift Register Operations... 9-12
9.3.9 Post-ALU Shift Operations.. 9-13
9.3.10 Conditional ALU/MDU Operation Execution... 9-14
MOTOROLA Contents ix
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.11 A-Source Size Override ... 9-15
9.3.12 A-source Sign Extension ... 9-16
9.3.13 ALU/MDU Operation Selection.. 9-16
9.3.14 Operations With Immediate Data .. 9-17
9.3.14.1 24-bit Immediate Destination .. 9-17
9.3.14.2 Enhanced ALU Operations With Immediate Data 9-18
9.4 Channel Control and Configuration Microoperations 9-19
9.4.1 Channel Flags Operations.. 9-19
9.4.2 Comparator and Time Base Selection.. 9-20
9.4.3 Transition Detection and Pin Action Control .. 9-21
9.4.4 Immediate Pin State Control.. 9-22
9.4.5 Write Channel Match Registers ... 9-22
9.4.6 Clear Transition/Match Event Registers.. 9-22
9.4.7 Disable Matches... 9-23
9.4.8 Disable Match and Transition Service Requests ... 9-23
9.4.9 Predefined Channel Modes.. 9-23
9.4.10 Channel Interrupt and Data Transfer Requests.. 9-24
9.4.11 Clear Link Service Request ... 9-24
9.5 Flow Control Microoperations... 9-25
9.5.1 Ending Current Thread (END) .. 9-25
9.5.2 Branch Operations ... 9-25
9.5.2.1 Selecting Jump or Call Microoperations ... 9-25
9.5.2.2 Branch Target Address... 9-26
9.5.2.3 Conditional/Unconditional Branch.. 9-26
9.5.3 Dispatch Microoperation ... 9-27
9.5.4 Return from Subroutine ... 9-28
9.5.5 Flush Pipeline .. 9-28
9.5.6 HALT Microinstruction ... 9-29
9.5.7 NOP Microinstruction.. 9-29
9.6 Illegal Instructions ... 9-29
9.7 Microinstruction Parallelism Issues... 9-30
9.7.1 ALU Operations and Read Match Registers.. 9-30
9.7.2 ALU and SPRAM Operations ... 9-30
9.7.3 ERT_A/B as ALU destination and ERW1/2.. 9-30
9.7.4 ERW1/2 and MRLE... 9-31
9.7.5 CHAN Assignment, Read Match and ERW1/2 ... 9-31
9.7.6 Read Match and ERW1/2 .. 9-31
9.7.7 Stack Accesses and ALU Operations .. 9-31
9.7.8 SRC and ALU Operations ... 9-32
9.7.9 Semaphore Lock/Free and SMLCK Branch Condition................................. 9-32
9.8 Microinstruction Formats .. 9-33
x eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 10
Test and Development Support

10.1 Introduction.. 10-1
10.2 Development Support Features.. 10-1
10.2.1 Internal Debug Interface and Nexus Class 3 Support.................................... 10-1
10.2.2 Microengine Halt State .. 10-1
10.2.3 Hardware Breakpoints ... 10-2
10.2.4 Hardware Watchpoints... 10-3
10.2.5 Software Breakpoints... 10-3
10.2.6 Single-step Execution .. 10-4
10.2.7 Forced Microinstruction Execution ... 10-4
10.2.8 Microengine Register Access .. 10-4
10.2.9 Microengine Flag Access... 10-5
10.2.10 Microengine Stall... 10-5
10.2.11 SCM Emulation ... 10-5
10.3 Test Support Features... 10-6
10.3.1 SCM Test for MISC (Multiple Input Signature Calculator) 10-6

Chapter 11
Nexus Dual eTPU Development

Interface (NDEDI)

11.1 Introduction.. 11-1
11.1.1 Block Diagram... 11-1
11.1.2 Overview.. 11-2
11.1.3 Features.. 11-3
11.1.4 Modes of Operation ... 11-4
11.1.4.1 Reset .. 11-5
11.1.4.2 Disabled-Port Mode... 11-5
11.1.4.3 Full-Port Mode... 11-5
11.1.4.4 Reduced-Port Mode ... 11-5
11.2 Memory Map/Register Definition ... 11-6
11.2.1 Register Descriptions... 11-7
11.2.1.1 Client Select Control Register (CSC) .. 11-7
11.2.1.2 ENGINEn Development Control Register (NDEDI_ENGINEn_DC)...... 11-8
11.2.1.3 ENGINEn Development Status Register (NDEDI_ENGINEn_DS)....... 11-12
11.2.1.4 ENGINEn Watchpoint Trigger Register (NDEDI_ENGINEn_WT)....... 11-14
11.2.1.5 ENGINEn Data Trace Control Register (NDEDI_ENGINEn_DTC) 11-16
11.2.1.6 ENGINEn Breakpoint/Watchpoint Control Registers

(NDEDI_ENGINEn_BWC1, NDEDI_ENGINEn_BWC2)................ 11-18
MOTOROLA Contents xi
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.7 ENGINEn Breakpoint/Watchpoint Address Registers
(NDEDI_ENGINEn_BWA1, NDEDI_ENGINEn_BWA2) 11-20

11.2.1.8 ENGINEx Breakpoint/Watchpoint Data Registers
(NDEDI_ENGINEn_BWD1, NDEDI_ENGINEn_BWD2) 11-21

11.2.1.9 ENGINEn Program Trace Channel Enable Register
(NDEDI_ENGINEn_PTCE).. 11-21

11.2.1.10 ENGINEn Breakpoint/Watchpoint Control 3 Register
(NDEDI_ENGINEn_BWC3) .. 11-22

11.2.1.11 ENGINEn Microinstruction Debug Register
(NDEDI_ENGINEn_INST) .. 11-25

11.2.1.12 ENGINEn Microprogram Counter Debug Register
(NDEDI_ENGINEn_MPC)... 11-25

11.2.1.13 ENGINEn Channel Flag Status Register (NDEDI_ENGINEn_CFSR) .. 11-26
11.2.1.14 CDC Data Trace Control Register (NDEDI_CDC_DTC)...................... 11-29
11.2.1.15 Data Trace Address Range 0 Register (NDEDI_DTAR0) 11-31
11.2.1.16 Data Trace Address Range 1 Register (NDEDI_DTAR1) 11-31
11.2.1.17 Data Trace Address Range 2 Register (NDEDI_DTAR2) 11-32
11.2.1.18 Data Trace Address Range 3 Register (NDEDI_DTAR3) 11-33
11.2.1.19 Unimplemented Registers.. 11-34
11.3 Functional Description... 11-34
11.3.1 NDEDI Reset Configuration.. 11-34
11.3.1.1 Enabling NDEDI Class 1 Operation.. 11-34
11.3.1.2 Enabling NDEDI Class 3 Operation.. 11-35
11.3.2 Auxiliary Output Port .. 11-35
11.3.2.1 Output Message Protocol... 11-35
11.3.2.2 Output Messages.. 11-36
11.3.2.3 Rules of Messaging.. 11-42
11.3.2.4 Examples.. 11-42
11.3.2.5 Temporal Ordering of Transmitted Messages.. 11-44
11.3.3 Microcode Development Support .. 11-44
11.3.4 Debug Status .. 11-45
11.3.4.1 Messaging .. 11-45
11.3.4.2 Error Messages .. 11-45
11.3.4.3 Synchronization ... 11-46
11.3.4.4 Timing Diagrams ... 11-46
11.3.5 Ownership Trace.. 11-46
11.3.5.1 Messaging .. 11-47
11.3.5.2 OTM Flow ... 11-47
11.3.5.3 Timing Diagram... 11-47
11.3.6 Program Trace.. 11-48
11.3.6.1 Branch Trace Messaging ... 11-48
xii eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.6.2 Branch Trace Message Formats... 11-49
11.3.6.2.1 Resource Full Messages .. 11-50
11.3.6.2.2 Indirect Branch with History Messages... 11-50
11.3.6.2.3 Indirect Branch with History Synchronization Messages 11-50
11.3.6.2.4 Program Trace Correlation Message ... 11-51
11.3.6.2.5 Channel Start Service Message ... 11-51
11.3.6.2.6 Channel Trace Enable Message... 11-52
11.3.6.2.7 Channel Register Write Messages ... 11-52
11.3.6.3 Branch Trace Messaging Operation .. 11-52
11.3.6.3.1 Relative Addressing... 11-56
11.3.6.3.2 Enabling Program Trace .. 11-57
11.3.6.3.3 Branch/Predicate Instruction History .. 11-58
11.3.6.3.4 Sequential Instruction Count ... 11-58
11.3.6.3.5 Interleaved ENGINE1 and ENGINE2 messages................................. 11-59
11.3.6.4 Timing Diagrams ... 11-59
11.3.7 Data Trace.. 11-62
11.3.7.1 Data Trace Message Formats... 11-63
11.3.7.1.1 Data Write Message... 11-63
11.3.7.1.2 Data Read Message ... 11-64
11.3.7.1.3 Data Trace Synchronization Messages .. 11-64
11.3.7.2 Data Trace Operation... 11-65
11.3.7.2.1 Data Trace Windowing .. 11-66
11.3.7.2.2 Relative Addressing.. 11-67
11.3.7.3 Timing Diagrams ... 11-68
11.3.8 Watchpoint Trace ... 11-69
11.3.8.1 Messaging .. 11-69
11.3.8.2 Error Messages .. 11-70
11.3.8.3 Synchronization ... 11-70
11.3.8.4 Timing Diagrams ... 11-71
11.3.9 eTPU Message Queue.. 11-71
11.3.9.1 Queue Control.. 11-73
11.3.9.2 Error Messages .. 11-73
11.3.9.3 Timing Diagrams ... 11-74
11.4 Initialization/Application Information ... 11-74
11.4.1 Accessing NDEDI Tool-Mapped Registers ... 11-74
11.4.2 Program Trace Reconstruction .. 11-75
11.4.3 Microcode Development Support .. 11-75
11.4.3.1 Read and Write SPRAM In Debug Mode ... 11-75
11.4.3.2 Read and Write eTPU Internal Registers in Debug Mode....................... 11-75
11.4.3.3 Enter Debug Mode at the Negation of Reset ... 11-76
11.4.3.4 Enter Debug Mode During Normal Execution.. 11-76
MOTOROLA Contents xiii
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.4.3.5 Stop Program Execution on a Breakpoint ... 11-76
11.4.3.6 Single Step Instructions and Re-Enter Debug Mode 11-76
11.4.3.7 Set Breakpoint or Watchpoints .. 11-77
11.4.3.8 Execute Forced Microcode Instruction in Debug Mode.......................... 11-77

Chapter 12
Initialization/Application Information

12.1 Configuration Sequence... 12-1
12.2 Reset Options... 12-2
12.2.1 Hardware Reset.. 12-2
12.2.2 Software Reset ... 12-2
12.3 Multiple Parameter Coherency Methods ... 12-2
12.4 Programming Hints and Caveats ... 12-3
12.4.1 Atomic Dual Access After a Call, Return.. 12-3
12.4.2 Resource Polling .. 12-3
12.4.3 Changing Channel Function, Parameter Base, or Entry Table Scheme......... 12-4
12.4.4 Checking and Clearing Interrupts of a Stopped Engine 12-4
12.5 Estimating Worst Case Latency ... 12-4
12.5.1 Introduction to Worst-Case Latency .. 12-5
12.5.2 Using Worst-Case Latency Estimates to Evaluate Performance 12-7
12.5.3 Priority Scheme Details Used in WCL Analysis ... 12-7
12.5.3.1 Priority Passing.. 12-8
12.5.3.2 Time-Slot Transition .. 12-9
12.5.3.3 Channel Number Priority... 12-9
12.5.3.4 SPRAM Collision Rate.. 12-9
12.5.4 First-Pass Worst-Case Latency Analysis ... 12-11
12.5.4.1 Worst-Case Assumptions and Formula.. 12-11
12.5.4.2 Finding the Worst-Case Service Time for Each Active Channel 12-12
12.5.4.3 Mapping the Channels for Each Time Slot.. 12-13
12.5.4.4 Adding Time for Time-Slot Transitions .. 12-13
12.5.4.5 First-Pass Analysis Worst-Case Latency Examples 12-13
12.5.4.6 Finding the WCL for PWM on Channel 0... 12-13
12.5.4.7 Finding the WCL for PPWA on Channel 1 ... 12-15
12.5.4.8 Finding the WCL for DIO on Channel 2 ... 12-16
12.5.5 Second-Pass Worst-Case Latency Analysis... 12-17
12.5.5.1 Second-Pass Analysis Guidelines.. 12-17
12.5.5.2 Second-Pass Analysis Example... 12-18
12.5.5.3 First-Try System Configuration... 12-19
12.5.5.4 Second-Try System Configuration .. 12-20
12.6 Endianness ... 12-21
xiv eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A
Microcycle Timing

Appendix B
Initialization Code Example

Appendix C
Channel Mode Summary

Appendix D
eTPU MISC Algorithm
MOTOROLA Contents xv
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Contents
Paragraph
Number Title

Page
Number

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

xvi eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 1
Enhanced Time Processing Unit (eTPU)
Overview
The eTPU is an intelligent, semi-autonomous co-processor designed for timing control. It
operates in parallel with the host CPU. The eTPU processes instructions, real-time input
events, performs output waveform generation, and accesses shared data without the host
CPU’s intervention. Consequently, the host CPU setup and service times for each timer
event, are minimized or eliminated.

The eTPU has a more powerful processing unit than its predecessors. This more powerful
processor allows the eTPU to handle high-level C code very efficiently. A C compiler
allows customers to develop customized functions for the eTPU. In addition to a compiler,
a high-level assembler and documentation are available for customer development.

The eTPU is an enhanced version of the TPU module. Although there is no compatibility
at microcode level, eTPU maintains several features of older TPU versions and is
conceptually almost identical to the TPU. These facts, along with a C compiler, make it
relatively easy to port older applications, at the same time adding several features listed in
Section 1.2.2, “eTPU Enhancements over TPU3.”

The eTPU’s architecture aims at high resolution/performance timing capabilities. High
resolution timing is usually limited by host CPU overhead required to service timing tasks
such as period measurement, pulse measurement, pulse width modulated waveform
generation, etc. High resolution timing is achieved by three main capabilities on the eTPU:

• Reduced timer function latency, that is the interval from occurrence of an event to
the start of event servicing pin actions is immediate.

The eTPU has dedicated channel hardware that implements essential timer
functionality. A time base match generates a pin transition. Capture registers record
input transitions.

• Reduced or eliminated host interrupt service time.

Many interrupts, service requests, are handled by the eTPU microengine, thus
freeing the host processor to handle other operations.

• Double action channel capability reducing the channel request rate.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Every eTPU has two match and two capture registers, as opposed to the previous
TPUs which only had one of each register. The doubling of these registers allows the
generation/capture of complex waveforms with a reduction in required servicing by
the eTPU microengine.

The eTPU provides higher resolution than the host CPU can achieve. This is partially due
to the eTPU implementation, which includes specific instructions for handling and
processing time events. In addition, channel conditions are available for use by the eTPU
processor, thus eliminating many branches. The eTPU creates no host overhead for
servicing timing events. There are two types of timing events:

• Input pin transition, that is capture.

• Selected time base match, that is, a selected time base counter reached or exceeded
a pre-programmed value

Service time is the time spent servicing an event. In general, the service time in
microcontrollers is constrained because the instruction set is not optimized for time
function synthesis. The eTPU instruction set is optimized for time operations, so that time
functions can be implemented with much fewer instructions than the host CPU.

Instructions executed by the eTPU are connected directly to eTPU timing hardware.
Knowledge of the hardware conditions allows for faster execution of code by reducing the
number of branches, that is parallelism of hardware related actions is enabled by this
knowledge of the hardware channel conditions.

1.1 Overview
Figure 1-1 shows a top-level eTPU block diagram. It displays a dual eTPU engine
configuration.

NOTE
A single eTPU engine configuration is also possible.
1-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-1. eTPU Block Diagram

1.1.1 eTPU Block Components

The eTPU engine is responsible for processing input pin transitions and output pin
waveform generation based on time bases. For more information on time bases see
Section 1.1.3.1, “Time Bases.” Each eTPU engine has its own microprocessor and
dedicated hardware for processing signals on I/O pins. Each eTPU engine also has the
ability to interface with external time bases.

Both eTPU engine processors, hereafter called microengines, fetch microinstructions from
shared code memory (SCM).

Shared Parameter RAM (SPRAM) holds eTPU application parameters and work data. It is
accessed by the host CPU and both microengines.

The bus interface unit (BIU) allows the host CPU to access eTPU registers and data
memory.

eTPU Engine BeTPU Engine A
Shared
PRAM

IPS Interface

Shared Code Memory

Shared
BIU RegistersRegisters

SCM

Host CPU

Debug

eTPU_A Ch. 0–31

STAC
Interface

STAC
Interface

Interface
Debug

Interface

eTPU_B Ch. 0–31
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each eTPU engine interfaces with 32 I/O channels. Each channel is provided with hardware
dedicated for input signal processing and output signal generation. Each channel can also
use two shared 24-bit counter registers for its time base.

Each I/O signal pair is associated with a dedicated channel, which provides hardware for
input signal processing and output signal generation, in relationship with a selected time
base.

1.1.2 eTPU Operation Overview

The eTPU is a real-time microprocessed subsystem: it runs microengine code from
instruction memory (SCM) to handle specific events. The eTPU accesses data memory
(SPRAM) for parameters, work data and application state info. Events may originate from
I/O channels (due to pin transitions and/or time base matches), host CPU requests or
inter-channel requests. Events that call for local eTPU processing activate the microengine
by issuing a service request. The service request microcode may set an interrupt to the host
CPU.

NOTE
I/O channel events cannot directly interrupt the host CPU.

Each channel is associated with a function, which defines its behavior. A function is a
software entity consisting of a set of microengine routines, called threads, that attend to
eTPU service requests. Function routines are also responsible for channel configuration.
Function routines reside in SCM. A function may be assigned to several channels, but a
channel can be associated with just one function at a given moment. The eTPU has the
capability to change the function assigned to a channel as long as the channel is not
currently being serviced. The association between functions and channels is defined by the
host CPU, and is explained in detail in Section Chapter 7, “Functions and Threads.”

The eTPU hardware supplies resource sharing features which supports concurrency:

• A hardware scheduler dispatches the service request microengine routines based on
a set of priorities defined by the host CPU. Each channel has its own unique priority
assignment that primarily depends on CPU assignment. The channel’s number is an
inherent property also used to determine priority.

• A service request routine cannot be interrupted until it ends, that is until an end
instruction is issued. This sequence of uninterrupted instruction execution is called
a thread.

NOTE

A thread can be interrupted only by reset or a forced end (set
ETPUECR[FEND] = 1).
1-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Channel-specific context (registers and flags) are automatically switched between
the end of a thread and the beginning of the next one.

• SPRAM arbitration, a dual-parameter coherency controller and semaphores can be
used to ensure coherent access to eTPU data shared by both eTPU engines and the
host CPU.

1.1.3 eTPU Engine

Each eTPU engine consists of the following blocks: two 24-bit time base count registers,
32 independent timer channels, a task scheduler, a microengine, and a host interface. These
blocks are duplicated in a dual eTPU configuration. In addition, a 32-bit Shared Parameter
RAM (SPRAM) is used for two eTPU engines data storage and for passing information
between the eTPU engines and the host CPU.

Figure 1-2 shows the block diagram for the eTPU engine.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-2. eTPU engine Block Diagram

eTPU engines A and B are often referred to as eTPU A and eTPU B in this document.

1.1.3.1 Time Bases

Each eTPU engine has two 24-bit count registers TCR1 and TCR2 which provide reference
time bases for all match and input capture events. Prescalers for both time bases are
controlled by the host CPU through bit fields in the eTPU engine configuration registers.

The values for each of TCR1 and TCR2 counter registers can be independently derived
from the system clock or from an external input via the TCRCLK pin. In addition, the
TCR2 timebase can be derived from special angle-clock hardware which enables
implementing angle-based functions. This feature is added to support advanced angle based
engine control applications.

TCR1

TCR2/

Microengine

Code

Host
Interface

Channel
Control

 Time Base
 Configuration

Engine
Configuration

Scheduler

Control and Data

Control
Timer

Channels

Channel 0

Channel 1

Channel 31

C
ha

nn
el

Control

TCRCLK
Pin

MDU

Angle Clock

Service Requests

(SCM)

Parameter

 RAM

Shared

(SPRAM)

Shared

Memory

Fetch and
Decode

Execution

D
at

a

C
od

e

Unit

Debug
InterfaceNDEDI

Control
and Data

Pins

STAC
Bus

STAC
Interface

To
Host

to
1-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For further details refer to Section 5.9, “Time Bases.”

1.1.3.2 eTPU Timer Channels

Each eTPU engine has 32 identical, independent channels. Each channel corresponds to an
Input/Output signal pair. Every channel has access to two 24-bit counter registers, TCR1
and TCR2.

Each channel consists of event logic which supports a total of four events, two capture and
two match events. The event logic contains two 24-bit capture registers and two 24-bit
match registers. The match registers are compared to a selected TCR by
greater-than-or-equal-to and equal-only comparators. The match and compare register pairs
enable many combinations of single and double-action functions while only requiring a
single service from the microengine.

The channel configuration can be changed by the microengine. Each channel can perform
double capture, double match or a variety of other capture-match combinations. A channel
may be configured so that a match must be recognized on a specified match register before
a match event can be recognized on the second match register, that is an ordered match.
Some modes are also provided that can block one match by the occurrence of another
match, see Table C-1. Service requests may be generated on one or both of the match
events.

Digital filters are provided for the input signals, with distinct filtering modes available.

Every channel can use any time base or angle counter for either match or capture operation.
For example, a match on TCR1 can capture the value of TCR2. The channels can request
service from the microengine due to recognized pin transitions (input events) or timebase
matches.

The eTPU channels also support the basic single-action operations found on TPU3
functionality with an increased time resolution of 24 bits, vs. 16 bits on the TPU3.

Every eTPU channel may be configured with the following combinations:

• Single input capture, no match (TPU3 functionality).

• Single input capture with single match time-out (TPU3 functionality).

• Single input capture with double match time-out with several double match
sub-modes, see Table C-1.

• Double input capture with single or double match time-out with several double
match sub-modes.

• Single output match (TPU3 functionality).

• Double output match with several double match sub-modes.

• Input-dependent output generation.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The double match functionality has various combinations for generation of service request
and determining pin actions. For more details refer to Section 5.8, “Enhanced Channels.”

1.1.3.3 Host Interface

The host interface allows the host CPU to control the operation of the eTPU. In order for
the eTPU to start operation, the host CPU must initialize the eTPU by writing to the
appropriate host interface registers to assign a function and priority to each channel. In
addition, the host writes to the host service request and channel configuration registers to
further define operation for each initialized channel. Refer to Chapter 5, “Host Interface,”
for a detailed description.

NOTE
The host must first initialize the memory prior to enabling any
eTPU function. Then the host enables eTPU access to the SCM
(which also disables host access).

1.1.3.4 Shared Parameter RAM (SPRAM)

The SPRAM works like data RAM which can be accessed by the host CPU and up to two
eTPU engines. This memory is used for either:

• Information transfer between the host CPU and the eTPU.

• As data storage for the eTPU microcode program.

• For communication between the two eTPU engines.

The SPRAM width is 32 bits, and is accessible by the host in any of the three formats: byte,
16-bit, or 32-bit. The eTPU can access the SPRAM’s full 32 bits, lower 24 bits or upper
byte (8-bit).

The host can also access the SPRAM space mirrored in other areas with parameter sign
extension (PSE). PSE allows for data with fewer than 32 bits in another address area to be
accessed as 32 bit sign-extended data without using the host’s bandwidth to extend the data.
Parameter signal extension accesses differ from the usual host accesses to the original
SPRAM area as follows:

• Writes are effective only to the lower 3 bytes of a word: the word’s most significant
byte (byte address) is kept unaltered in SPRAM.

NOTE
For the most significant byte, it should be recalled the word
format is big endian, as in the default PowerPC word format.

• Reads return the lower 3 bytes of a word sign-extended to 32 bits, that is: the most
significant bit of the words 2nd most significant byte (byte addresses) is copied in
all 8 bits of the most significant read byte.
1-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each eTPU channel can be associated with a variable number of parameters located in the
SPRAM, according to its selected function. In addition, the SPRAM can be fully shared
between two eTPU engines, enabling communication between them.

High flexibility of the SPRAM utilization is achieved as follows:

• Each channel has a programmable base address pointing to the address of its first
parameter with two parameter granularity, that is the base address pointer has a
resolution of 2*n, where n is an individual parameter address. This way the SPRAM
can be partitioned according to the actual function needs.

• The microcode can access the first 128 parameters of the selected channel in channel
relative access mode. The relative address is an offset from the programmable base
address mentioned above.

• Each engine can access all the SPRAM address space in indirect addressing mode.
Blocks of data are easily transferred using stack operation.

• Absolute addressing mode can access the first 256 parameters (TPU3 functionality),
implementing a shared pool of parameters holding global variables.

In the host address space each parameter occupies four bytes (32 bits). eTPU usage of the
upper byte is achieved by having a 32-bit P register which can access the upper byte, the
lower 24 bits or all the 32 bits. The microcode can switch between access sizes at any time.

Each function may require a different number of parameters. During the eTPU initialization
the host has to program channel base addresses, allocating proper parameters for each
channel according to its selected function.

1.1.3.5 Scheduler

Out of reset, all channels are disabled. The host CPU makes a channel active by assigning
it one of three priorities: high, middle, or low. The scheduler determines the order in which
channels are serviced based on channel number and assigned priority. The priority
mechanism, implemented in hardware, ensures that all requesting channels are serviced.
For additional details refer to Chapter 6, “Scheduler.”

1.1.3.6 Microengine

The eTPU microengine is a simple RISC implementation which performs each instruction
in a microcycle of two system clocks, while pre-fetching the next instruction through an
instruction pipeline. Instruction execution time is constant for the arithmetic logic unit
(ALU) unless it gets wait states from SPRAM arbitration. Two eTPU engines share code
memory without having any performance degradation by interleaving their accesses, that is
both accesses happen on same microcycle. One engine lags the other by 1/2 a microcycle,
but the channels are synchronized to the microcycle of it’s own engine.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The instruction width is 32 bits. The microengine instruction set provides basic arithmetic
and logic operations, flow control (jumps and subroutine calls), SPRAM access, and
channel configuration and control. The instruction formats are defined in such a way that
allow particular combinations of several of these operations with unconflicting resources
to be executed in parallel in the same microcycle, thus improving performance.

The microengine has also an independent multiply/divide/MAC unit that performs these
complex operations in parallel with other microengine instructions.

Channel functionality is integrated to the instruction set through channel control operations
and conditional branch operations, which support jumps/calls on channel-specific
conditions. This allows quick and terse channel configuration and control code,
contributing to reduced service time.

A detailed description of the microengine is found in Chapter 8, “Microengine.”

1.1.3.7 Dual eTPU engine System

A typical eTPU implementation includes two eTPU engines sharing SPRAM and the same
code in SCM.

The two eTPU engines share the bus interface unit (BIU) and the parameter RAM
(SPRAM) which enable host CPU to eTPU and eTPU engine to engine communication.
The shared BIU includes coherency logic which supports dual parameter (8 bytes)
coherency in transfers between the host and eTPU, using a temporary parameter area within
the SPRAM. More details on this can be found in Section 5.7, “Parameter Sharing and
Coherency.”

1.2 Features

1.2.1 eTPU Feature Summary

The eTPU includes these distinctive features:

• Up to 32 channels for each eTPU engine, each channel is associated with an
Input/Output signal pair.

— Enhanced input digital filters on the input pins for improved noise immunity. The
eTPU digital filter can use 2 samples, 3 samples or work in continuous mode.

— Orthogonal channels, except for channel 0: each channel can perform any time
function. Each time function can be assigned to more than one channel at a given
time, so each signal can have any functionality. Channel 0 has the same
capabilities of the others, but can also work with special Angle Counter logic
(see below).
1-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

— A link service request allows activation of a channel function by request of
another channel, even between eTPU engines.

— A host service request allows activation of a channel function by the host CPU
request.

— Each channel has an event mechanism which supports single and double action
functionality in various combinations. It includes two 24-bit capture registers,
two 24-bit match registers, 24-bit greater-equal or equal-only comparators.

• Two independent 24-bit time bases for channel synchronization:

— The first time base may be clocked by the system clock with programmable
prescaler division from 2 to 512 (in steps of 2), or by the output of the second
time base prescaler.

— The first time base can also be clocked by an external signal with programmable
prescaler division of 1 to 256.

— The second time base may be clocked by an external signal with programmable
prescaler division from 1 to 64 or by the system clock divided by 8.

— Both time bases can be exported or imported from engine to engine through the
STAC (Shared Time and Counter) bus.

NOTE
An engine cannot export/import to/from itself. An engine
cannot import a time base and/or angle count if it is in angle
mode.

— The second time base counter can work as an angle counter, enabling angle based
applications to match angle instead of time.

— The second time base can alternatively be used as a pulse accumulator gated by
an external signal.

• Event-triggered RISC processor (microengine):

— 2 stage pipeline implementation (fetch and execution), with separate instruction
memory (SCM) and data memory (SPRAM).

— Two system clock microcycle fixed-length instruction execution for the ALU..

— Interleaved SCM access in dual eTPU engine avoids contention in time for
instruction memory.

— Up to 64 kbytes of Shared Code Memory (SCM).

— Up to 8 kbytes of Shared Parameter (data) RAM (SPRAM) with interleaved
access in dual eTPU engine avoids contention for data memory.

— Instruction set with embedded channel support, including specialized channel
control subinstructions and conditional branching on channel-specific flags.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

— Channel-oriented addressing: channel-bound address mode with host configured
channel base address allows the same function to operate independently on
different channels. For example, a common spark function can operate with
different parameters and different channels.

— Channel-bound data address space of up to 128 32-bit parameters (512 bytes).

— Global parameter address mode allows access to common channel data of up to
256 32-bit parameters (1024 bytes).

— Support for indirect and stacked data access schemes.

— Parallel execution of: data access, ALU, channel control and flow control
subinstructions in selected combinations.

— 32-bit microengine registers and 24-bit resolution ALU, with 1 microcycle
addition and subtraction, absolute value, bitwise logical operations on 24-bit,
16-bit, or byte operands; single bit manipulation, shift operations, sign extension
and conditional execution.

— Additional 24-bit multiply/MAC/divide unit which supports all signed/unsigned
multiply/MAC combinations, and unsigned 24-bit divide. The MAC/divide unit
works in parallel with the regular microcode commands.

• Resource sharing features resolves channel contention for common use of channel
registers, memory and microengine time:

— Hardware scheduler works as a “task management” unit, dispatching event
service routines by pre-defined, host-configured priority.

— Automatic channel context switch when a “task switch” occurs, that is, one
function thread ends and another begins to service a request from other channel:
channel-specific registers, flags and parameter base address are automatically
loaded for the next serviced channel.

— Individual channel priority setting in 3 levels: high, middle and low.

— Scheduler priority scheme allows calculation of worst case latency for event
servicing and ensures servicing of all channels by preventing permanent
blockage.

— SPRAM shared between host CPU and both eTPU engines, supporting
channel-channel or host-channel communication.

— Hardware implementation of 4 semaphores allows for resource arbitration
between channels in both eTPU engines.

— Hardware semaphores directly supported by the microengine instruction set.

— Dual parameter coherency hardware support allows coherent (to host) access to
2 parameters by microengine(s) in back-to-back accesses.

— Coherent dual-parameter controller allows coherent (to microengines) accesses
to 2 parameters by the host.
1-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Test and development support features:

— Nexus level 3 debug support through the eTPU Nexus block (NDEDI).

— Software breakpoints.

— Debug interface supporting single-step execution, forced microinstruction
execution, Hardware breakpoints and watchpoints on several conditions.

— SCM (code memory) continuous signature-check built-in code integrity test
multiple input signature calculator (MISC), runs concurrently with eTPU normal
operation.

1.2.2 eTPU Enhancements over TPU3

The eTPU has several enhancements over the TPU3,which are highlighted in the following
list:

• 32 orthogonal channels with enhanced functionality. Full support for double action
with double match and double transition sub-mode combinations.

• Input and output features separated in channel logic and microinstructions, allowing
input and output signals to be processed separately or combined.

• Increased time resolution and execution unit to 24 bits.

• Increased linear code memory, shared by two eTPU engines, configurable up to 16K
positions (64 Kbytes).

• Increased parameter RAM address range (16 Kbytes each engine) and width (32 bits
per parameter). The parameter RAM can be dynamically allocated to support
variable number of parameters for each channel. Each channel can have access to at
least 256 parameters.

• The parameter RAM is fully shared by two eTPU engines (SPRAM), supporting
inter-engine communication.

• Hardware semaphores to guarantee coherency of multiple-word data from SPRAM.

• Enhanced arithmetic operations, including add/subtract with carry, absolute value,
multiple shift and rotate, conditional execution with variable operand widths.

• Enhanced logic operations, including bitwise operations (AND, OR, XOR) and bit
manipulation, with conditional execution. Support for read-modify-write of any bit
in the SPRAM.

• Hardware for multiply/MAC/divide, running in parallel to execution of other
operations. The 24-bit divide result is available after 13 other unrelated instructions.
Multiplication supports any data width of both operands (8, 16 or 24 bits), signed or
unsigned. A 24x24 multiply/MAC result is available after four other unrelated
instructions. A 24x8 multiply/MAC result is available after one other unrelated
instruction.
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Supports export/import of internal time bases between eTPU engines or to the
eMIOS.

• Contains angle clock hardware, supported by microcode, which can provide up to a
24-bit angle bus instead of time bus. This feature enables the eTPU to run angle
based engine control applications.

• More interrupt types. Each eTPU channel can generate a data transfer request
interrupt, in addition to regular interrupts, and one global exception interrupt. Data
transfer requests are used as DMA requests. This feature takes advantage of DMA
peripherals which off-loads the host. Interrupt overflow status is also provided.

• Improved visibility to the host (pin states, time bases, serviced channel).

• An edge case of priority inversion on TPU3 scheduler was resolved.

• Supports channel link requests between eTPU engines.

1.3 Modes of Operation
The eTPU is capable of working in the following modes:

• User configuration mode

— By having access to the shared code memory (SCM), the CPU has the ability to
program the eTPU cores with time functions.

• User mode

— The CPU does not access the eTPU shared code memory.

— Use of pre-defined eTPU functions.

• Debug mode

The CPU debugs eTPU code, accessing special Trace/Debug features via Nexus
interface:

— hardware breakpoint/watchpoint setting

— access to internal registers

— single-step execution

— forced instruction execution

— software breakpoint insertion and removal.

• Module Disable Mode

eTPU engine clocks are stopped through a register write to ETPUECR bit MDIS,
saving power. Input sampling stops. eTPU engines can be in stop mode
independently. Module disable mode stops only the engine clock, so that the shared
BIU, and global channel registers can be accessed, and interrupts and DMA requests
can be cleared and enabled/disabled. An engine only enters module disable mode
when any currently running thread is finished. For more information on thread
behavior, see Section Chapter 7, “Functions and Threads.”
1-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• System Stop Mode

Stop Mode is entered when the eTPU responds to a system asserted stop signal. The
definition of which clocks are stopped is made at the MCU level, which defines
whether or not registers can be accessed, interrupts and DMA requests cleared.

These modes are loosely selected: there is no unique register field or signals to choose
between them. Some features of one mode can be used with features of other mode(s).

1.3.1 eTPU Mode Selection

User and user configuration are the production operating modes, and differ from each other
only in access to SCM. User programmability is only possible with RAM SCM.

On chips where eTPU SCM is implemented as a RAM, the SCM can either be accessed
directly from IP-Bus for code loading, or for software breakpoint setting. On chips with
ROM SCM, an internal SCM Emulation RAM may be used, depending on the specific
MCU implementation, to replace ROM SCM for test or debug purposes. SCM Emulation
RAM is selected in a MCU-specific way.

For more information on SCM access, Debug and Test features, refer to Chapter 10, “Test
and Development Support.”

Module disable mode is entered by setting ETPUECR register bit MDIS. eTPU engines can
be individually stopped (there is one ETPUECR register for each engine).
MOTOROLA Chapter 1. Enhanced Time Processing Unit (eTPU) Overview. 1-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 2
External Signal Description

2.1 Introduction
There are 69 external signals associated with each eTPU engine: 32 channel input signals,
32 channel output signals, and a TCRCLK clock input, totalling 138 in a Dual Engine
system.

Depending on the MCU integration, the input and output signals of a channel can be tied to
one pin. In this case, the direction of each channel signal, either output or input, is
determined by the activation of an output enable driver signal.

2.2 eTPU Signals

2.2.1 Output and Input Channel Signals

The channel signal connections for eTPU engine A and eTPU engine B are described in
Table 2-1 and Table 2-2, respectively. Each eTPU channel has an input and output
associated with it. The eTPU microcode may be programmed to set the output level of an
eTPU channel in one of two manners:

• By forcing the logic level to a specified value.

• By specifying the logic level output action when a match or transition event occurs.

NOTE
Each eTPU engine has four output disable signals which allow
the channel output signal to be forced to a logic level
independently of the output value from the channel logic.

Depending on MCU integration, the output signal driver may be enabled by the output
buffer enable internal signal which comes from the eTPU. In this case, the output buffer
may be controlled by microcode through a specific microinstruction field. There is one
independent output buffer Enable signal for each channel. For more information on output
control from microcode, refer to section 4.9.3.3 Transition Detection and Pin Action
Control.
MOTOROLA Chapter 2. External Signal Description. 2-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Signals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Every eTPU channel input has a digital filter. This filter is designed to filter out noise pulses
that have width less than a specified value. This prevents small noise glitches from being
recognized by the transition detect logic. Any pulses wider than the specified filter width
will be passed to the channel transition detect logic. For more details on channel input
filters, refer to Section 5.8.6, “Enhanced Digital Filter (EDF).”

Table 2-1. eTPU_A Channel Connection Table

eTPU A
Signal

Input/
Output

Pin
Connections

Signals Pin is Shared With
DSPI Serial

Channel
Connections

eTPU Ch Pin Number

eTPU_A[0:9] IN 0
1–4
5–8

9

N3
M4–M11

L4–L11

K4

eTPU_A[12:21] (output only)
GPIO[114:123]

not connected

OUT DSPI_C[4:13]

0–9 AF15, AE15, AC16,
AD15, AF16, AE16,
AD16, AF17, AC17,

AE17

eMIOS[0:9]
GPIO[179:188]

eTPU_A[10:11] IN 10–11 K3–K21 eTPU_A[22:23] (output only)
GPIO[124:125]

not connected

OUT DSPI_C[14:15]

eTPU_A[12:15] IN 12
13–15

K1
J4–J21

GPIO[126:129] not connected

OUT DSPI_C[0:3]
12

13–15
N3

M4–M21
eTPU_A[0:3]

GPIO[114:117]

eTPU_A[16:19] IN 16
17–19

J1
H4–H21

GPIO[130:133] not connected

OUT DSPI_B[7:4]1

DSPI_D[5:2]116
17–19

M1
L4–L21

eTPU_A[4:7]
GPIO[118:121]

eTPU_A[20:21] IN 20
21

H1
G4

IRQ[8:9] (input only)
GPIO[134:135]

not connected

OUT DSPI_B[3:2]1

DSPI_D[1:0]120
21

L1
K4

eTPU_A[8:9]
GPIO[122:123]

eTPU_A[22:23] IN 22
23

G2
G1

IRQ[10:11] (input only)
GPIO[136:137]

not connected

OUT
22
23

K3
K2

eTPU_A[10:11]
GPIO[124:125]

eTPU_A[24:27] IN not connected not connected DSPI_B[13:10]1

eTPU_A[24:27] OUT 24, 25
26, 27

F1, G3
F3, F2

IRQ[12:15] (input only)
GPIO[138:141]

DSPI_B[13:10]1

DSPI_D[15:12]1

eTPU_A[28:29] IN not connected not connected DSPI_B[9:8]1

OUT 28
29

E1
E2

GPIO[142:143] DSPI_B[9:8]1

DSPI_D[11:10]1
2-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Signals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.2 TCRCLK_[A:B], Time Base Clock Signal (TCRCLK)

The TCRCLK_[A:B] input signals are used control the TCR1 and TCR2 time bases for
eTPU_A and eTPU_B.

NOTE
Throughout this document, TCRCLK_A and TCRCLK_B are
referred to generically as TCRCLK.

There is one independent TCRCLK input for each engine. Table 2-3 shows the TCRCLK
pin connections. For pulse accumulator operations TCRCLK can be used as a gate for a
counter based on the system clock divided by eight. For angle operations TCRCLK can be
used to get the tooth transition indications in angle mode. Further details can be found in
Section 5.9, “Time Bases,” and Section 5.10, “eTPU Angle Counter (EAC).”

eTPU_A[30:31] IN 30
31

D1
D2

GPIO[144:145] not connected

OUT
1. The channel numbers for some of the DSPI channels connections are reversed, e.g. if eTPU_A[16:19] is mapped to

DSPI_B[7:4], then eTPU_A[16] is connected to DSPI_B[7], eTPU_A[17] is connected to DSPI_B[6],..., and
eTPU_A[19] is connected to DSPI_B[4]

Table 2-2. eTPU_B Channel Connection Table

eTPU B
Signal

Input/
Output

Pin
Connections

Signals Pin is Shared With
DSPI Serial

Channel
Connections

eTPU Ch. Pin Number

eTPU_B[0:7] IN 0–7 M25, M24, L26, L25,
L24, K26, L23, K25

eTPU_B[16:23] (output only)
GPIO[147:154]

not connected

OUT DSPI_A[15:8]1

1. The channel numbers for some of the DSPI channels connections are reversed, e.g. if eTPU_B[0:7] is mapped to
DSPI_A[15:8], then eTPU_B[0] is connected to DSPI_A[15], eTPU_B[1] is connected to DSPI_A[14],..., eTPU_B[7] is
connected to DSPI_A[8].

0–7 AE19, AD19, AF20,
AE20, AR21, AC19,

AD20, AE21

eMIOS[16:23]
GPIO[195:202]

eTPU_B[8:15] IN 8–15 K24, J26, K23, J25,
J24, H26, H25, G26

eTPU_B[24:31] (output only)
GPIO[155:162]

not connected

OUT DSPI_A[7:0]1

eTPU_B[16:31] IN 16–31 D16, D17, A17, C16,
A18, B17, C17, D18,
A19, B18, C18, A20,
B19, D19, C19, B20

GPIO[163:178] not connected

OUT

Table 2-1. eTPU_A Channel Connection Table (continued)

eTPU A
Signal

Input/
Output

Pin
Connections

Signals Pin is Shared With
DSPI Serial

Channel
Connections

eTPU Ch Pin Number
MOTOROLA Chapter 2. External Signal Description. 2-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Signals

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.3 Channel Output Disable Signals

Each eTPU engine has 4 input signals that are used to force the outputs of a group of 8
channels to an inactive level. These signals originate from the eMIOS. When an output
disable signal is active, all the 8 channels assigned to the disable signal that have their ODIS
bits set to 1 in ETPUCxCR register have their outputs forced to the opposite of the value
specified in the ETPUCxCR[OPOL] bit. For more information on the ETPUCxCR registers
see Section 4.6.1, “eTPU Channel x Configuration Register (ETPUCxCR).” Therefore,
individual channels can be selected to be affected by the output disable signals, as well as
their disabling forced polarity.

The output disable channel groups are defined in Table 2-3.

Table 2-3. Output Disable Channel Groups

eMIOS Channel Engine eTPU Channels Disabled

11 A 0 to 7

10 8 to 15

9 16 to 23

8 24 to 31

21 B 0 to 7

20 8 to 15

19 16 to 23

18 24 to 31
2-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 3

Memory Map

3.1 Introduction
The guideline for the description of all bits and fields throughout Chapter 3, “Memory
Map,” is to provide only a brief explanation (without examples or method of use, of the
features) since it will be used mainly as a reference for the reader that is studying Chapter 5,
“eTPU Functional Description,” where features are explained in detail.

3.2 Memory Map
The eTPU system simplified memory map is shown in Table 3-1. The base address for the
eTPU module is listed as eTPU_BASE. Each of the register areas shown may have their
own reserved address areas.

Table 3-2 shows a detailed memory map with where eTPU_BASE is the base address for
the eTPU module.

Table 3-1. High-Level Memory Map

Address Use

eTPU_BASE – eTPU_BASE+0x1F eTPU System Module Configuration Registers

eTPU_BASE+0x20 – eTPU_BASE+0x2F eTPU A Time Base Registers

eTPU_BASE+0x30 – eTPU_BASE+0x3F Reserved

eTPU_BASE+0x40 – eTPU_BASE+0x4F eTPU B Time Base Registers

eTPU_BASE+0x50 – eTPU_BASE+0x1FF Reserved

eTPU_BASE+0x200 – eTPU_BASE+0x2FF eTPU[A:B] Global Channel Registers

eTPU_BASE+0x300 – eTPU_BASE+0x3FF Reserved

eTPU_BASE+0x400 – eTPU_BASE+0x7FF eTPU A Channel Registers

eTPU_BASE+0x800 – eTPU_BASE+0xBFF eTPU B Channel Registers

eTPU_BASE+0xC00 – eTPU_BASE+0x7FFF Reserved

eTPU_BASE+0x8000 – eTPU_BASE+0x8BFF SPRAM (3 Kbytes)

eTPU_BASE+0x8C00 – eTPU_BASE+0xBFFF Reserved
MOTOROLA Chapter 3. Memory Map. 3-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map

e

A)

B)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

eTPU_BASE+0xC000 – eTPU_BASE+0xCBFF1 SPRAM PSE mirror 1 (3 kBytes)

eTPU_BASE+0xCC00 – eTPU_BASE+0xFFFF Reserved

eTPU_BASE+0x1_0000 – eTPU_BASE+0x1_2FFF SCM (16 Kbytes)

eTPU_BASE+0x1_3000 – eTPU_BASE+0x1_FFFF Not writable
Value returned determined by ETPUSCMOFFDATAR

1. Parameter Sign Extension access area, see Section 5.2.3, “Parameter Access.”

Table 3-2. Detailed Memory Map

Address Use

eTPU_BASE eTPU Module Configuration Register (ETPUMCR)

eTPU_BASE+0x04 eTPU Coherent Dual-Parameter Controller Register (ETPUCDCR)

eTPU_BASE+0x08 Reserved

eTPU_BASE+0x0C eTPU MISC Compare Register (ETPUMISCCMPR)

eTPU_BASE+0x10 Reserved

eTPU_BASE+0x14 eTPU SCM Off Data Register (ETPUSCMOFFDATAR)

eTPU_BASE+0x18 eTPU B Engine Configuration Register (ETPUECR_B)

eTPU_BASE+0x1C Reserved

eTPU_BASE+0x20 eTPU A Time Base Configuration Register (ETPUTBCR_A)

eTPU_BASE+0x24 eTPU A Time Base 1 (ETPUTB1R_A)

eTPU_BASE+0x28 eTPU A Time Base 2 (ETPUTB2R_A)

eTPU_BASE+0x2C eTPU A STAC Bus Interface Configuration Register (ETPUREDCR_A)

eTPU_BASE+0x30 – eTPU_BASE+0x3F Reserved

eTPU_BASE+0x40 eTPU B Time Base Configuration Register (ETPUTBCR_B)

eTPU_BASE+0x44 eTPU B Time Base 1 (ETPUTB1R_B)

eTPU_BASE+0x48 eTPU B Time Base 2 (ETPUTB2R_B)

eTPU_BASE+0x4C eTPU B STAC Bus Interface Configuration Register (ETPUREDCR_B)

TPU_BASE+0x50 – eTPU_BASE+0x1FF Reserved

eTPU_BASE+0x200 eTPU A Channel Interrupt Status Register (ETPUCISR_A)

eTPU_BASE+0x204 eTPU B Channel Interrupt Status Register (ETPUCISR_B)

eTPU_BASE+0x208 Reserved

eTPU_BASE+0x20C Reserved

eTPU_BASE+0x210 eTPU A Channel Data Transfer Request Status Register (ETPUCDTRSR_

eTPU_BASE+0x214 eTPU B Channel Data Transfer Request Status Register (ETPUCDTRSR_

eTPU_BASE+0x218 Reserved

Table 3-1. High-Level Memory Map (continued)

Address Use
3-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map

_A)

_B)

e

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

eTPU_BASE+0x21C Reserved

eTPU_BASE+0x220 eTPU A Channel Interrupt Overflow Status Register (ETPUCIOSR_A)

eTPU_BASE+0x224 eTPU B Channel Interrupt Overflow Status Register (ETPUCIOSR_B)

eTPU_BASE+0x228 Reserved

eTPU_BASE+0x22C Reserved

eTPU_BASE+0x230 eTPU A Channel Data Transfer Request Overflow Status Register
(ETPUCDTROSR_A)

eTPU_BASE+0x234 eTPU B Channel Data Transfer Request Overflow Status Register
(ETPUCDTROSR_B)

eTPU_BASE+0x238 Reserved

eTPU_BASE+0x23C Reserved

eTPU_BASE+0x240 eTPU A Channel Interrupt Enable Register (ETPUCIER_A)

eTPU_BASE+0x244 eTPU B Channel Interrupt Enable Register (ETPUCIER_B)

eTPU_BASE+0x248 Reserved

eTPU_BASE+0x24C Reserved

eTPU_BASE+0x250 eTPU A Channel Data Transfer Request Enable Register (ETPUCDTRER

eTPU_BASE+0x254 eTPU B Channel Data Transfer Request Enable Register (ETPUCDTRER

TPU_BASE+0x258 – eTPU_BASE+0x27F Reserved

eTPU_BASE+0x280 eTPU A Channel Pending Service Status Register (ETPUCPSSR_A)

eTPU_BASE+0x284 eTPU B Channel Pending Service Status Register (ETPUCPSSR_B)

eTPU_BASE+0x288 Reserved

eTPU_BASE+0x28C Reserved

eTPU_BASE+0x290 eTPU A Channel Service Status Register (ETPUCSSR_A)

eTPU_BASE+0x294 eTPU B Channel Service Status Register (ETPUCSSR_B)

TPU_BASE+0x298 – eTPU_BASE+0x3FF Reserved

eTPU_BASE+0x400 eTPU A Channel 0 Configuration Register (ETPUC0CR_A)

eTPU_BASE+0x404 eTPU A Channel 0 Status and Control Register (ETPUC0SCR_A)

eTPU_BASE+0x408 eTPU A Channel 0 Host Service Request Register (ETPUC0HSRR_A)

eTPU_BASE+0x40C Reserved

eTPU_BASE+0x410 eTPU A Channel 1 Configuration Register (ETPUC1CR_A)

eTPU_BASE+0x414 eTPU A Channel 1 Status and Control Register (ETPUC1SCR_A)

eTPU_BASE+0x418 eTPU A Channel 1 Host Service Request Register (ETPUC1HSRR_A)

eTPU_BASE+0x41C Reserved

Table 3-2. Detailed Memory Map

Address Use
MOTOROLA Chapter 3. Memory Map. 3-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map

)

eT

)

eT

eT

eTP

eTP

eTP

eTP

eTP
1. Par
2. SC PU

Tim

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

.

.

.

eTPU_BASE+0x5F0 eTPU A Channel 31 Configuration Register (ETPUC31CR_A)

eTPU_BASE+0x5F4 eTPU A Channel 31 Status and Control Register (ETPUC31SCR_A)

eTPU_BASE+0x5F8 eTPU A Channel 31 Host Service Request Register (ETPUC31HSRR_A

PU_BASE+0x5FC – eTPU_BASE+0x7FF Reserved

eTPU_BASE+0x800 eTPU B Channel 0 Configuration Register (ETPUC0CR_B)

eTPU_BASE+0x804 eTPU B Channel 0 Status and Control Register (ETPUC0SCR_B)

eTPU_BASE+0x808 eTPU B Channel 0 Host Service Request Register (ETPUC0HSRR_B)

eTPU_BASE+0x80C Reserved

eTPU_BASE+0x810 eTPU B Channel 1 Configuration Register (ETPUC1CR_B)

eTPU_BASE+0x814 eTPU B Channel 1 Status and Control Register (ETPUC1SCR_B)

eTPU_BASE+0x818 eTPU B Channel 1 Host Service Request Register (ETPUC1HSRR_B)

eTPU_BASE+0x81C Reserved

.

.

.

eTPU_BASE+0x9F0 eTPU B Channel 31 Configuration Register (ETPUC31CR_B)

eTPU_BASE+0x9F4 eTPU B Channel 31 Status and Control Register (ETPUC31SCR_B)

eTPU_BASE+0x9F8 eTPU B Channel 31 Host Service Request Register (ETPUC31HSRR_B

PU_BASE+0x9FC – eTPU_BASE+0x7FFF Reserved

PU_BASE+0x8000 – eTPU_BASE+0x8BFF 3 kBytes Shared Parameter RAM (SPRAM)

U_BASE+0x8C00 – eTPU_BASE+0xBFFF Reserved

U_BASE+0xC000 – eTPU_BASE+0xCBFF1 3 kBytes SPRAM PSE mirror 1

U_BASE+0xCC00 – eTPU_BASE+0xFFFF Reserved

U_BASE+0x1_0000 – eTPU_BASE+1_2FFF Shared Code Memory (SCM)2

U_BASE+0x1_3000 – eTPU_BASE+1_FFFF Reserved
ameter sign extension access area, see Section 5.2.3, “Parameter Access.”
M access is available only when bit VIS=1 on register ETPUMCR, under certain conditions (see section Section 4.3.1, “eT
e Base Configuration Register (ETPUTBCR).” SCM can only be written in 32 bit accesses.

Table 3-2. Detailed Memory Map

Address Use
3-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 4

Programming Model

4.1 Introduction
The guideline for the description of all bits and fields throughout Chapter 4, “Programming
Model,” is to provide only a brief explanation (without examples or method of use, of the
features) since it will be used mainly as a reference for the reader that is studying Chapter 5,
“eTPU Functional Description,” where features are explained in detail.

4.2 System Configuration Registers

4.2.1 eTPU Module Configuration Register (ETPUMCR)

This register is global to both eTPU engines, and resides in the shared BIU. ETPUMCR
gathers global configuration and status in the eTPU system, including global exception. It
is also used for configuring the SCM (shared code memory) operation and test.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 MGEA MGEB ILFA ILFB 0 SCMSIZE

W GEC

Reset 0 0 0 0 0 0 0 0 0 SCMSIZE

Reg Addr eTPU_BASE + 0x000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 SCMMISF SCMMISEN 0 0 VIS 0 0 0 0 0 GTBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU_BASE + 0x000

Figure 4-1. ETPUMCR Register
MOTOROLA Chapter 4. Programming Model. 4-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-1. ETPUMCR Bit Field Descriptions

Read/Write Bits Name Description

R 0 — Reads return 0.

R/W GEC Global Exception Clear. This write-only bit negates global exception
request and clears global exception status bits MGEA, MGEB, ILFA, ILFB
and SCMMISF. A read will always return 0. Writes have the following effect:
1 Negate global exception, clear status bits ILFA, ILFB, MGEA, MGEB,

and SCMMISF.
0 Keep global exception request and status bits ILFA, ILFB, MGEA,

MGEB, and SCMMISF as is.
GEC works the same way with either one or both engines in stop mode.

— 1 – 3 — Writes do not affect bit values. Reads return 0.

R 4 MGEA Microcode Global Exception Engine A. This bit indicates that a global
exception was asserted by microcode executed on the respective engine.
The determination of the reason why the global exception was asserted is
application dependent: it can be coded in an SPRAM status parameter, for
instance. This bit is cleared by writing 1 to GEC.
1 Global exception requested by microcode is pending.
0 No microcode-requested global exception pending.

R 5 MGEB Microcode Global Exception Engine B. This bit indicates that a global
exception was asserted by microcode executed on the respective engine.
The determination of the reason why the global exception was asserted is
application dependent: it can be coded in an SPRAM status parameter, for
instance. This bit is cleared by writing 1 to GEC.
1 Global exception requested by microcode is pending.
0 No microcode-requested global exception pending.

R 6 ILFA Illegal Instruction Flag eTPU A. The ILFA bit is set by the microengine to
indicate that an illegal instruction was decoded in engine A. This bit is
cleared by host writing 1 to GEC. See Section 5.9.5, “Illegal Instructions,”
for more details.
1 Illegal Instruction detected by eTPU A.
0 Illegal Instruction not detected.

R 7 ILFB Illegal Instruction Flag eTPU B. The ILFB bit is set by the microengine to
indicate that an illegal instruction was decoded in engine B. This bit is
cleared by host writing 1 to GEC. See Section 5.9.5, “Illegal Instructions,”
for more details.
1 Illegal Instruction detected by eTPU B.
0 Illegal Instruction not detected.

— 8 — Writes do not affect bit values. Reads return 0.

R 9 – 15 SCMSIZE[7:0] SCM Size. This read-only field holds the number of 2 Kbyte SCM Blocks
minus 1. This value is MCU-dependent.

— 16 – 20 — Writes do not affect bit values. Reads return 0.
4-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R 21 SCMMISF SCM MISC Flag. The SCMMISF bit is set by the SCM MISC (Multiple Input
Signature Calculator) logic to indicate that the calculated signature does
not match the expected value, at the end of a MISC iteration. The
SCMMISF bit is not affected by eTPU A or eTPU B internal reset. See
Chapter 10, “Test and Development Support,” for more details.
1 MISC has read entire SCM array and the expected signature in

ETPUMISCCMPR does not match the value calculated.
0 Signature mismatch not detected.
This bit is automatically cleared when SCMMISEN changes from 0 to 1, or
when global exception is cleared by writing 1 to GEC.

R/W 22 SCMMISEN SCM MISC Enable. The SCMMISEN bit is used for enabling/disabling the
operation of the MISC logic. SCMMISEN is readable and writable at any
time. The MISC logic will only operate when this bit is set to 1. When the
bit is reset the MISC address counter is set to the initial SCM address.
When enabled, the MISC will continuously cycle through the SCM
addresses, reading each and calculating a CRC. In order to save power,
the MISC can be disabled by clearing the SCMMISEN bit. The SCMMISEN
bit is not affected by eTPU A or eTPU B internal soft reset. See
Section 5.10, “Test and Development Support,” for more details.
1 MISC operation enabled. (Toggling to 1 clears the SCMMISF bit)
0 MISC operation disabled. The MISC logic is reset to its initial state.
SCMMISEN is cleared automatically when MISC logic detects an error;
that is, when SCMMISF transitions from 0 to 1, disabling the MISC
operation.

— 23 – 24 — Writes do not affect bit values. Reads return 0.

R/W 25 VIS SCM Visibility Bit. The VIS bit determines SCM visibility to the IP bus
interface and resets the MISC state (but SCMMISEN keeps its value).
1 SCM is visible to the IP bus. The MISC state is reset. SCM is

write-protected.
0 SCM is not visible to the IP bus. Accessing SCM address space issues

a bus error.
This bit is write protected when any of the engines is not in halt or stop
states. When VIS=1, the ETPUECR STOP bits are write protected, and
only 32-bit aligned SCM writes are supported. The value written to SCM is
unpredictable if other transfer sizes are used.

— 26 – 30 — Writes do not affect bit values. Reads return 0.

R/W 31 GTBE Global Time Base Enable. GTBE enables time bases in both engines,
allowing them to be started synchronously. An assertion of GTBE also
starts the eMIOS time base1. This enables the eTPU time bases and the
eMIOS time base to all start synchronously.
1 time bases in both eTPU engines and eMIOS are enabled to run.
0 time bases in both engines are disabled to run.

1. The eMIOS also has an GTBE bit. Assertion of either the eMIOS or eTPU GTBE bit starts time bases for the
eMIOS and eTPU, see Section 5.6.4, “Global Time Base Enable (GTBE).”

Table 4-1. ETPUMCR Bit Field Descriptions

Read/Write Bits Name Description
MOTOROLA Chapter 4. Programming Model. 4-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2 eTPU Coherent Dual-Parameter Controller Register
(ETPUCDCR)

ETPUCDCR configures and controls dual-parameter coherent transfers. For more info, see
Section 5.4.3, “Coherent Dual-parameter Controller (CDC).”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STS CTBASE PBBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU_BASE + 0x004

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PWIDTH PARM0 WR PARM1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU_BASE + 0x004

Figure 4-2. ETPUCDCR Register

Table 4-2. ETPUCDCR Field Descriptions

Read/Write Bits Name Description

R/W 0 STS Start Bit. This bit is set by the host in order to start the data transfer between
the parameter buffer pointed by PBBASE and the target addresses selected
by the concatenation of fields CTBASE and PARM0/1. The host receives
wait-states until the data transfer is complete, when this bit is reset by
coherency logic, see Section 5.4.3, “Coherent Dual-parameter Controller
(CDC).” Therefore, host always reads STS as 0.
1 (write) starts a coherent transfer.
0 (write) does not start a coherent transfer.

R/W 1 – 5 CTBASE[4:0] Channel Transfer Base. This field concatenates with fields PARM0/PARM1 to
determine the absolute offset (from the SPRAM base) of the parameters to be
transferred:
Parameter 0 address = {CTBASE, PARM0}*4 + SPRAM base
Parameter 1 address = {CTBASE, PARM1}*4 + SPRAM base

R/W 6 – 15 PBBASE[9:0] Parameter Buffer Base Address. This field points to the base address of the
parameter buffer location, with granularity of 2 parameters (8 bytes). The host
(byte) address of the first parameter in the buffer is PBBASE*8 + SPRAM
Base Address.

R/W 16 PWIDTH Parameter Width Selection. This bit selects the width of the parameters to be
transferred between the PB and the target address.
1 Transfer 32-bit parameters. All 32 bits of the parameters are written in the

destination address.
0 Transfer 24-bit parameters. The upper byte remains unchanged in the

destination address.
4-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.3 eTPU MISC Compare Register (ETPUMISCCMPR)

ETPUMISCCMPR holds the 32-bit signature expected from the whole SCM array. This
register must be written by the host with the 32-bit word to be compared against the
calculated signature at the end of the MISC cycle. This register is global to both eTPU
engines. For more detail see Section 5.10.3.1, “SCM Test for MISC (Multiple Input
Signature Calculator).”

R/W 17 – 23 PARM0[6:0] Channel Parameter number 0. This field in concatenation with CTBASE[3:0]
determine the address offset (from the SPRAM base address) of the
parameter which is the destination or source (defined by WR) of the coherent
transfer. The SPRAM address offset of the parameter is {CTBASE,
PARM0}*4.Note that PARM0 allows non-contiguous parameters to be
transferred coherently1.

R/W 24 WR Read/Write selection. This bit selects the direction of the coherent data
transfer.
1 Write operation. Data transfer is from the PB to the selected parameter

RAM address.
0 Read operation. Data transfer is from the selected parameter RAM address

to the PB.

R/W 25 – 31 PARM1[6:0] Channel Parameter number 1. This field in concatenation with CTBASE[4:0]
determines the address offset (from the SPRAM base) of the parameter which
is the destination or source (defined by WR) of the coherent transfer. The
SPRAM address offset of the parameter is {CTBASE, PARM1}*4.Note that
PARM1 allows non-contiguous parameters to be transferred coherently1.

1. The parameter pointed by {CTBASE, PARM0} is the first transferred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ETPUMISCCMP[0:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU_BASE + 0x00C

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ETPUMISCCMP[16:31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU_BASE + 0x00C

Figure 4-3. ETPUMISCCMPR Register

Table 4-2. ETPUCDCR Field Descriptions

Read/Write Bits Name Description
MOTOROLA Chapter 4. Programming Model. 4-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.4 eTPU Engine Configuration Register (ETPUECR)

Each engine has its own ETPUECR register. ETPUECR holds configuration and status
fields that are programmed independently in each engine.

Table 4-3. ETPUMISCCMPR Bit Field Descriptions

Read/Write Bits Name Description

R/W 0 – 31 ETPUMISCCMP[31:0] Expected Multiple Input Signature Register value. See
Section 5.10.3.1, “SCM Test for MISC (Multiple Input Signature
Calculator).”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEND STOP 0 STF 0 0 0 0 HLTF 0 0 0 0 FPSCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x014 / eTPU B: eTPU_BASE + 0x018

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDFC 0 0 0 0 0 0 0 0 0 ETB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x014 / eTPU B: eTPU_BASE + 0x018

Figure 4-4. ETPUECR Register
4-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-4. ETPUECR Field Descriptions

Read/
Write

Bits Name Description

R/W 0 FEND Force End. FEND assertion terminates any current running thread as if an END
instruction have been executed, see Section 5.9.4.1, “Ending Current Thread
(END).”
1 Puts engine in reset.
0 Normal operation.
This bit is self-negating during the access, i.e., the host receives wait-states while
the reset occurs, and FEND always reads as 0. FEND assertion is ignored when
the microengine is in TST, Halt, or Idle.

R/W 1 STOP Low Power Stop Bit. When STOP is set, the engine shuts down its internal clocks.
TCR1 and TCR2 cease to increment, and input sampling stops. The engine asserts
the stop flag (STF) bit to indicate that it has stopped However, the BIU continues to
run, and the host can access all registers except for the channel registers1 (see list
of channel registers on Section 4.6, “Channel Configuration and Control Registers.”
After STOP is set, even before STF asserts, data read from the channel registers
is not meaningful, a Bus Error is issued, and writes are ineffective. When the STOP
bit is asserted while the microcode is executing, the eTPU will stop when the thread
is complete.
1 Commands engine to stop its clocks.
0 eTPU engine runs.
Stop completes on the next system clock after the stop condition is valid. The STOP
bit is write-protected when VIS=1.

— 2 — Writes do not affect bit values. Reads return 0.

R 3 STF Stop Flag Bit. Each engine asserts its stop flag (STF) to indicate that it has stopped.
Only then the host can assume that the engine has actually stopped. The eTPU
system is fully stopped when the STF bits of both eTPU engines are asserted. In
case of STAC bus stop, the eTPU system responds with stop acknowledge only
after both eTPU A and eTPU B have been stopped. The engine only stops when
any ongoing thread is complete also in this case.
1 The engine has stopped (after the local STOP bit has been asserted, or after the

STAC bus stop line has been asserted).
0 The engine is operating.
Summarizing engine stop conditions, which STF reflects:
STF_A := (after stop completed) STOP_A
STF_B := (after stop completed) STOP_B
STF_A and STF_B mean STF bit from engine A and STF bit from engine B
respectively.

— 4 – 7 — Writes do not affect bit values. Reads return 0.

R 8 HLTF Halt Mode Flag. If eTPU engine entered halt state, this flag is asserted. The flag
remains asserted while the microengine is in halt state, even during a single-step
or forced instruction execution. See Section 10.2, “Development Support
Features,” for further details about entering halt mode.
1 eTPU engine is halted
0 eTPU engine is not halted.

— 9 – 12 — Writes do not affect bit values. Reads return 0.

R/W 13 – 15 FPSCK[2:0] Filter Prescaler Clock Control. FPSCK controls the prescaling of the clocks used in
digital filters for the channel input signals and TCRCLK input, as shown in Table 4-5.
Filtering can be controlled independently by the engine, but all input digital filters in
the same engine have same clock prescaling. For more details see Section 5.5.6.4,
“Filter Clock Prescaler.”
MOTOROLA Chapter 4. Programming Model. 4-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

System Configuration Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R/W 16 – 17 CDFC[1:0] Channel Digital Filter Control. These bits select a digital filtering mode for the
channels when configured as inputs for improved noise immunity (refer
toTable 4-6). The eTPU has three digital filtering modes for the channels which
provide programmable trade-off between signal latency and noise immunity, see
Section 5.5.6, “Enhanced Digital Filter (EDF).” Changing CDFC during eTPU
normal input channel operation is not recommended since it changes the behavior
of the transition detection logic while executing its operation.

— 18 – 26 — Writes do not affect bit values. Reads return 0.

R/W 27 – 31 ETB[4:0] Entry Table Base. The field determines the location of the microcode entry table for
the eTPU functions in SCM, see Section 7.2, “Entry Points.” Table 4-7 shows the
entry table base address options.

1. The time base registers can still be read in Stop mode, but writes are unpredictable and a Bus Error is issued. Global
channel registers and SPRAM can be accessed normally.

Table 4-5. Filter Prescaler Clock Control

Filter Control
Sample on

System Clock
Divided by:

000 2

001 4

010 8

011 16

100 32

101 64

110 128

111 256

Table 4-6. Channel Digital Filter Control

CDFC Selected Digital Filter

00 TPU2/3 Two Sample Mode: Using the filter clock which is the system clock divided by (2, 4, 8,..., 256) as a
sampling clock (selected by FPSCK field in ETPUECR), comparing two consecutive samples which agree
with each other sets the input signal state. This is the default reset state.

01 RESERVED

Table 4-4. ETPUECR Field Descriptions

Read/
Write

Bits Name Description
4-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3 Time Base Registers
Time base registers allows the configuration and visibility of internally-generated time
bases TCR1 and TCR2. There is one of each of these registers for each eTPU engine.

4.3.1 eTPU Time Base Configuration Register (ETPUTBCR)

This register configures several time base options.

10 eTPU Three Sample Mode: Similar to the TPU2/3 two sample mode, but comparing three consecutive
samples which agree with each other sets the input signal state.

11 eTPU Continuous Mode: Signal needs to be stable for the whole filter clock period. This mode compares all
the values at the rate of system clock divided by two, between two consecutive filter clock pulses. Signal
needs to be continuously stable for the entire period. If all the values agree with each other, input signal state
is updated.

Table 4-7. Entry Table Base Address Options

ETB
Entry Table Base Address for

CPU Host Address (byte format)
Entry Table Base Address for

Microcode Address (word format)

00000 0x000 0x000

00001 0x800 0x200

00010 0x1000 0x400

.

.

.

.

.

.

.

.

.

.

.

.

11110 0xF000 0x3C00

11111 0xF800 0x3E00

Table 4-6. Channel Digital Filter Control

CDFC Selected Digital Filter
MOTOROLA Chapter 4. Programming Model. 4-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCR2CTL TCRCF 0 AM 0 0 0 TCR2P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x020 / eTPU B: eTPU_BASE + 0x040

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1CTL 0 0 0 0 0 0 TCR1P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x020 / eTPU B: eTPU_BASE + 0x040

Figure 4-5. ETPUTBCR Register

Table 4-8. ETPUTBCR Field Descriptions

Read/
Write

Bits Name Description

R/W 0 – 2 TCR2CTL[2:0] TCR2 Clock/Gate Control. These bits are part of the TCR2 clocking system, see
Section 5.6, “Time Bases.” They determine the clock source for TCR2. TcR2
can count on any detected edge of the TCRCLK signal or use it for gating
system clock divided by 8. After reset, TCRCLK signal rising edge is selected.
TCR2 can also be clocked by the system clock divided by 8.

R/W 3 – 4 TCRCF[1:0] TCRCLK Signal Filter Control. This field controls the TCRCLK digital filter, see
Section 5.6.5, “TCRCLK Digital Filter,” determining whether the TCRCLK signal
input (after a synchronizer) is filtered with the same filter clock as the channel
input signals, see Section 5.5.6, “Enhanced Digital Filter (EDF),” or uses the
system clock divided by 2, and also whether the TCRCLK digital filter works in
integrator mode or two sample mode, see Table 4-10. For information on
integration mode see Section 5.6.5, “TCRCLK Digital Filter.” For information on
two sample mode see Section 5.5.6.1, “Two-Sample Mode.”

— 5 — Writes do not affect bit values. Reads return 0.

R/W 6 AM Angle Mode Selection. When the AM bit is set and neither TCR1 nor TCR2 are
STAC interface clients, the EAC (eTPU Angle Clock) hardware provides angle
information to the channels using the TCR2 bus. When the AM is reset
(non-angle mode), EAC operation is disabled, and its internal registers can be
used as general purpose registers. For more information, see Section 5.7,
“eTPU Angle Counter (EAC).”
1 TCR2 works in angle mode. If TCR2 is not a STAC client, see Section 5.6.3,

“Shared Time and Angel Count (STAC) Bus Interface,” the EAC works and
stores Tooth Counter and Angle Tick Counter data in TCR2.

0 EAC operation is disabled.
If TCR1 or TCR2 is a STAC bus client, EAC operation is forbidden. Therefore,
if AM is set, the angle logic does not work properly.

— 7 – 9 — Writes do not affect bit values. Reads return 0.
4-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R/W 10 – 15 TCR2P[5:0] Timer Count Register 2 Prescaler Control. These bits are part of the TCR2
clocking system, see Section 5.6, “Time Bases.” TCR2 is clocked from the
output of a prescaler. The prescaler divides its input by (TCR2P+1) allowing
frequency divisions from 1 to 64. The prescaler input is the system clock divided
by 8 (in gated or non-gated clock mode) or TCRCLK filtered input.

R/W 16 – 17 TCR1CTL[1:0] TCR1 Clock/Gate Control. TCR1CTL is part of the TCR1 clocking system, see
Section 5.6, “Time Bases” It determines the clock source for TCR1. TCR1 can
count on detected rising edge of the TCRFCLK signal or the system clock
divided by 2, see Table 4-11. After reset TCRCLK signal is selected.

— 18 – 23 — Writes do not affect bit values. Reads return 0.

R/W 24 – 31 TCR1P[7:0] Timer Count Register 1 Prescaler Control. TCR1 is clocked from the output of
a prescaler. The input to the prescaler is the internal eTPU system clock divided
by 2 or the output of TCRCLK filter. The prescaler divides this input by
(TCR1P+1) allowing frequency divisions from 1 up to 256.

Table 4-9. TCR2 Clock Source

TCR2CTL TCR2 Clock Angle Tooth
Detection

000 Gated DIV8 clock (system clock / 8). When the external TCRCLK signal is low, the
DIV8 clock is blocked, preventing it from incrementing TCR2. When the external
TCRCLK signal is high, TCR2 is incremented at the frequency of the system clock
divided by 8.

N/A1

1.

These selections must not be used in Angle Mode.

001 Rise transition on TCRCLK signal increments TCR2. Rising Edge

010 Fall transition on TCRCLK signal increments TCR2. Falling Edge

011 Rise or fall transition on TCRCLK signal increments TCR2. Both

100 DIV8 clock (system clock / 8) N/A1

101 Reserved N/A1

110

111 TCR2CTL shuts down TCR2 clocking, except on Angle Mode. TCR2 can also
change as STAC client.

Table 4-10. TCRCLK Filter Clock/Mode

TCRCF Filter Input Filter Mode

00 system clock divided by 2 two sample

01 filter clock of the channels two sample

10 system clock divided by 2 integration

11 filter clock of the channels integration

Table 4-8. ETPUTBCR Field Descriptions

Read/
Write

Bits Name Description
MOTOROLA Chapter 4. Programming Model. 4-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3.2 eTPU Time Base 1 (TCR1) Visibility Register
(ETPUTB1R)

This register provides visibility of the TCR1 time base for CPU host read access, see
Section 5.6, “Time Bases.” This register is read-only. The value of the TCR1 time base
shown can be driven by the TCR1 counter or imported, depending on the configuration set
in ETPUREDCR.

4.3.3 eTPU Time Base 2 (TCR2) Visibility Register
(ETPUTB2R)

This register provides visibility of the TCR2 time base for CPU host read access, see
Section 5.6, “Time Bases.”. This register is read-only. The value of the TCR2 time base
shown can be driven by the TCR2 counter, the angle mode logic, or imported from the

Table 4-11. TCR1 Clock Source

TCR1CTL TCR1 Clock

00 selects TCRCLK as clock source for the TCR1 prescaler

01 reserved

10 selects system clock divided by 2 as clock source for the TCR1 prescaler

11 TCR1CTL shuts down TCR1 clock. TCR1 can still change if STAC client.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR1[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x024 / eTPU B: eTPU_BASE + 0x044

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x024 / eTPU B: eTPU_BASE + 0x044

Figure 4-6. ETPUTB1R Register

Table 4-12. ETPUTB1R Bit Field Descriptions

Read/Write Bits Name Description

— 0 – 7 — Writes do not affect bit values. Reads return 0.

R 8 – 31 TCR1[23:0] TCR1 value. TCR1 value used on matches and captures. See Section 5.6,
“Time Bases.”
4-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STAC interface, depending on angle mode (an engine cannot import when in angle mode)
and STAC interface configurations set in registers ETPUTBCR and ETPUREDCR.

4.3.4 STAC Bus Configuration Register (ETPUREDCR)

This register configures the eTPU STAC bus interface module and operation, see
Section 5.6.3, “Shared Time and Angel Count (STAC) Bus Interface.”.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR2[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x028 / eTPU B: eTPU_BASE + 0x048

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR2[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x028 / eTPU B: eTPU_BASE + 0x048

Figure 4-7. ETPUTB2R Register

Table 4-13. ETPUTB2R Bit Field Descriptions

Read/Write Bits Name Description

— 0 – 7 — Writes do not affect bit values. Reads return 0.

R 8 – 31 TCR2[23:0] TCR2 value. TCR2 value used on matches and captures. See Section 5.6,
“Time Bases.”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REN1 RSC1 0 0 SERVER_ID1 0 0 0 0 SRV1

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADDR eTPU A: eTPU_BASE + 0x02C / eTPU B: eTPU_BASE + 0x04C

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REN2 RSC2 0 0 SERVER_ID2 0 0 0 0 SRV2

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADDR eTPU A: eTPU_BASE + 0x02C / eTPU B: eTPU_BASE + 0x04C

Figure 4-8. ETPUREDCR Register
MOTOROLA Chapter 4. Programming Model. 4-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Base Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-14. ETPUREDCR Field Descriptions

Read/
Write

Bits Name Description

R/W 0 REN1 TCR1 Resource1 Client/Server Operation Enable Bit. This bit enables or
disables client/server operation to eTPU STAC interface. REN1 enables TCR1.
1 Server/Client Operation for resource 1 is enabled.
0 Server/Client Operation for resource 1 is disabled.

1. Resource identifies any parameter that changes along the time and can be exported / imported from other device.
In eTPU context, a resource can be TCR1, or TCR2 (either time or angle values).

R/W 1 RSC1 TCR1 Resource Server/Client Assignment Bit. This bit selects the eTPU data
resource assignment to be used as a Server or Client. RSC1 selects the
functionality of TCR1. For Server mode, external plugging determines the
unique server address assigned to each TCR. For a Client mode, the SRV1 field
determines the Server address to which the Client listens.
1 Resource Server operation.
0 Resource Client operation.

— 2 - 3 — Writes do not affect bit values. Reads return 0.

R 4 - 7 SERVER_ID1 SERVER_ID1 returns the STAC bus "addresses" for TCR1 when
configured as a server.
The values are:
0 and 2 for engine 1
1 and 3 for engine 2

— 8 - 11 — Writes do not affect bit values. Reads return 0.

R/W 12 – 15 SRV1[3:0] TCR1 Resource Server. These bits select the address of the specific IP Server
to which the local TCR1 listens when configured as a IP Client. SRV1 selects
the IP Server of TCR1.

R/W 16 REN2 TCR2 Resource1 Client/Server Operation Enable Bit. This bit enables or
disables Client/Server operation to eTPU IP resources. REN2 enables TCR2 IP
bus operations.
1 Server/Client Operation for resource 2 is enabled.
0 Server/Client Operation for resource 2 is disabled.

R/W 17 RSC2 TCR22 Resource Server/Client Assignment Bit. This bit selects the eTPU data
resource assignment to be used as a Server or Client. RSC2 selects the
functionality of TCR2. For Server mode, external plugging determines the
unique server address assigned to each TCR. For a Client mode, the SRV2 field
determines the Server address to which the Client listens.
1 Resource Server operation.
0 Resource Client operation.

— 18 - 19 — Writes do not affect bit values. Reads return 0.

R 20 - 23 SERVER_ID2 SERVER_ID2 returns the STAC bus "addresses" for TCR2 when
configured as a server.
The values are:
0 and 2 for engine 1
1 and 3 for engine 2

— 24 - 27 — Writes do not affect bit values. Reads return 0.

R/W 28 – 31 SRV2[3:0] TCR2 Resource Server. These bits select the address of the specific IP Server
to which the local TCR2 listens when configured as a IP Client. SRV2 selects
the IP Server of TCR2.
4-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Registers Layout

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4 Channel Registers Layout
The channel register structure map is shown in Table 4-15. Every eTPU channel has 3
registers that fit within the address range of each structure; the 3 registers are illustrated in
Table 4-16.

2. When TCR2 is configured as a IP bus client (REN2=1, RSC2=0) the eTPU angle clock hardware is disabled. In
this case the AM (angle mode) bit in ETPUTBCR has no effect.

Table 4-15. eTPU Channel Register Map

Address Registers Structure

eTPU_BASE+0x400 eTPU A Channel 0 Register Structure

eTPU_BASE+0x410 eTPU A Channel 1 Register Structure

eTPU_BASE+0x420 eTPU A Channel 2 Register Structure

eTPU_BASE+0x430 –
eTPU_BASE+0x5D0

.

.

.

eTPU_BASE+0x5E0 eTPU A Channel 30 Register Structure

eTPU_BASE+0x5F0 eTPU A Channel 31 Register Structure

eTPU_BASE+0x600 –
eTPU_BASE+0x7FF

Reserved

eTPU_BASE+0x800 eTPU B Channel 0 Register Structure

eTPU_BASE+0x810 eTPU B Channel 1 Register Structure

eTPU_BASE+0x820 eTPU B Channel 2 Register Structure

eTPU_BASE+0x430 –
eTPU_BASE+0x5D0

.

.

.

eTPU_BASE+0x9E0 eTPU B Channel 30 Register Structure

eTPU_BASE+0x9F0 eTPU B Channel 31 Register Structure

eTPU_BASE+0xA00 –
eTPU_BASE+0xBFF

Reserved

Table 4-16. eTPU Channel Registers Structure

Offset Register Name

0x00 eTPU Channel Configuration Register (eTPUCxCCR)

0x04 eTPU Channel Status/Control Register (eTPUCSCR)

0x08 eTPU Channel Host Service Request Register (eTPUCHSRR)

0x0c Reserved
MOTOROLA Chapter 4. Programming Model. 4-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

16

16

Re

0

0

Re

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 Global Channel Registers
The registers in this section group, by type, the interrupt status and enable bits from all the
channels. This organization eases management of all channels or groups of channels by a
single interrupt handler routine. These bits are mirrored in the individual channel registers,
grouped by channel.

4.5.1 eTPU Channel Interrupt Status Register (ETPUCISR)

Host interrupt status, see Section 5.2.2, “Interrupts and Data Transfer Requests, from all
channels are grouped in ETPUCISR. Their bits are mirrored from the channel status/control
registers, see Section 4.6, “Channel Configuration and Control Registers,” and the host
CPU must write 1 to clear a status bit.

4.5.2 eTPU Channel Data Transfer Request Status Register
(ETPUCDTRSR)

Data transfer request status, see Section 5.2.2, “Interrupts and Data Transfer Requests,”
from all channels are grouped in ETPUCDTRSR. Their bits are mirrored from the channel

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS31 CIS30 CIS29 CIS28 CIS27 CIS26 CIS25 CIS24 CIS23 CIS22 CIS21 CIS20 CIS19 CIS18 CIS17 CIS

W CIC31 CIC30 CIC29 CIC28 CIC27 CIC26 CIC25 CIC24 CIC23 CIC22 CIC21 CIC20 CIC19 CIC18 CIC17 CIC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g Addr eTPU A: eTPU_BASE + 0x200 / eTPU B: eTPU_BASE + 0x204

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIS15 CIS14 CIS13 CIS12 CIS11 CIS10 CIS9 CIS8 CIS7 CIS6 CIS5 CIS4 CIS3 CIS2 CIS1 CIS

W CIC15 CIC14 CIC13 CIC12 CIC11 CIC10 CIC9 CIC8 CIC7 CIC6 CIC5 CIC4 CIC3 CIC2 CIC1 CIC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g Addr eTPU A: eTPU_BASE + 0x200 / eTPU B: eTPU_BASE + 0x204

Figure 4-9. ETPUCISR Register

Table 4-17. ETPUCISR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 CISx Channel x Interrupt Status.
1 indicates that channel x has a pending interrupt to the host CPU.
0 indicates that channel x has no pending interrupt to the host CPU.

W 0 – 31 CICx Channel x Interrupt Clear
1 clear interrupt status bit.
0 keep interrupt status bit unaltered.
For details about interrupts see Section 5.9.3.10, “Channel Interrupt and
Data Transfer Requests.”
4-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

S

C

Re

S

C

Re

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

status/control registers, see Section 4.6.2, “eTPU Channel x Status Control Register
(ETPUCxSCR).”

NOTE
eTPU A channels [0:2,12:15,28:29] and eTPU B channels
[0:3,12:15,28:31] are connected to the DMA. The data transfer
request lines that are not connected to the DMA controller are
left disconnected and don’t generate interrupt requests, even if
their request status bits are asserted in registers ETPUCDTRSR
and ETPUCxSCR. Channels that are not connected may still
have their status bits (DTRSx) cleared by writing to the
appropriate field (DTRCx)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTRS
31

DTRS
30

DTRS
29

DTRS
28

DTRS
27

DTRS
26

DTRS
25

DTRS
24

DTRS
23

DTRS
22

DTRS
21

DTRS
20

DTRS
19

DTRS
18

DTRS
17

DTR
16

W DTRC
31

DTRC
30

DTRC
29

DTRC
28

DTRC
27

DTRC
26

DTRC
25

DTRC
24

DTRC
23

DTRC
22

DTRC
21

DTRC
20

DTRC
19

DTRC
18

DTRC
17

DTR
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g Addr eTPU A: eTPU_BASE + 0x210 / eTPU B: eTPU_BASE + 0x214

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTRS
15

DTRS
14

DTRS
13

DTRS
12

DTRS
11

DTRS
10

DTRS
9

DTRS
8

DTRS
7

DTRS
6

DTRS
5

DTRS
4

DTRS
3

DTRS
2

DTRS
1

DTR
0

W DTRC
15

DTRC
14

DTRC
13

DTRC
12

DTRC
11

DTRC
10

DTRC
9

DTRC
8

DTRC
7

DTRC
6

DTRC
5

DTRC
4

DTRC
3

DTRC
2

DTRC
1

DTR
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g Addr eTPU A: eTPU_BASE + 0x210 / eTPU B: eTPU_BASE + 0x214

Figure 4-10. ETPUCDTRSR Register

Table 4-18. ETPUCDTRSR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 DTRSx Channel x Data Transfer Request Status.
1 indicates that channel x has a pending data transfer request.
0 indicates that channel x has no pending data transfer request.

W 0 – 31 DTRCx Channel x Data Transfer Request Clear.
1 clear status bit.
0 keep status bit unaltered
For details about interrupts see Section 5.9.3.10, “Channel Interrupt and
Data Transfer Requests.”
MOTOROLA Chapter 4. Programming Model. 4-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.3 eTPU Channel Interrupt Overflow Status Register
(ETPUCIOSR)

Interrupt Overflow status, see Section 5.2.2, “Interrupts and Data Transfer Requests,” from
all channels are grouped in ETPUCIOSR. Their bits are mirrored from the channel
status/control registers, see Section 4.6.2, “eTPU Channel x Status Control Register
(ETPUCxSCR),” and the host must write 1 to clear a status bit.

NOTE
An interrupt overflow occurs when an interrupt is issued for a
channel when the previous interrupt status bit for the same
channel has not been cleared.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIOS
31

CIOS
30

CIOS
29

CIOS
28

CIOS
27

CIOS
26

CIOS
25

CIOS
24

CIOS
23

CIOS
22

CIOS
21

CIOS
20

CIOS
19

CIOS
18

CIOS
17

CIOS
16

W CIOC
31

CIOC
30

CIOC
29

CIOC
28

CIOC
27

CIOC
26

CIOC
25

CIOC
24

CIOC
23

CIOC
22

CIOC
21

CIOC
20

CIOC
19

CIOC
18

CIOC
17

CIOC
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x220 / eTPU B: eTPU_BASE + 0x224

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIOS
15

CIOS
14

CIOS
13

CIOS
12

CIOS
11

CIOS
10

CIOS
9

CIOS
8

CIOS
7

CIOS
6

CIOS
5

CIOS
4

CIOS
3

CIOS
2

CIOS
1

CIOS
0

W CIOC
15

CIOC
14

CIOC
13

CIOC
12

CIOC
11

CIOC
10

CIOC
9

CIOC
8

CIOC
7

CIOC
6

CIOC
5

CIOC
4

CIOC
3

CIOC
2

CIOC
1

CIOC
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x220 / eTPU B: eTPU_BASE + 0x224

Figure 4-11. ETPUCIOSR Register

Table 4-19. ETPUCIOSR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 CIOSx Channel x Interrupt Overflow Status.
1 indicates that interrupt overflow occurred in the channel.
0 indicates that no interrupt overflow occurred in the channel.

W 0 – 31 CIOCx Channel x Interrupt Overflow Clear.
1 clear status bit.
0 keep status bit unaltered.
For details about interrupt overflow, see Section 5.2.2.2, “Interrupt and Data
Transfer Request Overflow.”
4-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.4 eTPU Channel Data Transfer Request Overflow Status
Register (ETPUCDTROSR)

Data transfer request overflow status, see Section 5.2.2, “Interrupts and Data Transfer
Requests,” from all channels are grouped in ETPUCDTROSR. Their bits are mirrored from
the channel status/control registers, see Section 4.6.2, “eTPU Channel x Status Control
Register (ETPUCxSCR),” and the host must write 1 to clear a status bit.

4.5.5 eTPU Channel Interrupt Enable Register (ETPUCIER)

Host interrupt enable, see Section 5.2.2, “Interrupts and Data Transfer Requests,” from all
channels are grouped in ETPUCIER. Their bits are mirrored from the channel

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
OS
31

DTR
OS
30

DTR
OS
29

DTR
OS
28

DTR
OS
27

DTR
OS
26

DTR
OS
25

DTR
OS
24

DTR
OS
23

DTR
OS
22

DTR
OS
21

DTR
OS
20

DTR
OS
19

DTR
OS
18

DTR
OS
17

DTR
OS
16

W DTR
OC
31

DTR
OC
30

DTR
OC
29

DTR
OC
28

DTR
OC
27

DTR
OC
26

DTR
OC
25

DTR
OC
24

DTR
OC
23

DTR
OC
22

DTR
OC
21

DTR
OC
20

DTR
OC
19

DTR
OC
18

DTR
OC
17

DTR
OC
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x230 / eTPU B: eTPU_BASE + 0x234

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
OS
15

DTR
OS
14

DTR
OS
13

DTR
OS
12

DTR
OS
11

DTR
OS
10

DTR
OS
9

DTR
OS
8

DTR
OS
7

DTR
OS
6

DTR
OS
5

DTR
OS
4

DTR
OS
3

DTR
OS
2

DTR
OS
1

DTR
OS
0

W DTR
OC
15

DTR
OC
14

DTR
OC
13

DTR
OC
12

DTR
OC
11

DTR
OC
10

DTR
OC
9

DTR
OC
8

DTR
OC
7

DTR
OC
6

DTR
OC
5

DTR
OC
4

DTR
OC
3

DTR
OC
2

DTR
OC
1

DTR
OC
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x230 / eTPU B: eTPU_BASE + 0x234

Figure 4-12. ETPUCDTROSR Register

Table 4-20. ETPUCDTROSR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 DTROSx Channel x Data Transfer Request Overflow Status.
1 indicates that data transfer request overflow occurred in the channel.
0 indicates that no data transfer request overflow occurred in the channel.

W 0 – 31 DTROCx Channel x Data Transfer Request Overflow Clear.
1 clear status bit.
0 keep status bit unaltered.
For details about data transfer request overflow, see Section 5.2.2.2,
“Interrupt and Data Transfer Request Overflow.”
MOTOROLA Chapter 4. Programming Model. 4-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

configuration registers, see Section 4.6.1, “eTPU Channel x Configuration Register
(ETPUCxCR)

4.5.6 eTPU Channel Data Transfer Request Enable Register
(ETPUCDTRER)

Data transfer request enable, see Section 5.2.2, “Interrupts and Data Transfer Requests,”
from all channels are grouped in ETPUCDTRER. These bits are mirrored from the channel
configuration registers, see Section 4.6.1, “eTPU Channel x Configuration Register
(ETPUCxCR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE
31

CIE
30

CIE
29

CIE
28

CIE
27

CIE
26

CIE
25

CIE
24

CIE
23

CIE
22

CIE
21

CIE
20

CIE
19

CIE
18

CIE
17

CIE
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x240 / eTPU B: eTPU_BASE + 0x244

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIE
15

CIE
14

CIE
13

CIE
12

CIE
11

CIE
10

CIE
9

CIE
8

CIE
7

CIE
6

CIE
5

CIE
4

CIE
3

CIE
2

CIE
1

CIE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x240 / eTPU B: eTPU_BASE + 0x244

Figure 4-13. ETPUCIER Register

Table 4-21. ETPUCIER Bit Field Descriptions

Read/Write Bits Name Description

R/W 0 – 31 CIEx Channel x Interrupt Enable.
1 interrupt enabled for channel x
0 interrupt disabled for channel x.
For details about interrupts see Section 5.9.3.10, “Channel Interrupt and
Data Transfer Requests.”
4-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.7 eTPU Channel Pending Service Status Register
(ETPUCPSSR)

ETPUCPSSR is a read-only register that holds the status of the pending channel service
requests, see Section Chapter 7, “Functions and Threads.”

NOTE
More than one source may be requesting service when a
channel’s service request bit is set.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
E
31

DTR
E
30

DTR
E
29

DTR
E
28

DTR
E
27

DTR
E
26

DTR
E
25

DTR
E
24

DTR
E
23

DTR
E
22

DTR
E
21

DTR
E
20

DTR
E
19

DTR
E
18

DTR
E
17

DTR
E
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x250 / eTPU B: eTPU_BASE + 0x254

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
E
15

DTR
E
14

DTR
E
13

DTR
E
12

DTR
E
11

DTR
E
10

DTR
E
9

DTR
E
8

DTR
E
7

DTR
E
6

DTR
E
5

DTR
E
4

DTR
E
3

DTR
E
2

DTR
E
1

DTR
E
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x250 / eTPU B: eTPU_BASE + 0x254

Figure 4-14. ETPUCDTRER Register

Table 4-22. ETPUCDTRER Bit Field Descriptions

Read/Write Bits Name Description

R/W 0 – 31 DTREx Channel x Data Transfer Request Enable.
1 Data Transfer request enabled for channel x.
0 Data Transfer request disabled for channel x.
For details about interrupts see Section 5.9.3.10, “Channel Interrupt and
Data Transfer Requests.”
MOTOROLA Chapter 4. Programming Model. 4-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Global Channel Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
The pending service status bit for a channel is set when a
service request is pending, even if the Channel is disabled
(CPRx = 0).

4.5.8 eTPU Channel Service Status Register (ETPUCSSR)

ETPUCSSR holds the current channel service status on whether it is being serviced or not,
see Section Chapter 7, “Functions and Threads.” Only one bit may be asserted in this
register at a given time. When no channel is being serviced the register read value is
0x00000000. ETPUCSSR is a read-only register. The register can be read during normal
eTPU operation for monitoring the scheduler activity.

NOTE
The ETPUCSSR is not an absolute indication of channel status.
If more than one source is requesting service, the asserted
status bit only indicates that one of the requests has been
granted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SR31 SR30 SR29 SR28 SR27 SR26 SR25 SR24 SR23 SR22 SR21 SR20 SR19 SR18 SR17 SR16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x280 / eTPU B: eTPU_BASE + 0x284

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SR15 SR14 SR13 SR12 SR11 SR10 SR9 SR8 SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x280 / eTPU B: eTPU_BASE + 0x284

Figure 4-15. ETPUCPSSR Register

Table 4-23. ETPUCPSSR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 SRx Pending Service Request x. Indicates a pending service request for channel
x.
1 pending service request for channel x
0 no service request pending for channel x
Pending SR status is negated at the time slot transition to the respective
service thread.
4-22 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
Channel service status does not always reflect decoding of the
CHAN register, since the later can be changed by the service
thread microcode.

4.6 Channel Configuration and Control Registers
Each channel, for both eTPU engines, has a group of 3 registers used to control, configure
and check status of that channel as shown in Table 4-25. This organization eases individual
channel management.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SS31 SS30 SS29 SS28 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20 SS19 SS18 SS17 SS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x290 / eTPU B: eTPU_BASE + 0x294

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SS15 SS14 SS13 SS12 SS11 SS10 SS9 SS8 SS7 SS6 SS5 SS4 SS3 SS2 SS1 SS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr eTPU A: eTPU_BASE + 0x290 / eTPU B: eTPU_BASE + 0x294

Figure 4-16. ETPUCSSR Register

Table 4-24. ETPUCSSR Bit Field Descriptions

Read/Write Bits Name Description

R 0 – 31 SSx Service Status x. Indicates that channel x is currently being serviced. It is
updated at the 1st microcycle of a time slot transition. See Section 7.3,
“Time Slot Transition,” for more information on time slot transitions.
1 channel x is currently being serviced
0 channel x is not currently being serviced

Table 4-25. Channel Registers Structure

Channel
Offset

Register Name

0x00 eTPU Channel Configuration Register (ETPUCxCR)

0x04 eTPU Channel Status/Control Register1 (ETPUCxSCR)

0x08 eTPU Channel Host Service Request Register (ETPUCxHSRR)

0x0C RESERVED
MOTOROLA Chapter 4. Programming Model. 4-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

One contiguous area is used to map all channel registers of each eTPU engine as shown
inTable 4-26.

There are 64 structures defined, one for each available channel in the eTPU System (32 for
each engine). The base address for the structure presented can be calculated by using the
following equation:

Channel_Register_Structure_Base_Address =

ETPU_Engine_Channel_Base + (channel_number * 0x10)

where:

ETPU_Engine_Channel_Base = ETPU_Base + (0x400 for engine A or 0x800 for engine
B).

4.6.1 eTPU Channel x Configuration Register (ETPUCxCR)

ETPUCxCR gathers configurations set individually per channel.

1. eTPU A channels [0:2,12:15,28:29] and eTPU B channels [0:3,12:15,28:31] are
connected to the DMA. The data transfer request lines that are not connected to
the DMA controller are left disconnected and don’t generate interrupt requests,
even if their request status bits assert in registers ETPUCDTRSR and
ETPUCxSCR

Table 4-26. Channel Registers Map

Offset Registers Structure

0x400 eTPU A Channel 0 Registers Structure

0x410 eTPU A Channel 1 Registers Structure

0x420 eTPU A Channel 2 Registers Structure

0x430

0x5D0

.

.

.

0x5E0 eTPU A Channel 30 Registers Structure

0x5F0 eTPU A Channel 31 Registers Structure

0x600 RESERVED

0x800 eTPU B Channel 0 Registers Structure

0x810 eTPU B Channel 1 Registers Structure

0x820

0x9D0

.

.

.

0x9E0 eTPU B Channel 30 Registers Structure

0x9F0 eTPU B Channel 31 Registers Structure

0xA00 RESERVED
4-24 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE DTR
E

CPR 0 0 0 ETC
S

0 0 0 CFS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ODIS OPO
L

0 0 0 CPBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x0

Figure 4-17. ETPUCxCR Register

Table 4-27. ETPUCxCR Bit Field Descriptions

Read/Write Bits Name Description

R/W 0 CIE Channel Interrupt Enable. This bit is mirrored from ETPUCIER, see
Section 4.5.5, “eTPU Channel Interrupt Enable Register (ETPUCIER).”
1 Enable interrupt for this channel.
0 Disable interrupt for this channel.
See Section 5.9.3.10, “Channel Interrupt and Data Transfer Requests.”

R/W 1 DTRE Channel Data Transfer Request Enable. This bit is mirrored from
ETPUCDTRER, see Section 4.5.6, “eTPU Channel Data Transfer Request
Enable Register (ETPUCDTRER).”
1 Enable data transfer request for this channel.
0 Disable data transfer request for this channel.
See Section 5.9.3.10, “Channel Interrupt and Data Transfer Requests.”

R/W 2 – 3 CPR[1:0] Channel Priority. This field defines the priority level, see Table 4-28, for the
channel. This level is used by the hardware scheduler, see Section 5.3,
“Scheduler.”

— 4 – 6 — Writes do not affect bit values. Reads return 0.

R/W 7 ETCS Entry Table Condition Select. This bit determines the channel condition
encoding scheme that selects, according to channel conditions, the entry
point to be taken in an entry table. ETCS value has to be compatible with
the function chosen for the channel, selected in field CFS. Two condition
encoding schemes are available. For details about entry table and condition
encoding schemes, refer to Section 7.2, “Entry Points.”
1 select alternate entry table condition encoding scheme.
0 select standard entry table condition encoding scheme.

— 8 – 10 — Writes do not affect bit values. Reads return 0.

R/W 11 – 15 CFS[4:0] Channel Function Select. This field defines the function to be performed by
the channel, see Section Chapter 7, “Functions and Threads.” The function
assigned to the channel has to be compatible with the channel condition
encoding scheme, selected by field ETCS.
MOTOROLA Chapter 4. Programming Model. 4-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.6.2 eTPU Channel x Status Control Register (ETPUCxSCR)

ETPUCxSCR gathers the interrupt status bits of the channel, and also the function mode
definition (read-write). Bits CIS, CIOS and DTRS for each channel can be also accessed
from ETPUCISR, ETPUCIOSR and ETPUCDTRSR registers respectively, see
Section 4.5, “Global Channel Registers.”. The host CPU must write 1 to clear a status bit.

NOTE
eTPU A channels [0:2,12:15,28:29] and eTPU B channels
[0:3,12:15,28:31] are connected to the DMA. The data transfer
request lines that are not connected to the DMA controller are
left disconnected and don’t generate interrupt requests, even if
their request status bits assert in registers ETPUCDTRSR and
ETPUCxSCR

R/W 16 ODIS Output Disable. This bit enables the channel to have its output forced to the
value opposite to OPOL when the output disable input signal corresponding
to the channel group that it belongs is active. See Section 2.2.3, “Channel
Output Disable Signals.”
1 turns on the output disable feature for the channel
0 turns off the output disable feature for the channel.

R/W 17 OPOL Output Polarity. Determines the output signal polarity. The activation of the
output disable signal forces, when enabled by the ODIS bit, the channel
output signal to the opposite of this polarity.
1 output active high (output disable drives output to low)
0 output active low (output disable drives output to high)

— 18 – 20 — Writes do not affect bit values. Reads return 0.

R/W 21 – 31 CPBA[10:0] Channel x Parameter Base Address. The value of this field multiplied by 8
specifies the SPRAM parameter base host (byte) address for channel x
(2-parameter granularity); for more information on SPRAM addresses, see
Section 5.2.4, “SPRAM Organization.” As seen by the host, the channel
parameter base (byte) address is:
 • without parameter sign extension: eTPU_Base + 0x8000 + CPBA*8
 • with parameter sign extension: eTPU_Base + 0xC000 + CPBA*8

Table 4-28. Priority level Bits

CPR Priority

00 Disabled

01 Low

10 Middle

11 High

Table 4-27. ETPUCxCR Bit Field Descriptions

Read/Write Bits Name Description
4-26 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS CIOS 0 0 0 0 0 0 DTRS DTROS 0 0 0 0 0 0

W CIC CIOC DTRC DTROC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IPS OPS OBE 0 0 0 0 0 0 0 0 0 0 0 FM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x4

Figure 4-18. ETPUCxSCR Register

Table 4-29. ETPUCxSCR Bit Field Descriptions

Read/Write Bits Name Description

R 0 CIS Channel Interrupt Status.
1 channel has a pending interrupt to the host CPU.
0 channel has no pending interrupt to the host CPU.

W 0 CIC Channel Interrupt Clear.
1 clear interrupt status bit.
0 keep interrupt status bit unaltered.
These bits are mirrored in ETPUCISR, see Section 4.5.1, “eTPU Channel
Interrupt Status Register (ETPUCISR).”. See also Section 5.9.3.10,
“Channel Interrupt and Data Transfer Requests.”

R 1 CIOS Channel Interrupt Overflow Status.
1 interrupt overflow asserted for this channel
0 interrupt overflow negated for this channel

W 1 CIOC Channel Interrupt Overflow Clear.
1 clear status bit.
0 keep status bit unaltered.
These bits are mirrored in ETPUCIOSR, see Section 4.5.3, “eTPU Channel
Interrupt Overflow Status Register (ETPUCIOSR).”. See also
Section 5.2.2.2, “Interrupt and Data Transfer Request Overflow.”

— 2 – 7 — Writes do not affect bit values. Reads return 0.

R 8 DTRS Data Transfer Request Status.
1 Channel has a pending data transfer request.
0 Channel has no pending data transfer request.

W 8 DTRC Data Transfer Request Clear.
1 clear status bit.
0 keep status bit unaltered
These bits are mirrored in ETPUCISR, see Section 4.5.2, “eTPU Channel
Data Transfer Request Status Register (ETPUCDTRSR)). See also
Section 5.9.3.10, “Channel Interrupt and Data Transfer Requests.
MOTOROLA Chapter 4. Programming Model. 4-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.6.3 eTPU Channel x Host Service Request Register
(ETPUCxHSRR)

ETPUCxHSRR is used by the host to issue service requests to the channel.

R 9 DTROS Data Transfer Request Overflow Status.
1 data transfer request overflow asserted for this channel
0 data transfer request overflow negated for this channel

W 9 DTROC Data Transfer Request Overflow Clear.
1 clear status bit.
0 keep status bit unaltered.
These bits are mirrored in ETPUCDTROSR, see Section 4.5.4, “eTPU
Channel Data Transfer Request Overflow Status Register
(ETPUCDTROSR).”. See also Section 5.2.2.2, “Interrupt and Data Transfer
Request Overflow.”

— 10 – 15 — Writes do not affect bit values. Reads return 0.

R 16 IPS Channel Input Pin State. This bit shows the current value of the filtered
channel input signal state

R 17 OPS Channel Output Pin State. This bit shows the current value driven in the
channel output signal, including the effect of the external output disable
feature, see Section 2.2.3, “Channel Output Disable Signals.” If the channel
input and output signals are connected to the same pad, OPS reflects the
value driven to the pad (if OBE=1). This is not necessarily the actual pad
value, which drives the value in the bit IPS.

R/W 18 OBE Output Buffer Enable reflects the state of the OBE signal. It’s controlled by
microcode.

— 19 – 29 — Writes do not affect bit values. Reads return 0.

R/W 30 – 31 FM[1:0] Channel Function Mode1. Each function may use this field for specific
configuration. These bits can be tested by microengine code, see
Section 5.9.4.2.3, “Conditional/Unconditional Branch.”

1. These bits are equivalent to the TPU/TPU2/TPU3 host sequence (HSQ) bits.

Table 4-29. ETPUCxSCR Bit Field Descriptions

Read/Write Bits Name Description
4-28 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x8

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 HSR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg Addr Channel_Register_Base + 0x8

Figure 4-19. ETPUCxHSRR Register

Table 4-30. ETPUCxHSRR Bit Field Descriptions

Read/Write Bits Name Description

— 0 – 28 — Writes do not affect bit values. Reads return 0.

R/W 29 – 31 HSR[2:0] Host Service Request. This field is used by the host CPU to request service
to the channel, see Section 5.2.5, “Host Service Requests.”
 • HSR = 000: no host service request pending
 • HSR > 000: function-dependent host service request pending.
HSR value turns to 000 automatically at the end of microengine service for
that channel. The host should write HSR>0 only when HSR=0. Writing
HSR=000 withdraws a pending request if scheduler did not begin to resolve
the entry point yet, but it does not abort the service thread from that point
on. For more details, see Section 7.2, “Entry Points,” and Section 5.2.5,
“Host Service Requests.”
MOTOROLA Chapter 4. Programming Model. 4-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Configuration and Control Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4-30 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 5
Host Interface

5.1 System Configuration
System configuration registers are described in Section 4.2, “System Configuration
Registers.” A specification for the initial configuration sequence is found in Section 12.1,
“Configuration Sequence.”

5.2 Interrupts and Data Transfer Requests

5.2.1 Interrupt Types and Sources

Each of the eTPU channels can be a source of a channel interrupt request. eTPU A channels
[0:2,12:15,28:29] and eTPU B channels [0:3,12:15,28:31] can be a source of a data transfer
request. channel interrupts are targeted to the host CPU. Data transfer requests are targeted
to the data transfer module, DMA in the MPC5554.

NOTE
The eTPU channels’ data transfer request lines that are not
connected to the DMA controller are left disconnected and
don’t generate interrupt requests, even if their request status
bits assert in registers ETPUCDTRSR and ETPUCxSCR.

Interrupt and data transfer registers are used by the host to enable interrupts and data
transfer requests, indicate their status and service them. Interrupt and data transfer requests
have the same sets of registers and external signals, and are handled in the same way.

NOTE
Interrupt and data transfer requests can be cleared even when
engines are in internal stop mode, through the global channel
registers.

Channel interrupts and data transfer requests can only be issued by eTPU microcode,
through one of the channel control instruction fields.
MOTOROLA Chapter 5. Host Interface. 5-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Interrupts and Data Transfer Requests

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Both channel interrupt and data transfer requests can be individually enabled for each
channel.

The eTPU interrupt and data transfer registers are mirrored in two organizations: grouped
by channel and grouped by type (interrupt status, interrupt enable, data transfer status, data
transfer enable). This allows either “channel-oriented” or “bundled channel” host interrupt
service schemes, or a combination of them. For a detailed description, refer to Section 4.4,
“Channel Registers Layout,” and Section 4.5, “Global Channel Registers.”

The eTPU can also assert a global exception interrupt indicating a global illegal state. There
are three possible sources for a global exception:

• The execution of an illegal instruction by the microengine, see Section 9.6, “Illegal
Instructions.” This global exception source is flagged by the bits ILFA and ILFB in
register ETPUMCR.

• An SCM signature mismatch detected by the multiple input signature calculator
(MISC). See Section 10.3.1, “SCM Test for MISC (Multiple Input Signature
Calculator).” This source is flagged by the SCMMISF bit in the ETPUMCR register
if enabled.

• A microcode request, through microinstruction field CIRC, see Section 9.4.10,
“Channel Interrupt and Data Transfer Requests.” This global exception source is
flagged by either the MGEA bit (engine A) or the MGEB bit (engine B) in the
ETPUMCR register. The microcode has the ability to write an error code in the
SPRAM to indicate the cause of the exception.

Global exceptions cannot be directly disabled within eTPU, except by disabling its sources
(MISC and microcode), and they are cleared by the host by writing 1 to the GEC bit in
ETPUMCR. Clearing global exception clears all global exception source status bits (ILFA,
ILFB, SCMMISF, MGEA, MGEB). The assertion of global exception by one of the sources
above does not prevent the others from asserting it too, so any number may be set at one
time.

NOTE

There can be a race between the clear of a global exception and
occurrence of a new set condition, such that the set happens just
before the clear and cannot be sensed by the host. Therefore,
global exceptions cannot be used as a normal interrupt source;
it should only be used for emergency procedures.

5.2.2 Interrupt and Data Transfer Request Overflow

If a channel interrupt was issued, its status bit is still set, and microcode issues another
channel interrupt, the channel interrupt overflow status (CIOS) bit is set for that channel.
The CIOS bit in the channel status register ETPUCxSCR allows the host to check the
interrupt overflow status, Section 4.6.2, “eTPU Channel x Status Control Register
5-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Access

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(ETPUCxSCR),” The CIOS bit is mirrored in register ETPUCIOSR, Section 4.5.3, “eTPU
Channel Interrupt Overflow Status Register (ETPUCIOSR).” Interrupt overflow status is
not cleared automatically when interrupt status is cleared; the CIOC bit must be set to clear
the CIOS. The same mechanism and respective registers (ETPUCDTROSR) are available
for data transfer requests.

A global exception has no overflow status.

5.3 Parameter Access

5.3.1 Parameter Access Widths

From the host side the SPRAM address space is mapped in bytes, and each 32-bit parameter
occupies 4 contiguous, aligned bytes. The host can read/write the SPRAM by 8-, 16-, or
32-bit accesses in aligned addresses.

In 32-bit access, The host can access all 32 bits or only the lower 24 bits with an automatic
sign extension, see Section 5.3.4, “Parameter Sign Extension Area.”

5.3.2 Parameter Addresses and Endianess

To access parameter number xxx, eTPU microengine(s) would select address xxx. The host
would add (xxx*4) to the SPRAM base address to access the same parameter. For example,
parameter 0x101 is seen by the host as (SPRAM base address +0x404). An example of the
SPRAM memory map is shown in Figure 5-1. The host can access the SPRAM with a
32-bit-wide bus cycle to a four-byte aligned address, 16-bit-wide bus cycle to a two-byte
aligned address, or 8-bit wide bus cycle to any byte address. The address of the 24-bit
parameters and the most significant byte depends on the endianness of the MCU. For more
details, see Section 12.6, “Endianness.”

5.3.3 Parameter Concurrency

Host accesses to parameters may occur in parallel with eTPU microengine accesses.
Readings taken from a group of parameters while they are being simultaneously updated
may lack coherency. The eTPU provides mechanisms to ensure parameter coherency in
accesses from both host side and microengine side, including the use of a coherent
dual-parameter transfer mechanism, described in detail in Section 5.7, “Parameter Sharing
and Coherency.”

5.3.4 Parameter Sign Extension Area

The SPRAM address space to the host is mirrored in a parameter sign extension (PSE) area,
see Chapter 3, “Memory Map.” Accesses from the host to the PSE area differ from accesses
to the standard SPRAM address space as follows:
MOTOROLA Chapter 5. Host Interface. 5-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

SPRAM Organization

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Writes: the most significant byte of the parameters is not written and the SPRAM
retains the old byte value, regardless of the host access size.

• Reads: the most significant bit of the 24-bit parameter (that is, the msb of the second
most significant 32-bit parameter byte) is repeated in the 8 most significant bits of
the read value on all 32-bit reads and most significant 16- and 8-bit reads.

The parameters written in the standard SPRAM address space are read from the PSE area
with the same offsets, and vice-versa. Refer to Table 12-9 for a reference of the address
offsets in big and little endian machines.

Having a PSE area relieves the host from extending the signal of 24-bit eTPU parameters
before calculations, and from read-modify-write accesses to modify 24-bit parameters at
the SPRAM.

5.4 SPRAM Organization
The SPRAM internal partition for channel allocation is dynamic and programmed in the
channel registers, see Section 4.6.1, “eTPU Channel x Configuration Register
(ETPUCxCR).”

The host application is responsible for allocating a different parameter base address to each
channel during the initial eTPU configuration, and to allocate enough parameters for the
selected function, with no unintentional overlapping between parameters of different
functions.

Besides channel parameters, global areas may have to be allocated for parameters that are
shared by more than one channel, in one or both engines. Also, temporary parameter areas
should be reserved to be used by the coherent parameter transfer mechanisms described in
Section 5.7, “Parameter Sharing and Coherency,” if necessary.
5-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

SPRAM Organization

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-1. SPRAM Organization Example

A single-engine eTPU or dual eTPU system may require fewer parameters than the
maximum number provided by the SPRAM. Since the SPRAM partition is flexible, there
is no limitation of fixed channel addresses, and the reduced array can be fully utilized.

eTPU BeTPU A

SPRAM

0x000

ETPUC0CR[CPBA]->0x014 *4

ETPUC1CR[CPBA]->0x018 *4

ETPUC2CR[CPBA]->0x168 *4

ETPUC3CR[CPBA]->0x172 *4

ETPUC30CR[CPBA]->0x180 *4

ETPUC31CR[CPBA]->0x16E *4

eTPU B Channel 3 Parameters

eTPU B Channel 0 Parameters

eTPU A Channel 0 Parameters

eTPU A Channel 1 Parameters

eTPU B Channel 30 Parameters

eTPU B Channel 2 Parameters

eTPU A Channel 2 Parameters

eTPU A Channel 31 Parameters

eTPU A Channel 3 Parameters

eTPU A Channel 30 Parameters

eTPU B Channel 31 Parameters

0x200

eTPU Parameter Number

0x014

0x020

0x028

0x030

0x2A0

0x2C0

0x1B0

0x2D0

0x2DC

0x2E4

0x300

CPU Host Parameter Offset

0x000

0x800

0x050

0x080

0x0A0

0x0C0

0xA80

0xB00

0x6C0

0xB40

0xB70

0xB90

0xC00

HOST

eTPU B Channel 1 Parameters

Parameters 0x000 – 0x07F can
be used as “shared pool” for
eTPU absolute addressing mode.

0x3FF0xFFC

ETPUC0CR[CPBA]->0x010 *4

ETPUC1CR[CPBA]->0x150 *4

ETPUC2CR[CPBA]->0x160 *4

ETPUC3CR[CPBA]->0x00A *4

ETPUC30CR[CPBA]->0x100 *4

ETPUC31CR[CPBA]->0x0D8 *4
MOTOROLA Chapter 5. Host Interface. 5-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Host Service Requests

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.5 Host Service Requests
The host CPU can request immediate service from a channel by writing a non-zero value
to the host service request register field (HSR), see Section 4.6.3, “eTPU Channel x Host
Service Request Register (ETPUCxHSRR).” There is one HSR field for each channel, so
that writing to it generates a service request to the respective channel only. A zero value in
HSR means no host service request is pending for the channel.

The meaning of a non-zero HSR value is defined by software. The HSR bits are part of the
conditions which select the function entry point, and cannot be tested by microcode.

If the host writes HSR=000 when a thread for the same channel is already running, the
thread runs until the end and is not aborted. If the host writes HSR>000 when a thread for
the same channel is already running a thread started by a host service request, HSR value
resets at the end of the thread, and no new HSR will be pending. If HSR is written before
its value is resolved by the scheduler during TST, the entry point will obey the new HSR
value. If this new HSR value is 000, no service thread is executed for the HSR, but other
service requests may be resolved.

The scheduling of HSRs is completely asynchronous with host accesses, and there is no
race-free manner to change an HSR value before service thread execution, so generally the
safe way is: write HSR>0 only when HSR=0. Error recovery or emergency host procedures
may require one to the safely abort service and reset channel state when an HSR is already
pending or executing. In fact, normal operations could cause HSR interference, such as
when the host initiates an service request, in the background, and then immediately issues
another in an asynchronous foreground routine. In these cases, the procedure below should
be followed:

1. Disable the channel, writing 00 to CPR, the channel priority field, in register
ETPUCxCR. That will prevent any pending HSR from being serviced.

2. Check if the channel is currently being serviced, reading its service status bit in
register ETPUCSSR. If it is, wait for the time necessary to finish the service
pending, or check again until HSR == 0, or channel service bit in ETPUCSSR is
cleared.

3. Write HSR with the error recover value. This value should, possibly combined with
other host-defined flags in SPRAM or FM bits, initiate a channel reset or error
recovery procedure.

4. Re-enable the channel, writing CPR value > 0 in register ETPUCxCR.

5.6 SCM Access
Only the host can access SCM as data. The SCM is implemented as RAM on the MPC5554.
This characteristics for host accesses to the SCM as shown below.
5-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6.1 SCM RAM Implementations

When SCM is implemented as RAM, the host may read or write to SCM by setting
ETPUMCR bit VIS=1. If VIS=0 and the host tries to access SCM space, a bus error is
issued. Both engines must be stopped or halted to set VIS=1.

Only 32-bit aligned writes are allowed to SCM from the host. Write accesses of other sizes
store unpredictable values into SCM.

NOTE
It is necessary to turn VIS bit on to set software breakpoints.
This is because a software breakpoint is actually a change of a
microcode instruction. See Section 10.2.5, “Software
Breakpoints,” for more details.

5.6.2 SCM Low Power

SCM turns off its internal clocks and stops MISC when both engines are stopped
(ETPUECR bit STF asserted), VIS=0 at ETPUMCR, and MISC is not enabled
(SCMMISEN=0). The SCM clocks are automatically turned on (along with MISC if
SCMMISEN=1) if either one of the STF bits is negated or VIS is set to 1. Note that SCM
cannot enter low power mode and MISC does not run if VIS=1: ETPUECR[STOP] are
write-protected in this case.

SCM clocks are not turned off if any of the engines are not stopped, even if they are both
halted.

5.7 Parameter Sharing and Coherency
SPRAM can be concurrently accessed by the host CPU and Microengine(s) (two in a Dual
eTPU engine system). In general, the actual time of accessing parameters by the various
engines is not guaranteed. Particularly the timing of a read with respect to a write of the
same group is not guaranteed. These factors may lead to a lack of internal consistency if
two or more related parameters are read when only part of them is updated.

The eTPU provides mechanisms to guarantee parameter coherency. The most generic
mechanisms for host-eTPU coherency, suitable for any number of parameters, are:

• the use of transfer service thread mechanism.

• the mailbox (or “software semaphore”) mechanism.

These mechanisms, described in Section 12.3, “Multiple Parameter Coherency Methods,”
use microcode to transfer parameters from temporary buffers in SPRAM to their definitive
locations (or vice-versa). Though these methods maintain coherency, they have the
disadvantage of wasting processing resources.
MOTOROLA Chapter 5. Host Interface. 5-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The eTPU also provides a coherent dual-parameter controller (CDC) mechanism. It is used
by the host to coherently transfer pairs of parameters from/to a parameter buffer located on
SPRAM to/from the locations on SPRAM where parameters are accessed directly by the
channels. Coherency is guaranteed by SPRAM access arbitration. Although limited to two
parameters only, it has lower latency and wastes no microengine resources, see Note: . CDC
usage is described in Section 5.7.3, “Coherent Dual-parameter Controller (CDC).”

NOTE
A microengine access to the SPRAM at the moment the CDC
is performing a transfer may suffer a maximum of two
wait-states.

For parameters shared by both engines, the eTPU provides Hardware Semaphores.
Coherency is assured given the semaphores are used to prevent concurrent access to the
changing parameters. A Microengine can request semaphores using specific
microinstructions.

Neither the host nor CDC have access to the hardware semaphores, but they can be
combined with microcode transfer mechanisms if the host must coherently access
parameters which are also shared by both engines.

In order to ensure coherent access to a group of parameters by two or more contenders, each
contender must have atomic access to the shared parameters. Atomicity conditions are
discussed in Section 5.7.1, “Host Side Atomic Access,” and Section 5.7.2, “Microengine
Side Atomic Accesses.”

5.7.1 Host Side Atomic Access

Host side atomic accesses can be achieved by either of following ways:

• for one parameter, the SPRAM should be accessed by 32-bit-wide data transfers to
ensure coherency between different fields in a 32-bit parameter, for instance.

• for two parameters only, using the Coherent Dual Parameter Controller.

• indirectly, for any number of parameters, by requesting microcode to coherently
access SPRAM in its behalf. The host side atomicity problem becomes, then, a
microengine side atomicity problem. Some methods that use this approach to
achieve coherency are described in Section 12.3, “Multiple Parameter Coherency
Methods.”

5.7.2 Microengine Side Atomic Accesses

5.7.2.1 Microengine Single Parameter Atomicity

SPRAM should be accessed by 32-bit-wide data transfers to ensure atomicity for 32-bit
parameters and 24-bit accesses for 24-bit parameters. This applies either to
5-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

host-microengine coherency or microengine-microengine coherency in a dual eTPU engine
system.

5.7.2.2 Microengine Dual Parameter Atomicity

The microengine has the ability to access two parameters coherently in back-to-back
accesses, at random addresses: once it accesses SPRAM, it has priority over the host for
another access in the next microcycle, see Section 5.7.5, “SPRAM Arbitration.” Note that
it applies only to microengine-host coherency. For microengine-microengine coherency in
a dual eTPU engine system, one must use Hardware Semaphores, see Section 5.7.4,
“Hardware Semaphores.”

Microengine dual back-to-back accesses are guaranteed to be atomic in relation to host
accesses or coherent dual-parameter controller, regardless of semaphore usage: host or
CDC accesses cannot break-up a back-to-back microengine access, neither microengine
can break a CDC transfer, due to the SPRAM arbitration mechanism described in
Section 5.7.5, “SPRAM Arbitration.”

Atomicity is not guaranteed if microengine enters halt state in the middle of a back-to-back
access: the host can access SPRAM while microengine is halted in the middle of a
back-to-back access.

5.7.2.3 Microengine Side Multiple Atomicity

Hardware semaphores must be used for microengine-microengine coherency (more than 1
parameter) since two or more accesses from one Microengine are not atomic with respect
to the other.

For multiple microengine-host coherency, the software methods described in Section 12.3,
“Multiple Parameter Coherency Methods,” or similar ones, must be used. Some of these
methods rely on the fact that parameter access of a thread is atomic in relation to another
thread in the same engine, since a thread cannot be suspended (preempted).

For 1 parameter coherent access, or dual parameter coherency between only one
Microengine and host, the alternatives shown in previous sections apply.

5.7.3 Coherent Dual-parameter Controller (CDC)

Dual-parameter coherency is supported by a coherent dual-parameter controller (CDC),
which contends with microengine for SPRAM access. The CDC atomically transfers, upon
the host’s command, two parameters from one area of the SPRAM to another, as illustrated
in Figure 5-2.
MOTOROLA Chapter 5. Host Interface. 5-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-2. CDC Block Diagram

One area is a temporary (buffer) area, where the two parameters are directly read or written
by the host. This temporary area has to begin in an SPRAM address multiple of 2 words,
and the two parameters must be sequential. The other area is the channel parameter area
where the microcode normally accesses the parameters, usually with the channel relative
address mode, see Section 9.2.1, “SPRAM Addressing Modes.” In this area, the parameters
transferred by CDC don’t have to be sequential. A transfer from the temporary area to the
channel area, when the host sends data to the channel, is called a write transfer. Inversely,
in a read transfer the parameters are copied from the channel area to the temporary area
(channel to host).

Coherency is guaranteed by the SPRAM access contention rules implemented in the
SPRAM arbiter, see Section 5.7.5, “SPRAM Arbitration.” CDC transfers are coherent in
respect to the two engines, so the target parameters in the channel area may be shared by
channels on both of the engines. During CDC operation, the host may suffer from 4 to 11
system clocks wait states, see Note: , and the microengine(s) may suffer up to 2 microcycle
wait-states, see Note: . CDC accesses are atomic with respect to microengine(s) accesses to
the SPRAM. CDC may also suffer up to 3 system clock wait-states from SPRAM arbiter,
so that it does not break atomic back-to-back accesses from microengine(s). The CDC may
not preempt TST preload accesses. The host CPU can initiate back-to-back CDC transfers,
i.e. the parameter bus does not need to be idle for any period between two transfers.

NOTE
The maximum number of host wait states on CDC occurs when
both microengines overlap their TSTs, delayed 3 system clocks
from each other.

NOTE
One microcycle takes two system clocks:. Microengines get
wait-states in multiples of microcycles, while host and CDC
wait-states are multiples of system clocks.

Temporary
(buffer) area

Coherent Dual-parameter
Controller (CDC)

Channel
Parameter area

... .
.
.

...

...

Sequential
Addresses
Required
5-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.7.3.1 CDC Programming

The coherent dual-parameter controller register, see Section 4.2.2, “eTPU Coherent
Dual-Parameter Controller Register (ETPUCDCR), is used to configure and initiate CDC
transfers between the temporary area and channel parameter area. The host asserts the STS
bit in order to start the data transfer. The CDC then contends for the SPRAM and starts the
transfer. When the data transfer is complete, STS returns to 0. The host receives wait-states
for writing STS=1 while the CDC contends for SPRAM and during the transfer. The write
access ends when the CDC finishes the transfer. The host receives wait-states during a CDC
transfer. If the host writes ETPUCDCR with STS=0 or does not write the STS byte, the
CDC transfer does not occur.

CDC programming can be summarized as follows:

1. if it is a write transfer, i.e., from host to a channel, write the two parameters into a
temporary area.

2. write ETPUCDCR with STS=1 and the remaining CDC programming parameters:
parameter width (32 or 24 bits, field PWIDTH), transfer direction (read or write,
field WR), temporary parameter area base address (field PBBASE), and the
absolute addresses of the parameters to be transferred (concatenation of the fields
{CTBASE, PARM0/1}*4). If it is a read transfer, i.e., from channel to host, read
the two parameters from the temporary area into host memory/registers.

3. if it is a read transfer, i.e., from a channel to host, read the two parameters from the
temporary area into Host memory/registers.

5.7.4 Hardware Semaphores

The eTPU provides Hardware Semaphores accessible by the Microengine only. It is the
responsibility of the application to ensure proper use of the semaphores (i.e. agree upon a
specific semaphore and use it properly, to ensure coherency).

The eTPU microinstruction set has support for locking and freeing the semaphores,
described in, Section 9.2.7, “Semaphore Operations,” and this is the only way to access
them.

There are four semaphores available, which reduces the amount of collisions by assigning
unrelated data transfers to different semaphores. Semaphores are used for parameters which
can be shared by channels in different engines, and for engine-to-engine synchronization.
Semaphores are also the only way to ensure coherent access to parameters shared between
the two microengines.

Attempting to lock one semaphore (even not successfully) frees the other locked by the
same engine, ensuring one can lock just one semaphore at a time. That prevents deadlock
conditions between the two engines.
MOTOROLA Chapter 5. Host Interface. 5-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Parameter Sharing and Coherency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A microcode END command or engine being in idle state (no thread executing)
automatically releases any semaphores from one engine side. However, it is recommended
to write microcode in a way which locks semaphores for the shortest required period, and
frees them without waiting for the END command, to improve the performance of the other
microengine. Semaphores are free after reset. An engine can only free a semaphore locked
by itself.

Semaphore lock requests are always non-blocking, in the sense that they do not suspend the
requester in case the semaphore is already locked. The semaphore status after the lock
request, indicating if it was successfully locked or not, must be tested through the SMLCK
microengine branch condition, see Section 8.5, “Branch Conditions.”

5.7.5 SPRAM Arbitration

Up to four entities can access SPRAM:

• two microengines (in a dual eTPU engine system)

• the coherent dual-parameter controller (CDC)

• the host CPU (direct memory-mapped access)

The following rules specify the access priorities for contended access. First level arbitration
keeps compatibility with the TPU3 dual parameter access atomicity, but only between the
microengine and CDC.

1. Microengine accesses from the two eTPU engines are interleaved between each
other, but not with host or CDC accesses.

2. The eTPU microengine(s) gives priority for SPRAM accesses to either the host
CPU or the CDC under any of the following conditions:

a) the microengine has completed accessing the second parameter in a
back-to-back SPRAM access.

NOTE
If microengine tries to access the SPRAM in the following
microcycles, the third and fourth consecutive accesses are
considered the first and second of a new back-to-back dual
access.

b) the SPRAM was not accessed during the last microengine arbitration slot.

NOTE
The microengine access slot is between microengine’s T4 and
T2 edges, see Appendix A, “Microcycle Timing.”
5-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. The eTPU microengine takes priority for SPRAM accesses under either of the
following conditions:

a) the host CPU or CDC has completed a data transfer during the last access
arbitration slot for the engine, see Note: . Also, the host CPU does not hold a
pending access against the other eTPU microengine.

b) the microengine is arbitrating for the access of its second parameter in a
back-to-back access, see Note: . All pairs of back-to-back parameter accesses
are coherent with respect to host and CDC (not to the other microengine).

The direction (read or write) of any individual access by the host or microengine is
irrelevant to the arbitration. The use of normal or PSE SPRAM area by the host is also
irrelevant to the arbitration.

The first parameter preloading in a TST is considered first access by the arbiter, regardless
of any access made at the END microinstruction of the previous thread, i.e.: the last access
of a thread and the first preload are never considered a back-to-back access. On the other
hand, the TST preload accesses are considered back-to-back and therefore atomic with
respect to host or CDC.

NOTE

The Zero SPRAM operation, see Section 9.2.5, “Zero SPRAM
Operation,” is considered an SPRAM access for arbitration.

5.8 Enhanced Channels
Enhanced Channels comprise hardware support for input signal detection (transition event)
and output signal generation (match event). Each Channel is associated with one input and
one output signal. Enhanced channel logic is configured with function microcode (and
optionally angle mode logic) to implement channel I/O functionality.

The eTPU’s enhanced channels are capable of dual action, meaning that each channel logic
can handle two events at different times and/or cause two separated actions; these actions
and events can be mutually dependent (with the first either blocking or enabling the other),
or both independent, depending on the programmed channel mode.

Each enhanced channel contains event logic containing two event register sets, each set
supporting one input and/or output action, the pair implementing dual action support. Each
event register set contains two 24 bit registers: match and capture. The match register holds
the pending match value which is compared against one of the two time bases by an
equal-only/greater-equal comparator. The capture register captures one of the two time
bases as a result of a match or transition detection. Service requests are issued on particular
combination of match and capture events, defined by the selected channel mode.

In the context of the eTPU channels, a match is a comparison between a time base value
and a channel match register. If those two values are coincident, or the time base value is
MOTOROLA Chapter 5. Host Interface. 5-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

greater than the value of the match register, a match event occurs. Depending on the channel
mode of operation and current state of the channel logic, the match event may be
recognized, i.e., change the state of the channel, or be ignored. A match event recognized
by the channel logic is called a match recognition. Depending on channel mode and current
state, match recognitions can cause the channel to request service or other actions (such as
window enabling), configuring a match service request.

The eTPU uses two kinds of comparators to assert a match event: an Equal comparator, in
which both the match register and the value of the selected time base must match exactly,
and a greater-equal comparator. The greater-equal comparator considers any time base
value between the range [N – N+0x800000-1] as a valid match against the value of N in the
match register, even when the value N+0x800000-1 wraps around the point of origin (0x0).
Refer to Figure 5-3 for an explanation about the matching values on a greater-equal
comparator.

The second source of events for the eTPU channel is a Transition detected at the
corresponding channel’s input signal. Two distinct Transition detections can be
programmed individually for each channel, allowing recognition of several possible
combinations of edge detection. It is also possible to check the sampled state of an input
signal upon the occurrence of a match: the sampling of the expected value is treated as a
transition, even if the input signal did not necessarily toggled at the time of the match, or at
any time at all.

Like match events, transition events may or not be recognized by the channel logic. When
they are, a transition detection occurs. As well as match recognitions, transition detections
can issue a channel service request, depending on channel mode and current state.

Transition detections and match recognitions are sometimes simply called Transitions and
matches throughout this document, for short.

Input and output signals can be processed separately by the channel logic and microcode,
and can also be combined such that matches and Transitions are used to cause output signal
actions. The output signals can also be directly controlled by microcode. Many event
combinations are allowed for a channel, given the possibility of configuring pairs of
matches and transitions for the dual action logic, where each event is able to block or enable
the next one. There is a full set of channel modes described in Section 5.8.4, “Channel
Modes,” exploring all the capabilities mentioned here.

Each channel has its own set of registers and flags. They are selected, and made accessible
to the Microengine, according to the value written into the microengine CHAN Register
that points to the desired channel. Every time the CHAN register is written, even if with the
same previous value, a channel is selected and its flags and registers are updated. For
further detail, see Section 5.8.1.3.1, “Channel Selection Register (CHAN).”
5-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-3. Greater-Equal Comparator

Beyond the request of services due to the signal and timing internal to each channel, one
eTPU channel microcode can explicitly request service from another channel through the
microengine LINK Register. A microcode write to the LINK Register asserts a service
request to the channel whose number matches the contents of LINK. Refer to Section 5.8.5,
“Channel Link,” for a complete description of this mechanism.

Service requests originating in the eTPU enhanced channels (either time base match, input
signal transition, or link service request) result in a call to the corresponding channel service
routine, which is a sequence of microinstructions called a thread. For further detail, refer to
Chapter 7, “Functions and Threads.”

In addition to event logic, each channel has an enhanced digital filter which eliminates
spurious glitches on input pin signal. See Section 5.8.6, “Enhanced Digital Filter (EDF),”
for more information.

A high level diagram of channel logic and registers is shown in Figure 5-4.

NOTE: the value opposed to N (N+0x800000) does not cause a match.

Greater-Equal area

0

N

N + 0x800000

TCR1/2
MOTOROLA Chapter 5. Host Interface. 5-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

E

uc

uc
M

Tra

Ma

2

2

Fla

Fla

M

uco
TD

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-4. Channel Logic Block Diagram

TCR1

TCR2

Capture 1

Match 1

TBS1[0] TBS1[1]

R1 Bus

TBS1[2] 0: >=

1: ==

MRLE1

MRL_A

TDL_A

ode ERW1

Set
Rst

ode
RL_A

Rst Set

Rst

ucode MRLE

Set

Action Logic 1

ns.1

tch 1

to service request

Transition
Event
Logic

OPAC1

IPAC1

Capture 2

Match 2

TBS2[0]TBS2[1]

ER2 Bus

TBS2[2]0: >=

1: ==

MRLE2

MRL_B

TDL_B

ucode ERW2

Set
Rst

ucode
MRL_B

RstSet

Rst

ucode MRLE

Set

Action Logic 2

Trans.

Match

OPAC2

IPAC2

ECF
Output FF

Output
Logic

Set Rst

PDCM

SRISRI

ucode
MTD

RstSet

ucode PDCM

ucode IPAC1 ucode IPAC2

ucode
OPAC1

ucode
OPAC2

Input SignalOutput Signal

ETPUTBCR[CDCF]

to branch
PSTI

to branch
PSTO

PSC, PSCS
ucode

Channel
Flags

g0

g1

ucode FLC

Comparator Comparator

ODIS

OPOL

icroengine Microengine

MEF

(Filter)

de
L

ucode
TDL

to service request

to branch
TDL_B

to branch
MRL_B

to branch
TDL_A

to branch
MRL_A

control

Transition
Event
Logic

Match
Recognition

Match
Recognition

ETPUECR[FPSCK]

TCRCLK
Filter

Input Signal

= Channel 0 only

AM
5-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1 Channel Registers and Flags

Channel configuration and control registers can be divided in the following groups:

• Host configuration and control registers, which define channel function and
parameter allocation in SPRAM, input signal filtering, manage host interrupts, and
are used for host service requests; they can only be accessed by the host, except for
the function mode bits which can be written by the host and tested by the
microengine.

• Event registers, which can only be accessed by eTPU microengine, through
dedicated channel control microinstruction operations, see Section 5.5.3, “Channel
Control and Configuration Microoperations.” These registers are directly used to
implement channel functionality, and include channel event status latches which can
be directly tested by microengine branch instructions.

• Pin control registers, which basically define pin state and transition polarity (but not
input signal filtering); they are accessible only by dedicated channel control
microinstruction operations.

• Link registers, which implement the channel link mechanism that allows one
channel to request service to another one; they are accessible only by
microinstruction operations.

• General channel registers: CHAN, SRI, Flag0/1.

Most of the aforementioned registers are channel exclusive, i.e., there is one copy of them
for each channel. Microcode can access registers from only one channel at a time. With
exception of link register and function mode, the Channel Selection (CHAN) register
defines the channel whose registers are being accessed. CHAN may be set by the thread
entry process or is accessible by microcode. For more details, see Section 5.8.1.3.1,
“Channel Selection Register (CHAN).”

The service request inhibit (SRI) register controls the generation of service requests on
matches and transitions, also affecting channel logic behavior. For a full description see
Section 5.8.1.3.3, “Match/Transition Service Request Inhibit Latch (SRI).” Flag0/1 are
used to select channel service threads based on channel software state. See
Section 5.8.1.3.4, “Channel ‘State Resolution’ Flags (Flag1), (Flag0),” for more details.

Host configuration and control registers are described in Section 4.6, “Channel
Configuration and Control Registers.”

TCR1/2 is common to all channels in a microengine, but the selection of which time base
is used for a specific match or capture is individual to the channel (and selected in the
channel hardware). For more detail, see Section 5.9, “Time Bases.”

Link registers are described in Section 5.8.5, “Channel Link.”
MOTOROLA Chapter 5. Host Interface. 5-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.1 Event Registers (ER)

Each channel contains two identical event register sets, named ER1 and ER2,
corresponding to the two actions supported. Each event register set includes:

• a 24-bit match register (Match1 or Match2), which holds a match value. This value
is compared against the selected match time base (TCR1 or TCR2).

• a 24-bit Capture register (Capture1 or Capture2), which samples the selected capture
time base (TCR1 or TCR2)

• a time base selection register (TBS1 or TBS2)

• a match recognition status flag (or latch) (MRL_A or MRL_B)

For more information, see Section 5.8.2.1, “Match Recognition Latches
(MRL_A/B).”

• a match recognition enable latch (MRLE1 or MRLE2)

For more information, See Section 5.8.2.3, “Match Recognition Latch Enable
(MRLE1/2).”

• a Transition Detect flag (or latch) (TDL_A or TDL_B)

For more information, see Section 5.8.3.1, “Transition Detect Latches (TDL_A/B).”

ER1 and ER2 are associated with the first and second events in double action modes,
always in that order for transition detections, but not necessarily for match recognitions.
The order of match events associated with ER1 and ER2 depends on the programmed
channel mode, the Match1 and Match2 values, and the timebases selected by TBS1 and
TBS2.

These registers of ER1 and ER2 are directly or indirectly accessed by the microcode. TBS1
and TBS2 registers are defined in Section 5.8.1.1.3, “Time Base Selection Registers
(TBS1) and (TBS2).” The other registers composing ER1 and ER2 are explained in
Section 5.8.2, “Match Recognition,” and Section 5.8.3, “Transition Detection and Time
Base Capture.”

Access to the event registers is qualified by the channel currently selected by the
microengine (i.e., the channel value currently in the CHAN register). During the channel
transition period (automatic CHAN assignment), or whenever CHAN is written by
microcode, Capture values of the new selected channel are sampled into Microengine
registers ERT_A and ERT_B, therefore becoming visible to the microcode. At the same
time, updated values of MRL_A, MRL_B, TDL_A and TDL_B are sampled into the branch
logic, making the register values and the flags coherent with respect to each other and with
the thread selected by the scheduler, see Note: .
5-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
The function mode bits are also sampled from the host interface
on time slot transition, so that they remain constant to
microengine even when the host changes them.

NOTE
The thread selected is determined by the entry point which, in
turn, is determined partially by the channel latches. See
Section 7.2.2, “Entry Point Address Generation.”

During service, the microcode can access updated values of the event registers of any
channel by writing the channel number to CHAN. Writing CHAN with the same value
(CHAN := CHAN) updates ERT_A and ERT_B with the new captured values, the branch
logic with updated MRL_A/B and TDL_A/B flags. Writing CHAN with a different value
does the same with the values from the newly selected channel.

Match values are also accessed through ERT_A and ERT_B microengine registers, which
are copied to/from the channel Match1 and Match2 registers by specific microinstruction
operations.

Microcode writes to the flags and selections (MRL_A/B, TDL_A/B and TBS1/2) are
immediately effective to the channel.

NOTE
Microcode may clear, but not set MRL_A, MRL_B, TDL_A,
or TDL_B.

The MRL_A/B and TDL_A/B branch conditions are also immediately reset when their
corresponding flags are reset by microcode. Match registers are indirectly written by
microcode through ERT_A/B. MRLE1/2 is unconditionally asserted when respective
match register is updated from ERT_A/B, and its negation by microcode is immediate.
MRLE can also be negated by setting MRL.

Table 5-1 summarizes event registers accesses.
MOTOROLA Chapter 5. Host Interface. 5-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.1.1 Match1 and Match2 Registers

Match1 and Match2 registers hold a match value to be compared against the selected
channel time base. A match value can only be written into the match register by microcode,
through ERT_A/B microengine registers, see Section 9.4.5, “Write Channel Match
Registers.” Microcode can also read the match register as a special T4ABS source
operation, when T4ABS=0101, and the source for T4ABS is selected from the second
register set. In this operation, Match1/2 registers are copied into ERT_A/B registers, see
Section 5.5.2.2, “Selecting Sources and Destination.” For more information on time base
matches, see Section 5.8.2, “Match Recognition.”

5.8.1.1.2 Capture1 and Capture2 Registers

Capture1 and Capture2 registers capture the selected channel time base. Capture1/2
registers cannot be directly written or read by microcode. During the time slot transition
(TST) or during CHAN assignment, Capture1/2 registers are copied into ERT_A/B
microengine registers. For more information, see Section 5.8.3, “Transition Detection and
Time Base Capture.”

Table 5-1. Event Registers Microcode Accesses

Register Access Type
Sampled from

channel
Update to
channel

Microcode
fields1

1 see section Chapter 9, “Microinstruction Set.”

Reset
value2

2 n.a. means that value of the register is undetermined after reset.

Capture1, Capture2 read through ERT_A/B to ERT_A/B on
CHAN assignment

no T2ABD n.a.

Match1, Match2 read and write through
ERT_A/B

to ERT_A/B
by microcode

from ERT_A/B
by microcode

ERW1,
ERW2,
T4ABS

n.a.

MRLE1, MRLE2 write to 0 (negate) directly;
write to 1 (assert) upon
Match1/2 update from

ERT_A/B

no immediate MRLE,
ERW1,
ERW2

0, 0

TBS1, TBS2 write only no immediate TBS1,
TBS2

000, 000

MRL_A, MRL_B flag test on branch,
write to 0 (negate) only

on CHAN
assignment

immediate BCC (test)
MRL_A,
MRL_B
(reset)

0, 0

TDL_A, TDL_B flag test on branch,
write to 0 (negate) only

on CHAN
assignment

immediate BCC (test)
TDL (reset)

0, 0
5-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.1.3 Time Base Selection Registers (TBS1) and (TBS2)

TBS1/2 are 3-bit registers which have the following effect on channel configuration:

• Selection of the timebase (TCR1 or TCR2) to be compared against the match values
in Match1 and/or Match2 registers.

• Selection of the timebase (TCR1 or TCR2) to be captured in the Capture1 and/or
Capture2 registers by a match or transition detection event.

• Selection of comparator mode to be used with Match1 and Match2 registers:
equal-only or greater-equal.

After reset TBS1/2 are 000. Table 5-2 shows values of TBS1 and TBS2 for configuration
selection. Note that the time base selection for capture is independent of the time base
selected for matches.

TBS1/2 are written through the microcode fields TBS1/2, see Section 5.5.3.2, “Comparator
and Time Base Selection.”. Note that microcode field TBS1 is also used to control the OBE
pin control register, see Section 5.8.1.2, “Pin Control Registers.”

5.8.1.2 Pin Control Registers

Pin control registers are replicated one per channel, accessed only by microcode and
qualified by the CHAN register in the same way as event registers. Table 5-3 lists pin
control registers, explained in following subsections, and their accesses.

TBS bit 2 1 0

bit
value

Comparator
selection

Capture time base
selection

Match time base
selection

0 greater or equal TCR1 TCR1

1 equal-only TCR2 TCR2

Table 5-2. TBS1/2 Programming States

Table 5-3. Pin Control Registers microcode accesses

Register Access Type
Sampled

from channel
Update to
channel

Microcode
fields1

Reset
value

IPAC1, IPAC2 write only no immediate IPAC1, IPAC2 000,000

OPAC1, OPAC2 write only no immediate OPAC1, OPAC2 000,000

PSTI flag test on branch no no BCC 0

PSTO flag test on branch, write no immediate BCC (test)
PSC, PSCS (set)

0

OBE write only no immediate TBS1 values
1000,1001

0
(negated)

PSS flag test on branch on CHAN
assignment

no BCC 0
MOTOROLA Chapter 5. Host Interface. 5-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.2.1 Input and Output Pin Action Control Registers (IPAC1), (IPAC2),
(OPAC1), and (OPAC2)

These registers determine the input or output pin action which takes place due to match or
transition events. Each field is three bits wide. After reset, the IPAC1/2 and OPAC1/2
registers are set to 000. IPAC1 and IPAC2 registers are mutually independent and have
identical encoding, and so do OPAC1 and OPAC2. Table 5-4 shows IPAC and OPAC
encoding. Output actions are triggered by matches, and can also be triggered by input
actions (in special cases). Note that input actions are independent from the output actions.

The input actions specified by IPAC1/2 define the Transition events treated by channel
logic. Although the name “transition” is generically used for the input actions, IPAC
options 100 and 101 do not really detect transitions: they actually sample the state of the
input signal at the occurrence of the corresponding match (Match1 used for IPAC1, Match2
used for IPAC2).

5.8.1.2.2 Output Pin Control Logic and Pin State Output Register (PSTO)

The output signal control logic uses OPAC1/2, the pre-defined channel mode (PDCM) and
the microcode pin state control (PSC and PSCS) fields. It is responsible for setting the pin
state output (PSTO) register to the specified logic value required by microcode, by input
events, or by Match1 and/or Match2 events. The PSTO register stores the driven pin state
determined by the pin control logic.PSTO register output also goes to the microengine
branch logic, enabling branching on the driven pin state. PSTO is set to 0 on reset.

1 see Section 5.5, “Microinstruction Set.”

Table 5-4. IPAC1/2 and OPAC1/2 Encoding

 value IPAC meaning OPAC meaning

000 Do not detect transitions Do not change output signal

001 Detect rising edge only Match1 sets output signal high

010 Detect falling edge only Match1 sets output signal low

011 Detect either edge Match1 toggles output signal

100 Detect input signal = 0 on match1

1 Match1 is used for IPAC1/OPAC1, and Match2 for IPAC2/OPAC2.

Input action2 sets output signal low

2 An input action is the assertion of TDL_A in single action mode and TDL_B in double
action mode.

101 Detect input signal = 1 on match1 Input action2 sets output signal high

110 Reserved Input action2 toggles output signal

111 N.A.3

3 This value for fields IPAC1/2 and OPAC1/2 is neutral, meaning that IPAC/OPAC register
values are not changed.

N.A.3
5-22 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The PSC and PSCS microcode fields are used for setting the PSTO register to a fixed value,
or to the value specified by the OPAC1 or OPAC2 microcode field, as shown in Table 5-5.

For details refer to Section 5.5.3, “Channel Control and Configuration Microoperations.”

When match recognitions or transition detections occur, the pin control logic sets PSTO
value according to:

• the event number (Match1/Transition1 or Match2/Transition2)

• the contents of OPAC1/IPAC1 or OPAC2/IPAC2 registers

• the programmed channel mode

There are cases in which two match or transition events may occur at the same time, each
of them trying to force a different pin action. The resolution of the selected match event
which sets the value depends on the pre-defined channel mode (PDCM) register. For details
refer to Section 5.8.4.30, “Match/Transition Pin Action Conflict Resolution.”

5.8.1.2.3 Pin State Input and Pin Sampled State Registers (PSTI) and (PSS)

During the time slot transition period, or whenever the CHAN register is written by
microcode, the PSTI filtered input signal is sampled into the branch logic and stored as PSS.
Effectively, PSTI follows the pin whenever it changes, and PSS samples PSTI on CHAN
write. The microcode can then branch on either the currently driven (PSTO) or input (PSTI)
pin state, or on sampled pin state (PSS, which is stable as long as CHAN does not change).

5.8.1.3 General Channel Registers

These registers control other aspects of channel logic. Except for CHAN, they are unique
per channel. Table 5-6 summarizes the registers and access options.

Table 5-5. PSC and PSCS encoding

PSC Output Pin Action

00 Force pin state according to
OPAC1 (PSCS=1) or OPAC2 (PSCS=0).

01 Force pin high.

10 Force pin low.

11 Do not change pin state.
MOTOROLA Chapter 5. Host Interface. 5-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.3.1 Channel Selection Register (CHAN)

CHAN is the register that holds the number of the channel that qualifies the context of most
channel registers, including pin control and ER accesses, and is common to all channels in
a same engine.

When a thread starts to be executed, the contents of CHAN register are automatically
updated on time slot transition to the number of the channel to be serviced. The serviced
channel is constant during channel servicing, but the selected channel can be changed any
time by microengine writing into CHAN register.

Some microinstructions are affected by the serviced channel instead of CHAN. These are:

• Conditional branch using LSR see Section 5.8.1.6, “LINK Register,” or function
mode in Section 4.6.2, “eTPU Channel x Status Control Register (ETPUCxSCR).”

• Negate channel flag LSR, interrupt CPU and data transfer request, see
Section 5.5.3.10, “Channel Interrupt and Data Transfer Requests.”

When CHAN register is written to, accesses are qualified by the new CHAN register value
from the instruction following CHAN assignment on, except Capture 1/2 sampling into
ERT_A/B and match register writing from ERT_A/B, see Section 5.5.6.5, “CHAN
Assignment, Read Match and ERW1/2.”

Writing CHAN (including with the same value, CHAN:= CHAN) updates ERT_A and
ERT_B with the new captured values, and updates the branch logic with updated
MRL_A/B and TDL_A/B flags.

Table 5-7 shows the commands, flags and registers selected by the CHAN register value.

Table 5-6. General Channel registers microcode access

Register Access Type
Sampled

from
channel

Update to
channel

Microcode
fields1

1 see Section 5.5, “Microinstruction Set.”

Reset
value

CHAN read/write n.a.2

2 CHAN is common to all channels in the engine.

n.a.2 T4ABS,
T4BBS,
T2ABD

defaults to serviced
channel at thread start

PDCM write only no immediate PDCM 1100
(sm_st)3

3 See Section 5.8.1.3.2, “Pre-Defined Channel Mode (PDCM).”

SRI write only no immediate MTD 1

Flag1,Flag0 write only
(branch on test)

no immediate FLC 0, 0
5-24 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.3.2 Pre-Defined Channel Mode (PDCM)

PDCM determines the channel mode assigned to the channel. Channel mode defines much
of the channel logic behavior, specially how matches block and enable transitions and
vice-versa, as well as occurrence of time base captures and service requests based on
matches and transitions. For a complete description see Section 5.8.4, “Channel Modes.”

PDCM is a 4-bit register set by the microcode field of the same name, see Section 5.5.3.9,
“Predefined Channel Modes,” and cannot be read or tested in branch instructions. Table 5-8
relates the PDCM value with channel modes. The second column specifies the mnemonic
used to reference the mode, introduced in Section 5.8.4.2, “Channel Modes Overview.”
There is one PDCM for each channel, initialized with 1100 on reset.

Table 5-7. CHAN Selected Features

Feature Used
Selected by

CHAN

channel-relative SPRAM access YES

Branch using PSS,PSTI and PSTO channel flags. YES

Branch using MRL_A/B, TDL_A/B1

1 In the TPU, these conditions retained the old values.

YES

Branch on all other conditions2

2 Refer to Section 5.5.4.2, “Branch Operations.”

no

ERT_A/B Value YES

configure (selected) channel YES

channel commands applied to: MRL_A/B, TDL_A/B, TBS1/2,
IPAC1/2,OPAC1/2, PSC, PSCS, OBE, PDCM, MRLE

YES

channel command: set/reset SRI YES

channel command: write to match registers (ERW1/2)3

3 Assembler mnemonic write_mer1/2.

YES4

4 If write match (ERW1/2) occurs at the same time of a CHAN assignment, the
channel which is target of the write is the one selected by the new CHAN value,
see Section 5.5.6.5, “CHAN Assignment, Read Match and ERW1/2.”

channel command: read match registers into ERT_A/B5

5 Assembler mnemonic read_mer1/2.

YES6

6 If read match occurs at the same time of a CHAN assignment, the match value
is selected by the new CHAN value. See Section 5.5.6.5, “CHAN Assignment,
Read Match and ERW1/2.”

clear LSR no
MOTOROLA Chapter 5. Host Interface. 5-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.1.3.3 Match/Transition Service Request Inhibit Latch (SRI)

The SRI latch blocks channel service requests due to the assertion of MRL_A/B and/or
TDL_A/B. The SRI does not affect recognition of link service requests or host service
requests. The SRI also does not affect MRL_A/B or TDL_A/B microcode branch tests or
entry table selection.

NOTE
In the TPU, SRI also blocked TDL and MDL branches.

The SRI is asserted during reset and is controlled by microcode field MTD.

To unburden the microengine, an asserted SRI, i.e. SRI = 1, mutes any match or capture
channel service request to the microengine. Even with SRI=1, TDL_A/B and MRL_A/B

Table 5-8. PDCM encoding

PDCM Channel mode1

1 for a description of channel modes refer to
Section 5.8.4, “Channel Modes.”

0000 em_b_st

0001 em_b_dt

0010 em_nb_st

0011 em_nb_dt

0100 m2_st

0101 m2_dt

0110 bm_st

0111 bm_dt

1000 m2_o_st

1001 m2_o_dt

1010 reserved

1011 reserved

1100 sm_st2

2 this is the reset value, also compatible with
TPU channel behavior.

1101 sm_dt

1110 sm_st_e

1111 n.a.3

3 this value is used as a neutral (do not
change) value in PDCM microinstruction
field.
5-26 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

can still be asserted, and the level specified by the OPAC (Output Pin Action Control)
registers will be output to the pin on the appropriate match.

5.8.1.3.4 Channel ‘State Resolution’ Flags (Flag1), (Flag0)

Each channel has a pair of flags, simply called Flag0 and Flag1, that can be set/reset by
microcode through microinstruction field FLC. These flags cannot be read or tested by
microcode, but they are used to resolve the microcode entry point for the channel service,
see Section 5.1.1, “Entry Points,”. Flag0 and Flag1 are, so, typically used for fast state
resolution. FLC microinstruction field also allows Flag1,Flag0 to be copied from selected
bits of P register high byte, which is also meant to be used to hold application state. Flag0
and Flag1 are both zero out of reset.

5.8.2 Match Recognition

The match operation is performed every microcycle by comparing the channel Match1 and
Match2 registers against the value of the TCR bus specified for each match. TCR1 or TCR2
bus is selected according to TBS1 and TBS2 fields. Both results have effect on the next
microcycle T2, see Appendix A, “Microcycle Timing.”

A Match1/2 event is qualified by a set of match enabling conditions to the match
recognition registers MRL_A/B. To recognize the match and assert these registers, the
following match enabling conditions are applicable

• For IPAC1/2=0xx, match enable flag (MEF), qualified by the channel currently
being serviced must be asserted. Match1/2 is always enabled for IPAC1/2 =1xx,
even during time slot transition (TST) and regardless of the state of the match enable
flag (MEF). See Section 5.8.2.2, “Match Enable Flag (MEF),” for the conditions of
MEF assertion.

• Match recognition latch enable 1/2 (MRLE1/2) is asserted. A match event
recognition may only occur if its corresponding MRLE1/2 bit is set, which only
happens upon a write to a channel match register by the microcode, copied from
ERT_A/B. MRLE1/2 is negated when the respective match occurs or, in some
double match channel modes, when a match for the other match register occurs. It
ensures that the greater-equal comparison will not cause additional matches, see
Note: .

NOTE
Microcode can also negate MRLE1/2.

• In selected modes, see Section 5.8.4, “Channel Modes,” the particular conditions of
MRL and TDL flags of the other event, i.e:

— MRL_A, TDL_A enable or block MRL_B;

— MRL_B, TDL_B enable or block MRL_A.
MOTOROLA Chapter 5. Host Interface. 5-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• The respective MRL is negated.

• In selected modes, see Section 5.8.4, “Channel Modes,” the state of its respective
TDL flag.

If the Match1 and/or Match2 conditions are met, the channel immediately forces the pin
state if specified by the appropriate OPAC1/2 registers (Output Pin Action Control 1/2) and,
in some cases, by IPAC1/2 registers. Refer to Section 5.8.1.2.1, “Input and Output Pin
Action Control Registers (IPAC1), (IPAC2), (OPAC1), and (OPAC2).”

If both Match1 and Match2 events occur at the same time, with conflicting pin actions, the
priority over the pin action is mode dependent. For further details on pin action resolution
refer to Section 5.8.4.30, “Match/Transition Pin Action Conflict Resolution.”

5.8.2.1 Match Recognition Latches (MRL_A/B)

MRL_A/B indicate the recognition of a match event detected by the comparator. They are
asserted on T2, see Appendix A, “Microcycle Timing.” Assertion of MRL_A/B issues a
match service request in specific channel modes, depending on previous events and state of
SRI. After reset MRL_A and MRL_B are both negated.

When MRL_A or MRL_B is asserted, it may change the output signal level according to
the input and output pin action control registers, refer to Section 5.8.1.2.1, “Input and
Output Pin Action Control Registers (IPAC1), (IPAC2), (OPAC1), and (OPAC2).”
Assertion of MRL_A/B causes a capture of one or two time bases, according to the selected
mode capturing scheme, see Section 5.8.3, “Transition Detection and Time Base Capture.”

A match recognition is self-blocking, regardless of channel mode: once MRL_A (MRL_B)
has been asserted, it negates its associated MRLE1 (MRLE2) register, preventing future
match recognitions, until the associated match register is rewritten by microcode. The
microcode has to enable new matches by updating the new match value in the Match1
(Match2) register, see Note: . In addition, assertion of MRL_A/B can block its twin
MRL_B/A, depending on the channel mode. In some double match blocking channel
modes, Match1/2 event blocks the occurrence of Match2/1 in a “first win” scheme.

NOTE
Prior to this, the microcode should also negate MRL_A
(MRL_B), otherwise an old match may be recognized by the
scheduler and serviced as a new one.

It is the transition from 0 to 1 in MRL that causes the match actions. Even if other MRL
assert conditions are satisfied no action due to a match occurs if MRL was already set to 1,
except for MRLE1/2 negation(s). If a match and a microoperation negating its
corresponding MRL occur during the same microcycle, MRL negation by microcode
overrides its assertion. If MRL was already negated before synchronous match and
microcode MRL negation any acknowledged captures and pin action occurs anyway.
5-28 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Regardless of MRL state before, the negation of MRLE(s) flags (the respective one and, in
some channel modes, both MRLE1/2) occurs with a synchronous match and MRL
negation. Note that MRLE must have been set before (by writing a new match value).

5.8.2.2 Match Enable Flag (MEF)

MEF is a one-bit latch that is unique for all channels in an engine.

MEF can selectively enable assertion of MRL_A/B, depending on the IPAC1/2 field. For
IPAC1/2=0xx, MEF=1 enables assertion of MRL_A/B for the scheduled channel during
service.For IPAC1/2=1xx, Match1/2 is always enabled, regardless the state of the MEF, but
it still depends on the other match recognition conditions. Matches of channels not being
serviced are never disabled by MEF.

MEF is not accessible by the microengine or host. MEF is negated at the beginning of time
slot transition period for the channel being serviced. After two microcycles into the TST,
regardless of TST wait-states, the ME bit in the entry point is copied to MEF to allow
selective enabling of MRL for each thread, refer to Section 5.1.2, “Time Slot Transition.”
MEF is asserted when no channel is being serviced.

If a channel service needs to postpone a programmed match, MEF assures that microcode
wins the race against match event after time slot transition (only for IPAC=0xx).

Note that a match event may be lost during the periods when MEF is negated only if:

• the match comparator is configured for “equal-only” behavior, and

• IPAC1/2=0xx, and

• TCR increments at the rate of system clock divided by 2.

When the comparator is configured as “greater-equal”, the match event that occurred when
MEF was negated may be recognized after MEF is asserted again, due to the “greater than”
condition.

NOTE
In angle mode the TCR is never clocked faster than system
clock divided by 8, so equal-only angle matches are not lost
during MEF assertion. See Section 5.10, “eTPU Angle Counter
(EAC),” for more details on angle mode.

5.8.2.3 Match Recognition Latch Enable (MRLE1/2)

MRLE1/2 is negated upon the assertion of its respective MRL_A/B. In blocking match
channel modes it may also be negated together with the assertion of the twin MRL_B/A.
The MRLE1/2 bits ensure that data captured due to the first match event will not be
overwritten when MRL_A/B is negated: due to greater-equal comparison, the match
condition continues to be true, but should not cause another capture event.
MOTOROLA Chapter 5. Host Interface. 5-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In addition to negation by local match event, the microcode can negate any combination of
MRLE1 and MRLE2 to block pending matches. This action will prevent future match
events from the selected channel.

Writing the Match1/2 registers by microcode to schedule the next match values sets
MRLE1 and/or MRLE2 and enables new matches. This setting overrides the MRLE
negation conditions due to channel logic or microcode, see Section 5.8.4, “Channel
Modes.” By combining write to Match1/2 with MRLE1/2 negation microinstructions, the
microcode can negate one MRLE while asserting the other.

The eTPU behaves exactly as the TPU when three conditions are satisfied: the match
register is updated (with MRLE already asserted before), the microcode fields MRL_A/B
are set to 1 (do not clear), and the MRL_A/B flags are zero. When the eTPU behaves as a
TPU a match that comes concurrently with the rewrite of the match register, matching the
old value, sets the MRL, as if the setting of the MRLE due to match register write had
precedence over its clear by the match at that moment. After this simultaneous operation,
the MRLE value stays at 1, and the captured time base value, if any, reflects the match
value.

5.8.3 Transition Detection and Time Base Capture

Time base Capture(s) occur when the value of a specified TCR is sampled into the Capture1
and/or Capture2 register. TBS1[1] and TBS2[1] select which TCR will be captured in
Capture 1 and Capture2, respectively.

A capture event may occur due to either of the following events:

• the assertion condition of match recognition latch (MRL), even if MRL is
simultaneously negated by microcode

• the assertion condition of transition detection latch (TDL), even if TDL is
simultaneously negated by microcode.

A capture event occurs together with the assertion of MRL or TDL on T2 positive edge, see
Note: . MRL_A/B and TDL_A may, depending on the channel mode, inhibit the capture of
the second event’s TCR into Capture1/2. As a general rule, values captured by signal
transitions are not overwritten by values captured by match events because the match
register can always be read, while the capture register value would be lost if overwritten.

NOTE
The assertion of MRL or TDL on the T2 positive edge ensures
the capture of the correct TCR1/2 value. In the TPU3, when
TCR1 was counting at maximum rate of system clock divided
by 2, the next value was captured. See Appendix A,
“Microcycle Timing.”
5-30 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The capturing scheme is defined by the channel mode programmed at register PDCM. For
more information on mode-dependent capture schemes refer to Section 5.8.4, “Channel
Modes.”

5.8.3.1 Transition Detect Latches (TDL_A/B)

TDL_A/B indicate detection of specific transition occurrences on a channel input signal.
TDL_A and TDL_B assertion causes service request in single and double transition modes,
respectively. TDL_B assertion does not cause service request in single transition modes,
and TDL_A assertion does not cause Service request in double transition modes. In single
transition channel modes TDL_B can be asserted on the second transition, but does not
generate a service request. TDL_B assertion is enabled only if TDL_A is asserted to detect
an ordered input signal double transition. The IPAC1 and IPAC2 registers indicate the
programmed edges of the first and second detected transition, respectively.

The sampling of a determined value (0 or 1) on the input signal due the occurrence of a
match is also treated as a “transition”, depending on IPAC1/2 programming, see
Section 5.8.1.2.1, “Input and Output Pin Action Control Registers (IPAC1), (IPAC2),
(OPAC1), and (OPAC2).” When using a channel mode where the transition1 is initially
blocked and IPAC1 is programmed to detect such “transitions”, the occurrence of a Match1
only unblocks the transition after the sampling. That means IPAC1 configurations 100 and
101 are not effective on modes where transition 1 is enabled by Match1: m2_st, m2_dt,
m2_o_st and m2_o_dt, see Section 5.8.4, “Channel Modes.”

TDL_A/B assertion conditions initiates a capture event of one or both selected TCR buses.
TDL_A or TDL_B transition event generates a service request, depending on channel
mode, previous events and the state of SRI. For more information in service request scheme
refer to Section 5.1.1.2, “Entry Point Address Generation,” and Section 5.8.4, “Channel
Modes.”

Assertion of TDL_A/B occurs on T2 positive edge. The capture event follows on the same
T2, and captures the time base value present when TDL_A/B was asserted, see Note: . The
only methods of negating TDL_A and TDL_B are during reset and by microcode.

It is the transition from 0 to 1 in TDL that causes the Transition actions: even if TDL assert
conditions are satisfied, no action due to a Transition occurs if TDL was already set to 1.
However, if a Transition and a microoperation negating TDLs occur at the same time and
TDL was already negated, TDL negation by microcode overrides its assertion, but any
dependable captures and pin actions occur anyway. This is so an updated capture register
can be detected even though the TDL was cleared, and the transition detection is armed for
another close following transition.
MOTOROLA Chapter 5. Host Interface. 5-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.4 Channel Modes

The Enhanced Channels support various modes of operation combining Match1/2
recognition and transition detection events which set MDL1/2 and TDL_A/B. The channel
mode is individually set for each channel by eTPU microcode, through the PDCM register,
see Section 5.8.1.3.2, “Pre-Defined Channel Mode (PDCM).”

The order in which events occur, combined with assigned channel mode, establish which
following event detections are inhibited and/or enabled, as well as the actions taken: time
base capture, flag setting (MRL_A/B, TDL_A/B), match disabling (MRLE1/2), output
signal transition, and service request.

A generic description of channel modes from the usage point of view can be found in
Section 5.8.4.1, “Channel Modes Overview.” Each mode is named with a mnemonic
acronym for terse reference.

The modes are used differently for input and output signals, as explained in Section 5.8.4.9,
“Channel Modes on Input Signal Processing,” and Section 5.8.4.23, “Channel Modes on
Output Signal Generation.” Modes also allow combining input processing and output
generation in a single channel, as exemplified in Section 5.8.4.31, “Combining Input and
Output Signals.”

A dynamic, event-oriented view of each channel mode can be found in Appendix C,
“Channel Mode Summary.”

5.8.4.1 Channel Modes Overview

Channel modes are divided on the way they treat transitions in two basic modes:

• Single transition modes (mnemonic suffix _st): in these modes the first transition
(flagged in TDL_A) issues a service request, and captures both time bases (selected
by TBS1[1] and TBS2[1]) except on sm_st_e.The second transition (flagged in
TDL_B) doesn’t issue a service request, but it captures time base selected by
TBS2[1], except on sm_st_e.

• Double transition modes (mnemonic suffix _dt): in these modes the second
transition (flagged in TDL_B) issues a service request, and each transition captures
its own selected time base (Transition 1 and Transition 2 capture time bases selected
by TBS1[1] and TBS2[1], respectively).

Transition 2 is always (but not only) enabled by Transition 1, so that transitions are always
ordered: TDL_A is set on the first transition and TDL_B on the second. Matches are
generally not ordered, except on specific ordered match modes m2_o_st and m2_o_dt.
Match capture(s) never override(s) a Transition capture. Transition captures always have
precedence over a match capture.
5-32 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Modes differ mostly by the way matches affect and are affected by other matches and
transitions, as explained in next sections. However, some general rules on match blocking
apply:

• Blocking of one match by the other is done through MRLEs.

• Matches always block themselves by resetting their own MRLEs (Match1 always
blocks Match1, Match2 always blocks Match2).

• Match2 is blocked by first transition (TDL_A) in single transition modes, and by
second transition (TDL_B) in double transition modes.

• Both matches are blocked by first transition in single transition modes.

NOTE
The rules above and in following sections may be overruled by
the state of the channel latches if they are set/reset by
microcode or if channel mode is changed. Care must be taken
to change channel modes, and it is advisable to reset channel
flags MRL_A/B, TDL_A/B and MRLE1/2 before writing
PDCM.

5.8.4.2 Either Match, Blocking Modes (em_b_st, em_b_dt)

In these modes the first match recognition that occurs blocks the other match recognition
and generates a service request. They end up with one service request for two programmed
match recognitions where only the first match recognition has an actual effect. If both
match recognitions occur at the same time, both MRL_A and MRL_B are set, before the
mutual blocking takes effect.

5.8.4.3 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)

In these modes both match recognitions are independent and each match generates a service
request. Each match recognition captures its related time base and does not block the other.

5.8.4.4 Match2 Request Modes (m2_st, m2_dt)

In these modes transitions are initially blocked, and are enabled by Match1. Match2
recognition generates the match service request and disables Match1 recognition. Each
match recognition captures its own programmed timebase. In case of simultaneous match
recognition, both MRL_A and MRL_B are set, and OPAC2 register has priority over
OPAC1 for selecting the pin action.

5.8.4.5 Both Match Request Modes (bm_st, bm_dt)

In these modes, a match service request is generated only after both match recognitions
occurred. By definition this is a non-blocking match mode: match recognitions do not block
MOTOROLA Chapter 5. Host Interface. 5-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

each other, implementing a last-served scheme. Unlike other double transition modes,
bm_dt blocks Match1 with Transition 2 (not with Transition 1), so that the second transition
blocks both matches.

5.8.4.6 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt)

These are ordered match modes on which Match1 recognition must precede Match2
recognition (ordered 1 -> 2). Match1 asserts MRL_A and enables Match2 and transitions.
Match2 asserts MRL_B, generates a match service request, and blocks both transitions.

5.8.4.7 Single Match Modes (sm_st, sm_dt)

Single match modes support single or double transition with single match recognition.
MRL_B is never set, and MRLE2 has no effect.

5.8.4.8 Single Match Enhanced Mode (sm_st_e)

This is an enhanced single transition and single capture mode, which provides non-filtered
input captures in addition to the single capture, allowing one to measure the delay of the
digital filter. In an output channel, it has the same functionality of sm_st (captures both time
bases at once due to a match recognition).

5.8.4.9 Channel Modes on Input Signal Processing

When processing an input signal, the channel modes can be classified in the following
primary mode groups:

• Single Transition, single match: em_b_st, sm_st, sm_st_e

• Single transition, double match: em_nb_st, bm_st, m2_st, m2_o_st

• Double transition, single match: em_b_dt, sm_dt

• Double transition, double match: em_nb_dt, bm_dt, m2_dt, m2_o_dt

In single transition modes, TDL_A assertion may capture both time bases at once, while in
double transition modes each transition captures its related time base in its related capture
register.

Double transition is always ordered, i.e., TDL_B is enabled by TDL_A and generates the
service request.

The channel logic supports various input modes with combinations of single/double
transition and single/double match, explained in the following subsections.
5-34 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.4.10 Either Match, Blocking, Single Transition (em_b_st)

On an input signal, this mode provides double time-out mechanism on a programmed
transition edge with two timebases. The signal transition blocks both pending matches,
indicating that no time-out condition occurred. The first match recognition blocks the other.
This allows the entry table to discern which match recognition caused the first time-out
condition, and generates only one service request. Either match performs a double timebase
capture. A subsequent transition will overwrite the captures, but the MRL will indicate that
the timeout occurred first.

5.8.4.11 Either Match, Blocking, Double Transition (em_b_dt)

In double transition mode each transition is related to one match recognition. TDL_A
assertion captures its related timebase, blocks Match1 and enables TDL_B. TDL_B
assertion blocks Match2, captures its related timebase and generates a service request.
Match recognitions block each other, so if there is a match time-out condition on TDL_A,
only one match service request is generated. This mode is good for qualifying two signal
transitions by match time-out mechanisms, with one service request. Note that although a
TDL_A assertion does not block Match2 recognition, the value captured in Capture1 by
TDL_A assertion is not overwritten if a Match2 recognition occurs. The second transition
blocks match2. Either match performs timebase captures which don’t overwrite captures by
transitions. Thus if a match service request is detected, there has been a timeout. If, in that
event, there is also a transition detected, the capture register contains the transition
timebases rather than the match timebases.

5.8.4.12 Either Match, Non Blocking, Single Transition (em_nb_st)

On an input signal, this is a double time-out mechanism of independent match recognitions
of two different timebases. The match recognitions do not block each other, such that the
microcode can check if one or two match recognitions occurred before their related signal
transition. The signal transition detection (by IPAC1) asserts TDL_A, blocks both matches,
captures both time bases and generates a transition service request, indicating that none of
the two time-out conditions occurred. Any combination can be easily resolved by
microcode (for example, signal transition after Match1 and before Match2, or signal
transition after both Match1 and Match2).

5.8.4.13 Either Match, Non Blocking, Double Transition (em_nb_dt)

Each transition is related to one match recognition in this mode, and the match recognitions
are independent of each other. This mode can be used to provide independent time-out
conditions for the first and the second signal transition recognitions, and call service in case
of any time-out condition.

The first transition detection programmed in IPAC1 sets TDL_A, captures its related
timebase, blocks Match1 recognition and enables TDL_B assertion. The second transition
MOTOROLA Chapter 5. Host Interface. 5-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

detection programmed in IPAC2 sets TDL_B, blocks Match2 recognition, captures its
related timebase and generates a service request. Any match recognition that occurs
captures its related time base and generates a match service request, independent on the
other match recognition.

NOTE
Again, the assertion of a MRL means that the TCR captured
due to the match will be in the capture register only if the TDL
is not also set.

5.8.4.14 Match2 Request, Single Transition (m2_st)

This mode provides an open window filter for a single signal transition on an input signal.
Match1 assertion opens the window, and enables transition detection on TDL_A from this
time on. Match2 assertion blocks Match1 (by negating MRLE1), providing conditional
window opening. It also generates service request, but does not block transitions, providing
a non-blocking time-out mechanism for the estimated signal transition time. If Match2
assertion occurs, this typically indicates a missing transition, or mis-prediction of the
transition time.

Transitions can be detected from the microcycle following MRL_A assertion. The
transition1 detection asserts TDL_A, blocks Match2, captures both timebases and
generates service request.

Using this mode, the channel can replace software open window filtering of qualified
transitions by the channel hardware window. The window opening and time-out can be
scheduled for any of the two time bases or combination of them. Typically, Match1 will be
used to open a prediction window, and Match2 will be used as a time-out condition which
does not close the prediction window. This configuration improves noise immunity from
early signal transitions, and reduces the probability for blocking late signal transitions due
to time-out mis-prediction.

Using these channel conditions, the microcode can easily resolve the state:

• If TDL_A and MRL_A are asserted and MRL_B negated, then the signal transition
is in the expected range.

• If MRL_A and MRL_B are both asserted, and TDL_A is asserted, then the signal
transition had a time-out condition due to Match2 mis-prediction.

• If MRL_B is asserted and TDL_A negated, a time-out condition occurred, and the
expected signal transition had not occurred yet.

• If MRL_A is negated and MRL_B is asserted, then the conditional window did not
open at all (for example: a time window is open only after a specific angle, otherwise
it is not opened).
5-36 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.4.15 Match2 Request, Double Transition (m2_dt)

This mode is used as an open window filter for two signal transitions. In this case the
Match1 recognition opens the window (unless Match2 recognition occurred first), and
Match2 recognition blocks Match1 and generates a match service request. m2_dt is similar
to m2_st, but in this case, the second transition blocks Match2. MRL_B assertion is a global
time-out condition for the two pulses. Like m2_st, MRL_B can conditionally eliminate the
window from opening.

Using the TDL_A, TDL_B, MRL_A and MRL_B conditions, the microcode can easily
resolve the state, in a similar manner as m2_st, with additional information on the second
transition (TDL_B).

5.8.4.16 Both Match Request, Single Transition (bm_st)

This is a double time-out mechanism for an input signal on two different time bases. Both
match recognitions must occur before the signal transition to generate a match time-out
service request. Assertion of TDL_A blocks both Match1 and Match2 recognitions, and
captures both time bases, indicating there was no double time-out condition from both time
bases.

Using the same timebase implements two time-out conditions, the first only sets its related
MRL and the second generates a service request. Using the MRL flags allows the
microcode to check if one or both match recognitions precede the signal transition.

5.8.4.17 Both Match Request, Double Transition (bm_dt)

In this mode the first transition detection does not block matches and both match
recognitions are required to generate a match service request. The second transition
detection asserts TDL_B, blocks Match1 and Match2, captures its related timebase and
generates transition service request. In this mode, a Match1 recognition which occurs after
the assertion of TDL_A does not capture a new value in Capture1, to preserve the actual
signal transition time. Assertion of TDL_A, however, always captures its related timebase.

This mode allows putting a double match time-out condition on the second transition.

5.8.4.18 Ordered Mode with Match2 Request, Single Transition
(m2_o_st)

This mode provides a closing window filter for a single signal transition on an input
channel. Match1 assertion captures its programmed time base in Capture1, opens the filter
window (enables assertion of TDL_A), and enables assertion of MRL_B. Match2
recognition captures its related timebase, closes the window (disables assertion of TDL_A)
and generates a service request. Due to Match1 and Match2 ordering, the window is opened
for at least one microcycle. Match2 recognition indicates a window time-out condition
which blocks late signal transitions, outside the prediction window. Transition detection
MOTOROLA Chapter 5. Host Interface. 5-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

blocks both matches, indicating the transition occurred inside the estimated window.
Transitions can be detected from the microcycle following MRL_A assertion until the
microcycle on which MRL_B is asserted. When TDL_A is asserted inside the window
range it disables both matches, captures both time bases and generates a transition service
request.

Using this mode, the channel can replace software window filtering of qualified transitions
by the channel hardware window. The window opening and closing time can be scheduled
for any of the two time bases or a combination of them.

5.8.4.19 Ordered Mode with Match2 Request, Double Transition
(m2_o_dt)

In this mode the channel logic implements a window filter for two detected signal
transitions. MRL_A assertion captures its related timebase and enables assertion of both
TDL_A and TDL_B. MRL_B assertion captures its related timebase and disables assertion
of both TDL_A and TDL_B. Transitions can be detected from the microcycle following
MRL_A assertion until the microcycle on which MRL_B is asserted. The first signal
transition (following MRL_A assertion) asserts TDL_A, captures its related timebase and
enables assertion of TDL_B. The second signal transition detection asserts TDL_B, blocks
Match2, captures its related timebase and generates the service request.

If both signal transitions occur inside the scheduled window, Match2 recognition is
blocked. If one or both signal transitions do not occur inside the scheduled window, Match2
recognition generates a match service request and blocks further transition detections. The
microcode can resolve the state using MRL_A, MRL_B, TDL_A and TDL_B, which affect
the microcode entry point selection.

5.8.4.20 Single Match Enhanced Mode (sm_st_e)

This is an enhanced single transition and single match channel mode which provides timing
information of the digital filter delay.

The Capture1 register captures the timebase selected by TBS1 due to transition detection
specified by IPAC1 or match recognition, as in sm_st mode. Initially, the Capture2 register
continuously captures the unfiltered IPAC2-selected signal transitions from the digital filter
input, directly from the signal synchronizer. When an IPAC1-qualified, filtered transition
detection occurs, TDL_A is set, MRL_A assertion is blocked, and, in addition, captures
into Capture2 are also blocked. On service, Capture1 and Capture2 (copied into ERT_A and
ERT_B) holds the time of the qualified transition detection (ERT_A), and the time of the
last signal transition at the input of the digital filter (ERT_B). Subtracting the time in
ERT_B from the time in ERT_A provides the delay of the digital filter.
5-38 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

In Channel 0, if ETPUTBCR bit AM=1 (angle mode), the
unfiltered input comes from TCRCLK input and the filtered
input comes from the TCRCLK filter output. The edge is
selected by IPAC1/2, and is independent of the edge selection
by ETPUTBCR field TCR2CTL.

5.8.4.21 Single Match, Single Transition (sm_st)

In this mode the channel logic is functionally back-compatible to a TPU3 single action
channel, but a match or transition detection captures at once both timebases. The mode
recognizes a single transition with single match time-out. Either TDL_A or MRL_A
generates service request and captures both timebases. Assertion of TDL_A blocks future
assertions of MRL_A.

5.8.4.22 Single Match, Double Transition (sm_dt)

In sm_dt mode, the first transition detection asserts TDL_A, captures a timebase in
Capture1 and enables TDL_B. The second signal transition asserts TDL_B, blocks Match1,
captures a timebase in Capture2 and generates a service request.

Match1 (before TDL_B) captures into Capture2 the timebase selected by IPAC1, in order
not to overwrite the captured value of TDL_A.

This mode is used for scheduling one time-out condition on two input signal transitions
(pulse time-out).

5.8.4.23 Channel Modes on Output Signal Generation

Since channel logic can generate output signal transitions based on matches, the channel
can be viewed as working in the following primary mode groups for signal generation:

• Single match: em_b_st, sm_st, sm_st_e, em_b_dt, sm_dt

• Double match: em_nb_st, bm_st, m2_st, m2_o_st, em_nb_dt, bm_dt, m2_dt,
m2_o_dt

The channel logic supports various match channel modes with single/double match, as
explained in the following subsections.

5.8.4.24 Either Match, Blocking Modes (em_b_st, em_b_dt)

On an output signal these modes are useful when using two different time bases to set a
required signal transition. The first match condition which is met sets a required pin action,
captures both time bases, blocks any effects of the other recognition, and generates a
service request. Because the first match recognition blocks the other, the microcode can get
MOTOROLA Chapter 5. Host Interface. 5-39
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

good separation in the function entry table as to which match caused the time-out first, and
both time bases are captured, enabling the microcode to compare one timebase to the other
at the moment of the match recognition. These modes can be used for:

• Scheduling a required pin action to the first match recognition of two different time
bases.

• Cancelling a programmed pin action scheduled on one time base by match on
another timebase (as a consequence of Table 5-9). The microcode has to set the
OPAC register of the cancelling match to no-action and the OPAC register of the
other match to the required pin action which may be blocked. If both matches are
recognized at the same time, and Match1 is the cancelling match, then the pin action
is blocked, since Match1 has priority in this case. If Match2 is the cancelling match,
it does not block the pin action in case of two matches at the same time.

5.8.4.25 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)

On an output signal these modes are useful in combination with the ME bit set on the entry
point, to define an interlaced operation. For example, each match recognition can set a pin
action, and the second pin action is not sensitive to microcode latency (ME bit asserted).
Example for usage is PWM interlaced function on which the latency is determined by the
period and not the duty cycle.

Another possibility is using one match for pin actions and the other match for an unrelated
timed task without pin action (double the functionality of a single channel).

5.8.4.26 Match2 Request Modes (m2_st, m2_dt)

These modes can generate narrow pulses or do conditional pin actions on an output signal.
A conditional pin action means that the pin state is changed only if the match recognitions
occurred in the correct order. In these modes Match2 recognition generates the service
request, has priority over the pin action, and blocks future Match1 recognitions.

Setting OPAC1 to a desired pin action and OPAC2 to no-action, and using different time
bases for Match1 and Match2 defines a conditional OPAC1 pin action which can be
blocked by Match2 recognition. For example, setting Match1 on time and Match2 on angle
can limit the pin action to a maximum angle value.

When pulses are generated, the service is requested at the trailing edge of the pulse, after
MRL_B is asserted.

5.8.4.27 Both Match Request Modes (bm_st, bm_dt)

On an output signal, each match recognition can affect the pin state, and capture its
programmed time base. This way the pin action can be programmed separately for both
match recognitions. For example, both match recognitions can negate the signal, and
5-40 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

service request is generated after both conditions are met. This mechanism can set two
conditions to do a required pin action, and the first recognition changes the signal, but
service is called only after both conditions occur.

When using the same time base, these modes can generate narrow pulses in any required
order.

Another usage is generating a required pin action on one programmed time and service
request later on another time, after the second match recognition occurs, or capturing some
timebase on one time and generating a required signal transition and service request later.

5.8.4.28 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt)

The order of the match recognitions imply that OPAC1 register programmed pin action
always precedes the OPAC2 register pin action. Setting OPAC1 to no-action, based on the
greater-equal comparator, enables using Match1 on one time base to delay the signal effect
of Match2 on the other time base. This method implements a conditional pulse extension
or conditional delay on signal transition.

These modes can also be used for deferred pulse generation with microcode service request
after its trailing edge (if Match1 condition comes after Match2 condition). Another option
is having Match1 recognition associated with output pin actions and Match2 recognition
for a timed microcode task, such as calculating the next pulse in a recurring sequence,
which has to be scheduled at a programmed time that may be delayed by the Match1 pin
action.

5.8.4.29 Single Match Modes (sm_st, sm_dt, sm_st_e)

There is no difference between plain and enhanced single match modes on an output signal.

This mode’s channel logic is functionally back-compatible with a TPU3 single match
output channel. Match1 recognition generates service request and sets the pin state
according to OPAC1 register. Match1 instantaneously captures the timebase selected by
TBS1 in Capture1 and the timebase selected by TBS2 in Capture2.

5.8.4.30 Match/Transition Pin Action Conflict Resolution

Matches cause pin actions define by OPACs. Pin actions cause captures according to
IPACs. Some modes combine them. The combinations are more complicated with separate
pins for input and output. For more information, see Section 5.8.1.2, “Pin Control
Registers.” Simultaneous matches/transitions may be associated with different, possibly
contradictory, pin actions. Table 5-9 illustrates how these conflicts are resolved.

If an OPAC1/2=000 (no action) prevails over the other non-zero value OPAC, as shown in
Table 5-9, then a simultaneous Match1/Transition1 and Match2/Transition2 causes no
output pin action to occur. Therefore, a match on the action logic with OPAC=000 inhibits
MOTOROLA Chapter 5. Host Interface. 5-41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

simultaneous actions of the other lower priority OPAC, see Table 5-9. This priority scheme
also applies when output actions are caused by inputs (OPAC=1xx).

5.8.4.31 Combining Input and Output Signals

The processing of input signal can be combined with output signal generation. A detected
input transition can trigger an output signal edge, without microcode intervention, by using
OPAC options 1xx.

The channel set-up examples below show these two capabilities combined (see Figure 5-5).

The first example implements a fast (no microcode intervention) short-circuit protection
feedback mechanism for driving current output devices. The signal, which is driven by the
channel output, after the current driver feeds back to the channel input. The input signal is
normally delayed from the output signal by the device turn-on delay. After the channel
output turns on, the channel logic must check if the driver output (connected to the channel
input) follows the driven value after the maximum device turn-on delay. If it doesn’t, the
channel has failed, and the channel output must be turned off immediately to avoid
damaging the device.

Note that, because IPAC1=001, the actual input transition time gets captured into the
Capture1 register when the output is not shorted, so one can measure the actual driver
turn-on delay by subtracting Match1 from Capture1.

NOTE
When IPAC = 1xx, a match event can cause a simultaneous
match recognition and a transition detection. Depending on the
channel mode, a match and transition may have conflicting
effects on other transition/match blocking or enabling. In these
cases, blocking always prevails over enabling, effective on the
next microcycle.

Table 5-9. Simultaneous Match Pin Action Priority

Channel Submode Priority

em_nb_st / em_nb_dt OPAC1

em_b_st / em_b_dt OPAC1

bm_st / bm_dt OPAC1

m2_st / m2_dt OPAC2

m2_o_st / m2_o_dt in these modes there is no possibility
of simultaneous matches
5-42 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-5. Input/Output combination

Input signal

Output signal

Match 1 Match 2

IPAC1 := 001; OPAC1 := 101; Match1 := window open time;
IPAC2 := 101; OPAC2 := 100; Match2 := window close time, input sampling;
PDCM := m2_o_dt;

enables

Match 1 Match 2

Input signal

Output signal

IPAC1 := 100; OPAC1 := 100; Match1 := window open time,input sampling;
IPAC2 := 000; OPAC2 := 001; Match2 := window close time = Match1 + pulse width;
PDCM := em_nb_dt;

Example 2: Pulse generation on windowed input transition

Example 3: Pulse generation on input sampling

Example 1: Short-circuit protection feedback
IPAC1 := 100; OPAC1 := 001; Match1 := output activate time;
IPAC2 := 100; OPAC2 := 100; Match2 := Match1 + max. high-current driver turn-on delay;
PDCM := bm_dt;

Match 1

Match 2

Input signal

Output signal

output short

enables
MOTOROLA Chapter 5. Host Interface. 5-43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.5 Channel Link

A channel can issue service requests to other channels through microcode, by assigning to
the write-only microengine register LINK, refer to Section 8.2.6, “LINK Register,” a value
which specifies the target channel of the link service request, as shown in Figure 5-6.

Writing to the LINK register issues a link request to the target channel, setting its LSR flag.
Each channel has its own LSR flag, which can be tested as a microcode branch condition
and reset through the microcode field LSR. The link branch condition is sampled at the TST
start, with the value used to calculate the entry point.

Writing LINK with another channel target value in the same thread issues a link service
request to the new target, without negating the service request to the former one. This
allows a channel to issue service requests to any number of channels, including itself.
Neither LINK nor LSR microengine accesses are qualified by the CHAN register, they
always access the serviced channel LINK and LSR regardless of the value written in
CHAN.

If the microcode executes an instruction with field LSR=0 (clear link service request), the
link branch condition is cleared. However, the link service request itself is cleared only if
no link was received by the serviced channel during the same thread, see Note: . If the
microengine clears the LSR of its channel and, simultaneously, link service request is
issued to the current serviced channel, the branch condition is cleared but the link service
request remains pending.

NOTE
This can only happen if the link service request came from the
other engine or from the serviced channel itself.

A channel can issue link service requests to channels in any of two engines, determined by
the LINK register field engine selection (2 bits), as shown in Table 5-10.

7 6 5 4 3 2 1 0

Engine Selection Channel Number

Figure 5-6. Microengine LINK Register
5-44 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The engine which receives the link cannot distinguish where the link comes from, except
by some user-programmed protocol using SPRAM parameters.

5.8.6 Enhanced Digital Filter (EDF)

The EDF eliminates passing of signal transitions which are caused by noise. Its purpose is
to eliminate false transition service requests caused by noise pulses which are shorter than
a programmed width.

The EDF has three modes of operations, selected by the CDFC field in the ETPUECR
register, see Section 4.2.4, “eTPU Engine Configuration Register (ETPUECR).” These
modes offer selections of trade-off between noise immunity and signal latency. Table 5-11
gives an example of minimum detected signal pulse and maximum filtered noise pulse in
the three EDF operation modes. In angle mode the EDF in channel 0 is replaced by the
digital filter and synchronizer of the TCRCLK signal. In this mode, channel 0 works in
combination with the Angle Counter logic, and their operation is fully synchronized.

Following subsections provide the functional description of the eTPU channel digital filter.

5.8.6.1 Two-Sample Mode

In this mode the EDF works like the TPU2/3 digital filter. It uses the filter clock which is
the system clock divided by (2, 4, 8,..., 256) as a sampling clock. The filter clock is selected
by the FPSCK field in the ETPUECR engine configuration register, see Section 4.2.4,
“eTPU Engine Configuration Register (ETPUECR).” The EDF compares two consecutive
samples. If both samples have the same value, the input signal state is updated. Note that
the EDF works like the TPU1 four-(system)-clock digital filter if the FPSCK field selects
the system clock divided by two.

5.8.6.2 Three-Sample Mode

In this mode, like in the TPU2/3 mode, the EDF uses the filter clock as a sampling clock.
The EDF compares three consecutive samples. If all three samples have the same value, the
input signal state is updated.

Table 5-10. LINK Engine Selection

Engine
Selection

Description

00 Select This Engine

01 Select Engine A

10 Select Engine B

11 Select Other Engine
MOTOROLA Chapter 5. Host Interface. 5-45
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Enhanced Channels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The three-sample mode has more signal latency than the two-sample mode, but also better
noise immunity and better ratio between minimum detected signal pulse to maximum
filtered noise pulse.

5.8.6.3 Continuous Mode

In this mode the EDF compares all the values sampled at the rate of the system clock
divided by two, between two consecutive filter clock pulses. If the signal is continuously
stable for the entire digital filter clock period (i.e all the samples have the same signal
value), the input signal state is updated.

This method has the same latency and the same ratio between minimum detected signal
pulse to maximum filtered noise pulse, as the two-sample mode, as long as there is no noise.
Each sampled noise delays the signal transition detection by at least a whole digital filter
clock period.

The continuous mode gives the best noise immunity by comparing multiple samples of the
noise. On the other hand, when a short noise pulse appears in the middle of the filter clock
period at the same time of a real signal transition, the continuous mode may reject a real
signal transition and delay the response to the first filter clock period in which the signal is
continuously stable. This may add to the latency and increase the minimum required
duration to detected a signal pulse in a noisy environment.

5.8.6.4 Filter Clock Prescaler

The TCRCLK signal and each channel configured as an input have an associated
synchronizer followed by a digital filter connected to the signal that samples signal
transitions. After reset, the digital filter filters out high and low pulse widths smaller than
the period of two system clocks, preventing these transitions from being input to the
transition detect logic. The synchronizer and digital filter are guaranteed to pass pulses that
are greater than or equal to the period of four system clocks. By changing the FPSCK field
in register ETPUECR the user can select a lower clock rate for the filter signal to define
wider valid pulses and filter out wider noise pulses. The filter prescaler clock control is a
division of the system clock. To guarantee pulse detection by the digital filter, the pulse
must cover at least the stated number of samples at the filter clock rate. For example, a two
sample digital filter must sample two points in the pulse to detect it.

Table 5-11. Minimum Detected Pulse / Maximum filtered Pulse Width

Filter Control
Sample on

System Clock
Divided by:

Min. Width Detected / Max. Width Filtered1,2

Two Samples or Continuous Mode Three Samples Mode

000 2 4 / 2 6 / 4

001 4 8 / 4 12 / 8

010 8 16 / 8 24 / 16
5-46 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9 Time Bases
Each eTPU engine has two time counter registers, TCR1 and TCR2. They provide 24-bit
time bases, shared by all 32 channels. Any channel can use both time bases to:

• Match channel’s internal registers Match1 or Match2;

• Capture time base value to channel’s internal registers, Capture1 and/or Capture2,
when a match recognition or an Input transition detection occurs. For more
information on channel events refer to Section 5.8, “Enhanced Channels.”

The TCR1 and TCR2 counters are accessible by the microcode for read and write
operations. TCR1 and TCR2 values are updated in T2 and read in T4, see Appendix A,
“Microcycle Timing.” Both TCR1 and TCR2 values can be imported from or exported from
one eTPU engine to another one only, see Note:

NOTE
The TCR1/2 counters between the two engines are out of phase
by 1 system clock, even when time bases are shared between
them. This is due to the interleaving of the eTPU engines. Even
though the timers are out of phase by a system clock, all
channels are in phase with respect to eTPU microcycles.

5.9.1 Timer Count Register 1 (TCR1)

TCR1 can be used in the following modes:

• Internally clocked mode

• Externally clocked mode

The host program can read TCR1 time base through the ETPUTB1R, see Section 4.3.2,
“eTPU Time Base 1 (TCR1) Visibility Register (ETPUTB1R).”

011 16 32 / 16 48 / 32

100 32 64 / 32 96 / 64

101 64 128 / 64 192 / 128

110 128 256 / 128 384 / 256

111 256 512 / 256 768 / 512

1 This table shows pulse widths in number of periods of the system clock.
2 Minimum Width *Guaranteed* to be Detected / Maximum Width *Guaranteed* to be Filtered. For instance, in

two-sample mode: a pulse of 3 clocks may be detected or filtered, depending on its phase against the filter clock.

Table 5-11. Minimum Detected Pulse / Maximum filtered Pulse Width

Filter Control
Sample on

System Clock
Divided by:

Min. Width Detected / Max. Width Filtered1,2

Two Samples or Continuous Mode Three Samples Mode
MOTOROLA Chapter 5. Host Interface. 5-47
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The TCR1 bus runs through all the local engine channels. In channels which select TCR1
as Match1 and/or Match2 source, when its value is greater or equal to the programmed
match value, a match1 and/or match2 event occurs on that channel. A recognized match
event sets its related match recognition latch 1 or 2, and according to the pre-defined
channel modes (PDCM) it may generate a channel service request. For details on eTPU
channels refer to Section 5.8, “Enhanced Channels.”

When a match or signal transition event is detected by any of the channels, it performs a
capture operation. Any channel can capture the TCR1 value in its Capture1 and/or Capture2
register due to the event. This way the microcode gets a time tag of the event without
channel service latency.

5.9.1.1 Externally Clocked Mode

TCR1 can be driven externally by the TCRCLK input, after the digital filter. The TCR1
clock source is configured by the TCR1CTL bit, as shown in Figure 5-7. For more
information on clock source selection, please refer to Section 4.3.1, “eTPU Time Base
Configuration Register (ETPUTBCR).”

Figure 5-7. TCR1 Clock Selection

5.9.1.2 Internally Clocked Mode

TCR1 can be driven by the system clock divided by 2. TCR1 can also be clocked by a
peripheral timebase clock generated within the MCU and is selected by TCR1CTL. The
clock source selected by TCR1CTL is prescaled by a factor of 1 to 256, selected by
ETPUTBCR field TCR1P. For more information on prescaler configuration refer to
Section 4.3.1, “eTPU Time Base Configuration Register (ETPUTBCR).”

5.9.2 Timer Count Register 2 (TCR2)

The TCR2 is a 24-bit counter which can be used in the following modes:

• Pin transition mode: Count the rise, fall or both transitions of TCRCLK signal.

• Angle clock mode: In the Angle Clock mode, TCR2 counts and times the signals
from a toothed wheel and with software support, tracks the angle of the wheel. This

TCR1CTL

TCR1System Clock
10

00
TCRCLK Prescaler
Input Originated TCR1

PrescalerIn TCRCLK pin,
after the filter 1,2,3,..,256

TCR1P

8

Divided by 2

to EAC Angle Tick generation
5-48 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

implements an Angle PLL, and generates angle information to the channels. This
mode is targeted for angle based applications, such as internal combustion engine
control.

• Gated mode: Count with rate derived from the system clock divided by eight. The
TCRCLK signal is used to gate this count, enabling pulse accumulator operations.

• Internally clocked modes: TCR2 is driven by the internal clock, with count rate of
the system clock divided by eight.

All clock sources pass through a prescaler. The TCR2 timebase may also originate from the
EAC which is a hardware angle counter. The EAC is activated in angle mode, and can
generate one of two angle clock formats on the TCR2 bus. Figure 5-8 shows the diagram
for TCR2 clock control.

Figure 5-8. TCR2 Clock Control

The TCRCLK signal input is passed through a synchronizer and a programmable digital
filter. In angle mode, the synchronizer and filter are also used in channel 0, replacing
channel 0’s input synchronizer and filter, to get the same timing in the EAC and Channel 0.

NOTE
The angle counter is a hardware system supported by software
and hence requires that the signal be applied to Channel 0.

The TCRCLK synchronizer is a dedicated filter that provides best latency while
maintaining proper noise filtering and is configured through the TCRCF field, see
Section 4.3.1, “eTPU Time Base Configuration Register (ETPUTBCR).”

The TCR2 bus runs through all the local engine channels. It transitions on clock T2. For
more detail, see Appendix A, “Microcycle Timing.”

SYNC.

SYSTEM CLK / 8

ETPUTBCR

TCR2
0 23TCR2

PRESC.

PROGRAMMABLE
DIGITAL
FILTER

ETPUTBCR

000

001

010
011

1, 2, . . . , 64

FILTER
CLOCK

SYSTEM
CLOCK/2

0

1

6

2 samp

Integr.

3

ETPUECR[FPSCK]

ETPUTBCR[TCRCF]

GEN.

FILTER
CLOCK

eTPU ANGLE

Angle Mode
ETPUTBCR[AM]

1

0

 COUNTER

2

[TCR2CTL]

3

[TCR2P]

 (EAC)

to Channel 0 input on Angle Mode

100

Filtered signal for TCR1 clock

TCRCLK
 Pin
MOTOROLA Chapter 5. Host Interface. 5-49
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The TCR2 counter is accessible by the microcode for read and write operations. Its current
value is used for getting the current counter value (representing signal transitions, time or
angle), and the captured values are used for channel relative count calculations. The TCR2
value is readable to the host through the ETPUTB2R register, refer to Section 4.3.3, “eTPU
Time Base 2 (TCR2) Visibility Register (ETPUTB2R).” When the TCR2 bus value is
imported from the STAC bus, TCR2 is not writable by the microcode, and read access from
the ‘microcode or from the host reflect the imported TCR2 value.

5.9.2.1 TCR2 Clock Prescaling

Any clock source selected by TCR2CTL is prescaled by a factor of 1 to 64, selected by
ETPUTBCR field TCR2P. For more information on prescaler configuration refer to
Section 4.3.1, “eTPU Time Base Configuration Register (ETPUTBCR).”

5.9.2.2 TCR2 Gated Mode

TCR2 Gated mode is selected in field TCR2CTL of register ETPUTBCR. In this mode the
TCRCLK signal enables or disables transfer of the system clock divided by 8 to the TCR2
prescaler. By programming the prescaler, TCR2 can run at rates from system clock divided
by eight down to system clock divided by 512, in steps of eight system clock divisions. For
more information refer to Section 4.3.1, “eTPU Time Base Configuration Register
(ETPUTBCR).”

5.9.2.3 TCR2 Signal Transition Modes

These modes are selected when the TCR2CTL field in ETPUTBCR is set to rise, fall or
“rise-and-fall”. In these modes the TCRCLK signal is the TCR2 clock source, and its
maximum transition rate depends on the TCRCLK digital filter mode of operation. The
TCRCLK digital filter can be programmed to use the system clock divided by two, or use
the same filter clock of the channels, controlled by the TCRCF field in ETPUTBCR. It
contains an up-down counter which operates as a digital integrator, optimizing signal
latency in the selected mode and clock rate.

When the system clock divided by two is selected, the synchronizer and the digital filter are
guaranteed to pass pulses that are wider than four system clocks (two filter clocks).
Otherwise the TCRCLK is filtered with the same filter clock as the channel input signals.
For details on TCRCLK and channels digital filter control refer to Section 4.3.1, “eTPU
Time Base Configuration Register (ETPUTBCR),” and Section 5.8.6, “Enhanced Digital
Filter (EDF).”
5-50 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9.2.4 TCR2 Bus in Angle Clock Mode

In this mode the TCR2 counter operates as part of the eTPU angle counter (EAC). The
TCR2 bus value reflects this angle representation in which it counts angle ticks. Angle
mode is selected when the AM bit is set in ETPUTBCR.

Note that when TCR2 works in angle mode, it does not count directly from the TCR2 clock
input which indicates tooth signal transition. Its angle counter is controlled by the count
control and high rate logic, see Section 5.10.5, “Count Control and High Rate Logic,”
which provides the interpolated tooth position, and with software support, handles cases of
a missing tooth/missing teeth, acceleration, deceleration and mechanical corrections.

The EAC uses the TCRCLK signal to get tooth transition indications. The TCR2CTL field
in ETPUTBCR has to be set for the appropriate tooth edge detection rise, fall or
“rise-and-fall”. TCR2 count clock comes from the EAC control and not directly from the
physical tooth. This way the eTPU is able to processes signal transitions and handle missing
teeth and flywheel mechanical corrections.

In angle mode, eTPU channel 0 operation is combined with the EAC operation. The
TCRCLK digital filter is used both by the EAC and by channel 0 to get full synchronization
between the two logics.

The eTPU angle counter (EAC) logic runs continuously and updates the TCR2 angle
counter without latency as long as it is maintained by the angle count software.

5.9.3 Shared Time and Angel Count (STAC) Bus Interface

Both time bases TCR1 and TCR2 can be shared among the engines and with the eMIOS
block in the MPC5554. Either of the eTPU engines or the eMIOS can drive their time bases
to the STAC interface, acting as a server, while another block can use the bases and behave
like a client. For further information on the TCR shared bus operation refer to Section 4.3.4,
“STAC Bus Configuration Register (ETPUREDCR).”

The eTPU can export to or import from the STAC bus interface either of the following:

• TCR1: When TCR1 is imported from the STAC bus, it becomes read-only for the
microcode and reflects the imported values. For details refer to Section 5.9.1,
“Timer Count Register 1 (TCR1).”

• TCR2: When TCR2 is imported from the STAC bus, it becomes read-only for the
microcode, and reflects the imported values. When exported to the STAC bus, TCR2
can work in either angle mode or as a free running counter associated with the
TCRCLK signal. For details, refer to Section 5.10, “eTPU Angle Counter (EAC).”

The configuration of ETPUTBCR[AM] and ETPUREDCR[REN2, RSC2] selects the IP
bus interface driver. Table 5-12 describes these configurations.
MOTOROLA Chapter 5. Host Interface. 5-51
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Bases

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that when TCR2 is a STAC bus client, the ETPUTBCR bit AM has no effect for eTPU
configuration since EAC operation is disabled; angle mode is not available for STAC bus
clients. When TCR2 is a stand-alone counter or a STAC bus server, the same value that is
driven to the internal TCR2 bus is also exported to the STAC bus (either Time Count or
Angle).

STAC bus interface configuration is provided by the ETPUREDCR bits REN1, REN2,
RSC1, and RSC2. REN1 and REN2 enable the time and count IP interface to interact with
the resource (either TCR1 or TCR2 bus). RSC1 and RSC2 configure the resource (either
TCR1 or TCR2 bus) as server or client.

5.9.4 Global Time Base Enable (GTBE)

GTBE bit in ETPUMCR register enables time bases in both engines, allowing them to be
started synchronously. In addition, assertion of the GTBE bit also enables the time base for
the eMIOS, thus asserting ETPUMCR[GTBE] synchronously enables eTPU A, eTPU B,
and eMIOS time bases.

The eMIOS on the MPC5554 also has a separate and independent GTBE bit. Asserting the
eMIOS GTBE bit has the same effect as asserting ETPUMCR[GTBE], i.e. eTPU_A,
eTPU_B, and eMIOS time bases are all synchronously enabled. To globally disable the
time bases, the GTBE bits in both eTPU and eMIOS must be negated.

5.9.5 TCRCLK Digital Filter

The TCRCLK signal has an improved integrating digital filter with a 2-bit up-down
counter. The counter counts up to 3 when a high signal level is detected, or down to 0 when
a low level is detected. The signal state is updated to one when the counter stops at 3, or
zero when the counter stops at 0. The field TCRCF in register ETPUTBCR, see
Section 4.3.1, “eTPU Time Base Configuration Register (ETPUTBCR),” determines
whether the TCRCLK signal input (after a synchronizer) is filtered with the same filter

Table 5-12. Interface Bus and Host Read Sources

ETPUTBCR[AM] ETPUREDCR[REN2, RSC2]
TCR2 Bus Source

(Host read of
ETPUTB2R)

STAC Bus Interface
Driver

0 0x (disabled) TCR2/Time x

1 0x (disabled) TCR2/Angle x

0 11 (Server) TCR2/Time TCR2/Time

1 11 (Server) TCR2/Angle TCR2/Angle

1 10 (Client) Forbidden1

1 STAC client configuration in angle mode is also forbidden for TCR1.
5-52 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

clock as the channel input signals, see Section 5.8.6, “Enhanced Digital Filter (EDF),” or
uses the system clock divided by 2. The TCRCF field also sets the TCRCLK digital filter
to work in integrator mode or the same two sample mode as the channel filters
(seeTable 4-10).

5.10 eTPU Angle Counter (EAC)

5.10.1 General

The EAC logic contains logic which allows it to track the angle of a toothed wheel by
processing the timing of the teeth, detected by a sensor. This hardware works in
combination with the TCRCLK signal, the TCR2 counter and Channel 0 to generate angle
information on the TCR2 bus which is passed to all the local engine channels. The EAC
helps to implement a digital angle PLL (see Figure 5-12), which combines hardware with
microcode processing at channel 0. The angle measurement is based on history knowledge
of the tooth period, for predicting the period of the next tooth. The tooth period is
partitioned into a programmable number of Angle Ticks. The eTPU application will use
the divider in the MAC/Divide unit to calculate an integer and a fraction part of the angle
tick such that the full tooth period gets the correct programmed number of angle ticks with
no accumulated error.

Every tooth can be divided in angle ticks, up to 1024. In a 60 tooth flywheel, 128 Angle
Ticks per tooth provide resolution of ~0.05 degrees per tick, which meets the accuracy
requirement of 0.1 degrees in current automotive applications.

The measurement of one tooth in angle ticks is independent of engine RPM; it is the tooth
period itself (and the corresponding tick period) that is re-calculated for each new tooth,
based only on the period of the last tooth span.

For angle measurement applications, eTPU channel 0 is dedicated to service physical tooth
detection, sharing the same filter as the TCRCLK signal to get the same timing in the EAC
and Channel 0.

The EAC supports deceleration, acceleration, last tooth and missing tooth scenarios. In case
of a missing tooth, the EAC can be configured to insert a dummy tooth or to simply measure
a longer tooth.

Figure 5-13 shows the block diagram of the Angle Counter system. TCR1 is used as a time
base which measures the tooth period and is used for partitioning the period to angle ticks.

5.10.2 Angle Mode Registers

In angle mode, the registers described below control eTPU angle operations. They are
accessible only by the microengine as source and destination registers in microinstructions.
MOTOROLA Chapter 5. Host Interface. 5-53
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When the eTPU is not in angle mode (AM bit is reset in ETPUTBCR register), all angle
mode registers can be used as general purpose registers.

5.10.2.1 Tooth Program Register (TPR)

TPR provides configuration for the angle counter circuit. In this register, the microcode can
properly adjust the tooth count (controlling last tooth, missing teeth, dummy tooth
insertion, halt until tooth detection) and the number of angle ticks per tooth (field TICKS).
Note that this register is sampled into a temporary register in the EAC logic when the high
rate mode is detected, see Section 5.10.5.3, “High Rate Mode (Acceleration),” which
means that changes to this register may take effect only for the next tooth.

Refer to Section 5.10.5, “Count Control and High Rate Logic,” and sections 5.10.6 to
5.10.9 for a detailed explanation about the use of this register. Figure 5-9 provides a
detailed description of the TPR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LAST MISSCNT IPH HOL
D

TPR
10

TICKS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-9. TPR Register

Table 5-13. TPR Bit Field Descriptions

Read/Write Bits Name Description

R/W 15 LAST Last Tooth Indication. Asserted by microcode and negated at the end of the
tooth period.
1 Last Tooth: reset TCR2 on the next physical tooth edge (or when IPH=1)

when MISSCNT=0.
0 Not Last Tooth.

R/W 14 – 13 MISSCNT[1:0] Missing Tooth Counter. Decremented on each estimated tooth, stops at
zero. Used for generation of “Dummy Tooth” whenever it holds a non-zero
value (see Table 5-14).
5-54 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

MISCNT can only be written a non-zero value if LAST is written 1
simultaneously.

R/W 12 IPH Insert Physical Tooth. This bit is used for exiting halt mode1 which is caused
by missing a detection of a physical tooth. It generates a dummy physical
tooth which has the same effect as a real physical tooth, and resets itself
subsequently. If EAC is in halt mode, it switches back to normal mode2. If
EAC is in normal mode, it switches to high rate mode.
1 Insert dummy physical tooth.
0 No Operation.
Note: If the EAC is in Normal mode and IPH is asserted, the EAC stays in
Normal mode for 1 microcycle more before going high-rate.
Note: IPH reads as 1 in the next microinstruction after it is asserted,
negating subsequently. However, it can be set twice in two consecutive
microinstructions to generate two teeth and make the EAC go from Halt to
Normal to High Rate Mode.

R/W 11 HOLD Force EAC Halt. This bit forces the EAC to halt its operation in a special
EAC Halt mode until a new physical tooth is detected. Assertion of this bit
immediately halts the EAC in the middle of the tooth period. When a new
physical tooth is detected, the bit is automatically negated by the EAC. The
HOLD bit can be used for synchronizing the EAC tooth count, in case that
a false physical tooth is detected due to noise.
1 Force EAC to halt until detection of a physical tooth.
0 Normal Operation.

R/W 10 TPR10 Reserved in Angle Mode, must always be written 0. When Angle Mode is
off, can be used as general purpose register bit, like the rest of the register.

R/W 9 – 0 TICKS[9:0] Angle Ticks Number in the Current Tooth. This field defines the number of
angle ticks in the current physical tooth. It partitions the tooth period to the
required number of angle ticks. The number of ticks in the tooth span is
TICKS, but the number of ticks in a tooth period is TICKS+1. The last count
is the Tooth.

1 EAC Halt mode has nothing to do with microengine Halt state. See Section 5.10.5.2, “Halt Mode (Deceleration).”
2 the missing of a physical tooth naturally causes EAC to get into Halt mode.

Table 5-14. MISSCNT Values

Value Meaning

00 Not a Missing Tooth

01 One Missing Tooth

10 Two Missing Teeth

11 Three Missing Teeth

Table 5-13. TPR Bit Field Descriptions (continued)

Read/Write Bits Name Description
MOTOROLA Chapter 5. Host Interface. 5-55
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

In High Rate mode, TPR writes are immediately effective only
for bits IPH and HOLD. All other fields are sampled in a
shadow register and become effective at next tooth if not in
High Rate mode, or when EAC leaves High Rate mode.
However, if TPR is written a second time right after IPH is
asserted in Normal mode, this second write behaves as if EAC
is still in Normal mode. Only in the next microcycle (after
execution of a nop, for instance) the TPR writes are shadowed,
acknowledging High Rate Mode. The value read by microcode
is the same written in any situation.

NOTE
Bits LAST, IPH, and HOLD must not be asserted all at once.
MISSCNT can only be rewritten after it finished the countdown
to 0.
5-56 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.10.2.2 Timer Counter 2 (TCR2)

In angle mode TCR2 counts teeth and angle ticks, instead of time.

This 24-bit free-running counter is used to generate an accumulated angle fraction value. It
is updated by the angle tick generator, refer to Section 5.10.4, “Angle Tick Generator,” for
more details. Refer to Section 5.10.5, “Count Control and High Rate Logic,” for a detailed
explanation about the use of this register in angle mode.

TCR2 provides continuous count of the angle in units of angle ticks. The angle tick counter
in TCR2 can be reset due to “Last Tooth” microcode indication and can be written by
microcode at any time.

5.10.2.3 Tick Rate Register (TRR)

The exact period of the angle tick is programmed in the tick rate register by microcode. The
period of the angle tick is given in units of TCR1 clocks. Refer to Section 5.10.4.1,

23 22 21 20 19 18 17 16

R Angle Tick Counter[8:16]

W

RESET: 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Angle Tick Counter[15:0]

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-10. TCR2 in Angle Mode
MOTOROLA Chapter 5. Host Interface. 5-57
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

“Calculating the Angle Tick Period Integer and Fraction,” for a complete description about
the mechanism to calculate the value to be written into TRR register.

23 22 21 20 19 18 17 16

R INTEGER[14:7]

W

RESET: 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INTEGER[6:0] FRACTION

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-11. TRR Register

Table 5-15. TRR Register Bit Field Descriptions

Read/Write Bits Name Description

R/W 23 – 9 INTEGER[14:0] The integer part of TCR1 clocks in one Angle Tick. This number,
decremented by one, is a down-counter preload value. A value of
INTEGER=0 represents an integer of 32768.

R/W 8 – 0 FRACTION[8:0] Nine-bit fractional part of TCR1 clocks in one angle tick. The FRACTION
value is accumulated in the EAC Fraction Accumulator, and whenever the
result overflows (i.e., the accumulated fraction added up to an integer), the
tick prescaler is halted for one TCR1 clock.
5-58 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-12. EAC “PLL”
MOTOROLA Chapter 5. Host Interface. 5-59
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5-13. eTPU Angle Counter System
5-60 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.10.3 Acceleration and Deceleration

Acceleration and deceleration affect the new tooth period relative to the known period of
the last tooth. Changes in tooth period may be extreme at very low engine RPM (such as
cold start). The worst case of tooth period changes is caused during missing teeth, since
there is more time for changes in angular velocity to be unnoticed by the EAC hardware.
For example, on cold start (~50 RPM) there may be extreme acceleration: the ratio between
a known tooth period before two missing teeth and the new tooth period after the missing
teeth can be very high (up to a factor of 75). Acceleration and deceleration effects from
tooth to tooth are less extreme as the engine climbs to high RPM.

In case of deceleration, the estimated tooth period ends before the actual tooth detection
arrives. In this case, the EAC hardware waits when the tick count has reached TICKS, until
the real tooth indication is received, then continues with normal operation. See Table 5-12.

In case of acceleration, the actual tooth period is shorter than the estimated tooth period. As
a result, a new physical tooth indication arrives before the end of the estimated tooth period.
In this case the EAC closes the gap on High Rate mode by counting on system clock divided
by eight to the end of the tooth, advances to the next tooth, and switches back to normal
operation mode. See Table 5-12.

The reason that the EAC does not jump directly to the next tooth is the need to provide
continuous angle count throughout the whole tooth period, for channels or external STAC
bus clients (if TCR2 is a STAC server) which compare angles in an “equal” mode. These
peripherals must get all the valid angle values in a sequential manner, to avoid missing
angle matches.

TCR2 advancing from one tooth to another is a continuous count, and can be optionally
reset at the end of the tooth. An estimated tooth is generated after the Angle Tick Counter
reaches the TICKS programmed value.

The EAC works continuously and switches automatically between Normal, Halt and High
Rate modes. It relies on the microcode to calculate the estimated tooth period on every
tooth, and to update the correct angle tick and tooth parameters in the EAC control registers.
On high RPM, tooth period changes are reduced from tooth to tooth, and the EAC may
follow the angle with good accuracy for several teeth without microcode intervention.

Software decides whether the EAC handles missing teeth by insertion of “dummy” teeth,
or by enlarging the expected tooth period. It is a good practice to locate the flywheel
missing teeth in non-critical angles, since a missing tooth may increase the angle
measurement error (acceleration and deceleration is detected late).

5.10.4 Angle Tick Generator

The angle tick generator is responsible for generating a programmed number of angle ticks
in the tooth period. It generates the ticks in an average rate which ensures completion of the
MOTOROLA Chapter 5. Host Interface. 5-61
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

correct number of angle counts in the estimated period of the tooth. Refer to Figure 5-14
for a generic presentation of the angle tick count and the measurement of a single tooth
period.

5.10.4.1 Calculating the Angle Tick Period Integer and Fraction

On each tooth the microcode has to update the exact period of a single angle tick used for
counting the angle of a tooth. The period of an angle tick or a tooth is measured in units of
TCR1 clocks. The microcode can use the eTPU MAC Divider unit, see Section 8.4, “MAC
and Divide Unit (MDU),” to divide the tooth period by 1 + the number of angle ticks per
tooth, which is stored in the TICKS field of TPR. Refer to Section 5.10.2, “Angle Mode
Registers,” for details about the TPR. This division yields the integer part of the angle tick
period and the remainder. Dividing again the remainder shifted left nine positions, by the
number of angle ticks per tooth translates the remainder to a 9-bit fraction. The microcode
concatenates the 15-bit integer and the 9-bit fraction to a 24-bit value and writes it to TRR.
The new rate is effective immediately after the next angle tick is generated by the angle tick
generator, see Note: .

NOTE
In high-rate mode, the tick keeps being updated at the rate of
system clock/8 until it goes back to normal mode, when the
new TRR value is used.

For high RPM, note that shifting the tooth period value nine positions to the left prior to the
first divide operation would calculate, in one operation, the integer and the fraction. For
example: On 60 teeth flywheel running at 1000 RPM, tooth period is 1 millisecond. If
TCR1 counts @25 MHz, it counts 25,000 times in a tooth, which can be represented by 15
bits. Therefore the tooth period can be shifted nine positions to the left prior to divide
operation, and be represented with 24 bits.

Using shift left nine positions and one divide operation would get the result in MACL
register (in MDU) which holds the integer and nine bits of the fraction:

Angle_Tick_Rate {Integer[14:0], Fraction[8:0]} = (TCR1ToothPeriod<<9) / Ticks
/* See Note: */
TRR = Angle_Tick_Rate {Integer[14:0], Fraction[8:0]}

NOTE
The TCR1ToothPeriod is obtained by microcode by subtracting
TCR1 values between two teeth detections. Its comparison
with the estimated tooth time indicates acceleration (if minor)
or deceleration (if greater) to the microcode.

On low RPM the initial tooth period, measured in TCR1 counts, may be too big to be shifted
nine positions to the left. For lower RPM (for example 500 RPM) the tooth period cannot
be represented by 15 bits, and shifting it nine positions to the left would lose the MSB. On
5-62 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

this case, two divide operations are required as follows: first divide the tooth period by the
number of TICKS, i.e. the integer is stored in MACL and remainder in MACH. MACL is
stored in another register. MACH is shifted 9 positions to the left and divided again by
TICKS. During the second divide, the register which stored the original MACH is shifted
left 9 positions. After the divide MACL contains the 9 bits fraction and the other register
contains the 15-bit integer, shifted left nine times. The logical OR of the two registers is
written to the TRR:

Angle_Tick_Rate {Integer[14:0], Remainder[9:0]} = (TCR1ToothPeriod) / Ticks

Angle_Tick_Rate {Fraction[8:0]} = (Remainder[9:0] << 9) / Ticks

TRR = Angle_Tick_Rate {Integer[14:0], Fraction[8:0]}

Figure 5-14. Angle Ticks Generation

5.10.4.2 Generating the Angle Ticks

The integer part of TRR is preloaded to a prescaler, which counts down at TCR1 clock rate.
When the down counter reaches zero, it generates an angle tick pulse to the Angle Counter
Logic and a Load pulse to the Fraction Accumulator. It is then preloaded with most updated
TRR integer part. Due to the Load pulse, the 9-bit fraction is accumulated in a 9-bit Fraction
Accumulator. If a fraction overflow condition occurs (the 9-bit adder asserts carry out), the
accumulator saves the lower 9 bits of the addition result, which is the remaining fractional
part. The carry out bit indicates an accumulated integer “one” which means that the angle
tick is early by one TCR1 clock. It halts the prescaler operation for one TCR1 clock to
compensate the accumulated error generated by the integer prescaler. As a result, the
average angle tick period takes into account both the integer and the fraction parts. The
accuracy depends on the bit count of the fraction. Using 9-bit fraction part while the width

Tooth Signal

Angle Tick

P1 P2 P3

Acceptance window
defined by channel 0

2 4 6 9 11 13 16 18 20 23

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

TCR1 Clocks

Channel 0
Capture

TCR2
Angle Tick Counter 0 1 2

Glitch rejected

TCR1 = 1000 TCR1 = 1023 1046

 3 6 9 2 5 8 1 4 7 0 3 6 9 2 5 8 1 4 7 0 3 6 0 Fraction
Accumulator
MOTOROLA Chapter 5. Host Interface. 5-63
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

of the field TICKS in register TPR is 10 bits provides accuracy of two LSB on a full scale
(TICKS=1023) or one LSB on lower scale (TICKS<=511).

When the Tick Prescaler gets High Rate mode indication from the Angle Counter Logic, it
generates angle ticks at a rate of system clock divided by eight. In this case it does not
generate Load pulses to the Fraction Accumulator, ignores its “hold” input and preloads
internally to a fixed period of eight system clocks. When High Rate mode is entered, the
prescaler is preloaded to a period of eight system clocks before its first angle tick
generation, ensuring separation of at least eight system clocks between the last Normal
mode angle tick and the first High Rate mode angle tick.

5.10.5 Count Control and High Rate Logic

The count control and high rate logic controls TCR2 operation in angle mode, using the
angle ticks generated by the angle tick generator. In angle mode, the TCR2 is simply an
accumulator of ticks. Count control logic is responsible for advancing, holding and
resetting the angle tick counter in the proper timing, such that the TCR2 time base will
reflect the correct estimated angle. This logic also includes the tooth program register
(TPR), see Section 5.10.2, “Angle Mode Registers,” for more information.

The count control and high rate logic handles deceleration, acceleration, missing teeth and
last tooth. On high rate (acceleration) it ensures that the angle bus scans all valid angle
values in a rate which can be traced by the STAC interface. This operation enables external
STAC clients (if TCR2 is a STAC interface server) or channels working in “equal-only”
comparator mode to match the TCR2 exported angle information in “equal” mode, in an
exact match.

Because the eTPU channels are capable of capturing either TCR1 or TCR2 due to signal
transition, the microcode can get either the angle or time of the physical pin transition.
Since channel 0 is connected to the physical tooth, the microcode can get the EAC error in
angle domain (tooth appears at the wrong angle) or time domain (physical tooth captured
time in channel 0, relative to the estimated tooth time). Note that in angle mode, the
transition detect logic of channel 0 is fed from the digital filter of the TCRCLK signal, and
not from the channel 0 internal digital filter. This ensures synchronous operation of channel
0 and the EAC hardware.

Another feature of the eTPU channel, when working in single match and single transition
enhanced mode, refer to Section 5.8.4.20, “Single Match Enhanced Mode (sm_st_e),” is
capturing a single time base due to signal transition before and after the digital filter. This
option allows subtracting the digital filter delay to get accurate signal transition timing on
the channel. This way, the TCRCLK signal may be programmed with a slow and reliable
digital filter, and get accurate time measurement of the digital filter delay.

To assert the end of the estimated tooth period the Count Control and High Rate logic
compares the TICKS field in TPR, refer to Section 5.10.2, “Angle Mode Registers,” with
5-64 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the current value of angle tick count. When the Angle Tick value is equal to TICKS, it
determines the end of the estimated tooth period. On acceleration this event occurs during
High Rate mode operation, after the end of the estimated tooth period. In deceleration, this
event occurs during normal mode, before the arrival of a physical tooth. On constant
angular velocity, this event appears together with the arrival of a physical tooth.

The following sections describe the operation of the counter control and high rate logic.

5.10.5.1 Normal Mode

In Normal mode the Counter Control logic advances the Angle Counter as if the engine has
a constant speed during the tooth period. It receives the angle ticks from the Angle Tick
Generator in an average rate which is determined by the Tooth Rate Register (TRR).

When the Angle Counter in TCR2 reaches a multiple of the value stored in TPR field
TICKS, the hardware detects the end of the estimated tooth period and advances to the next
estimated tooth. If the physical tooth and the estimated tooth arrive at the same time the
EAC stays in Normal mode and the angle counter is incremented. If the physical tooth and
the estimated tooth do not arrive at the same time, either acceleration or deceleration is
detected, and the EAC switches to the proper mode. See Figure 5-15 for a detailed diagram
of normal mode behavior.

The microcode which services channel 0 physical tooth transition may update TRR
according to various conditions to give the best estimation of the current tooth period,
according to the previous tooth period and other engine parameters.

Figure 5-15. Normal Mode

Tooth Signal

Angle Tick

TRR

TCR2 - resetting

P1 P2 P3 P4

Angle Tick Counter

Channel 0
Service Time Slot

Tooth Counter

Channel 0
Capture

TCR1 TCR1 TCR1 TCR1

P1/ n P2/ n P3/ n

y 0

y y+n y+n+1

Ch0 Ch0 Ch0

*service request

**microcode updates TRR

* *

** **

y+n

TCR2 - continuous
Angle Tick Counter
MOTOROLA Chapter 5. Host Interface. 5-65
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.10.5.2 Halt Mode (Deceleration)

In case of deceleration, the angle counter reaches the TICKS value before the arrival of the
next tooth. The count control logic does not reset the angle counter, neither advances the
tooth counter. The count control logic halts the angle counter at the end of the tooth, waiting
for the physical tooth to arrive.

When the physical tooth is detected the EAC switches back to normal mode and releases
the angle counter to count the angle ticks of the new tooth. Only then the tick counter wraps
to 0 and tooth counter is incremented. See Figure 5-16 for a detailed diagram of halt mode
behavior.

The microcode service caused by the physical tooth determines the deceleration, calculates
the new tooth period and angle tick period and updates TRR. This operation slows the angle
tick rate generated by the angle tick generator on-the-fly, to the rate required for the new
tooth period.

Since the microcode service is initiated by the physical tooth edge, microcode latency may
introduce a small angle error caused by using the TRR value of the previous tooth at the
beginning of the current tooth. On high RPM, deceleration is relatively small but the
microcode latency may take a significant percentage of the tooth period. On low RPM
microcode service latency takes little percentage of the tooth period, but there may be cases
of extreme acceleration and deceleration. The microcode latency can be calculated
knowing TCR1 value during the service time, and TCR1 value captured in channel 0 due
to the physical tooth pin transition. The duration of the halt mode is obtained using the
estimated tooth time.

Figure 5-16. Halt Mode, Deceleration

Tooth Signal

Angle Tick

TRR

P1 P2 P3 P4

Channel 0
Service Time Slot

Channel 0
Capture

TCR1 TCR1 TCR1 TCR1

P1/ n

y 0

Ch0

y y+n y+n+1

Ch0Ch0

P2/ n

Halt Mode

*service request

**microcode updates TRR

* *

** **

TCR2 - resetting
Angle Tick Counter

Tooth Counter

TCR2 - continuous
Angle Tick Counter

y+n
5-66 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.10.5.3 High Rate Mode (Acceleration)

In case of acceleration, the next tooth arrives before the angle counter reaches the TICKS
value. In this case the high rate logic is responsible for closing the gap and advancing the
tooth on the correct timing. The high rate mode operates as follows:

• When the acceleration is detected (physical tooth arrives before the angle counter
reaches the TICKS value), the count control and high rate logic switches to high rate
mode in which the angle counter counts at rate of system clock divided by eight,
until the angle counter reaches the current TICKS value. The TICKS value is
sampled in the logic at the beginning of the high rate mode.

• At this point, which represents the estimated tooth edge, the logic advances the angle
counter.

• The control logic switches back to normal mode, using the most updated TRR value
as input to the angle tick generator. The logic samples the updated TICKS value for
the tooth estimation, last tooth indication and number of missing teeth from TPR.

In high rate mode the angle ticks are provided at high speed until the end of the current
tooth. This operation is required to scan all the valid angle values of the current tooth, in a
rate which is not too high for the STAC interface bus continuous update, but much higher
than the rate dictated by TRR.

Channel 0 microcode, which services the physical tooth transition detection, can start its
service either before high rate mode operation is complete (the angle counter has not
reached the TICKS value) or after the EAC switched back to normal mode. Any physical
teeth received while the EAC is in high rate mode must be an error (noise). The received
physical teeth are discarded and has no effect on the behavior of the EAC control logic,
even if Channel0 is serviced by this transition detection.

At the beginning of high rate mode operation, the TPR value is preloaded into a temporary
register in the counter control logic, used for scanning all the valid values to the end of the
current tooth, with its appropriate LAST and MISSCNT attributes. This feature is necessary
only because the tooth that arrived to start the high rate mode might indicate a need to
change LAST or MISSCNT for the next cycle. During High Rate mode, the logic is still
completing the last tooth cycle, and requires this data to remain unchanged until the tick
count is completed. While the EAC is in high rate mode operation, the effect of microcode
update of TPR TICKS field is delayed to the next estimated tooth, after the high rate mode
operation is complete. This is because the current physical tooth represents the next
estimated tooth. If the microcode updates this field after high rate mode operation is
complete, the current physical tooth and estimated tooth are the same, and the effect is
immediate. Typically the microcode service may occur during the high rate mode on
extreme acceleration situation at low RPM. The microcode operations are always related to
the real physical tooth. For correct operation, the TICKS field should not be updated unless
the EAC is stopped and re-initialized.
MOTOROLA Chapter 5. Host Interface. 5-67
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

During high rate mode operation, TRR is ignored and the angle tick generator uses system
clock divided by eight. Therefore, the TRR update by microcode will take effect only after
the EAC switches back to normal mode. If microcode service occurs after the tooth counter
has been advanced, the EAC is already back in normal mode, and some angle ticks may
have been counted at the rate of the previous tooth. In this case the new TRR value will
have immediate effect on the angle tick period, and the microcode should take into
consideration the delay from the physical tooth to the estimated tooth in calculation of the
next tooth period. See Figure 5-17 for a detailed diagram of high rate mode behavior.

An angle error may be introduced by the duration of the high rate mode. Also, the scheduler
latency may introduce a small error by using TRR value of the previous estimated tooth at
the beginning of the current tooth. After the estimated tooth has advanced, the duration of
the high rate mode operation is the actual delay from the physical tooth edge to the
estimated tooth edge. This delay can be obtained by comparing the estimated tooth time
with the channel 0 capture register which captured TCR1 on the physical pin transition.

Figure 5-17. High Rate Mode, Acceleration

5.10.6 Special Cases of Missing Teeth and Last Tooth

The EAC handles cases of up to three missing teeth and the last tooth in the engine cycle.
The following paragraphs describe these functions.

5.10.6.1 Handling the Last Tooth

The microcode can set the TCR2 counter to work in engine periods (wrap-around count) or
continuous angle measurement.

Tooth Signal

Angle Tick

TRR

P1 P2 P3 P4

Channel 0
Service Time Slot

Channel 0
Capture

P1/ n P2/ n P3/ n

y 0

y y+n+1

Ch0Ch0 Ch0

High Rate Mode

TCR1 TCR1 TCR1 TCR1

*service request

**microcode updates TRR

**

** **

TCR2 - resetting
Angle Tick Counter

Tooth Counter

TCR2 - continuous
Angle Tick Counter
5-68 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For periodic operation, during the last engine cycle tooth the EAC microcode has to set the
LAST flag in TPR. As a result, when the tooth period is ended at the point the EAC receives
the next physical tooth edge, the counter control logic generates a reset command to the
angle counter in TCR2 instead of an advance command. The operation resets the TCR2
based angle count, indicating a new period of the engine cycle. This implementation
provides an engine cycle based periodic angle measurement.

5.10.6.2 Handling Missing Teeth

The EAC can handle up to three missing teeth in two ways:

• Insert a “dummy” tooth instead of the missing tooth, at the estimated point in time.
After the “dummy” tooth, the angle tick counter is incremented as if there was a
physical tooth. A “dummy” tooth can be inserted during both normal or high rate
operation modes. The microcode inserts “dummy” teeth by writing to the MISSCNT
field in TPR.

• Count the angle ticks relative to the last physical tooth. The microcode should
update the TPR TICKS field to the number of angle ticks included in two, three or
four teeth, according to the flywheel type (one, two or three missing teeth). EAC
hardware works in its regular manner.

In the first and recommended option, the missing teeth are counted as “regular” teeth by
automatic insertion of “dummy” teeth. The microcode has to write a non-zero value to the
MISSCNT field in TPR. This field is a 2-bit down counter which affects the operation of
the counter control logic.

For example, a toothed wheel with 59 physical teeth (0 – 58) and one missing tooth (59)
can be considered as 60 teeth numbered (0 – 59), all having the same number of angle ticks.
The microcode has to write “01” to the MISSCNT bits during the period of tooth number
58 to indicate that next tooth (59) is missing.

When the angle tick counter reaches the TICKS value and if MISSCNT is not zero, it is
incremented as if a physical tooth has been detected. In addition, the MISSCNT value is
decremented to indicate the number of left “dummy teeth” which still need to be generated.
Because a dummy tooth was counted, EAC does not enter halt mode and angle tick counter
continues incrementing in the absence of a physical tooth detection.

In case of extreme acceleration on very low RPM (cold start) there can be a situation that
the first physical tooth after one or two missing teeth appears even before the “dummy”
tooth is generated. Due to the acceleration the EAC switches to high rate mode in order to
run through all the valid angle values, including the dummy teeth. When the angle counter
reaches the TICKS value on high rate mode, and the “dummy tooth” down counter is not
zero, the generated “dummy tooth” advances to the next tooth and decrements the “dummy
tooth” counter, but does not switch the EAC back to normal mode. The last “dummy tooth”
decrements the counter to zero, indicating that no more dummy teeth are to be inserted, and
MOTOROLA Chapter 5. Host Interface. 5-69
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the next tooth is an estimated physical tooth. The EAC continues at high rate mode until the
angle tick counter reaches the TICKS value, then advances to the next tooth while
switching back to normal mode.

In the second option, the missing tooth is not counted on the angle measurement. For
example, a toothed wheel with 59 physical teeth and one missing tooth can be considered
as 58 identical teeth numbered (0–57) and tooth number 58 has a double number of angle
TICKS. In this case a 720 degrees engine cycle has 118 teeth. TCR2 reflects the real angle,
since it counts angle ticks continuously.

5.10.6.3 Combining Missing Teeth and Last Tooth

The last tooth indication takes effect when there are no more missing teeth to be generated,
i.e the “dummy tooth” counter value is zero. If, for example, the microcode sets the missing
teeth counter to “10” (two missing teeth) and sets the LAST flag, the first and the second
dummy teeth will increment the angle counter, and the third estimated tooth, which is the
physical tooth (the first of the next cycle), will reset TCR2, because LAST was set. This
scheme enables the microcode to define one or more missing teeth to be replaced by
“dummy tooth” insertion, and the end of the engine cycle in one service request. It is
assumed that the two missing teeth must come together in the same engine cycle, and not
split between two engine cycles (either both missing teeth are in one engine cycle or
another. The cycle cannot end on a dummy tooth).

Figure 5-18. Missing Teeth and Last Tooth Combination

5.10.7 Handling Mechanical Tooth Correction

The EAC can handle tooth edge detection errors caused by flywheel mechanical errors. The
eTPU application can hold a vector of tooth mechanical errors with one entry per tooth.

Tooth Signal

Angle Tick

TCR2

P1 P2 P3 P4

Angle Tick Counter

Channel 0
Service Time Slot

Tooth Counter

Ch0

TPR[MISSCNT]
“Dummy Teeth”

TPR[LAST]

00 10 01 00

56 57 58 59 0

Dummy teeth

**microcode sets TPR

*service request

**

n*(TICKS+1)

0

5-70 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This error can be measured in angle ticks which are independent of engine RPM. The TRR
can be updated to the fixed period of any tooth, including its mechanical error.

When TCR2, used as a resetting counter, is driving the TCR2 bus, the microcode would fix
the angle match values programmed to the eTPU channels according to the vector of tooth
mechanical data. If a fixed match angle value exceeds the scope of one tooth due to
mechanical error, its match value is transferred to the beginning of the next tooth. This
method assumes that the TICKS value is updated on each tooth. Each tooth has a different
set of valid values which may complicate the use of TCR2 as angle measurement source.

When TCR2 counts continuously, without being reset, the mechanical correction is
practically invisible. Without history, it is impossible to know if tooth period variation is
due to misaligned teeth or engine speed variations. Though the tooth has its own
programmed TICKS value, TCR2 simply counts angle ticks, loosing the boundary between
two adjacent teeth.

5.10.8 Handling Mis-detected Tooth

When a physical tooth signal is missed by the engine sensor, the EAC may get into halt
mode at the end of the estimated tooth period, expecting the physical arrival. In this case, a
Match time-out event of channel 0 will call service which detects extreme deceleration. The
microcode can assert the IPH bit in TPR, to force the detection of the missed physical tooth.
It can also calculate the accumulated angle bus error, and fix the next estimated tooth
period, to close the gap.

5.10.9 Handling False Tooth Detection

Most false tooth detections, caused by noises on the engine tooth sensor, will be handled by
the physical filtering of the tooth signal. False tooth detection that is not filtered can be
eliminated by the window blanking filtering, timed by channel 0 match recognitions. The
EAC also provides means of fixing false detection of an additional tooth which passed the
window filter. When such an event occurs, the EAC switched to high rate mode (advancing
to the next tooth) and when the next physical tooth arrives, an extreme acceleration is
detected; the EAC sees the remaining portion of the current tooth period as another tooth
period.

NOTE
If the masking is setup right, there are only rare cases where the
EAC will be incorrect for more than one tooth.

The microcode can detect the situation when the acceleration is not realistic, or when
immediately after the detection of this extreme acceleration, the following tooth indicates
extreme deceleration back to the original RPM.
MOTOROLA Chapter 5. Host Interface. 5-71
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When the microcode detects such a case, the tooth counter has been advanced by mistake
to the next tooth. The microcode can set the HOLD bit in the TPR, forcing the EAC to halt
and wait for the next physical tooth to close the gap. When the next physical tooth arrives,
HOLD is automatically negated and the EAC proceeds from that point to the remaining
portion of the tooth period.
5-72 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA Chapter 5. Host Interface. 5-73
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5-74 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA Chapter 5. Host Interface. 5-75
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

eTPU Angle Counter (EAC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5-76 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 6
Scheduler
Every function is composed of one or more threads. A thread consists of a group of
instructions that, once execution begins, cannot be interrupted by host or channel events
(except forced end). Active channels need to be serviced and are granted time by the
scheduler for thread execution. Since one microengine handles several channels operating
concurrently, the function threads must be executed serially.

The task of the scheduler is to recognize and prioritize the channels needing service and to
grant execution time to each channel. The time given to an individual thread for execution
or service is called a time slot. The duration of a time slot is determined by the number of
instructions executed in the thread plus SPRAM wait-states received, and varies in length.

At any time, an arbitrary number of channels can require service. To request service,
channel logic, eTPU microcode or the host application notifies the scheduler by issuing a
service request.

6.1 Channel Enabling and Priority Assignment
Every channel is assigned one of three priority levels: high, middle, or low by the host CPU,
through the channel configuration register field CPR, see Section 4.6.1, “eTPU Channel x
Configuration Register (ETPUCxCR).” These registers are also used to disable the channel,
which is equivalent to assigning it a “null” priority. In this case, the scheduler does not grant
any of its service requests.

It is possible to change the channel priority level or disable it dynamically. If the host
disables a channel when it is currently being serviced, channel service thread will complete.
This means that it is possible for the output level of a channel signal to change, or a host
interrupt occur, even after its priority register was written to “null”. For instance, if an
output transition is scheduled, the transition will occur even after the channel is disabled.

Service requests previously pending or that occur while a channel is disabled remain
asserted while the channel is disabled, and are serviced if the channel is enabled again, in
due time determined by the priority scheme and concurrent requests from other channels.
Channels are disabled after reset, and it is recommended to configure a host service request
for initialization of a channel before that channel is enabled to active priority, see
Chapter 12, “Initialization/Application Information.”
MOTOROLA Chapter 6. Scheduler. 6-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Priority Schemes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
Reset also clears the channel service requests but any link
service requests made by channels already initialized could be
granted if the priority were set to a non-zero value before the
HSR is written.

6.2 Channel Priority Schemes
The scheduler holds a service grant register with one bit for each channel. Once the
scheduler grants a time slot to channel, the service grant bit for that channel is asserted in
the service grant register. When all channels in a same priority level are serviced, their
service grant bits are cleared at the end of the thread. When the service grant bit of a channel
is set, the channel may request new service but is not serviced again before its service grant
bit is cleared.

Priority level is determined by the value of the priority field and should be set to a level to
meet latency requirements. A channel having a function that requires the most frequent or
more immediate service should be allocated a high priority level.

The eTPU employs a primary and a secondary priority scheme. These two schemes ensure
frequent servicing of high-priority channels and guarantee a time slot for all channels
requesting service, regardless of their priority level. The primary scheme prioritizes
requesting channels that have different priority levels; the secondary scheme prioritizes
requesting channels that have the same priority level.

Initially, a channel requests service and is granted a time slot by the scheduler. The service
grant bit is asserted. If only high-level channels constantly receive service first because of
their priority level, middle- and low-level channels have no guarantee of being serviced,
i.e., the middle- and low-level channels would only be serviced if no high-level channels
request service. To ensure that each priority level receives an opportunity for servicing,
every time slot has a fixed priority level that the scheduler honors first. Divided into sets of
seven, time slots are numbered from one to seven. Figure 6-1 illustrates the numbered time
slots in sets of seven (fields A and B) and identifies their assigned default priority level. The
high level has more time slots than the middle and low levels. Out of every seven time slots
available, four are assigned to honor high-level channels first, two are assigned to honor
middle-level channels first, and one is assigned to honor low-level channels first. Only one
request (in each engine) is serviced per time slot.

NOTE
Each engine has a separate and independent scheduler, and no
action in eTPU_A affects the operation of the scheduler in
eTPU_B.

When no channel requests service and the microengine is idle the priority scheme is
initialized to time slot one.
6-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Priority Schemes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-1. Time Slot Priority levels

6.2.1 Primary Scheme: Priority Among Channels on
Different Levels

Although time slot priority assignment is fixed, the servicing priority is not. The primary
scheme acknowledges the priority level assigned to a time slot, granting service first to a
channel having the same priority. In Figure 6-1, time slot one has a high-level assignment;
therefore, a high-level channel requesting service is recognized first. However, if no
high-level channel requests service, the scheduler recognizes a requesting middle-level
channel. If this level has no request, the scheduler continues to the low-level. If no requests
occur, the scheduler truncates the cycle and starts a new cycle at time slot one, waiting for
the first request. Granting service to a different-level channel is called priority passing. The
order of passing always gives the highest priority to the assigned level, and the second
priority to the higher of the remaining requesting priority levels as shown in Table 6-1.

When priority is passed to another level, that level is serviced and the fixed-priority-level
sequence is resumed with the next time slot.

Table 6-1. Priority Passing

Assigned
Priority Level

Next
Priority Level

Next
Priority Level

High → Middle → Low

Middle → High → Low

Low → High → Middle

1 2 3 4 5 6 7 1 2 3

H M H L H M H H M H

4 5

L H

HIGH

MIDDLE

LOW

A B
MOTOROLA Chapter 6. Scheduler. 6-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Priority Schemes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-2. Priority Passing Example

Examples of priority passing are shown in Figure 6-2. Each cycle contains seven time slots
(or less if no service request exist and the cycle resets to time slot 1). In cycle B, no
high-level or middle-level service requests are present before time slot three which is
assigned by default to high-level priority. Thus, time slot three is passed to the low level. In
cycle B there are also no middle-level service requests before time slot six, so it passes the
priority to a requesting high-level channel. During time slot six no more high level requests
are left, but two new middle-level requests arrive, and there are also three low level pending
service requests. Thus, time slot seven of cycle B and time slot one of cycle C are passed
to the middle-level which is the next priority level after high. Time slots two and three of
cycle C are passed to the low level which contains the three remaining channel service
requests. At time slot four of cycle C the last low level request is serviced, and the scheduler
passes to idle state. At this point the cycle C is truncated and the scheduler passes to time
slot one of cycle D.

6.2.2 Secondary Scheme: Priority Among Channels on the
Same Level

Because channels can randomly request service, channels having the same priority level
will inevitably request service simultaneously. A secondary scheme prioritizes these
requests. The scheduler services channels on each of the three priority levels, beginning
with the lowest numbered channel on that level.

SLOT Number 6 7 1 2 3 4 5 6 1 2 3 4 1

M H H M H L H M H H M H L H

High Pend Count

Service High

2 1

0 1 0

20

- X New Service Requests Arrive at a Specific Priority Level

2 0

X

2

2 2

1

1

1 0

0 0 1

3

3

1 02

2

7

DH DMDH H>L DL DH M>HDM H>M H>M M>L H>L

2 1

DL

0

DH, DM, DL - Default Service High, Middle or Low
H>L, H>M, M>H, M>L - Priority Passing Scheme
ID - Idle (no service request)

IDSlot Assignment

SLOT ASSIGNMENTS:

Reset Slot

Fixed Priority Level

Middle Pend Count

Service Middle

Low Pend Count

Service Low

Number

Cycle A Cycle B Cycle C (truncated) Cycle D
6-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Priority Schemes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.2.3 Priority Scheme Example

The overall priority scheme simultaneously incorporates both primary and secondary
schemes. Combining both schemes in the following example conveys their correlation.

1. One high-priority and one low priority channels request service, while the scheduler
is in time slot one. Having its service request bit asserted, a single high-level channel
is granted the time slot, which has high-level priority (primary scheme) and its
service grant bit is asserted. At the end of the thread, the service grant bit is negated
(no more requests of high priority level channels).

2. The scheduler proceeds to time slot two, which has middle-level priority; however,
no middle-level channel is requesting service. Priority is passed to the high level,
but no high-level channel is requesting service; therefore, priority is passed again,
and service is granted to the single requesting low-level channel. Once serviced,
this channel’s grant bit is negated (no more low-level requests).

3. The scheduler resumes with the fixed-priority sequence on time slot three;
however, no channels are requesting service. The scheduler returns to time slot one,
waiting for requests.

4. Two high-level and two middle-level channels simultaneously request service.
Being in time slot one which is assigned high priority, the scheduler finds the
lowest numbered high-level channel (secondary scheme) and selects it for service.
This channel’s service grant bit is asserted.

5. The scheduler continues to time slot two, which has middle priority (primary
scheme), and allocates the slot to the lowest numbered middle-level channel
requesting service (secondary scheme). The scheduler notes the still unserviced
middle-level channel and proceeds to time slot three.

6. Time slot three is allocated for high priority. The slot is allocated to the remaining
unserviced high-priority channel, and the channel’s service grant bit is asserted.
The scheduler checks again at the end of the thread. All service grant bits of
high-level requested channels are asserted; therefore, all high-priority channels that
requested have been allocated execution time. Under this condition, all service
grant bits of the high-level serviced channels are negated. The scheduler proceeds
to time slot four.

7. Time slot four is allocated for low-priority channel; however, no low-level channel
is requesting service. Priority is passed to the high level, but no high-level channel
is requesting service; therefore, priority is passed again, and service is granted to
the remaining middle-level channel which requests service. This channel’s service
grant bit is asserted. The scheduler checks again at the end of the thread. All grant
bits of middle-level requested channels are asserted; therefore, all middle-priority
channels have been allocated execution time. Under this condition, all service grant
MOTOROLA Chapter 6. Scheduler. 6-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bits of the middle-level serviced channels are negated. The scheduler proceeds to
time slot five. Before the scheduler transitions to the next time slot, a new request
for service is received from a low priority channel.

8. Time slot five is allocated for high-priority channels, but there are no more requests
from high-priority or middle priority channels. The single low-level channel which
required service is granted time slot five. Once serviced, the channel’s service grant
bit is asserted. Next, the service grant bit is negated (no more requests of low
priority level channels).

9. The scheduler resumes with the fixed-priority sequence on time slot six; however,
no channels are requesting service. The scheduler returns to time slot one and waits
for requests.

6.3 Time Slot Latency
Latency is the amount of time between a service request and the beginning of service on
that channel. The following factors affect latency:

• Number of active channels

• Number of channels on a priority level

• Number of available time slots on a priority level

• Number of microcycles required to execute a thread of a function

• Number of parameter RAM accesses collisions during execution of a function
thread

• System clock frequency.

Each time slot may require a different number of microcycles, depending on the thread of
a function to be executed. This variation is shown in Figure 6-3.

For more details on latency evaluation, see Section 12.5, “Estimating Worst Case Latency.”

Figure 6-3. Time-Slot Variation

Microcycles

Time Slot

Fixed Priority Level

1 2 3 4 5

H M H L H

6

M

6-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 7
Functions and Threads

7.1 Introduction
eTPU processing is event-driven, in the sense that eTPU microcode only runs to service a
request from an event. Service requests may result from the occurrence of any of the
following events:

• the host CPU writing a non-zero value to the channel HSR (host service request)
field in ETPUCxHSR register.

• a time base match, an input signal transition, or a specific combinationn of them
(depending on the channel mode currently configured).

• a link service request.

A given event is always associated to only one channel:

• there is one HSR register field for each channel

• each signal is associated with only one channel, which has its own registers and
independent mode configuration.

• each link service request can have only one channel as a target.

Service request processing is done by a set of microengine routines. A set of related
routines that implement a specific channel application is called a function. One or more
functions reside on SCM, limited only by the SCM space available, size of microcode
functions and the number of entry points available. Each engine can execute up to 32
functions (one at a time).

A function can be assigned to several channels, but only one function can be assigned to a
given channel at a time. This is defined by the host through the channel configuration
registers, see Section 4.6, “Channel Configuration and Control Registers.”

The term “thread” will be used hereafter to refer to a service routine of a function, or its
execution. A thread is constructed of a number of microinstructions, typically the code
necessary to set up the channel logic to detect the next input transition or control the next
timed event. Once a thread begins, its execution cannot be interrupted by another function.
Execution can be halted by the host. A thread finishes when an END microinstruction is
executed.
MOTOROLA Chapter 7. Functions and Threads. 7-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A given thread is selected and called by the scheduler depending on the following:

• the type of event that generated the service request.

• the function assigned to the target channel.

• target channel pin state.

• the state of the channel logic.

• the priority assigned to the target channel, relative to the priorities of other channels
with pending service requests

The mechanism to select a thread based on the channel function and type of event is
described in the Section 7.2, “Entry Points.”

The priority mechanism that determines the order of thread execution amongst pending
service requests is described in Section 5.3, “Scheduler.”

7.2 Entry Points

7.2.1 Entry Table

Each thread has its own entry point. An entry point contains the SCM address of the
thread’s first instruction. Since the entry point is determined by channel conditions, the
thread selected is unique to these conditions. Therefore, the thread is “aware” of the channel
conditions at the time of the thread’s selection. For a complete entry point description, see
Section 7.2.5, “Entry Point Format.”

Once the scheduler chooses a channel among pending service requests, the entry point is
selected from an entry table, based on the function assigned for the channel and other
conditions. Entry table layout is shown in Figure 7-1.
7-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-1. Entry Table

The entry table is organized by functions. Each function can have up to 32 entry points of
16 bits each, corresponding to 32 possible threads per function. Each entry point location
in the table corresponds to a combination of events and channel states see Section 7.2.2,
“Entry Point Address Generation.” A single thread can be associated to more than one
combination, having its entry point repeated in the table. Each 32-bit word in the entry table
holds two entry points.

The entry table can be placed in any SCM address multiple of the entry table maximum
size, determined by the field ETB[4:0] in the ETPUECR register, Table 4-4. However, it is
recommended to place the entry table at the start of the SCM to get continuous code
memory and to ease the eventual migration of the code from larger parts down to smaller
ones without rearranging the binary image, but this is not a restriction. Unused entry points
locations may be used for microcode, so this organization extends the microcode
continuous area to the unused area of the entry table. For this purpose, function numbers
should be selected from 0 up to 31. If, for example, only 8 functions are implemented, only
the entry table locations for functions 0 to 7 are used, and the entry table locations for
functions 8 to 31 can be used as microinstruction memory (adding extra continuous 1536
bytes for microprogram usage).

One way of implementing different sets of functions is having more than one entry table,
and configuring the eTPU with the appropriate one for the application by changing
ETPUECR register field ETB. Note that the engines can use different entry tables, with or
without the same set of functions.

CODE

01FF

03FF

05FF

mcode
addr. host addr.

SCM

7FC

FFC

17FC

07FF 1FFC

09FF

0BFF

0DFF

0FFF

27FC

2FFC

37FC

3FFC

Function 0
entry points 0–31

Function 1
entry points 0–31

Function 2
entry points 0–31

Function 31
entry points 0–31

0,0 0,1

0,30 0,31
1,0 1,1

1,30 1,31
2,0 2,1

2,30 2,31

31,0 31,1

31,30 31,31

32 bits

ENTRY TABLE ORGANIZATION

0E00

0E10

0E20

0E30

0FF0

0E0F

0E1F

0E2F

0FEF

0FFF

mcode
addr.

ENTRY TABLE 0E00

11FF

13FF

15FF

47FC

4FFC

57FC

17FF 5FFC

19FF

1BFF

1DFF

1FFF

67FC

6FFC

77FC

7FFC

CODE
MOTOROLA Chapter 7. Functions and Threads. 7-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.2.2 Entry Point Address Generation

The entry point address within the entry table is determined by the function assigned to the
channel, the state of the channel, the type of event, and the condition encoding scheme.
Together with the entry table base address, they form the entry point address at the SCM,
as shown in Figure 7-2.

Figure 7-2. Entry Point Address (Host Address Offset)

The type of event and channel state are coded in the encoded channel conditions field
C[4:0], according to one of two encoding schemes:

• Standard entry table condition encoding scheme, shown in Table 7-1, which gives
priority to host service requests.

• Alternate entry table condition encoding scheme, shown in Table 7-2, which focuses
on other events and state decoding.

The events that cause service requests contribute the to encoding of the entry point. These
events have four origins:

1. Match Event.

A match is caused by greater/equal match, or equal-only, between the value TCR1/2
and the value stored in the channel match registers. eTPU channels support single
and double match in various modes of match recognition; see Section 5.5.2, “Match
Recognition,” for more information on match recognition.

2. Transition event.

A transition is a detection of a specified transition edge for a channel input signal.
The eTPU channels support single and double transition, which together with the
double match options provide various modes of transition detection; see
Section 5.5.3, “Transition Detection and Time Base Capture,” for more information
on transitions.

3. Channel link.

A channel linking service request occurs when the microcode writes a channel
number to the LINK register. Link service request allows one channel to activate
another; see Section 5.5.5, “Channel Link,” for more information on channel
requests.

ETB[4:0]
(ETPUECR) (ETPUCxCR)

Encoded

(C4–C1)

Channel
ConditionsCFS[4:0]

Encoded

(C0)

Channel
Conditions

A5–A2A10–A6 A1A15–A11

Half-word SelectWord Address

A0=0
7-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4. Host service request.

A host service request is when the host writes a non-zero value to the HSR bits of
the channel. For more information, see Section 5.2.5, “Host Service Requests.”

NOTE
If the match or transition service requests are inhibited, then no
service request will be issued by those events. However, if
another service request is issued, the event flags (MRL_A,
MRL_B, TDL_A, and TDL_B) may further qualify the
channel condition encoding.

The columns in Table 7-1 and Table 7-2 illustrate how the host request bits, link request,
Match1/Trans2, and Match2/Trans1 determine the type of event. A “1” represents a
condition which must be present to recognize the event, while a “0” represents a condition
which must not be present. An “x” indicates that the condition is not considered. Note that
match and transition events may occur and not be recognized, and in this case it assumes
value 0 for the condition encoding. The recognition of an occurred event depends on the
channel mode assigned and other conditions, as described in Section 5.5, “Enhanced
Channels.”

The host service request bits column refers to the value written by the host CPU to the host
service request register (ETPUCxHSRR) of the channel being serviced. Note that the bits
on this row are coded (3-bit representation). If the value of HSR is not zero, then the host
actually requested service.

The link request column refers to the occurrence of a channel link request.

The Match1/Trans2 column refers to the recognition of either a match event specified by
Match1 channel register or the detection of a channel input signal event specified by the
IPAC2 configuration register, see Section 5.5.1.2, “Pin Control Registers.”

The Match2/Trans1 column refers to the recognition of either a match event specified by
Match2 channel register or the detection of a channel input signal event specified by the
IPAC1 configuration register, see Section 5.5.1.2, “Pin Control Registers.”

NOTE
There are no transition detections if a channel is used for output
only, so the Match2/Trans1 columns in Table 7-1 and Table 7-2
simply represent Match2 in this case. Also the Match1/Trans2
columns would only represent Match1 if a channel is used for
output only.
MOTOROLA Chapter 7. Functions and Threads. 7-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Besides those events, the following channel state conditions help to determine the entry
point:

1. Channel flags 0 and 1: these are channel-internal flags (not in SPRAM) associated
with a channel. Their values are set by microcode, see Section 5.9.3.1, “Channel
Flags Operations.”

2. Input pin state: the state (0 or 1) of the channel input signal after the enhanced filter,
see Section 5.5.6, “Enhanced Digital Filter (EDF).”

The two entry table condition encoding schemes combine events and state conditions
differently, as detailed in following sections.

7.2.3 Standard Condition Encoding Scheme

In this scheme, shown in Table 7-1, all 7 HSR combinations are used and other event type
columns are marked “x” when HSR is non-zero, indicating that host service request has
priority over any other type of event. However, when an HSR service thread is called (entry
numbers 0 to 9), other events may also have been recognized, and it is microcode’s
responsibility to check them.

When HSR is 0, i.e., the host did not issue a service request to the channel, the other event
conditions, the input signal state and channel flags determine the entry point. Note that the
channel flag 1 does not influence the encoding in this scheme.

Table 7-1. Standard Channel Condition Encoding Scheme

No.

Encoded
Channel

Conditions
[C4:C0]

Host
Service
Request

Bits

Link
Request

Match 1 /
Trans.2

Match.2 /
Trans.1

Input Pin
State

Channel
Flag11

Channel
Flag0

0 00000 001 x x x 0 x 0

1 00001 001 x x x 0 x 1

2 00010 001 x x x 1 x 0

3 00011 001 x x x 1 x 1

4 00100 010 x x x x x x

5 00101 011 x x x x x x

6 00110 100 x x x x x x

7 00111 101 x x x x x x

8 01000 110 x x x x x x

9 01001 111 x x x x x x

10 01010 000 1 1 1 x x 0

11 01011 000 1 1 1 x x 1

12 01100 000 0 0 1 0 x 0
7-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.2.4 Alternate Condition Encoding Scheme

This scheme is shown in Table 7-2. Because the HSR bits cannot be tested by microcode,
only three distinct categories are allotted to specific host service request bit combinations:

1. HSR=010 or 011, which are coded into the same entry points (0 to 3)

2. HSR=100,101 or 001, which are all coded into entry point 4

3. HSR=110 or 111, which are both coded into entry point 5

13 01101 000 0 0 1 0 x 1

14 01110 000 0 0 1 1 x 0

15 01111 000 0 0 1 1 x 1

16 10000 000 0 1 0 0 x 0

17 10001 000 0 1 0 0 x 1

18 10010 000 0 1 0 1 x 0

19 10011 000 0 1 0 1 x 1

20 10100 000 0 1 1 0 x 0

21 10101 000 0 1 1 0 x 1

22 10110 000 0 1 1 1 x 0

23 10111 000 0 1 1 1 x 1

24 11000 000 1 0 0 0 x 0

25 11001 000 1 0 0 0 x 1

26 11010 000 1 0 0 1 x 0

27 11011 000 1 0 0 1 x 1

28 11100 000 1 0 1 x x 0

29 11101 000 1 0 1 x x 1

30 11110 000 1 1 0 x x 0

31 11111 000 1 1 0 x x 1

Host Service Request

1. The channel flag 1 does not influence the encoding in the standard channel condition encoding scheme.

Table 7-1. Standard Channel Condition Encoding Scheme

No.

Encoded
Channel

Conditions
[C4:C0]

Host
Service
Request

Bits

Link
Request

Match 1 /
Trans.2

Match.2 /
Trans.1

Input Pin
State

Channel
Flag11

Channel
Flag0
MOTOROLA Chapter 7. Functions and Threads. 7-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The remaining entry points use both channel flags for better state decoding, making this
scheme better suited for functions which need more states and/or faster state decoding,
without needing many HSRs.

Table 7-2. Alternate Channel Condition Encoding Scheme

No.

Encoded
Channel

Conditions
[C4:C0]

Host
Request

Bits

Link
Request

Match 1 /
Trans.2

Match.2 /
Trans.1

Input Pin
State

Channel
Flag1

Channel
Flag0

0 00000 01x x x x 0 x 0

1 00001 01x x x x 0 x 1

2 00010 01x x x x 1 x 0

3 00011 01x x x x 1 x 1

4 00100 10x/001 x x x x x x

5 00101 11x x x x x x x

6 00110 000 1 0 0 0 x x

7 00111 000 1 0 0 1 x x

8 01000 000 x 1 0 0 0 0

9 01001 000 x 1 0 0 0 1

10 01010 000 x 1 0 0 1 0

11 01011 000 x 1 0 0 1 1

12 01100 000 x 1 0 1 0 0

13 01101 000 x 1 0 1 0 1

14 01110 000 x 1 0 1 1 0

15 01111 000 x 1 0 1 1 1

16 10000 000 x 0 1 0 0 0

17 10001 000 x 0 1 0 0 1

18 10010 000 x 0 1 0 1 0

19 10011 000 x 0 1 0 1 1

20 10100 000 x 0 1 1 0 0

21 10101 000 x 0 1 1 0 1

22 10110 000 x 0 1 1 1 0

23 10111 000 x 0 1 1 1 1

24 11000 000 x 1 1 0 0 0

25 11001 000 x 1 1 0 0 1

26 11010 000 x 1 1 0 1 0

27 11011 000 x 1 1 0 1 1

28 11100 000 x 1 1 1 0 0
7-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Entry Points

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.2.5 Entry Point Format

The entry point format is illustrated in Figure 7-3. Entry point information includes a
preload-parameter selection field, a match enable field, and the first address (word format)
of the thread.

Figure 7-3. Entry Point Format

29 11101 000 x 1 1 1 0 1

30 11110 000 x 1 1 1 1 0

31 11111 000 x 1 1 1 1 1

Host Service Request

Table 7-3. Entry Point Format

Bits Name Description

15 PP Preload Parameter. PP indicates which pair of channel parameters are
loaded into registers P and DIOB from the SPRAM prior to the execution of
a thread. Preloading occurs during the time-slot transition period.
1 microengine register P is preloaded from parameter 2 and DIOB from

parameter 3.
0 microengine register P is preloaded from parameter 0 and DIOB from
parameter 1.
The parameter numbers are offsets from the channel parameter base
address. For more information on parameters, see Section 5.2.3,
“Parameter Access.”

Table 7-2. Alternate Channel Condition Encoding Scheme

No.

Encoded
Channel

Conditions
[C4:C0]

Host
Request

Bits

Link
Request

Match 1 /
Trans.2

Match.2 /
Trans.1

Input Pin
State

Channel
Flag1

Channel
Flag0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PP ME MICROCODE ADDRESS
MOTOROLA Chapter 7. Functions and Threads. 7-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Transition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3 Time Slot Transition
The time slot transition period (also called TST for short) is the interval just before the start
of a thread, between the granting of a service request by the scheduler and execution of the
first microinstruction., during which all channel-specific context is loaded for the new
serviced channel. The primary tasks completed during this period include:

• Reset the match enable flag (MEF) during the first two microcycles.

• Update of the CHAN register with the number of the new channel to be serviced.

• Parallel update of ERT_A and ERT_B registers from Capture1 and Capture2
registers of the new serviced channel.

• Sampling of the branch conditions of the new channel to be serviced into the branch
logic (this means flags TDL_A/B, MRL_A/B, LSR, FM[1], FM[0], PSS and PST).
The branch conditions are coherent with the captured time bases (if MRL_A/B,
TDL_A/B are set at the same time of the sampling, either both old flag state and
capture values are sampled, or both new values are sampled).

• Formation of the entry point address.

• Copy the ME bit in the entry point into MEF.

• Access to the entry point location and getting the first microinstruction address.

• Preload of two parameters from the SPRAM into registers P (32 bits) and DIOB (24
bits).

• Fetch the first instruction of the thread to be executed for the new channel.

• Preset the RAR register value, see Section 5.8.1.7, “Return Address Register
(RAR).”

The preload operation is 32 bits wide for P and 24 bits wide for DIOB. The P register is
loaded with the whole 32-bit parameter. The DIOB register is loaded with the lower 24 bits

14 ME Match Enable. ME specifies whether match event recognitions are enabled
or disabled for the thread specified by the MICROCODE ADDRESS field. If
matches are disabled, match recognition can only occur after channel
service. For more details refer to 4.5.2 Match Recognition.
1 Matches are enabled during the thread.
0 Matches are disabled during the thread.
The disabling of Match1/2 recognition by MEF is dependent on IPAC1/2
configuration on the serviced channel. If IPAC1=1xx, Match1 is not disabled
by ME=0. Likewise, IPAC2=1xx overrides the effect of ME on Match2 to
"always on" If IPAC1/2=0xx. See Section 5.5.1.2, “Pin Control Registers,”
and Section 7.3, “Time Slot Transition,” for more details.

13–0 MICROCODE
ADDRESS

This field specifies the microcode address on which the thread is to begin
execution.

Table 7-3. Entry Point Format

Bits Name Description
7-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Transition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

of the parameter. Preload of P-DIOB pair of parameters is atomic with respect to host and
CDC accesses. For more details see Section 5.4, “Parameter Sharing and Coherency.”

The engine where the time slot transition period occurs does not execute any instructions
during TST, but the other engine can execute normally. Match1/2 is unconditionally
disabled at the first two TST microcycles, if IPAC1/2=0xx (respectively). After the first two
cycles, match recognition can be disabled or not, depending on IPAC1/2 field and ME. For
more details, see Section 5.5.2, “Match Recognition.”

A time slot transition takes a minimum of 3 microcycles (6 system clocks), which may be
extended due to SPRAM arbitration wait-states for the first preload access, see
Section 5.4.5, “SPRAM Arbitration.”

The value of any register other than P, DIOB, CHAN, ERT_A, ERT_B and RAR is not
guaranteed at the beginning of the thread.

Figure 7-4. TST Timing, No Wait-states

System Clock

CHAN Register

END Signal

Match Register

ERT_A, ERT_B

Preload

Branch Conditions

Channel Condition

µPC

µINST

SPRAM Wait

on Channel X

T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4

DIOB

Updated

Priority Encoder

END

Y Entry Addr Y1st Inst Addr

Entry Point Y 1st Inst

CHANNEL X CHANNEL Y

X Y

X END TST1 TST2 TST3 Y 3rd Inst

Preload
 P

DIOBPP=1

Pentry point PP

TIME SLOT TRANSITION

DIOBPP=0 DIOBentry point PP

Y2nd Inst Addr

MEF

Y 1st Inst Y 2nd Inst

Y 2nd Inst Y 3rd Inst

Y 3rd Inst Addr Y4th Inst Addr
MOTOROLA Chapter 7. Functions and Threads. 7-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Transition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-5. TST Timing, 1 Wait-State
7-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Transition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-6. TST Timing, 2 Wait-states

For more information on channel-specific registers and flags, refer to Section 5.5,
“Enhanced Channels.” For more information on P, ERT_A/B and DIOB registers refer to
Section 5.8.1, “Registers.”
MOTOROLA Chapter 7. Functions and Threads. 7-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Time Slot Transition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 8
Microengine

8.1 Introduction
Each eTPU engine has a microengine that fetches, decodes and executes microinstructions.
The microengine only works when there are service requests to be attended, otherwise it
turns to idle state, waiting for the next service request from the hardware scheduler, see
Section 5.3, “Scheduler.”

Microcode is stored in shared code memory (SCM) which is 32 bits wide. The microengine
uses a Harvard architecture to access SPRAM and code memory on different buses, so that
code and data can be accessed at the same time.

The eTPU’s functionality is only possible with the microengine. The microengine allows
the eTPU to have high flexibility since any desired action for a channel’s event can be
implemented; however, that flexibility has a cost due to channel service latency. Latency is
increased when channels from the same eTPU engine contend for microengine service.
Figure 8-1 shows a block diagram of microengine architecture.

Summary of eTPU Microengine features:

• P, DIOB, A, B, C, D, SR, RAR, LINK, CHAN, MACL, MACH, ERT_A, ERT_B,
TCR1, TCR2, TPR, and TRR registers are accessible by microcode.

• 24-bit ALU and Post-ALU shifter performs basic arithmetic and logical operations
described in Section 8.3, “ALU and Post-ALU Shifter.”

• MDU (MAC/Divide Unit) performs integer MAC, multiply and divide operations.

• Fixed microinstruction Size of 32bits.

• Fixed-length instruction execution (2 system clocks)

• Superscalar operation
MOTOROLA Chapter 8. Microengine. 8-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 8-1. Microengine Block Diagram

DIOB

P

A

BIN

ALU

Post-ALU

Control

C
od

e
M

em
or

y
B

U
S

S
P

R
A

M
 D

.B
us

32

32

Imm.Data

CHAN*

8

24

SR

C

A
D

 (
de

st
.)

B
S

 (
so

ur
ce

)

ERT_A

ERT_B

Flags to
to Branch Logic

4 24

24

24

24

24

24

ETPU
CHANNELS

E
R

1
B

us

E
R

2
B

us

24

S
P

R
A

M
 A

.B
us

24 24

24

32

24

1

MACH

MACL

MAC

24

2424

DIVIDE
UNIT

24

AIN

N, V, Z, C

MB Flags to
to Branch Logic

MN, MV, MZ, MC 5

RAR*

Channels + TCRs

Microengine’s DataPath

Shifter

EAU

Shifter Result

Result

Address
& Size Calc.

CHAN
8, 16 or 24

24
A

S
 (

so
ur

ce
)

24

24

24

24

24
24

24
24

24

24

24

24

24
24

24

24

LINK*

TCR1
TCR2
TPR
TRR

6

TDL_B, PSTI, PSTO
to Branch Logic

MRL_A, MRL_B, TDL_A,

24
24

14

5

5

5

14

14

14

B24 24
24

Fetch and

S
C

M
 A

dd
re

ss

14

Branch Logic

PC

14

RAR

24
D

24
24

24
8-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2 Registers
eTPU microengine accesses a total of 18 registers. Sixteen of them are special purpose
(only A, B, C, and D registers are for general use). Special purpose registers except CHAN
and LINK can also be used as general use if the operations which use their contents are not
performed. The following register descriptions are intended to just introduce their
functionalities and not to provide detailed explanations of them since they will be described
in Section 5.9, “Microinstruction Set.” Registers less than 24 bits in size are right-justified.

8.2.1 Preload Register (P)

The P register is the only 32-bit wide register in the eTPU. It can be used as source or
destination for arithmetic/logical operations, and SPRAM read/write operations. The P
register can be accessed in ALU operations in byte, half-word and word format. For P
source/destination possibilities in ALU/MDU microoperations, see Section 5.9.2.2,
“Selecting Sources and Destination.”

When P is used as a SPRAM read/write operation source or destination there are only 3
possibilities of access: all 32 bits, lower 24 bits and upper 8 bits. SPRAM operations are
explained in detail in Section 5.9.1, “SPRAM Microoperations.”

P is automatically loaded with one SPRAM parameter before a thread starts (parameter
preload). For more information see Section 5.1.1.5, “Entry Point Format,” and
Section 5.1.2, “Time Slot Transition.”

The upper 8 bits of the P register may be used as flags to indicate the application state, since
these bits can be tested as branch conditions. P[31:24] is also used for a dispatch
microoperation, see Section 5.9.4.3, “Dispatch Microoperation,” and bit pairs P[29:28],
P[27:26], P[25:24] can be directly copied into channel flags 1 and 0 using the FLC field.
Together with entry table condition encoding, this data allows for fast state resolution
without code execution.

8.2.2 DIOB Register

DIOB is an abbreviation for data input/output buffer. The DIOB register is 24 bits wide and
can be used as source or destination for arithmetic/logical operations as well as SPRAM
data. The DIOB can only be accessed as 24 bits, both in arithmetic/logical and SPRAM
read/write operations. When using the DIOB to perform an SPRAM access, only the lower
24 bits of SPRAM will be accessible (the upper 8 bits always remain unchanged).

The DIOB can also be used as SPRAM addressing register, using the DIOB contents as an
absolute SPRAM address (14 bits wide). When used as an address, the DIOB can also be
pre-decremented or post-incremented, see Section 5.9.1.1.3, “Indirect Addressing Mode.”
MOTOROLA Chapter 8. Microengine. 8-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The DIOB is automatically loaded with one SPRAM parameter before the thread starts
(parameter preload). For more information see Section 5.1.1.5, “Entry Point Format,” and
Section 5.1.2, “Time Slot Transition.”

8.2.3 Event Register Temporary (ERT_A) and (ERT_B)

ERT_A/B registers are 24 bits wide and can be used as source or destination in
arithmetic/logical operations. ERT_A/B are the only sources for a write to a channel’s
match register(s), see Section 5.9.3.5, “Write Channel Match Registers.”

When a thread starts to be executed, ERT_A and ERT_B are loaded with a copy of Capture1
and Capture2 registers respectively. ERT_A/B can be used to read from Match1 and
Match2 registers. In fact, ERT_A/B are the only valid destination of Match1/2 read
operation, see Section 5.9.2.2.2, “Special T4ABS Source Operation: Read Match
Registers.”

ERT_A and ERT_B also receive a copy of Capture1 and Capture2 registers when CHAN
register is written, see Section 8.2.8, “CHAN Register.” For more information about
capture and match registers see Section 5.5.1.1.1, “Match1 and Match2 Registers,” and
Section 5.5.1.1.2, “Capture1 and Capture2 Registers.”

8.2.4 Shift Register (SR)

SR is a 24-bit wide register that can be used as source and destination register for
arithmetic/logical operations. SR is capable of a shift right by 1 bit operation. While
shifting right, SR may receive in bit 23 the lost bit from a shift-right operation in post-ALU
shifter, Section 8.3, “ALU and Post-ALU Shifter,” allowing SR to be used to perform
48-bit shift right, see Section 5.9.2.7, “Shift Operations.”

8.2.5 Multiply Accumulate High/Low Register (MACH) and
(MACL)

Both MACH and MACL are 24-bit registers, part of MAC/divide unit, see Section 8.4,
“MAC and Divide Unit (MDU).” They can be used as source and destination in most
arithmetic/logic operations. When multiply or divide operations are used
(multiply-accumulate included), MACH and MACL serve a special purpose and some
restrictions apply, see Section 8.4, “MAC and Divide Unit (MDU),” for more information.

8.2.6 LINK Register

LINK Register is an 8-bit register and can be used only as destination in arithmetic
operations. When LINK register is written, it issues a service request for the channel
number and eTPU engine equal to the number written in LINK register, see Section 5.1,
8-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

“Functions and Threads,” and Section 5.5.5, “Channel Link,” for information about link
service request.

8.2.7 Return Address Register (RAR)

RAR is a 14-bit register and can be used as source and destination in arithmetic operations.
RAR also receives the contents of the PC register when a subroutine call is executed. The
contents of RAR register are loaded into PC when a return from subroutine is executed.
RAR is loaded with value 0x3FFF during TST. For more information about subroutine call
and return see Section 5.9.4.2, “Branch Operations,” and Section 5.9.4.4, “Return From
Subroutine,” respectively.

8.2.8 CHAN Register

CHAN is a 5-bit register which can be used as source and destination in arithmetic
operations. The contents of CHAN register affects the execution of many channel-related
microinstructions, because its number indicates the selected channel. CHAN register must
not be used to store temporary values in arithmetic operations. For more details, refer to
Section 5.5.1.3.1, “Channel Selection Register (CHAN).”

8.2.9 Counter Registers: TCR1, TCR2, TPR, and TRR

All counter registers, except for TPR, are 24 bits wide. TPR is a 16-bit register. They can
be read or written in arithmetic/logical operations, and serve a special-purpose when used
for time base and angle mode operations. For more information about those registers see
Section 5.6, “Time Bases,”and Section 5.7, “eTPU Angle Counter (EAC).”

8.2.10 General Purpose Registers: A, B C and D

A, B C and D are 24-bit general purpose registers, which can be used to store intermediate
values and don’t have other specific uses with any eTPU feature.

8.3 ALU and Post-ALU Shifter
The ALU executes 24-bit arithmetic and logical operations. The ALU’s output goes
directly to a 1-bit shifter, called the post-ALU shifter, so it is possible, for example, to add
and shift using only one microinstruction.

All possible ALU operations can be performed with instruction formats that have the
ALUOP field. These operations include add/subtract using C (carry) flag as ALU’s
carry-in, bitwise and/or/not/xor, and shift/rotate of 2, 4, 8 and 16 bits. See Section 5.9.2.13,
“ALU/MDU Operation Selection.” In some microinstruction formats, it is not possible to
specify the operation executed by ALU. In these cases the ALU will always perform an
addition operation.
MOTOROLA Chapter 8. Microengine. 8-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Subtraction, inversion, increment and decrement can be performed by combinations of
source inversion and setting ALU’s carry-in to 1.

The ALU always performs 24-bit operations on its inputs (A-source and B-source) and
outputs a 24-bit result. 8- and 16-bit inputs are zero padded to 24 bits; the A-source sign
can be extended from 8- or 16-bit inputs with the microinstruction field AS/CE. Likewise,
a 24-bit ALU output is always truncated to the destination register size.

A-source and B-source can be selected from any of the registers except LINK, which is
write-only, besides other values.

8.3.1 ALU Flags

Four flags (carry, negative, overflow, zero) described below, are related to ALU and
post-ALU shift operations. Operation size and shifting affects the flags generation logic.
Operation size determines the result boundary to be used for flags generation. Operation
size is determined by size of sources and destination. For more information about flag
generation, see Section 5.9.2.3, “Flags Sampling Control.” ALU flags can be used as
branch condition, see Section 5.9.4.2.3, “Conditional/Unconditional Branch,” or
Section 5.9.2.10, “Conditional ALU/MDU Operation Execution.”

Field CCS/CCSV in microinstructions can force no update of all flags. Not all flags are
updated in all ALU operations: overflow is updated only on addition and absolute value
operations, carry is updated in most ALU operations, and both zero and negative are
updated in all ALU operations.

NOTE
Operation size can be smaller than destination register. For
example: 0xFFFF + 0x0001 (both 16-bit sources) stores
0x10000 in a 24-bit register and sets zero and carry flags
because operation size is 16 bits.

8.3.1.1 Carry Flag (C)

In an unsigned addition without shifting, the carry flag is the ALU carry from bit 7 to 8, 15
to 16, or 23 to 24 on 8-, 16- and 24-bit operation sizes respectively. In an unsigned
subtraction without shifting, carry flag represents the sign of ALU’s result considering
operation size (carry flag equal to 0 indicates a negative result).

See Section 5.9.2.7, “Shift Operations,” for more information regarding post-ALU shift
operations.

The carry flag definition is operation-dependent. For the definitions of other flags, see
sections below.
8-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.3.1.2 Negative Flag (N)

Negative flag indicates the sign of result based on the operation size, regardless of the
operation performed, as shown in Table 8-1.

NOTE
The N flag may not reflect the sign of the value actually written
into the destination register, if it does not have the same size of
the operation, see Section 5.9.2.3, “Flags Sampling Control.”
This is always the case for registers RAR (14 bits) and CHAN
(5 bits).

8.3.1.3 Overflow (V)

Overflow is updated only on addition (with or without carry) and absolute value operations.
In signed operations, the overflow flag indicates that the result of arithmetic operation (add
or subtraction) can not be represented by a word of the size of the operation. The overflow
(V) flag behavior for addition is defined in Table 8-2. V Flag is calculated using ALU adder
output (i.e., it is not affected by 1-bit shift/rotate operations).

8.3.1.4 Zero Flag (Z)

The zero flag set to 1 indicates that the result written in the destination register is zero,
regardless of the operation performed. The Z flag is operation size dependent, as shown in
Table 8-3.

Table 8-1. Negative (N) Flag Behavior

Operation Size Value

8 bits N = result[7]

16 bits N = result[15]

24 bits N = result[23]

Table 8-2. Overflow Flag on Addition1 (V)

1. for V-flag definition on the absolute operation, see Section 8.3.8, “Absolute Value Operation.”

Op. Size Value

8 bits (AS[7] & BS[7] & !alu_adder_output[7]) | (!AS[7] & !BS[7] & alu_adder_output[7])

16 bits (AS[15] & BS[15] & !alu_adder_output[15]) |
(!AS[15] & !BS[15] & alu_adder_output[15])

24 bits (AS[23] & BS[23] & !alu_adder_output[23]) |
(!AS[23] & !BS[23] & alu_adder_output[23])
MOTOROLA Chapter 8. Microengine. 8-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.3.2 ALU ADD Operation with and without Shifting

The ADD operation is selected by ALUOP or ALUOPI fields when these fields are present
in the microinstruction being executed and is the default ALU operation when the ALUOP
or ALUOPI fields are not present. Optionally, the result can be shifted or rotated by 1 bit,
which is selected by SHF, ALUOP or ALUOPI fields. See Section 5.9, “Microinstruction
Set,” for more details. Table 8-4 describes how CIN and BINV fields change ADD
operation behavior.

NOTE
ALU operations only occur on microinstruction formats where
a destination field is found (T2ABD/T2D).

The ALU adder output can be 1-bit shifted or 1-bit rotated right as follows:

Shift right:

result[23:0] = adder_output[24:1]

Shift left:

result[23:1] = adder_output[22:0]

result[0] = 0

Rotate right:

case(opsize)

8-bit:

result[6:0] = adder_output[7:1]

result[7] = adder_output[0]

Table 8-3. Zero Flag (Z)

Operation Size Value

8 bits Z = (result[7:0] == 0x00)

16 bits Z = (result[15:0] == 0x0000)

24 bits Z = (result[23:0] == 0x000000)

Table 8-4. Types of ADD Operations

BINV CIN Operation (adder output)

1 1 AS + BS

1 0 AS + BS + 1

0 0 AS - BS

0 1 AS - BS - 1
8-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

result[23:8] = adder_output[23:8]

16-bit:

result[14:0] = adder_output[15:1]

result[15] = adder_output[0]

result[23:16] = adder_output[23:16]

24-bit:

result[22:0] = adder_output[23:1]

result[23] = adder_output[0]

Table 8-5 describes carry flag behavior.

Flags N (negative) and Z (zero) on shift are updated according to the result after shift. Flag
V (overflow) with post-alu shift is updated according to the ADD operation only, the
post-alu shift does not affect the value of the V flag.

8.3.3 ADC Operation

ADC operation is selected by the ALUOP field. The CIN field is ignored when this
operation is selected. Table 8-6 describes how BINV change ADC operation behavior.

Table 8-5. Carry Flag Update on ADD Operation

BINV Op. Size shift/rotate Value

1 8 bits none adder carry from bit 7 to bit 8

1 16 bits none adder carry from bit 15 to bit 16

1 24 bits none alu_adder_output[24]

0 8 bits none !adder carry from bit 7 to bit 8

0 16 bits none !adder carry from bit 15 to bit 16

0 24 bits none !alu_adder_output[24]

x 8 bits shift left alu_adder_output[7]

x 16 bits shift left alu_adder_output[15]

x 24 bits shift left alu_adder_output[23]

x x shift right alu_adder_output[0]

x 8 bits rotate right adder carry from bit 7 to bit 8

x 16 bits rotate right adder carry from bit 15 to bit 16

x 24 bits rotate right alu_adder_output[24]
MOTOROLA Chapter 8. Microengine. 8-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The ALU Flags behave exactly the same way as for ADD operation without shift/rotate.

8.3.4 Bitwise Operations

Bitwise AND, OR and XOR are selected by ALUOP field. The CIN field is ignored for
these operations and BINV field inverts (bitwise NOT) BS. C and V Flags are never
updated on these operations. Table 8-7 Describes AND, OR and XOR bitwise operations.

8.3.5 Set Bit/Clear Bit Operations

These operations set or clear the AS bit determined by BS[4:0]. If the bit number resolves
to a value greater than 23, no bit is set or cleared (i.e., result is equal to AS). On these
operations CIN field is ignored and BINV field inverts (bitwise NOT) BS. C and V flags
are never updated for set/clear bit operations. These operations override B-Source size to 8
bits, i.e. the size of BS is considered to be 8 bits regardless of whether BS is 8, 16, or 24
bits (BS is not truncated).

Set bit (BINV = 1):

result = AS | (1 << BS[4:0])

Clear bit (BINV = 1):

result = AS & ~(1 << BS[4:0])

Set bit (BINV = 0):

Table 8-6. Types of ADC operations

BINV CIN Operation

1 x AS + BS + C flag

0 x AS - BS - C flag

Table 8-7. Types of Bitwise Operations

ALUOP BINV Operation1

1. The logical operations are: OR represented by ‘|’, AND
represented by ‘&’, XOR represented by ‘^’, and NOT
represented by ‘~’ (tilde)

10000 1 AS | BS

10000 0 AS | (~BS)

10001 1 AS ^ BS

10001 0 AS ^ (~BS)

10010 1 AS & BS

10010 0 AS & (~BS)
8-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

result = AS | (1 << (31 - BS[4:0]))

Clear bit (BINV = 0):

result = AS & ~(1 << (31 - BS[4:0]))

8.3.6 Exchange Bit

Exchange the AS bit determined by BS[4:0] with the C flag value. If the bit number
resolves to a value greater than 23, no exchange is performed (i.e., the AS and C flag values
are not updated). This operation overrides the BS size to 8 bits, i.e. the size of BS is
considered to be 8 bits regardless of whether BS is 8, 16, or 24 bits (BS is not truncated).
On the exchange bit operation, CIN field is ignored and BINV field inverts (bitwise NOT)
BS. V flag is never updated on exchange bit operation.

Exchange bit (BINV=1):

if BS[4:0] <= 23

begin

temp_C_flag = AS[BS[4:0]]

if C_flag == 1

result = AS | (1 << BS[4:0])

else

 result = AS & ~(1 << BS[4:0])

C_flag = temp_C_flag

end

Exchange Bit (BINV = 0):

if (31 - BS[4:0]) <= 23

begin

temp_C_flag = AS[31 - BS[4:0]]if C_flag == 1result = AS | (1 << (31 -
BS[4:0]))

else

result = AS & ~(1 << (31 - BS[4:0]))C_flag = temp_C_flag

end
MOTOROLA Chapter 8. Microengine. 8-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU and Post-ALU Shifter

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.3.7 Multibit Shift/Rotate Operations

These operations shift or rotate AS by 2, 4, 8 or 16 bits. Size of shift/rotate is determined
by BS[1:0]. Table 8-8 describes the number of shifted/rotated bits depending on BS[1:0]
value.

Shift right is a logical operation (i.e., zeros are inserted on left). Both multibit shift and
rotate operations override the size of B-Source (BS) to 8 bits, i.e. the size of BS is
considered to be 8 bits regardless of whether BS is 8, 16, or 24 bits (BS is not truncated).

The V flag is never updated for multibit shift or rotate operations. Carry flag behavior is
described on Table 8-9.

8.3.8 Absolute Value Operation

Absolute value operation is selected by the ALUOP field. For this operation, AS is
interpreted as a signed number and its absolute value is the result. V and N flags are updated
with the result signal determined by the operation size. After size override and sign
extension, if any, see Section 5.9.2.11, “A-Source Size Override,” bit 23 of A-source is

Table 8-8. Number of Shifted/Rotated Bits for Each BS[1:0] Value

BS[1:0] Bits Shifted/Rotated

0 2

1 4

2 8

3 16

Table 8-9. Carry Flag Value on Multibit Shift/Rotate Operations

ALUOP BS[1:0] C Flag Value

11001 (shift left) 0 AS[22]

11001 (shift left) 1 AS[20]

11001 (shift left) 2 AS[16]

11001 (shift left) 3 AS[8]

11010 (shift right) 0 AS[1]

11010 (shift right) 1 AS[3]

11010 (shift right) 2 AS[7]

11010 (shift right) 3 AS[15]

11011 (rotate right) 0 AS[2]

11011 (rotate right) 1 AS[4]

11011 (rotate right) 2 AS[8]

11011 (rotate right) 3 AS[16]
8-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

MAC and Divide Unit (MDU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

used to check the operand signal and is copied to C-flag regardless of the data size from
A-source register. Note that if the data in AS is 8 bits or 16 bits, its sign is copied to C only
if sign-extension is performed. This operation is independent of B-source. Instruction fields
T4BBS, BINV and CINV are ignored in this operation.

8.4 MAC and Divide Unit (MDU)
The MDU is an autonomous resource in the microengine which can carry out sequential
multiply, multiply-accumulate, fractional multiplication and divide operations, selected
through the microinstruction fields ALUOP or ALUOPI. The unit supports signed and
unsigned multiply and fractional multiplication of any combination of 8, 16 or 24 bit
operands, see Note: , and also signed and unsigned 24-bit multiply-accumulate. The divide
operation is unsigned, and both operands are always 24-bit wide.

Depending on the size of operands and the type of operation, the MDU can take more than
one microcycle to execute the operation, but the microengine continues to execute
microinstructions in parallel. When the microcode issues an END command, any operation
executing in the MDU terminates immediately and is left incomplete. When selecting an
operation that uses the MDU, the result is always placed in MACH and MACL registers,
and the register selected as the destination by the microcode is not written, Section 5.9.2.2,
“Selecting Sources and Destination.” During calculations, MACH and MACL hold the
temporary values and should not be written, otherwise the result is unpredictable. A new
MDU operation should almost never be started when one is in progress, see Section 8.4.1,
“Multiply and Multiply-Accumulate Operation Length.” The result of starting a new
operation will be unpredictable for both the operation in progress as well as the new one.

MDU Operations update the MDU’s own set of 5 flags, described in Section 8.4.10, “MDU
Flags.” MDU operations never update C, N, V and Z flags. CIN and BINV microinstruction
fields affect MDU operations according to Table 8-11.

Table 8-10. ALU Flags in Absolute Value operation

Operation
Size

V, N1

1. V, N can be 1 on 8- and 16-bit Absolute Value, because the operand
sign is always taken from bit 23. V, N can also be 1 in 23-bit Absolute
Value (or 8-bit and 16-bit with sign extension), if the operand is
0x800000 (0x80, 0x8000).

C Z

8 alu_output[7] AS[23] alu_output[7:0] == 0

16 alu_output[15] alu_output[15:0] == 0

24 alu_output[23] alu_output[23:0] == 0
MOTOROLA Chapter 8. Microengine. 8-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

MAC and Divide Unit (MDU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.1 Multiply and Multiply-Accumulate Operation Length

The MDU needs 2 sources, A source and B source, to perform an operation (A-source and
B-source are selected the same way as in ALU operations). The time needed to perform a
multiply or multiply-accumulate is:

• B-source (BS) size = 8 bits: 2 microcycles (one start-MDU plus one execution
microcycle)

• BS size = 16 bits: 3 microcycles (one start-MDU plus two execution microcycle)

• BS size = 24 bits: 4 microcycles (one start-MDU plus three execution microcycle)

An internal pipeline in the MDU unit allows multiply or multiply accumulate operations to
start one microinstruction before the last one has been completed (e.g., one can start one
multiply with 8-bit B source in every microinstruction). However, by doing that it is not
possible to read the result in MACH and MACL, so this is intended to be used in a
multiply-accumulate sequence.

Multiply-accumulate operations are similar to multiply operations, except that the contents
of MACH and MACL registers are added to the multiplication result.

When multiply or multiply accumulate operations finish, MACL and MACH hold the least
and the most significant 24-bit words, respectively.

8.4.2 Divide Operation Length

The divide operation is always unsigned. It takes 13 microcycles to complete the
calculation, meaning that after the start divide microinstruction, one has to wait for 11
microcycles and then read the result and the remainder in MACH and MACL registers.
During the 11 divide execution microcycles, microengine can execute microinstructions
unrelated to the MDU.

Table 8-11. CIN and BINV with MDU Operations

B-source
Operand

BINV CIN Operation Performed

signed 1 1 AS signed_mdu_op BS

0 0 AS signed_mdu_op (-BS)

1 0 Reserved

0 1 Reserved

unsigned1

1. includes the B-source (unsigned) in fmults (signed) operations.

1 1 AS unsigned_mdu_op BS

1 0 AS unsigned_mdu_op (BS+1)

0 x Reserved
8-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

MAC and Divide Unit (MDU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.3 Signed Multiplication (mults)

MDU signed multiplication is defined as follows:

(signed) MACH,MACL = (signed) AS * (signed) BS

MC and MV flags are reset. MZ is set if result is 0; MZ resets otherwise. MN is set if result
is negative.

8.4.4 Unsigned Multiplication (multu)

MDU unsigned multiplication is defined as follows:

(unsigned) MACH|MACL = (unsigned) AS * (unsigned) BS

MC and MV flags are reset. MZ is set if result is 0, and MZ resets otherwise. MN is a copy
of the most significant bit of result.

8.4.5 Signed Multiply-Accumulate (macs)

MDU signed multiply-accumulate is defined as follows:

(signed/unsigned) {MACH,MACL} += (signed) AS * (signed) BS

MC is not altered.

MV is set if result can not be represented by a 48-bit signed number. macs never resets the
MV flag: it is left as is if no overflow occurs, or set it otherwise. This allows checking the
overflow flag only once at the end of a series of multiply-accumulate operations in a scalar
product calculation.

if ({MACH,MACL} += AS * BS < -247 || {MACH,MACL} += AS * BS > 247 - 1)

MV = 1

MZ is set if result is 0. MZ resets otherwise. MN is a copy of the most significant bit of
result.

Note that only 24-bit multiply-accumulate is available.

8.4.6 Unsigned Multiply-Accumulate (macu)

MDU unsigned multiply-accumulate is defined as follows:

(signed/unsigned) {MACH,MACL} += (unsigned) AS * (unsigned) BS

MC is set if the result cannot be represented by a 48-bit unsigned non-negative number.
MACU never resets MC flag; the MC flag is left as is if no carry occurs, or set otherwise.
MOTOROLA Chapter 8. Microengine. 8-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

MAC and Divide Unit (MDU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This allows checking the carry flag only once at the end of a series of multiply-accumulate
operations in a scalar product calculation.

if ({MACH,MACL} += AS * BS < 0 || {MACH,MACL} += AS * BS > 248 - 1)

MC = 1

MV is not altered.

MZ is set if result is 0; MZ resets otherwise. MN is a copy of the most significant bit of
result.

Note that only 24-bit multiply-accumulate is available.

8.4.7 Signed Fractional Multiplication (fmults)

MDU signed fractional multiplication takes the B-source as an unsigned 8- or 16-bit
fraction between 0 and (28 - 1)/28 (inclusive) for the 8-bit operation, or between 0 and
(216-1)/216 (inclusive) for the 16-bit operation. Only A-source is taken as a signed number.
The value of B-source is considered the unsigned numerator of a fraction with denominator
28 or 216 for the 8- and 16-bit operations, respectively.

The integer part of the result is stored in MACH, and the fractional part in MACL. The
result is signed, so that the concatenation of MACH and MACL forms a 48-bit fixed point
number with a 24-bit mantissa, both for 8- and 16-bit operations. To calculate the unsigned
numerator of the fractional part (with denominator 224) of the result, one must take the
absolute value of MACL considering the sign of the result, (both MACH and MACL, not
MACL alone), i.e.: if flag MN=1, invert MACL and add 1.

MDU flags are updated in the same way as in the signed multiplication opperation.

NOTE
There is no distinct selection of 24-bit fractional multiplication,
for it works exactly as a 24-bit ordinary multiplication.

8.4.8 Unsigned Fractional Multiplication (fmultu)

MDU unsigned fractional multiplication takes both A-source and B-source as unsigned
operands. B-source is taken as an 8- or 16-bit fraction between 0 and (28 - 1)/28 (inclusive)
for the 8-bit operation, or between 0 and (216-1)/216 (inclusive) for the 16-bit operation.
The value of B-source is considered the numerator of a fraction with denominator 28 or 216

for the 8- and 16-bit operations, respectively.

The integer part of the result is stored in MACH, and the fractional part in MACL. The
fractional part in MACL is the numerator of a fraction with denominator 224. The
8-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

MAC and Divide Unit (MDU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

concatenation of MACH and MACL form a 48-bit fixed point number with a 24-bit
mantissa, both for 8- and 16-bit operations.

MDU flags are updated in the same way as in the unsigned multiplication.

NOTE
There is no distinct selection of 24-bit fractional multiplication,
for it works exactly as a 24-bit ordinary multiplication.

8.4.9 Unsigned Divide (div)

At the end of a divide operation MACL holds the result of the division, while MACH holds
the remainder. If a divide by 0 is executed, MACL holds the maximum unsigned number
(0xFFFFFF) as result and flag MV is set to indicate division by 0 (otherwise reset). The
contents of MACH are not defined for a divide-by-0.

MC flag is always reset.

MZ flag is set if MACL equals 0, and reset otherwise.

MN receives a copy of MACH bit 23 (the msb from the remainder).

Note that signed division is not available.

8.4.10 MDU Flags

MDU has its own flags to indicate the result and status of an MDU operation. They are:
MC, MZ, MV, MN and MB.

8.4.10.1 MDU Negative Flag (MN)

MN flag is always a copy of the most significant bit of the result, for both signed and
unsigned operations.

8.4.10.2 MDU Carry Flag (MC)

MDU carry flag indicates if the result cannot be represented by a 48-bit number, in signed
and unsigned multiply accumulates. It is reset in the other operations.

8.4.10.3 MDU Zero Flag (MZ)

In multiply and multiply-accumulate operations, the MDU zero flag is asserted if MACH
and MACL are equal to zero at the end of an operation. In divide operations, zero flag is
asserted if MACL (result) is equal to 0.
MOTOROLA Chapter 8. Microengine. 8-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Branch Conditions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.4.10.4 MDU Overflow Flag (MV)

In multiply operations, the MV flag is negated and remains negated at the end because the
result of a 24 x 24-bit multiplication can always fit in a 48-bit result (MACH and MACL
concatenated). In a multiply-accumulate operation, MV is asserted if the result size is wider
than 48 bits. The MV flag works in both signed and unsigned operations.

In divide operations MV is only asserted if a divide-by-zero operation was executed.

8.4.10.5 MDU Busy Flag (MB)

When asserted, MB indicates that MDU is calculating, otherwise it indicates that MDU is
idle. MB tests “true” at the next microinstruction after the MDU start operation. MB tests
“false” at the last microcycle of any MDU operation execution.

8.5 Branch Conditions
The microengine allows conditional branching. There are five sets of flags which can be
tested in a conditional branch: ALU flags, MDU flags, P flags, channel flags, and
semaphore flag (flag SMLCK).

When a thread starts to be executed, the values in MDU and ALU flags are not initialized.
ALU flags are described in Section 8.3.1, “ALU Flags,” MDU flags are described in
Section 8.4.10, “MDU Flags.” MDU and ALU flags are updated during execution of
microinstructions.

P flags are actually the upper byte of P register, which may be utilized as user defined flags,
see Section 8.2.1, “Preload Register (P).”

Channel Flags MRL_A, MRL_B, TDL_A, TDL_B, PSS, PSTI and PSTO, see
Note: Channel “state resolution” flags Flag0 and Flag1 cannot be tested by microcode., are
obtained from the selected channel (value in CHAN register), while channel flags, LSR,
FM[0] and FM[1] are selected by the serviced channel, regardless of the CHAN value.

NOTE
Channel “state resolution” flags Flag0 and Flag1 cannot be
tested by microcode.

NOTE
The channel being serviced does not change during execution
of a thread (a thread is atomic), and it is the channel that
requested a service (initial value of CHAN register when a
thread starts).

Flags TDL_A/B, MRL_A/B, LSR, FM[1:0] and PSS, are sampled at the beginning of a
thread. The PSS flag value cannot change during the thread’s execution until after the
8-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Branch Conditions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAN register is written. When a write in CHAN register is performed, all flags except
LSR and FM[1:0] are updated according to the channel specified by CHAN value. Flags
MRL_A/B and TDL_A/B are reset when their respective channel latches are cleared by
microcode

.

Semaphore condition SMLCK indicates if a semaphore is locked for the engine. The branch
resolves as false before a lock attempt is made. For each trial, the SMLCK flag is updated.
The SMLCK value set in one thread is not meaningful to the other. After a free, the SMLCK
condition tests as false until a new lock attempt on the same thread.

Table 8-12. Channel Flags as Branch Condition

Flag Description Service or Selected Channel

MRL_A Match1 Recognition Latch These flags reflect the selected channel (CHAN)
see Section 5.5.2.1, “Match Recognition Latches

(MRL1/2),” and 5.5.3.1 for more information.MRL_B Match2 Recognition Latch

TDL_A Transition1 Detection Latch

TDL_B Transition2 Detection Latch

LSR Link Service Request Reflects the serviced channel.

PSS Sampled Input Pin State Reflects the selected channel (CHAN). Does not
change if CHAN is not changed, see Section 5.5.1.2,

“Pin Control Registers.”

PSTI Current Input Pin State. Reflects the selected channel (CHAN).
May change any time.

PSTO Current Output Pin State Reflects the selected channel (CHAN).
May change any time.

FM[1:0] Function Mode Bits Reflects the function mode for serviced channel,
Section 4.6.2, “eTPU Channel x Status Control

Register (ETPUCxSCR).”
MOTOROLA Chapter 8. Microengine. 8-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Branch Conditions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 9
Microinstruction Set

9.1 Introduction
Each microinstruction can execute up to 3 microoperations in parallel. Microinstructions
are grouped into formats, and there are four types of microoperations:

• ALU/MDU operations

• SPRAM operations

• Channel configuration/control operations

• Flow control operations

Each microinstruction format is defined by a set of microinstruction fields, which
determine the operations, each belonging to one of the four groups above (there may be
several fields belonging to one group in a microinstruction). Complete microinstruction
formats are shown in Section 9.8, “Microinstruction Formats.”

Parallelism conflicts may arise when two operations are executed in the same
microinstruction. These situations are explained in Section 9.7, “Microinstruction
Parallelism Issues.”

9.2 SPRAM Microoperations
The access to SPRAM is made by providing an address and a register to perform a data
transfer, except for semaphore operations, which are also classified in the SPRAM group.
Only P and DIOB registers can exchange data with SPRAM. The microengine always
addresses SPRAM in 32-bit boundaries, for 8, 24, or 32 bit wide data.

The data transfer direction is determined by the field RW in all addressing modes: RW=0
selects read from SPRAM and RW=1 selects write to SPRAM.

9.2.1 SPRAM Addressing Modes

There are 3 eTPU addressing modes:

• Absolute
MOTOROLA Chapter 9. Microinstruction Set. 9-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

SPRAM Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Selected channel relative

• Indirect

The absolute and selected channel relative addressing modes use immediate bits to form the
SPRAM physical address, which is identified in microinstruction as a field called AID. The
AID field can be 3-, 7-, or 8-bit wide depending on the addressing mode.

9.2.1.1 Absolute Addressing Mode

In absolute addressing mode, the address range is 256 parameters, addressed by the field
AID, which in this mode is 8 bits wide. These parameters are located in SPRAM addresses
from 0 to 255.

physical_address = AID[7:0]*4

9.2.1.2 Selected Channel Relative Addressing Mode

In selected channel relative addressing mode, only the first 8 (with 3-bit AID) or 128 (with
7-bit AID) parameters of the selected channel are accessible, depending on the
microinstruction format. The physical address is calculated using the channel parameter
base address that is specified in field CPBA of ETPUCxCR register, see Section 4.6.1,
“eTPU Channel x Configuration Register (ETPUCxCR).”. The AID field is added to
channel parameter base address to compose the physical address. The equation is:

physical_address = selected_channel_parameter_base_address + AID[6:0]*4, or

physical_address = selected_channel_parameter_base_address + AID[2:0]*4

9.2.1.3 Indirect Addressing Mode

In indirect addressing mode the physical address is taken from DIOB register. Only DIOB
bits 13 to 2 are relevant. Since the SPRAM word address is shifted two bits up in DIOB, its
contents hold the same parameter address value used by the host. The equation is:

physical_address = DIOB[13:2]*4, or

physical_address = DIOB & 0x003FFC

Indirect addressing mode can post-increment or pre-decrement DIOB, allowing stack
operations. See Section 9.2.6, “DIOB Stack Operation,” for more information.

9.2.2 SPRAM Source/Destination Registers

When performing an SPRAM operation, only DIOB or P can be used as data source or
destination. P is 32-bit wide, and DIOB is 24-bit wide. Microinstruction field P/D (1 bit) is
9-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

SPRAM Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

used to choose between P and DIOB as data the source or destination. When the P/D field
is not available in microinstructions that support SPRAM access, the destination is P.

9.2.3 SPRAM Operation Size

When using DIOB register to perform SPRAM data transfers, the operation size is always
24 bits wide (lower 24 bits of SPRAM). When using P register, the operation size can be 8,
24, or 32 bits wide, which is controlled by microcode RSIZ field (2 bits). RSIZ options are
shown in Table 9-2.

RSIZ is not available for all microinstructions that support SPRAM access. In
microinstructions where RSIZ field is not available, the default SPRAM access is 24 bits.

When performing a ZERO SPRAM write operation, see Section 9.2.5, “Zero SPRAM
Operation,” RSIZ defines the size of operation regardless of the P/D field, Section 9.2.2,
“SPRAM Source/Destination Registers.”

9.2.4 SPRAM Access Direction

RW field defines the direction of the access in the SPRAM. The access direction is
summarized in Table 9-3.

Table 9-1. SPRAM Source/Destination Register Selection

P/D Meaning

0 P access

1 DIOB access

Table 9-2. SPRAM P Access Size

RSIZ Meaning

00 full 32-bit access (i.e. P[31:0]=SPRAM[addr] [31:0])

01 only upper 8 bits are transferred (i.e. P[31:24] = SPRAM[addr] [31:24])

10 only lower 24 bits are transferred (i.e. P[23:0] = SPRAM[addr] [23:0])

11 RESERVED

Table 9-3. SPRAM Access Direction

R/W Meaning

0 read SPRAM parameter into P or DIOB registers

1 write SPRAM parameter from P or DIOB registers
MOTOROLA Chapter 9. Microinstruction Set. 9-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

SPRAM Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.2.5 Zero SPRAM Operation

The zero SPRAM operation is controlled by microcode field ZRO (1bit). When ZRO field
is 0, data written in SPRAM or in P/DIOB (SPRAM read) registers will always be 0x0.
When performing a zero SPRAM write operation, the RSIZ determines the size of the write
regardless of the P/D field (usually RSIZ is meaningful only for P/D = 0), which means that
zero SPRAM write operation can be performed with 32, 24 or 8 bits according to SPRAM
operation size. These conditions are summarized in Table 9-4.

NOTE
When STC field is present in a microinstruction, STC=11 will
disable the zero SPRAM operation (see Table 9-5).

9.2.6 DIOB Stack Operation

SPRAM indirect addressing mode, see Section 9.2.1.3, “Indirect Addressing Mode,” is
used if the STC field (2 bits) is in the microinstruction. STC controls automatic
increment/decrement of DIOB register, as shown in Table 9-5, thus allowing stack
operations. Only DIOB bits 15 to 2 are incremented and decremented, i.e.: bits 23 to 16 and
1 to 0 are not touched by STC pre-decrement and post-increment.

9.2.7 Semaphore Operations

Semaphore lock and free operations are controlled by eTPU microcode. For more
information about semaphores see Section 5.1.4, “Hardware Semaphores.” There are 2

Table 9-4. Zero SPRAM Operation

ZRO RW P/D Meaning

0 0 0 Clear P register. Size is determined by RSIZ field. See Section 9.2.3, “SPRAM
Operation Size.”

0 0 1 Clear DIOB (all 24 bits), independently of RSIZ

0 1 x Clear SPRAM parameter. Size is determined by RSIZ field. See Section 9.2.3,
“SPRAM Operation Size.”

1 RW P/D Regular SPRAM operation

Table 9-5. DIOB Post-Increment / Pre-Decrement (STC)

STC Meaning

00 Post-Increment of DIOB

01 Pre-Decrement of DIOB

10 No Increment/Decrement (normal access)

11 No SPRAM Access1

1. this disables the Zero SPRAM operation.
9-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

microcode fields that control semaphore operations: FL (1 bit) and SMPR (2 bits). A
serviced channel sees 4 semaphores, selected by field SMPR.

Only one semaphore can be locked at a time by each engine, so when freeing a semaphore
it is not necessary to specify its number. Thus, when FL = 0 (free semaphore), SMPR has
no effect.

NOTE
If the microcode tries to lock an engine’s semaphore already
locked for the same engine, the semaphore remains locked and
the SMLCK branch condition resolves as true. Since the
semaphore is always unlocked when the thread ends, the only
reason it could be locked is if it were locked in the current
thread.

9.3 ALU/MDU Operations
ALU/MDU microoperations are usually are composed of 2 sources, 1 destination and 1
operation. The operation is generally selected through fields ALUOP, ALUOPI or SHF. In
formats where there is no operation selection field (ALUOP, ALUOPI or SHF), the
operation performed is always addition; however, it is possible to perform subtraction,
increment or decrement using fields BINV, see Section 9.3.4, “B-Source Inversion,” and
CIN, see Section 9.3.5, “Carry-in Control.”

9.3.1 A-Source and Destination Register Set Selection

The microcode field T4ABS allows selection of a source from either one of two register
sets, shown in Table 9-10. The same applies to T2ABD, used for ALU destination selection
with other two register sets, as shown in Table 9-11. When available in the microinstruction
format, fields ABSE and ABDE select one of the two register sets for source and
destination, respectively. In formats without ABSE/ABDE, the T4BBS field determines the
register sets used by T2ABD and T4ABS, as shown in Section 9.3.1.2, “Microinstructions
Without Fields ABSE and ABDE.”

Table 9-6. Semaphore Operations Fields

Field Meaning

FL 0 = free semaphore,
1 = lock semaphore

SMPR semaphore number selector
MOTOROLA Chapter 9. Microinstruction Set. 9-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
B-source selection is done by the T4BBS field. T4BBS also
selects register sets, see Section 9.3.1.2, “Microinstructions
Without Fields ABSE and ABDE.”

9.3.1.1 Microinstructions With Fields ABSE and ABDE

In microinstructions where ABSE and ABDE fields are available (1 bit each), ABSE
controls register set selection for T4ABS (source) and ABDE controls register set selection
for T2ABD (destination). Table 9-7 shows the meaning of values for ABSE and ABDE
fields.

9.3.1.2 Microinstructions Without Fields ABSE and ABDE

When ABSE and ABDE are not available in a microinstruction format, the register sets for
T4ABS and T2ABD are specified by the T4BBS field, as illustrated by Table 9-8.

9.3.2 Selecting Sources and Destination

All ALU/MDU operations need 2 sources (called AS and BS) and ALU operations also
need 1 destination (called AD), except for some of those that use immediate data, see
Section 9.3.14, “Operations With Immediate Data.” Fields T4ABS (4 bits), ABSE (1 bit),
T4BBS (3 bits) select sources, while T2ABD (4 bits) and ABDE (1 bit) select the
destination.When the MDU is used (multiply/divide), T2ABD destination selection is
ignored and results are stored in MACH and MACL, see Section 5.8.3, “MAC and Divide
Unit (MDU).” ABSE and ABDE are not available in some microinstruction formats that
support ALU/MDU operations. ABSE and ABDE are always coupled in microinstruction

Table 9-7. Register Set Selection by ABSE or ABDE

ABSE or ABDE Register Set Selected

0 second

1 first

Table 9-8. Register Set Selection by T4BBS w/o ABSE,ABDE

T4BBS Register Set For T2ABD Register Set For T4ABS

0xx first first

100 second second

101 second first

110 first second

111 first first

none1

1. refers to operations with immediate data as B-source, without ABSE,ABDE.
first first
9-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

formats that feature these fields. The existence of ABSE/ABDE fields in a microinstruction
changes the meaning of T4BBS field, as shown in Table 9-9. On instructions with
immediate data, T4BBs is used as B-source, see Section 9.3.14, “Operations With
Immediate Data.”

All sources and destinations have a size associated with them, and these sizes are used to
select the flag sample position, see Section 9.3.3, “Flags Sampling Control.” The sizes can
be 8, 16 or 24 bits. Registers that are not exactly of one of these sizes are promoted to the
next size up, e.g. CHAN[4:0] is an 8-bit source. See Section 9.3.3, “Flags Sampling
Control,” for more information.

Some parallelism issues arise when selecting P, DIOB, ERT_A or ERT_B as destination
registers, since they can be modified by other microoperations in the same
microinstruction, see Section 9.7, “Microinstruction Parallelism Issues for details.”

T4ABS selects one source from 2 register sets, shown in Table 9-10. ABSE and T4BBS
control which set T4ABS field uses to select the source. For more information about how
to select a register set for T4ABS and T2ABD see Section 9.3.1, “A-Source and
Destination Register Set Selection.” All sources are zero-filled to 24 bits, unless
sign-extension is specified, see Section 9.3.11, “A-Source Size Override.”

Table 9-9. B Source Selection (T4BBS)

T4BBS
Meaning in microinstruction

formats with ABSE/ABDE
Meaning in microinstruction formats without ABSE/ABDE1

1. T4BBS also selects A-source and destination register set in this case, according to Table 9-8.”

000 BS[23:0] = P[23:0]

001 BS[23:0] = A[23:0]

010 BS[23:0] = SR[23:0]

011 BS[23:0] = DIOB[23:0]

100 reserved BS = 0

101 reserved BS = 0

110 reserved BS = 0

111 BS=0, or Max const., if CIN=0 and BINV=0, see Section 9.3.6, “Generating “Max” Constant.”

Table 9-10. A Source Selection (T4ABS)

T4ABS
First Register Set Second Register Set

Selected Register Size Selected Register Size

0000 AS[7:0]=P[7:0] 8 AS[7:0]=0 8

0001 AS[7:0]=P[15:8] 8 AS[23:0]=C[23:0] 24

0010 AS[7:0]=P[31:24] 8 AS[15:0] = TPR[15:0] 16

0011 AS[23:0] = ERT_B[23:0] 24 AS[23:0] = B[23:0] 24
MOTOROLA Chapter 9. Microinstruction Set. 9-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

T2ABD selects the destination from 1 of 2 register sets, shown in Table 9-11. ABDE and
T4BBS control which set T2ABD field uses to select the destination.

0100 AS[23:0] = D[23:0] 24 AS[23:0] = TRR[23:0] 24

0101 AS[15:0] = P[15:0] 16 AS[7:0] = 0, read_match, Section 9.3.2.2,
“Special T4ABS Source Operation: Read Match

Registers.”

8

0110 AS[15:0] = P[31:16] 16 AS[13:0] = RAR[13:0] 16

0111 AS[7:0] = P[23:16] 8 AS[23:0] = MACH[23:0] 24

1000 AS[23:0] = P[23:0] 24 AS[23:0] = MACL[23:0] 24

1001 AS[23:0] = A[23:0] 24 AS[4:0]=CHAN[4:0] 8

1010 AS[23:0] = SR[23:0] 24 AS[14:2] = CHAN_BASE, see Section 9.3.2.3,
“CHAN_BASE as a Source.”

16

1011 AS[23:0] = DIOB[23:0] 24 Reserved —

1100 AS[23:0] = TCR1[23:0] 24 Reserved —

1101 AS[23:0] = TCR2[23:0] 24 Reserved —

1110 AS[23:0] = ERT_A[23:0] 24 Reserved —

1111 AS[23:0] = 0 24 Reserved —

Table 9-11. Destination Selection (T2ABD)

T2ABD
First Register Set Second Register Set

Selected Register Size Selected Register Size

0000 A[23:0] = AD[23:0] 24 C[23:0] = AD[23:0] 24

0001 SR[23:0] = AD[23:0] 24 LINK[4:0] = AD[4:0] 8

0010 ERT_A[23:0] = AD[23:0]1 24 TPR[15:0] = AD[15:0] 16

0011 ERT_B[23:0] = AD[23:0]2 24 B[23:0] = AD[23:0] 24

0100 DIOB[23:0] = AD[23:0] 24 CHAN[4:0] = AD[4:0] 8

0101 P[15:0] = AD[15:0] 16 D[23:0] = AD[23:0] 24

0110 P[31:16] = AD[15:0] 16 RAR[12:0] = AD[12:0] 16

0111 P[23:0] = AD[23:0] 24 MACH[23:0] = AD[23:0] 24

1000 TCR1[23:0] = AD[23:0] 24 MACL[23:0] = AD[23:0] 24

1001 TCR2[23:0] = AD[23:0] 24 Reserved —

1010 P[31:24] = AD[7:0] 8 Reserved —

1011 P[23:16] = AD[7:0] 8 Reserved —

Table 9-10. A Source Selection (T4ABS)

T4ABS
First Register Set Second Register Set

Selected Register Size Selected Register Size
9-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.2.1 Max Const Generation With T4BBS=111

When T4BBS = 111, BINV = 0, and CIN = 0, the value assigned to BS will be 0x800000,
and not 0x0, as would be expected. See Section 9.3.6, “Generating “Max” Constant,” for a
detailed explanation.

9.3.2.2 Special T4ABS Source Operation: Read Match Registers

When T4ABS = 0101 and the source for T4ABS is selected from the second register set,
the constant 0x00 is used as AS (8-bit size) and the following register transfer is performed
in parallel as well: match registers of the selected channel (value in CHAN register) are
copied to ERT_A/ERT_B registers, where ERT_A receives the value of Match1 register
and ERT_B receives the value of Match2 register, see Section 5.2.1.1, “Event Registers
(ER).” Note that ALU destination can still be chosen by T2ABD in parallel. A parallelism
issue arises When ERT_A or ERT_B is selected by T2ABD, see Section 9.7.1, “ALU
Operations and Read Match Registers.”

9.3.2.3 CHAN_BASE as a Source

Each channel has a parameter base address in SPRAM, which is configured in ETPUCxCR
registers, CPBA field, see Section 4.6.1, “eTPU Channel x Configuration Register
(ETPUCxCR).” CHAN_BASE, which represents a parameter address (CPBA*8), can be
used as A-source using T4ABS=1010 when T4ABS selects a source from the second
register set. In this case, CHAN_BASE is loaded into AS[14:2] to form the byte address.
For example, in indirect addressing mode, where the destination register is DIOB,
CHAN_BASE is loaded into DIOB[14:2], which is the parameter address, and DIOB[14:0]
represents the byte address. This is useful if the CHAN register is changed to transfer the
base pointer to another channel.

1100 P[15:8] = AD[7:0] 8 Reserved —

1101 P[7:0] = AD[7:0] 8 Reserved —

1110 TRR[23:0] = AD[23:0] 24 Reserved —

1111 no destination selected3 24 Reserved —

1. T2ABD=0010 also writes to Match1 register of the selected channel if field ERW1=0.
2. T2ABD=0011 also writes to Match2 register of the selected channel if field ERW2=0.
3. if no destination is selected, ALU flags are updated, although the result is lost.

Table 9-11. Destination Selection (T2ABD)

T2ABD
First Register Set Second Register Set

Selected Register Size Selected Register Size
MOTOROLA Chapter 9. Microinstruction Set. 9-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.3 Flags Sampling Control

This section explains how the flags Z (zero), C (carry), N (negative) and V (overflow) are
updated in an ALU operation. When there are post-ALU shift operations, the ALU carry
out is not directly sampled by the carry flag, but passed to the post-ALU shifter, see
Section 9.3.7, “Shift Operations.” Since the size of source operands in ALU operations is
variable, flags can be sampled as an operation of 8, 16 or 24 bits wide. The operation size
selection is automatic, based on defined sizes of the sources and destination, using the
equation:

operation_size = minor(size_of(destination),
greater(size_of(A-Source), size_of(B-Source))

Operation size determination is illustrated by Table 9-12.

NOTE
Whenever BS = (constant) 0, its operation size is considered 8
bits, and all 24 bits in B-bus are set to 0. Therefore, all
operations with BS = (constant) 0 have their size determined by
AS and the destination only.

The CCS field (1 bit) controls whether flags will be updated or not (Table 9-13). When CCS
bit exists in a microinstruction and CCS is set to 0, the operation size will be used to sample
flags.

In some microinstructions CCS field is replaced by CCSV (2 bits, Table 9-14). Flag
sampling according to CCSV can be set as defined by the operation size, or fixed as 8 or 16
bit operations.

Table 9-12. Operation Size Determination

A Source B Source Destination Operation Size

x x 8 bits 8 bits

8 bits 8 bits x 8 bits

16 or 24 bits x 16 bits 16 bits

16 bits 8 or 16 bits 24 bits 16 bits

8 or 16 bits 16 bits 24 bits 16 bits

24 bits x 24 bits 24 bits

x 24 bits 24 bits 24 bits

Table 9-13. Flag Sampling Using CCS field

CCS Meaning

0 sample flags as defined by operation size

1 do not sample flags
9-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When neither CCS nor CCSV are present in the microinstruction, flags are not sampled.
CCS and CCSV do not affect the carry flag update on exchange bit operation, see
Section 5.8.2.6, “Exchange Bit,” but do control the N and Z flag updates.

9.3.4 B-Source Inversion

The data selected as second source (T4BBS) can be inverted (bitwise boolean NOT) before
the ALU operation. This is controlled by microinstruction field BINV (1 bit, Table 9-15).
A zero value for BINV activates B-source inversion.

BINV also selects between ADC (addition with carry) or SBC (subtraction with borrow)
enhanced ALU operation, with BS and carry flag inversion for SBC. Note that BINV does
not invert the carry flag in fixed-carry operations (see Table 9-16).

When BINV = 0, T4BBS = 111 and CIN = 0, the value assigned to BS is 0x800000, instead
of 0x0. See Section 9.3.6, “Generating “Max” Constant,” for more details.

9.3.5 Carry-in Control

The CIN field (1 bit, Table 9-16) controls the carry-in for addition/subtraction operations.
The functionality of CIN field depends on the arithmetic operation selected by ALUOP.
When ALUOP is not present in the microinstruction, the operation selected is ADD. For
carry-in control in MDU operations, see Table 5-35.

Table 9-14. Flag Sampling Using CCSV field

CCSV Meaning

00 sample flags as an 8 bit operation

01 sample flags as a 16 bit operation

10 sample flags as defined by operation size

11 do not sample flags

Table 9-15. B-Source Inversion (BINV)

BINV Meaning

0 invert BS

1 keep BS bus unchanged

Table 9-16. ALU Carry-In Control

operation CIN=0 CIN=1

ADD (addition) carry-in used is 1 carry-in used is 0

ADC (addition with carry)1 carry-in used is C flag

SBC (subtraction with borrow)2 carry-in used is inverted C flag
MOTOROLA Chapter 9. Microinstruction Set. 9-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.6 Generating “Max” Constant

When T4BBS = 111, CIN = 0 and BINV = 0, BS is assigned 0x800000 (called “max
constant”) instead of 0x000000. “Max constant” is the value which, added to a time base
value minus 1, gives the farthest wrapped time base value that satisfies a channel
greater-equal comparison. See Section 5.2, “Enhanced Channels ((where should this go??
Own chp?? Seems best as subsection of another chp. Leave under Host Interface for now.
-VG 5/2004))),” for more info.

9.3.7 Shift Operations

There are three types of shift operations:

• ALU

• post-ALU

• Shift register

Post-ALU and shift register are covered in the following sections. ALU shift operations are
covered in Section 9.3.13, “ALU/MDU Operation Selection.”

9.3.8 Shift Register Operations

SR can be used as a general purpose register. SR can shift-right its contents by one bit and
can be combined with a post-ALU shift operation. If field SRC (1 bit) in microcode is 0,
SR will shift its contents 1 bit to the right according to the algorithmic description below.
The SR shift operation also depends on the SHF or ALUOP fields. ALUOP and SHF never
exist simultaneously in the same microinstruction format.

SR Operation:

SR[22:0] = SR[23:1];

if SHF == “01” or ALUOP == “10110” then

SR[23] = ALU_OUT[0];

else

SR[23] = 0;

1. Selected by ALUOP=11000 and BINV=1
2. Selected by ALUOP=11000 and BINV=0

Table 9-17. Shift Register Control (SRC)

SRC Meaning

0 SR shift right by 1 bit

1 do not shift
9-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

endif;

9.3.9 Post-ALU Shift Operations

Post-ALU shifting can be selected by the SHF field (2 bits) or by some specific ALUOP
field values. SHF and ALUOP fields are never both available in the same microinstruction
format, i.e. they are mutually exclusive. Certain ALUOP combinations can specify
non-post-ALU shifts.

Post-ALU shift operations are performed regardless of the source and destination sizes. The
carry flag is only updated when CCS or CCSV[1:0] fields allow it, see Section 9.3.3, “Flags
Sampling Control.” An algorithmic description of post-ALU shift operations are presented
below:

Shift left:

AD[23:1]=ALU_OUT[22:0];

AD[0] = 0;

/*
 * if flags can be updated (depends on CCSV/CCS) then C Flag =
 * either one of {ALU_OUT[23], ALU_OUT[15], ALU_OUT[7]};
 *See, Note:
 */

NOTE
ALU_Cout is the carry out for 24-bit operations.

Shift right, see Note: :

NOTE
For explanation about the SRC field see Table 9-17.

AD[22:0] = ALU_OUT[23:1];

if flags can be updated then C Flag = ALU_OUT[0]

if SRC field == “0” then

Table 9-18. Post-ALU Shift Operation

Post ALU Operation SHF1

1. ALU performs AS+BS before shift/rotate for all SHF values.

ALUOP

shift left (1 bit) 00 10101

shift right (1 bit) 01 10110

rotate right (1 bit) 10 10111

no shift/rotate 11 any other2

2. some ALUOP combinations perform shift/rotate, but not using
the Post-ALU Shifter, see Table 9-23.
MOTOROLA Chapter 9. Microinstruction Set. 9-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AD[23] = ALU_Cout;

else

AD[23] = 0;

endif;

Rotate right:

AD[22:0] = ALU_OUT[23:1];

AD[23] = ALU[0];

if flags can be updated then C Flag = adder_carry from bit 7, 15 or 23;

9.3.10 Conditional ALU/MDU Operation Execution

The 3-bit field AS/CE allows conditional execution of arithmetic operation, as shown in
Table 9-19. The same field can also be used for overriding the size of A-source, see
Section 9.3.11, “A-Source Size Override.”

Other non-ALU/MDU operations in the same microinstruction are not affected by the
AS/CE field.

If a conditional operation is selected, there is no A-source size override; similarly, when
size override for A-source is selected, the ALU/MDU operation executes unconditionally.

When a conditional ALU/MDU operation is not executed:

• the destination register is not updated.

• the ALU and MDU flags are not updated.

• MDU does not start any operation, i.e., MACH and MACL are not updated.

• SR does not shift.

Table 9-19. ALU/MDU Conditional Execution

AS/CE Meaning

000 used for A-source size override, see Section 9.3.11,
“A-Source Size Override.”

001

010 execute if C = 1

011 execute if C = 0

100 execute if Z = 1

101 execute if Z = 0

110 execute if N = 1

111 execute unconditionally/no size override
9-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• T4ABS-selected read-match does not occur.

9.3.11 A-Source Size Override

Some values if the AS/CE field are used for A-source size override, as shown in Table 9-20.

Register size override zero-pads an overridden source to 24 bits (if no sign extension is
performed, see Section 9.3.12, “A-source Sign Extension,” and affects operation size
calculation. When register source is wider than size override, most significant bits of
selected register are not used as A source (zeros are used instead). When size override is
used with MDU operations, it affects only the operand values, but not the operation size:
MDU operation size is fully determined by the operation definition (fields ALUOP,
ALUOPI).

Table 9-20. A-Source Size Override

AS/CE Meaning

000 A-source size override to 8 bits

001 A-source size override to 16 bits

010 used for conditional execution, see Section 9.3.10,
“Conditional ALU/MDU Operation Execution.”

011

100

101

110

111 execute unconditionally/no size override

Table 9-21. AS/CE field A source size override functionary

Size Override
Size of Selected

Register
AS Value1

1. All values are zero-padded to 24 bits

8 bits 8 bits reg[7:0]

8 bits 16 bits reg[7:0]

8 bits 24 bits reg[7:0]

16 bits 8 bits reg[15:0]2

2. Only reg[7:0] physically exists, reg[15:8] = 0x00

16 bits 16 bits reg[15:0]

16 bits 24 bits reg[15:0]
MOTOROLA Chapter 9. Microinstruction Set. 9-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.12 A-source Sign Extension

The SEXT microinstruction field forces sign extension of A source, see Table 9-22,
according to the size of A operand, regardless of whether size override is specified by
AS/CE field or not. The sign is taken from the size-overridden value, not the original one.

A-source sign is not extended in microinstructions without SEXT field, even if AS/CE field
is present.

9.3.13 ALU/MDU Operation Selection

When field ALUOP is available in microinstruction, enhanced ALU operations shown in
Table 9-23 can be performed, otherwise addition is performed. The ALU operations are
defined in Section 5.8.2, “ALU and Post-ALU Shifter.” The MDU operations are defined
in Section 5.8.3, “MAC and Divide Unit (MDU).”

Table 9-22. A Source Sign Extension

SEXT Meaning

0 extends sign of A source from its size to 24 bits

1 does not extend sign of A source

Table 9-23. ALU Operation Selection (ALUOP)

ALUOP Operation Comment

00000 AS mults BS[7:0] signed multiplication

00001 AS multu BS[7:0] unsigned multiplication

00010 AS fmults BS[7:0] signed fractional multiplication

00011 AS fmultu BS[7:0] unsigned fractional multiplication

00100 AS mults BS[15:0] signed multiplication

00101 AS multu BS[15:0] unsigned multiplication

00110 AS fmults BS[15:0] signed fractional multiplication

00111 AS fmultu BS[15:0] unsigned fractional multiplication

01000 AS mults BS[23:0] signed multiplication

01001 AS multu BS[23:0] unsigned multiplication

01010 AS macs BS[23:0] signed multiply-accumulate

01011 AS macu BS[23:0] unsigned multiply-accumulate

01100 AS div BS[7:0] unsigned division by 8-bit value

01101 AS div BS[15:0] unsigned division by 16-bit value

01110 AS div BS [23:0] unsigned division by 24-bit value

01111 n.a. RESERVED
9-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.14 Operations With Immediate Data

Immediate data can be used with some specific microinstruction formats. eTPU microcode
allows 8-, 16- or 24-bit immediate data. Immediate data is loaded as B-source, so T4BBS
field is not available. When using 24-bit immediate data, an add is performed with A-source
= 0 and the ALU flags are not updated. ALU operations are available with 8-bit immediate
data, although the field that selects ALU operation in this case is ALUOPI.

9.3.14.1 24-bit Immediate Destination

When using 24-bit immediate data, the destination register is selected by T2D field (2 bits),
according to Table 9-24.

10000 AS[23:0] | BS[23:0] 24 bit bitwise OR

10001 AS[23:0] ^ BS[23:0] 24 bit bitwise XOR

10010 AS[23:0] & BS[23:0] 24 bit bitwise AND

10011 abs(AS) absolute value of AS

10100 AS + BS arithmetic addition

10101 (AS + BS) shl 1 arithmetic addition with 1-bit post-ALU shift left. Section 9.3.9, “Post-ALU
Shift Operations.”

10110 (AS + BS) shr 1 arithmetic addition with 1-bit post-ALU shift right, Section 9.3.9, “Post-ALU
Shift Operations.”

10111 (AS + BS) ror 1 arithmetic addition with 1-bit post-ALU rotate right, Section 9.3.9, “Post-ALU
Shift Operations.”

11000 AS adc/sbc BS1 addition/subtraction with C flag, Section 9.3.5, “Carry-in Control.”

11001 AS shl (2^(BS[1:0]+1)) AS is shifted left: 2 bits for BS=0; 4 for BS=1; 8 for BS=2; 16 for BS=3

11010 AS shr (2^(BS[1:0]+1)) AS is shifted right: 2 bits for BS=0; 4 for BS=1; 8 for BS=2; 16 for BS=3

11011 AS ror (2^(BS[1:0]+1)) AS is rotated right: 2 bits for BS=0; 4 for BS=1; 8 for BS=2; 16 for BS=3

11100 AS EXCH BS[4:0] exchange C flag and AS bit determined by BS[4:0], Section 5.8.2.6,
“Exchange Bit.”

11101 AS SETB BS[4:0] set bit in AS determined by BS[4:0] 2

11110 AS CLRB BS[4:0] clear bit in AS determined by BS[4:0]2

11111 n.a. RESERVED
1. Addition/subtraction is selected by field BINV, see Section 9.3.4, “B-Source Inversion.”
2. in SETB and CLRB operations, the register that drives A source is not changed, unless selected as destination of

the operation.

Table 9-23. ALU Operation Selection (ALUOP)

ALUOP Operation Comment
MOTOROLA Chapter 9. Microinstruction Set. 9-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

ALU/MDU Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3.14.2 Enhanced ALU Operations With Immediate Data

Enhanced operations with immediate data, selected by ALUOPI (5 bits) are allowed only
with an 8 bit immediate operand (see Table 9-25).

Table 9-24. 24-bit Immediate Destination (T2D)

T2D Target Register

00 P[23:0]

01 A[23:0]

10 SR[23:0]

11 DIOB[23:0]

Table 9-25. ALU Operation Selection With Immediate Data (ALUOPI)

ALUOPI Operation Comment

00000 AS mults #imm8 signed multiplication

00001 AS multu #imm8 unsigned multiplication

00010 AS fmults #imm8 signed fractional multiplication

00011 AS fmultu #imm8 unsigned fractional multiplication

00100 AS div #imm8 unsigned division

00101 n.a. reserved

00110 n.a. reserved

00111 n.a. reserved

01000 AD[7:0] = AS[7:0] | #imm8,
AD[23:8] = AS[23:8]

bitwise OR

01001 AD[7:0] = AS[7:0] ^ #imm8,
AD[23:8] = AS[23:8]

bitwise XOR

01010 AD[7:0] = AS[7:0] & #imm8,
AD[23:8] = AS[23:8]

bitwise AND

01011 AD[7:0] = AS[7:0] & #imm8,
AD[23:8] = 0x0

bitwise AND with clear

01100 AD[15:8] = AS[15:8] | #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise OR

01101 AD[15:8] = AS[15:8] ^ #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise XOR

01110 AD[15:8] = AS[15:8] & #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise AND
9-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4 Channel Control and Configuration
Microoperations

Channel control and configuration fields set configuration values, except for the LSR and
CIRC fields, in the channel logic of a specified channel. The channel is specified by the
CHAN register.

9.4.1 Channel Flags Operations

Each channel has two associated hardware flags, called Channel Flag 0 and Channel Flag 1.
The microcode field FLC (3 bits) allows the flags to be set or cleared, as shown in

01111 AD[15:8] = AS[15:8] & #imm8,
AD[23:16] = 0x0,

AD[7:0] = 0x0

bitwise AND with clear

10000 AD[23:16] = AS[23:16] | #imm8,
AD[15:0] = AS[15:0]

bitwise OR

10001 AD[23:16] = AS[23:16] ^ #imm8,
AD[15:0] = AS[15:0]

bitwise XOR

10010 AD[23:16] = AS[23:16] & #imm8,
AD[15:0] = AS[15:0]

bitwise AND

10011 AD[23:16] = AS[23:16] & #imm8,
AD[15:0] = 0x0

bitwise AND with clear

10100 AS + #imm8 arithmetic addition

10101 (AS + #imm8) shl 1 arithmetic addition with 1-bit shift left.

10110 (AS + #imm8) shr 1 arithmetic addition with 1-bit shift right

10111 (AS + #imm8) ror 1 arithmetic addition with 1-bit rotate right

11000 n.a. reserved

11001 AS shl (2^(#imm8[1:0]+1)) AS is shifted left: 2 bits for #imm8=0; 4 for #imm8=1;
8 for #imm8=2; 16 for #imm8=3

11010 AS shr (2^(#imm8[1:0]+1)) AS is shifted right: 2 bits for #imm8=0; 4 for #imm8=1;
8 for #imm8=2; 16 for #imm8=3

11011 AS ror (2^(#imm8[1:0]+1)) AS is rotated right: 2 bits for #imm8=0; 4 for #imm8=1;
8 for #imm8=2; 16 for #imm8=3

11100 AS exch #imm8[4:0] exchange C flag and AS bit determined by #imm8[4:0], see
Section 5.8.2.6, “Exchange Bit.”

11101 n.a. reserved

11110 n.a. reserved

11111 n.a. reserved

Table 9-25. ALU Operation Selection With Immediate Data (ALUOPI) (continued)

ALUOPI Operation Comment
MOTOROLA Chapter 9. Microinstruction Set. 9-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 9-26. These flags cannot be directly tested by microcode, but may influence the
channel function’s entry point. The channel flags provide conditional information required
by the entry point table and allow fast state decoding. For more details, see Section 5.1.1,
“Entry Points.” The channel flags may be directly set by the FLC register or copied from
bit fields in the P register.

9.4.2 Comparator and Time Base Selection

TBS1 and TBS2 fields (4 bits wide each) are used to configure the type of the comparator
and the time bases used for match or capture, see Table 9-27 and Table 9-28).

Table 9-26. P Flags Operation (FLC)

FLC Meaning

000 clear flag0

001 set flag0

010 clear flag1

011 set flag1

100 copy flag1:flag0 from P[25:24]

101 copy flag1:flag0 from P[27:26]

110 copy flag1:flag0 from P[29:28]

111 no operation (nil)

Table 9-27. Time Base Selection 1 (TBS1)

TBS1 bit 2 1 0

TBS1[3] = 0

Bitfield
Comparator

selection
Capture

selection
Match TB
selection

0 greater or
equal

TCR1 TCR1

1 equal-only TCR2 TCR2

TBS1[3] = 1

action 2 1 0

Do nothing 1 1 1

Reserved All other values
9-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4.3 Transition Detection and Pin Action Control

IPAC1/2 and OPAC1/2 fields are used to configure transition detection sensitivity (for the
channel input signal) or output pin action control (for the channel output signal), as defined
in Table 9-29. IPAC1 and IPAC2 have the same format, where IPAC1 is related to Match1
and first transition detection, and IPAC2 to Match2 and second transition detection. The
same applies in analogue way to OPAC1 and OPAC2.

For the output signal, configuring OPAC registers doesn’t change the current signal state,
but defines the action to be done when a match or input action occurs. See Section 5.2.2,
“Match Recognition,” and Section 5.2.4.24, “Channel Modes on Output Signal
Generation,” for more information. IPAC1/2=1xx also enables assertion of MRL_A/B
during time slot transition, see Section 5.2.2, “Match Recognition.”

Table 9-28. Time Base Selection 2 (TBS2)

TBS2 bit 2 1 0

TBS2[3] = 0

bitfield
Comparator

selection
Capture

selection
Match TB
selection

0 Greater or
equal

TCR1 TCR1

1 Equal-only TCR2 TCR2

TBS2[3] = 1

action 2 1 0

Do nothing 1 1 1

Reserved All other values

Table 9-29. Input and Output Pin Action Control (IPAC1/2) and (OPAC1/2)

 value IPAC meaning OPAC meaning

000 Do not detect transitions Do not change output signal

001 Detect rising edge only Match1 sets output signal high

010 Detect falling edge only Match1 sets output signal low

011 Detect both edges Match1 toggles output signal

100 Detect input signal = 0 on Match1

1. Match 1 is used for IPAC1/OPAC1, and Match 2 for IPAC2/OPAC2.

Input action sets output signal low

101 Detect input signal = 1 on Match1 Input action sets output signal high

110 Reserved Input action toggles output signal

111 Do not change IPAC Do not change OPAC
MOTOROLA Chapter 9. Microinstruction Set. 9-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4.4 Immediate Pin State Control

It is possible to change output signal state immediately by using PSC (2 bits) and PSCS (1
bit) fields.

9.4.5 Write Channel Match Registers

Match registers can have their values changed using ERW1 and ERW2 fields (1 bit each).
ERW1/2 also set their respective MRLE registers, see Section 5.2.2, “Match Recognition.”

If ERT_A or ERT_B is a destination of an ALU operation and, at the same time, the
respective ERW1/2 field is active, the new ERT_A value is the one written into the
Match1/2 register.

9.4.6 Clear Transition/Match Event Registers

Flags MRL_A, MRL_B, TDL_A and TDL_B, see Section 5.2.1.1, “Event Registers (ER),”
indicate the state of matches and transitions detected in the selected channel. It is possible
to clear those flags using the microcode fields MRL_A, MRL_B and TDL (1 bit each), see
Note: .

NOTE
One bit, TDL, is used to clear both TDL_A and TDL_B flags.

The flags cleared by these microcode fields are the actual channel flags as well as the flags
sampled into the branch logic.

Table 9-30. Immediate Pin State Control (PSC) and (PSCS)

PSC PSCS Meaning

00 0 Set signal as specified by OPAC1, see Section 9.4.3,
“Transition Detection and Pin Action Control.”

00 1 Set signal as specified by OPAC2, see Section 9.4.3,
“Transition Detection and Pin Action Control.”

01 x Set signal high

10 x Set signal low

11 x Don’t change signal state

Table 9-31. Write Match1/2 (ERW1/2)

Field Value Action

ERW1 0 Write ERT_A value in Match1. Enable matches for Match1 register (MRLE1=1)

1 Don’t change Match1 and MRLE1

ERW2 0 Write ERT_B value in Match2. Enable matches for Match2 register (set MRLE2=1)

1 Don’t change Match2 and MRLE2
9-22 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4.7 Disable Matches

The microcode field MRLE (1 bit) allows disabling matches on the channel selected by
CHAN register, for both Match1 and Match2 registers. Matches can be enabled for each
match register using ERW1 and ERW2 fields, see Section 9.4.5, “Write Channel Match
Registers.”

9.4.8 Disable Match and Transition Service Requests

Microcode field MTD (2 bits) disables match and transition service requests for the
selected channel. MTD does not disable link service request and host service request. MTD
sets or resets register SRI, for more details see Section 5.2.1.4.3, “Match/Transition Service
Request Inhibit Latch (SRI).”

9.4.9 Predefined Channel Modes

The PDCM field (4 bits) in eTPU microcode defines the channel mode, see Section 5.2.4,
“Channel Modes.”

PDCM coding is shown in Table 9-35. Note that PDCM bit 0 selects between single
transition (PDCM[0]=0) and double transition (PDCM[0]=1) modes.

Table 9-32. Clear Transition/Match Event Registers (MRL_A/B), (TDL)

Field Meaning

MRL_A 0 = clear MRL_A event register, 1 = don’t change

MRL_B 0 = clear MRL_B event register, 1 = don’t change

TDL 0 = clear TDL_A and TDL_B flags, 1 = don’t change

Table 9-33. Disable Matches (MRLE)

MRLE Meaning

0 Disable matches for Match1 and Match2 registers

1 don’t change match enabling

Table 9-34. Disable Match and Transition Service Request (MTD)

MTD Meaning

00 SRI = 0: enable service requests for match and transition

01 SRI = 1: disable service requests for match and transition

10 reserved

11 don’t change
MOTOROLA Chapter 9. Microinstruction Set. 9-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Channel Control and Configuration Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4.10 Channel Interrupt and Data Transfer Requests

eTPU microcode can issue interrupt requests, data transfer requests and a global exception
through CIRC field. CIRC affects the serviced channel. For more information see
Section 5.0.2, “Interrupts and Data Transfer Requests.”

9.4.11 Clear Link Service Request

The LSR microcode field (1 bit) is used to clear the link service request flag of the serviced
channel (may not be the one selected by CHAN). The LSR branch condition is always
cleared, but not the link service request, if another channel link was received by the serviced

Table 9-35. Predefined Channel Modes

PDCM Channel mode

0000 em_b_st

0001 em_b_dt

0010 em_nb_st

0011 em_nb_dt

0100 m2_st

0101 m2_dt

0110 bm_st

0111 bm_dt

1000 m2_o_st

1001 m2_o_dt

1010 reserved

1011 reserved

1100 sm_st

1101 sm_dt

1110 sm_st_e

1111 keep current channel mode

Table 9-36. Channel and Data Transfer Requests (CIRC)

CIRC Meaning

00 Channel Interrupt Request

01 Data Transfer Request

10 Global Exception

11 don’t request interrupt
9-24 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Flow Control Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

channel during the executing thread. See Section 5.2.5, “Channel Link,” for more
information.

9.5 Flow Control Microoperations
The eTPU has jump and call microoperations to control the microcode flow. In addition the
eTPU has dispatch jump and dispatch call operations which can be used to implement a
jump table. In the call (or dispatch call) microoperation, the return address is saved in RAR
register. If nested sub-routine calls are necessary, the return address values have to be saved
in a stack, usually implemented with the DIOB register.

Flow control microoperations are also provided to finish the current thread execution and
to halt the microengine.

9.5.1 Ending Current Thread (END)

The microcode END field (1 bit) finishes current thread and allows other channels to be
serviced. If END field is 0, the current instruction is completed and the thread is finished.
END = 1 has no effect, and the next microinstruction in the thread is executed. Any MDU
operation, see Section 5.8.3, “MAC and Divide Unit (MDU),” that could be still pending
when the thread is finished is left incomplete. END also releases any semaphore locked by
the engine.

9.5.2 Branch Operations

Branch operations can be jump or call. The target address of jump or call microoperations
are always immediate and absolute. The branch microoperation is affected by FLS field,
refer to Section 9.5.5, “Flush Pipeline.”

9.5.2.1 Selecting Jump or Call Microoperations

The only difference between jump and call microoperations is that when a call is executed
the value of PC is saved in RAR register. The microcode field J/C (1 bit) selects whether
jump or a call is executed, according to Table 9-38.

Table 9-37. Link Service Request Negation Control (LSR)

LSR Meaning

0 clear link service request (flag LSR)

1 don’t change
MOTOROLA Chapter 9. Microinstruction Set. 9-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Flow Control Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.5.2.2 Branch Target Address

The BAF microcode field (14 bits) indicates the absolute address of a jump/call target.

9.5.2.3 Conditional/Unconditional Branch

Jump and call can be conditional or unconditional, depending on the BCF (1 bit) fields and
BCC (5 bits), as shown in Table 9-39 and Table 9-40. BCF determines branching based
upon whether the condition specified by BCC is true or false. When a branch condition uses
the channel flags, the channel context is related to the channel number written in CHAN
register.

Table 9-38. Jump / Call Selection (J/C)

J/C Meaning

0 jump

1 call

Table 9-39. Branch Condition Inversion (BCF)

BCF Meaning

0 branch if condition determined by BCC is false

1 branch if condition determined by BCC is true

Table 9-40. Branch Condition Selection (BCC)

BCC Meaning

00000 V ALU flag

00001 N ALU flag

00010 C ALU flag

00011 Z ALU flag

00100 MV MDU flag

00101 MN MDU flag

00110 MC MDU flag

00111 MZ MDU flag

01000 TDL_A channel flag

01001 TDL_B channel flag

01010 MRL_A channel flag

01011 MRL_B channel flag

01100 LSR channel flag

01101 MB flag MDU flag
9-26 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Flow Control Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.5.3 Dispatch Microoperation

The dispatch microoperation is an unconditional branch where the target address is always
PC+P[31:24] (unsigned). Dispatch is affected by FLS field, refer to Section 9.5.5, “Flush
Pipeline.” Dispatch is defined by R/D field (2 bits, Table 9-41). The R/D field can also be
used to define return from sub-routine, see Section 9.5.4, “Return from Subroutine.”

01110 FM[1] channel flag

01111 FM[0] channel flag

10000 PSS channel flag

10001 reserved

10010 “Less Than” ALU flag combination (signed) 1

10011 “Lower or Equal” ALU flag combination (unsigned)2

10100 P[24]

10101 P[25]

10110 P[26]

10111 P[27]

11000 P[28]

11001 P[29]

11010 P[30]

11011 P[31]

11100 PSTO channel flag

11101 PSTI channel flag

11110 SMLCK semaphore flag

11111 false
1. “less than” is the xor between ALU flags V and N.

2. “lower equal” is Z or not C.

Table 9-41. Return and Dispatch (R/D)

R/D Meaning

00 return from subroutine, see Section 9.5.4,
“Return from Subroutine.”

01 dispatch jump

10 dispatch call

11 don’t change microinstruction flow

Table 9-40. Branch Condition Selection (BCC) (continued)

BCC Meaning
MOTOROLA Chapter 9. Microinstruction Set. 9-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Flow Control Microoperations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.5.4 Return from Subroutine

When a subroutine call or a dispatch call microoperation is executed, the return address is
saved in RAR register. To return from a call subroutine, a microoperation loads the contents
of the RAR register back to the PC. Fields R/D (2 bits, Table 9-41) or RTN (1 bit,
Table 9-42) can be used to return from subroutine.

The return from subroutine microoperation is affected by FLS, see Section 9.5.5, “Flush
Pipeline,” when field R/D is used. Execution of return from subroutine through RTN
always flushes the pipeline.

9.5.5 Flush Pipeline

When a branch, dispatch or subroutine return microoperation is executed, the next
microinstruction can be executed unconditionally before the flow change takes effect, since
microengine has a two-stage pipeline. Executing the next microinstruction after a branch
maximizes execution performance. This feature is controlled by field FLS (1 bit,
Table 9-43). When FLS=0 the pipeline is flushed and the next microinstruction placed after
a branch is decoded as NOP if the branch is taken. If FLS=1, the microinstruction placed
after the branch is executed, either if the branch is taken or not, as shown in Figure 9-1.

Table 9-42. Return from Sub-routine (RTN)

RTN Meaning

0 return with pipeline flush

1 do not return

Table 9-43. Flush Pipeline (FLS)

FLS Meaning

0 flush pipeline when jump / call / dispatch jump / dispatch
call / return is executed

1 do not flush pipeline when jump / call / dispatch jump /
dispatch call / return is executed
9-28 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Illegal Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-1. Flush Pipeline

9.5.6 HALT Microinstruction

HALT is a microinstruction provided to implement software breakpoints, see
Section 5.10.2.5, “Software Breakpoints.” Note that HALT is coded as a microinstruction
format, not a field, see Section 9.8, “Microinstruction Formats.” The execution of this
instruction puts the microengine in halt state. For more information about the implications
of microengine halt state, see Section 5.10.2.2, “Microengine Halt State.” HALT is valid
only if the debug mode is enabled at the debug interface. If debug is not enabled, HALT
executes as a NOP and is treated as an illegal instruction, see Section 9.6, “Illegal
Instructions.”

9.5.7 NOP Microinstruction

There is not a unique microinstruction with an assigned opcode to do No Operation. NOP
microinstruction is achieved through any of the formats shown on Table 9-45 where the
user can assign to each individual field the corresponding value for “No Operation”.
However, to prevent future impacts of instruction changes on object code compatibility, the
instruction value 0x4FFFFFFF should always be used for NOP.

9.6 Illegal Instructions
An instruction is considered illegal if any reserved field value is used, including zero bits
at the fields marked rsv in the instruction formats (see Table 9-45). A global exception may
be issued up to two microcycles after instruction fetch. The execution results of an illegal
instruction on the microengine, channel logic or host interface are unpredictable.

INSTR
A

No Flush (FLS = 1) Flush (FLS = 0 or RTN = 0)

INSTR
A

branch
dispatch
return

branch
dispatch
return

branch/dispatch/
return executed

branch/dispatch/
return executed
MOTOROLA Chapter 9. Microinstruction Set. 9-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Microinstruction Parallelism Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If the microengine decodes an illegal instruction, the following actions are taken:

• A global exception is issued.

• Flag ILFA/B on register ETPUMCR is set to indicate this occurrence to the host.

9.7 Microinstruction Parallelism Issues
This section clarifies parallelism issues that arise when two non-commutative
microoperations appear in the same microinstruction.

9.7.1 ALU Operations and Read Match Registers

ALU operations have only one destination register, but there is one case where source
selection determines destination: copy match registers to ERT_A and ERT_B registers. In
this case if the ALU destination is ERT_A or ERT_B a conflict arises. The ALU destination
value overwrites the value read from the match registers.

9.7.2 ALU and SPRAM Operations

P and DIOB registers can be selected as a destination by both ALU and SPRAM (read)
microoperations in the same microinstruction. Since P and DIOB update from SPRAM data
happens after P and DIOB update for ALU/MDU microoperations, the data read from
SPRAM will overwrite any results from ALU/MDU microoperations in P or DIOB when
either of them is specified as destination for both an ALU and SPRAM microoperation.
However, the ALU operation is executed and its flags are updated accordingly. All the
above also applies to zero SPRAM operations.

If DIOB is the ALU destination and P is loaded from SPRAM or vice-versa, no conflict
occurs, and the result is the same as if operations occurred separately.

When using P or DIOB as destination for ALU operations and also as source for a SPRAM
write operation, the data written in SPRAM is the one calculated by the current ALU
operation, which means it is possible to calculate a value and write it in an SPRAM address
using only one microinstruction.

9.7.3 ERT_A/B as ALU destination and ERW1/2

The value in ERT_A and ERT_B registers can be written to the match registers of the
selected channel by using fields ERW1 and ERW2, Section 9.4.5, “Write Channel Match
Registers.” If during the same microinstruction ERT_A or ERT_B is destination of an
ALU/MDU microoperation, the value written in match registers is the ALU/MDU result.

If an ALU operation occurs in parallel with ERW1/2 but ERT_A/B are not the destination
of an ALU/MDU operation, then Match1/2 receives the original ERT_A/B value.
9-30 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Microinstruction Parallelism Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.7.4 ERW1/2 and MRLE

ERW1/2 automatically set the MRLE1/2 channel latches, respectively, see Section 9.4.5,
“Write Channel Match Registers.” The microinstruction fields ERW1/2 independently set
MRLE1/2 channel flags, regardless of any MRLE microinstruction field value.

9.7.5 CHAN Assignment, Read Match and ERW1/2

When CHAN is a destination of an ALU operation it causes a read of the Capture1/2
register values into ERT_A/B. The capture registers loaded into ERT_A/B are selected by
the new CHAN value. The value of the Capture1/2 registers overwrites any read-match
commanded simultaneously.

If CHAN assignment happens with an ERW1/2 operation in the same instruction, the
updated match register(s) belong to the new selected channel.

9.7.6 Read Match and ERW1/2

If a read match operation is executed with ERW1/2 in the same microinstruction, the
Match1/2 registers receive the old values of ERT_A/B, and the ERT_A/B registers receive
the old Match1/2 values simultaneously, i.e.: ERT_A/B and Match1/2 swap their values.

If ERT_A/B is the destination of an ALU operation at the same instruction, Match1/2 gets
the ALU result, see Section 9.7.3, “ERT_A/B as ALU destination and ERW1/2,” but
ERT_A/B still receives the old Match1/2 values.

NOTE
Read match, ERW1/2 and CHAN assignment can be active at
the same instruction. Combining the rules from Section 9.7.5,
“CHAN Assignment, Read Match and ERW1/2,” and
Section 9.7.6, “Read Match and ERW1/2,” the result is:
ERT_A/B receives the Capture1/2 values of the new CHAN
value, and Match1/2 receives the old ERT_A/B value(s).

9.7.7 Stack Accesses and ALU Operations

Post-increment is ignored in a stack operation (field STC) if DIOB is loaded from SPRAM:
DIOB keeps the value read from SPRAM. Pre-decrement is ignored in a stack operation
(field STC) if DIOB is destination of an ALU operation. Post-increment/pre-decrement
remains valid in all other situations. These rules are summarized in Table 9-44.
MOTOROLA Chapter 9. Microinstruction Set. 9-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Microinstruction Parallelism Issues

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.7.8 SRC and ALU Operations

If operation SRC is active (field SRC = 0) and register SR is selected as destination of an
ALU operation, the value of the ALU operation prevails over the original SR shifted value
and is loaded into the SR register.

9.7.9 Semaphore Lock/Free and SMLCK Branch Condition

When the SMLCK branch condition is tested at the same microinstruction of a semaphore
lock or free, the condition is evaluated after the semaphore action (either free or lock) is
taken.

Table 9-44. DIOB load from SPRAM and ALU

DIOB load from SPRAM
and ALU

DIOB selected
as

ALU
destination?

DIOB Load Value

no no DIOB, --DIOB (pre-decrement), or DIOB++
(post-increment)

yes no SPRAM read data (post-inc and pre-dec ignored)

yes yes SPRAM read data (post-inc, pre-dec and ALU
result ignored)

no yes ALU result (post-inc an pre-dec ignored)
9-32 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Microinstruction Formats

n

A

A

A

A

B

B

B

B

B

B

B

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.8 Microinstruction Formats
Table 9-45. Microinstruction Formats

format microinstruction

ew old 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 5C 0 0 0 IMM[15:1
3]

IMM[7:2] IMM[23:16] IM
M
[1
2]

R
T
N

IMM[11:9] IMM
[1:0]

T2D I
M
M
[8
]

0 0

2 5B T4ABS T2ABD C
C
S

A
B
S
E

A
B
D
E

0 1

3 5D AL
U

OP
I[4]

CCS
V

ALU
OPI[3

:2]

AS/CE ALU
OPI[
1:0]

0 1 0

4 5A FL
C
[2]

SHF S
R
C

C
C
S

rs
v

FLC
[1:0]

A
B
S
E

A
B
D
E

1

1 1A 1 0 0 EN
D

CI
N

BI
N
V

T4BBS R
W

P/
D

C
C
S

AID[7:0] (global param)

2 1C 1 Z
R
O

AID[6:0] (channel
param)

3 1D 0 0 0 STC A
B
S
E

A
B
D
E

rs
v

1 1

4 1E 0 0 1 0 CCS
V

1 AS/CE ALUOP

5 1F F
L

0 S
E
X
T

SMP
R

6 1G 1 rs
v

S
R
C

A
B
S
E

A
B
D
E

7 2 0 1 1 EN
D

SHF T
D
L

PSC M
R
L_
A

E
R
W
1

M
R
L
_
B

E
R
W
2

A
B
S
E

A
B
D
E

C
C
S

M
R
L
E

P
S
C
S

MOTOROLA Chapter 9. Microinstruction Set. 9-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Microinstruction Formats

C

C

D

D

D s

D

D

D

D s

D

E

E]

E

E

F

n

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1 3H 0 1 0 0 E
N
D

OPAC1 OPAC2 TBS1 TBS2 L
S
R

PSC M
R
L_
A

E
R
W
1

M
R
L
_
B

E
R
W
2

PDCM P
S
C
S

2 3I 1 IPAC1 IPAC2

1 3A 1 1 0 0 M
R
L
E

rsv PSC F
L
S

R
W

P
S
C
S

FLC CIRC R/D 0 P/
D

RSIZ AID[7:0] (global param)

2 3C 1 Z
R
O

AID[6:0] (channel
param)

3 3DE 1 1 1 rsv 1 STC 1 1 0 0 r
v

4 3F F
L

0 rsv SMP
R

5 4A 1 1 0 1 MTD rs
v

R
W

T
D
L

M
R
L_
A

E
R
W
1

M
R
L_
B

E
R
W
2

0 P/
D

RSIZ AID[7:0] (global param)

6 4C 1 Z
R
O

AID[6:0] (channel
param)

7 4DE 1 1 1 rsv 1 STC 1 1 0 1 r
v

8 4F F
L

0 rsv SMP
R

1 3G1 1 1 1 rsv J/
C

BCC F
L
S

R
W

B
C
F

BAF[13:0] 00 P/
D

STC

2 3G2 01 AID[2:0

3 3G3 F
L

10 rs
v

SMP
R

4 3G4 0 11 1 rsv

1 HAL
T

rsv 1 rsv 111 rsv

format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

all bits marked rsv are reserved, and must be
coded as 1.

Execution Unit Operations Channel Control Operations

RAM Input/Output Operations Microengine/Sequence Operations

Table 9-45. Microinstruction Formats (continued)

format microinstruction

ew old 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9-34 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 10
Test and Development Support

10.1 Introduction
This chapter describes several development and test features available on the eTPU. Most
debug features, described in Section 10.2, “Development Support Features,” are accessible
through a separate debug bus; refer to Chapter 11, “Nexus Dual eTPU Development
Interface (NDEDI),” for more information.

Section 10.3, “Test Support Features,” describe embedded test features: the multiple input
signature calculator (MISC) is an SCM test feature accessible through registers ETPUMCR
and ETPUMISCCMPR, see Section 4.2, “System Configuration Registers.” MISC allows
SCM test “on the fly”, i.e., while eTPU is running, with no impact on eTPU functionality
or performance.

10.2 Development Support Features

10.2.1 Internal Debug Interface and Nexus Class 3 Support

The eTPU provides an internal debug interface that exports real-time microengine states
and values, including breakpoint/watchpoint information. It also provides inputs for
breakpoint requests from other on-chip peripherals or off-chip devices. Refer to Chapter 11,
“Nexus Dual eTPU Development Interface (NDEDI),” for more information.

10.2.2 Microengine Halt State

Halt is a microengine state where it stops executing during a thread, or does not start
executing a scheduled thread from idle state. While idle state is entered from END
execution without any other scheduled thread, microengine enters halt state by any of the
following events:

• Execution of the HALT microinstruction (software breakpoint).

• External halt request through the debug interface (includes Nexus breakpoint
request via EVTI input pin; see Chapter 11, “Nexus Dual eTPU Development
Interface (NDEDI),” for more information)
MOTOROLA Chapter 10. Test and Development Support. 10-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Development Support Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• The other engine enters halt state and they are configured to halt simultaneously (bit
HTWIN is asserted via the Nexus interface).

•

• Occurrence of any of the hardware breakpoint conditions. See Section 10.2.3,
“Hardware Breakpoints,” for details.

• Execution of a single-step microinstruction: microengine returns to halt state after
executing a single microinstruction while in halt state. See Section 10.2.6,
“Single-step Execution,” and Section 10.2.7, “Forced Microinstruction Execution,”
for details.

The eTPU MDU continues executing until it finishes any ongoing operation even if
microengine is in halt state except when the halted instruction is an END.

There are two kinds of halt state, depending on what it was doing when halted:

• halt_idle, if the engine was not executing a thread when halted; the engine cannot
leave halt_idle to fetch instructions, so one cannot single-step or follow a program
flow; it can, however, execute forced instructions (see Section 10.2.7, “Forced
Microinstruction Execution”).

• halt_exec, if the engine was executing a thread when halted. The engine can
single-step and continue a program flow from halt_exec.

When the microengine exits halt state, the instruction pointed by the PC is fetched, while
the instruction already fetched before halt is executed. Note that both the PC and the
pre-fetched instructions can be modified during halt state, with a forced execution of a
branch instruction, see Section 10.2.7, “Forced Microinstruction Execution.”

10.2.3 Hardware Breakpoints

The microengine can enter halt state through a command from the debug interface,
configuring a hardware breakpoint. Hardware breakpoints halt the microengine on specific
conditions. Occurrence of any of the following conditions can halt the microengine, that is
they can be individually enabled.

• CHAN register assignment (only by microcode, not by time slot transition).

• SPRAM read and/or write to a given address and/or write data. The breakpoint is
always qualified by the SPRAM address, but the following variations are allowed:

• Break on write only, read only, or read-and-write.

• Break on higher-byte write data value, lower 24-bit write value, full word (32-bit)
write value, or regardless of data. Break on read data is not supported.

• PC (program counter) value.

• Beginning of a thread with a host service request pending.
10-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Development Support Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Beginning of a thread with a link service request pending.

• Beginning of a thread with a match service request pending.

• Beginning of a thread with a transition service request pending.

All these conditions can also be qualified by the value of the CHAN register.

On any of these conditions the halt of one microengine is independent of the other, unless
the other engine is configured to halt simultaneously via Nexus Interface.

While in halt state, the microengine can also execute in single-step, see Section 10.2.6,
“Single-step Execution,” or any forced microinstruction not in the normal program flow,
see Section 10.2.7, “Forced Microinstruction Execution.”

10.2.4 Hardware Watchpoints

Debug Interface allows for watchpoints on the same conditions available for hardware
breakpoints, see Section 10.2.3, “Hardware Breakpoints.”

10.2.5 Software Breakpoints

A software breakpoint occurs when microengine executes a HALT microinstruction. Any
number of software breakpoints can be set in code, usually replacing an active
microinstruction.

Like any other microinstruction, HALT increments the PC and pre-fetches the next
instruction. So, before the halt state is suspended, if the original program flow must be
followed, the original instruction at the HALT address must be forced through the debug
interface and executed, see Section 10.2.7, “Forced Microinstruction Execution,”
regardless if the software breakpoint is removed (replacing HALT by the original
microinstruction) or not.

Special care must be taken if HALT is followed by another HALT, and the second HALT
is removed from the SCM when the microengine was halted by the first one. In this case,
replacing the second HALT by the original microinstruction is not enough to remove the
second breakpoint, because the second HALT is already pre-fetched and will be executed
when halt is suspended. To resolve the aforementioned issue, the debugger must also do a
forced execution of unconditional branch with flush to the original microinstruction
address. That will clear the pipeline, replacing the prefetched instruction by a NOP, and
load PC with the address of the removed breakpoint. So, when halt state is suspended, the
original microinstruction will be fetched while NOP is executed, and program flow
continues normally from then on.

There is only one way of inserting software breakpoints into SCM RAM: writing bit VIS=1
in register ETPUMCR, and then accessing SCM as an ordinary RAM. This can be done
only if both engines are halted or stopped.
MOTOROLA Chapter 10. Test and Development Support. 10-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Development Support Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.6 Single-step Execution

When the microengine is already in halt state, it can run the next microinstruction in the
normal program flow and get back to halt state. PC is incremented, or assigned the BAF
value in a branch with a satisfied condition. Note that the executed instruction was already
pre-fetched in the instruction pipeline, and a new microinstruction is fetched during its
execution. The pre-fetched instruction may be cleared during halt state by the forced
execution of a branch (or an unconditional branch) with flush, see Section 10.2.7, “Forced
Microinstruction Execution,” making single-step execute a NOP instead of the next
instruction in the program flow.

Single-step execution is controlled by the debug interface, and is a feature available from
Nexus. The single-step execution of a NOP instruction is useful to control input signal
sampling and filtering.

10.2.7 Forced Microinstruction Execution

When microengine is already in halt state, it can run forced microinstructions through the
Nexus debug interface. The microinstruction, specified by the user, is not fetched from the
SCM and comes directly from the debug interface. MDU start commands issued by forced
instructions are ignored. The microinstruction field END is also ignored.

During forced execution of any instruction except branches, returns and dispatches, the PC
does not change, and previous pre-fetched instruction in the pipeline is bypassed, but not
discarded. When halt state is suspended, the pre-fetched instruction is executed and the
instruction pointed by the PC is pre-fetched in parallel (two-stage pipeline).

Forced execution of a branch loads the PC with the BAF field if branch condition is
satisfied. If branch condition is not satisfied, the PC value stays unaltered. The flush control
(field FLS) also works, so that a successful forced branch with flush replaces the
pre-fetched instruction by a NOP. Therefore, an unconditional branch to the desired address
with flush is all one has to do to clear the instruction pipeline during halt.

Forced operations that depend on the serviced channel are unpredictable when executed in
halt_idle.

10.2.8 Microengine Register Access

The eTPU does not provide direct access to the microengine and channel registers from any
interface. However, these registers can be read and written in halt state by executing forced
microinstructions, see Section 10.2.7, “Forced Microinstruction Execution.” Immediate
data microinstructions may be used to set register values. Some registers are not selectable
for immediate data destination, so intermediary register(s), notably P, may have to be used
to carry the desired new value to the target register in two or more microinstructions. To
preserve original data, any values in the intermediary register(s) must be saved before using
10-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Development Support Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the intermediary registers to transfer new values to a final destination. The original, saved
values must then be restored after the whole operation.

Similar procedures apply for register reads: their contents must be dumped to SPRAM,
where they can be read.

10.2.9 Microengine Flag Access

The microengine halt state allows reading the branch conditions flags through forced
microinstructions, but more easily using the dedicated NDEDI register ENGINEx_CFSR.
Flag conditions set by the user are visible to the microengine on the next microinstruction
execution. The flag set options are limited by the possibilities of forced microinstruction
execution.

If the eTPU runs (not single-stepping) after exiting the halted state, the conditions modified
during halt may remain only for the first microcycle after the halted state. After the first
microcycle, branch conditions are altered only according to their regular update scheme.

10.2.10Microengine Stall

The microengine can get into a stall state, attending a request from a debug interface signal
assertion. The reason for a stall request should be a temporary lack of resources, for
instance queue full. During stall the microengine stops execution, but all the other engine
logic continues operating: time bases, angle logic, channel logic, input sampling and filters.
Stall differs from halt; stall does not enable any of the debug features that halt enables, see
Section 10.2.2, “Microengine Halt State.” It also does not break an atomic microengine
access, unlike halt.

The microengine can be stalled from the moment TST ends, before executing the first
thread microinstruction, until just before the last thread microinstruction is executed. Stall
requests are ignored on all other occasions. microengines in a dual engine system can be
independently stalled.

10.2.11SCM Emulation

All SCM implementations are external to the eTPU block. eTPU provides a signal to enable
the switching between external SCM banks. The conditions for this switching are:

1. Both engines stopped.

2. VIS bit = 0.

Note that these conditions also stop the clocks of the SCM interface and MISC logic.
MOTOROLA Chapter 10. Test and Development Support. 10-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Test Support Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3 Test Support Features

10.3.1 SCM Test for MISC (Multiple Input Signature Calculator)

The multiple input signature calculator (MISC) comprises special hardware that
sequentially reads all SCM positions and calculates, in parallel, a 32-bit signature from a
32-input CRC signature calculator with the following polynomial:

1 + x1 + x2 + x22 + x31

A complete description of the signature calculation procedure can be found in Appendix D,
“eTPU MISC Algorithm.”

Once started by the host the MISC runs continuously, restarting after the completion of each
cycle. MISC accesses to the SCM array are executed if none of the engines is accessing the
SCM, i.e accesses happen while no channel is being serviced to avoid degradation of the
microengine performance. An ongoing MISC operation can be aborted by writing 0 to
SCMMISEN.

The host must load the register ETPUMISCCMPR, see Section 4.2.3, “eTPU MISC
Compare Register (ETPUMISCCMPR),” with the expected value to be found at the end of
the MISC cycle, and then start the signature calculation writing bit SCMMISEN=1 in
register ETPUMCR, see Section 4.2.1, “eTPU Module Configuration Register
(ETPUMCR).” MISC zeroes the signature accumulator and starts reading SCM data and
calculating the signature. After last SCM position is read, MISC compares the value in
signature accumulator against the value in ETPUMISCCMPR: if there is a mismatch MISC
stops, a global exception is issued and the bit SCMMISF in register ETPUMCR assumes
value 1. If no mismatch is found, MISC repeats the procedure automatically. When
signature is being calculated, SCM address starts at the last SCM address and counts down
to 0. The conditions for executing a MISC operation are:

• Both microengines in idle state (no channel is being serviced) or stopped, in any
combination (e.g., engine 1 idle with engine 2 stopped).

• ETPUMCR[VIS] = 0.

• ETPUMCR[SCMMISEN] = 1.

If SCMMISEN=0 or VIS=1, the MISC logic stays at its initial state, with address counter
pointing to the last SCM position and accumulator reset.
10-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 11
Nexus Dual eTPU Development
Interface (NDEDI)

11.1 Introduction
The Enhanced Timing Processor Unit (eTPU) has its own Nexus class 3 interface, the
Nexus Dual eTPU Development Interface (NDEDI). The two eTPU engines and a coherent
dual parameter controller (CDC) appear as three separate Nexus clients. The CDC allows
the internal eTPU “DMA” accesses to be traced.

11.1.1 Block Diagram

Figure 11-1 is a block diagram of the NDEDI.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-1. Nexus eTPU Development Interface Block Diagram

11.1.2 Overview

The Nexus eTPU Development Interface (NDEDI) provides real-time development
capabilities for the eTPU system including two engines and the coherent dual-parameter
controller (CDC) in compliance with the IEEE-ISTO 5001-2002 standard. The NDEDI
interfaces to the eTPU via dedicated trace busses. The main development features
supported are breakpoint/watchpoint configuration, debug mode register access, enter
debug mode at reset negation or during normal execution, single stepping of instructions,
branch trace, data trace, ownership trace, and watchpoint trace. Combined, these features
make the interface for each engine compliant with Class 3 of the IEEE-ISTO 5001-2002
standard.

Both engines have their own Nexus register sets that allows trace to be set up independently
for each of them. The only exception to this is the data trace address range registers that are

Program Trace/
Ownership Trace

Monitor

Data Trace
Monitor

Watchpoint
Trace Monitor

 Event
Queue

Reset
Control

Miscellaneous
Logic

Message
Formatter

IEEE 1149.1
TAP ControllerRegisters

to Trace Blocks

Watchpoint
Occurrence

Breakpoint
Request

Power-on
Reset

SPRAM
Access
Information

ENGINE1/

Program Trace
Information MDO[N-1:0]

MSEO[1:0]

TCK
TMS
TDI

TDO

TRST11

EVTI

Request[1:0]1
MDO

Grant1
MDO

1. These signals are used for inter-module communication and are not pins on the MCU.

EVTO

Queue
Control

Class 1

MCKO(from NPC)
Green-Line
Interface

Breakpoint/
Watchpoint/
Debug Info

ENGINE2

ENGINE1/
ENGINE2

E
v
e
n
t

S
n
a
p
s
h
o
t

Busy1
MDO

Development
Features

nex_mcko_en1
11-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

shared. All the registers are accessed via the JTAG port. Output messages between the
engines and other sources are differentiated by the value of the SRC packet in the output
messages.

The NDEDI block is combined with similar blocks for other intelligent peripherals, a
read/write access block, and a Nexus Port Controller block to provide the complete
IEEE-ISTO 5001-2002 interface for a system-on-a-chip design. The JTAG port and Nexus
auxiliary port pins are shared by all of the Nexus based blocks on the chip.

11.1.3 Features

The NDEDI block is compliant with the IEEE-ISTO 5001-2002 standard, and implements
the following features:

• Full duplex pin interface for medium and high visibility throughput

— Pin interface shared among all Nexus-based development interfaces on the
device

— Ability to select one of two modes during reset: full-port mode (FPM) or
reduced-port mode (RPM)

— Auxiliary output port

– One MCKO (message clock out) pin

– MDO (message data out) port

– Two MSEO (message start/end out) pins

– One EVTO (event out) pin

— Auxiliary input port

– One EVTI (event in) pin

— IEEE 1149.1 (JTAG) Test Access Port (TAP)

– Support for optional multi-JTAG TAP Linking Module (TLM)

– Four pins (TDI, TDO, TMS, and TCK)

– Reset input TRST driven by either the Nexus Port Controller or an external
pin

• eTPU development support

— IEEE-ISTO 5001-2002 standard class 3 compliant for both engines

— Read/write registers in debug mode

— Ability to enter debug mode at reset negation or during normal execution

— Ability to single step an instruction and re-enter debug mode

— Breakpoint and watchpoint configuration

— Execute external microcode instructions in debug mode providing indirect
read/write accesses to eTPU registers
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

— Read the microprogram counter in debug mode

— Change the microprogram counter by executing external microcode instructions
in debug mode

— Data trace via data write messaging (DWM) and data read messaging (DRM).
This allows the development tool to trace reads and writes to selected shared
parameter RAM (SPRAM) address ranges.

– Four data trace windows with programmable address ranges and access
attributes are provided. Data trace windowing reduces the requirement on the
auxiliary port bandwidth by constraining the number of trace locations. The
four trace window address ranges are shared among the dual engines and the
eTPU coherent dual-parameter controller (CDC).

— Ownership trace via ownership trace messaging (OTM). OTM provides
visibility of which channel is being serviced. An ownership trace message is
transmitted to indicate when a new channel service request is scheduled,
allowing the development tools to trace task flow. A special OTM is sent when
the engine enters in idle, meaning that all requests were serviced and no new
requests are yet scheduled.

— Program trace via branch trace messaging (BTM). BTM displays program flow
discontinuities (start, jump, return, etc), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code may be
traced.

– Public messages are used for jump, and return instructions.

– Private messages are used to indicate special eTPU cases not covered by
public messages. These messages include the writes to the channel register,
the start of a channel service and the trace enabling after a watchpoint hit.

– Branch/predicate history is kept on direct branches (taken and not taken) and
predicated instructions (executed or not executed) to minimize the number of
messages transmitted.

— Watchpoint messaging (WPM) via the auxiliary port. WPM provides visibility
of the occurrence of the eTPUs’ watchpoints.

— Event queue interface. The event queue array is located external to the NDEDI
block to separate hard and soft IP.

— Read/write access functions are provided on the device level by a block separate
from the NDEDI block.

11.1.4 Modes of Operation

The NDEDI block uses the TRST input and the test-logic-reset state as its primary reset
signals. The mode of operation is determined by PCR[FPM] and PCR[MCKO_EN]1 bits
in the NPC.
11-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.1.4.1 Reset

The NDEDI block is placed in reset when nex_reset_b is asserted, or the TAP controller
state machine is in the test-logic-reset state. Holding TMS high for 5 consecutive rising
edges of TCK guarantees entry into the test-logic-reset state regardless of the current TAP
controller state. Asserting nex_reset_b results in asynchronous entry into the reset state.
The NDEDI is unaffected by other sources of reset. While in reset, the following actions
occur:

• The TAP controller is forced into the test-logic-reset state

• The auxiliary output port pins are negated

• The auxiliary output port enable outputs are negated

• The TDI, TMS, and TCK TAP inputs are ignored

• Registers default back to their reset values

To enter in debug mode from reset condition, the DBE bit in DC register must be
programmed to enable debug mode. Then ? must be asserted during 8 clock cycles.

11.1.4.2 Disabled-Port Mode

In disabled-port mode, auxiliary output pin port enable signals are negated, thereby
disabling message transmission. Thus, the NDEDI class 3 features are not available in this
mode. The primary features available are class 1 features and read/write access to the
registers.

11.1.4.3 Full-Port Mode

Full-port mode (FPM) is determined by the PCR[FPM] bit in the NPC block. In full-port
mode, the block is enabled and the FPM port enable is asserted indicating that all available
MDO pins are to be used for message transmission. All trace features are enabled or can be
enabled by writing the configuration registers via the TAP. The number of MDO pins
available is 12. Refer to Section 28.2.4, “Modes of Operation,” on page 28-4 for more
information.

11.1.4.4 Reduced-Port Mode

Reduced-port mode (RPM) is determined by the PCR[FPM] bit in the NPC block. In
reduced-port mode, the block is enabled and the RPM port enable is asserted indicating that
only a subset of the MDO pins are to be used for message transmission. All trace features
are enabled or can be enabled by writing the configuration registers via the TAP. The
number of MDO pins is 4. Refer to Section 28.2.4, “Modes of Operation,” on page 28-4
for more information.

1nex_fpm and nex_mcko should be changed only once after exiting test-logic-reset state. Changing this signals in
normal operation may lead to unpredictable results.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2 Memory Map/Register Definition
This section provides a detailed description of all NDEDI registers accessible to the
development tool. Individual bit-level descriptions and reset states of each register are
included.

Table 11-1 shows the NDEDI registers by client select and index values. These registers are
not memory-mapped and can only be accessed via the TAP.

Table 11-1. NDEDI Memory Map

Index Register Name Register Description CS

1 CSC Client select control register X

2 NDEDI_ENGINE1_DC ENGINE1 development control register ENGINE1_SRC

4 NDEDI_ENGINE1_DS ENGINE1 development status register ENGINE1_SRC

11 NDEDI_ENGINE1_WT ENGINE1 watchpoint trigger register ENGINE1_SRC

13 NDEDI_ENGINE1_DTC ENGINE1 data trace control register ENGINE1_SRC

22 NDEDI_ENGINE1_BWC1 ENGINE1 breakpoint/watchpoint control register 1 ENGINE1_SRC

23 NDEDI_ENGINE1_BWC2 ENGINE1 breakpoint/watchpoint control register 2 ENGINE1_SRC

24 NDEDI_ENGINE1_BWC3 ENGINE1 breakpoint/watchpoint control register 3 ENGINE1_SRC

30 NDEDI_ENGINE1_BWA1 ENGINE1 breakpoint/watchpoint address register 1 ENGINE1_SRC

31 NDEDI_ENGINE1_BWA2 ENGINE1 breakpoint/watchpoint address register 2 ENGINE1_SRC

38 NDEDI_ENGINE1_BWD1 ENGINE1 breakpoint/watchpoint data register 1 ENGINE1_SRC

39 NDEDI_ENGINE1_BWD2 ENGINE1 breakpoint/watchpoint data register 2 ENGINE1_SRC

64 NDEDI_ENGINE1_PTCE ENGINE1 program trace channel enable register ENGINE1_SRC

69 NDEDI_ENGINE1_INST ENGINE1 microinstruction debug register ENGINE1_SRC

70 NDEDI_ENGINE1_MPC ENGINE1 microinstruction program counter ENGINE1_SRC

71 NDEDI_ENGINE2_CSFR ENGINE1 channel flag status register ENGINE1_SRC

2 NDEDI_ENGINE2_DC ENGINE2 development control register ENGINE2_SRC

4 NDEDI_ENGINE2_DS ENGINE2 development status register ENGINE2_SRC

11 NDEDI_ENGINE2_WT ENGINE2 watchpoint trigger ENGINE2_SRC

13 NDEDI_ENGINE2_DTC ENGINE2 data trace control register ENGINE2_SRC

22 NDEDI_ENGINE2_BWC1 ENGINE2 breakpoint/watchpoint control register 1 ENGINE2_SRC

23 NDEDI_ENGINE2_BWC2 ENGINE2 breakpoint/watchpoint control register 2 ENGINE2_SRC

24 NDEDI_ENGINE2_BWC3 ENGINE2 breakpoint/watchpoint control register 3 ENGINE2_SRC

30 NDEDI_ENGINE2_BWA1 ENGINE2 breakpoint/watchpoint address register 1 ENGINE2_SRC

31 NDEDI_ENGINE2_BWA2 ENGINE2 breakpoint/watchpoint address register 2 ENGINE2_SRC

38 NDEDI_ENGINE2_BWD1 ENGINE2 breakpoint/watchpoint data register 1 ENGINE2_SRC

39 NDEDI_ENGINE2_BWD2 ENGINE2 breakpoint/watchpoint data register 2 ENGINE2_SRC
11-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1 Register Descriptions

This section consists of NDEDI register descriptions. The ENGINE1 and ENGINE2
registers are shown in Table 11-1. To simplify the document, the description of registers
with the same content is only given once instead of being repeated for each ENGINE. This
is denoted in the text as ENGINEx where ENGINEx can be replaced by either ENGINE1
or ENGINE2.

11.2.1.1 Client Select Control Register (CSC)

The CSC register is shared by all Nexus blocks on the MCU with registers accessible via
the JTAG input port.

64 NDEDI_ENGINE2_PTCE ENGINE2 program trace channel enable register ENGINE2_SRC

69 NDEDI_ENGINE2_INST ENGINE2 microinstruction debug register ENGINE2_SRC

70 NDEDI_ENGINE2_MPC ENGINE2 microinstruction program counter ENGINE2_SRC

71 NDEDI_ENGINE2_CSFR ENGINE2 channel flag status register ENGINE2_SRC

13 NDEDI_CDC_DTC CDC data trace control register CDC_SRC

65 NDEDI_DTAR0 NDEDI data trace address range 0 ENGINE1_SRC or
ENGINE2_SRC or

CDC_SRC

66 NDEDI_DTAR1 NDEDI data trace address range 1 ENGINE1_SRC or
ENGINE2_SRC or

CDC_SRC

67 NDEDI_DTAR2 NDEDI data trace address range 2 ENGINE1_SRC or
ENGINE2_SRC or

CDC_SRC

68 NDEDI_DTAR3 NDEDI data trace address range 3 ENGINE1_SRC or
ENGINE2_SRC or

CDC_SRC

7–K (K-1)–0

R 0 0 0 0
CS

W

Reset 0 0 0 0 0 0 0 0

Index 1

Figure 11-2. Client Select Control Register (CSC)

Table 11-1. NDEDI Memory Map (continued)

Index Register Name Register Description CS
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.2 ENGINEn Development Control Register
(NDEDI_ENGINEn_DC)

The NDEDI_ENGINEn_DC register controls various trace features as described below.

When a field is set to a reserved value the behavior defaults to the reset values behavior.

Table 11-2. CSC Field Descriptions

Bits Name Description

7–K — Reserved.

(K-1)–0 CS Client select. Determines which client is accessed. The number of bits
implemented for the CS field (K) is MCU-dependent, and is the same
number of bits as the size of the SRC field transmitted with messages.
The value written to the CSC register to access a client register is the
same value as the SRC field a client uses in its messages. For
example, to access an NDEDI ENGINE1 register, the CSC register is
written with a value of ENGINE1_SRC.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CHW PINS CLKS CBT HTWIN EBC 0 0 0 0 0 0 0 0 0 0

W CBR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 2

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 CBI DBE DBR 0 0 0 SS OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 2

Figure 11-3. ENGINEn Development Control Register (NDEDI_ENGINEn_DC)

Table 11-3. NDEDI_ENGINEn_DC Field Descriptions

Bits Name Description

0 CHW ENGINEn CHAN register write trace. Enables the tracing of writes to the CHAN
register in the ENGINEn execution unit. CHAN register write tracing requires the
channel being serviced to have program trace enabled.
0 Tracing not enabled for ENGINEn CHAN writes.
1 Tracing enabled for ENGINEn CHAN writes

1 PINS Stop pins in debug mode. Controls whether the ENGINEn pins are sampled when the
ENGINEn enters debug mode. When PINS is set, the pins are not sampled during
debug mode or when executing a forced instruction from the microinstruction register.
The pins are sampled during normal single steps.
0 Sample pins in the halted state
1 Stop sampling pins in the halted state
11-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2 CLKS Stop TCR clocks. Controls whether the TCR clocks from ENGINEn stop running when
the ENGINEn enters debug mode.
0 Do not stop TCRs during debug mode
1 Stop TCRs during debug mode

3 CBT Client breakpoint timing. Controls the timing of an ENGINEn halt due to an external
breakpoint source (ipg_debug) or due to a breakpoint at the twin engine. For this bit to
matter, CBI or HTWIN must be set to 1.
0 Halt at the end of the current microcycle
1 Halt at the completion of the current instruction thread

4 HTWN Halt on twin engine breakpoint. Controls, along with CBT, the action taken on
breakpoint occurrences at the twin engine.If the twin engine that is causing a
breakpoint exit debug state, the ENGINEn shall resume its operation.
If the HTWIN bit is cleared while the ENGINEn is in debug state due to a twin engine
breakpoint, the ENGINEn shall resume its operation.
0 Do not halt for breakpoints in the twin Engine
1 Halt for twin Engine’s breakpoint 1

5 EBC EVTO breakpoint controller. Controls the generation of EVTO due to DBR assertion,
SW breakpoint, TWIN engine, EVTI, MISC error breakpoint, single step breakpoint,
external breakpoint (ipg_debug) or system reset (ipg_hard_sync_reset_b).
0 Breakpoint status indication is not output on EVTO
1 Breakpoint status indication is output on EVTO

6 — Reserved.

7 CBR Clear breakpoint request. Writing this bit to one clears breakpoint requests caused by
the following conditions:
 • ENGINEn Internal Breakpoints (data write, CHAN register write, channel service,

address match, illegal Instruction)
 • Software breakpoint
 • EVTI Breakpoint
 • MISC Error Breakpoint
 • Single step breakpoint
Asserting this bit causes it to clear one clock later. This means that the development
tool can never read this bit with a value other than zero.
The eTPU should always execute the first instruction after exiting a breakpoint
condition, in such a way that it does not halt twice at the same position.The breakpoints
caused by ipg_debug or twin engine are not cleared by the assertion of this bit.
0 No action
1 Clear breakpoint requests

8–16 — Reserved.

17 CBI Client breakpoint input. Controls, along with CBT, the action taken on breakpoints from
external sources (ipg_debug = 1).The breakpoint condition caused by the external
source is only cleared if CBI equals 0 or if the external breakpoint is negated
(ipg_debug = 0).
0 Do not halt for other clients’ breakpoints
1 Halt for other clients’ breakpoints

Table 11-3. NDEDI_ENGINEn_DC Field Descriptions (continued)

Bits Name Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

18 DBE Debug enable. Enables debug mode. When DBE is asserted, asserting DBR, system
reset, external breakpoint, internal breakpoint occurrences, a halt instruction, a MISC
miscompare, or an illegal instruction cause the processor to halt and enter debug
mode. 2
This bit is necessary to use features such as single stepping and breakpoints, and
does not affect neither watchpoint, program trace nor data trace operations.
0 Debug mode disabled 3

1 Debug mode enabled 4

19 DBR Debug request. Allows the development tool to request processor to enter debug
mode. When written, and DBE equals 1 this bit forces the ENGINEn to enter debug
mode. 5

0 Exit debug mode if there are no pending breakpoint sources
1 Request debug mode

20–22 — Reserved.

23 SS Single step enable. If asserted, a single step occurs when the internal breakpoint
conditions are cleared (by asserting CBR or by negating DBR) regardless of the
ipg_debug and twin engine breakpoint condition. A single step is also performed if the
SS bit is asserted and the engine is in debug mode due to ipg_debug or twin engine.
0 Single step disabled
1 Single step enabled

Table 11-3. NDEDI_ENGINEn_DC Field Descriptions (continued)

Bits Name Description
11-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

24–26 OVC[0:2] Overrun control. The NDEDI can be programmed to stall the ENGINEn operation
avoiding errors related to that engine due to full Event Queue. The ENGINEn can be
stalled in any operations but in the middle of an atomic sequence of accesses to the
SPRAM.
The worst case happens whenever in Time Slot Transition (TST) 6 where the eTPU can
perform up to three atomic accesses to the SPRAM. Since one single microinstruction
cycle may generate up to two NDEDI snapshots 7, suppose that the NDEDI asserts a
request to delay the engine after the first half of the first access in this specific atomic
sequence, then the ENGINEn needs to complete the current microinstruction cycle
and also needs to perform the entire subsequent micro cycles, thus being able to
generate up to five snapshots after the stall request was asserted.
The overrun control field controls how the NDEDI reacts when the Queue is about to
get full. If programmed to delay the processor, the NDEDI asserts the requests to delay
the processor when the Event Queue still has five available positions, thus keeping
Event Queue positions to avoid the NDEDI to lose information about the ENGINEn,.
And negates the delay request as soon as there are six available positions.
The request to delay the processor does not affect neither the other engine nor the
CDC operations. Therefore, in some extreme cases an overrun message may still be
generated even with OVC configured to delay the processor. 8 If an error event
happens, the processor will be delayed until the Event Queue is enabled for storing
snapshots again, which will happen when the Event Queue gets empty.If the OVC field
is changed to 0b011 while the Event Queue has less than 5 available positions the
NDEDI will automatically assert the stall request. Thus, ENGINEn may still generate
an overrun error before entering at the STALL state.
If the OVC field is changed to 0b000 while the ENGINEn is in STALL state, the NDEDI
will automatically negate the stall request. Thus, ENGINEn may exit the STALL state.
A breakpoint request prevails over the request to delay the processor. Thus, if a
breakpoint request happens at the same time of a stall request, the eTPU will enter in
HALT state instead of STALL state.
000 Generate overrun message
001–010 Reserved
011 Stall Processor to prevent overruns for ENGINEn
100–111 Reserved

27–28 EIC[0:1] ENGINEn EVTI control. The EVTI control (EIC) field can be configured for
synchronization or breakpoint generation. If the EIC field is configured to the reserved
state, its action reverts to that of the reset state.
00 EVTI assertion causes the next ENGINEn program and data trace message to be

a synchronization message 9

01 EVTI assertion causes ENGINEx breakpoint generation
10 No operation
11 Reserved

29–31 TM[0:2] Trace mode.Enables BTM, DTM, and OTM for ENGINEn. One or all types of trace may
be enabled at a single time by writing to the TM field.
NOTE: Trace can also be enabled through watchpoint triggers. The two enable
sources are ORed together to form the true trace enable. 000No trace enabled
1xx BTM enabled
x1x DTM enabled
xx1 OTM enabled

1HTWIN causes a breakpoint after the execution of the current microinstruction.
2An Illegal instruction causes a breakpoint before the execution of the current microinstruction. A MISC breakpoint
causes a breakpoint after the execution of the current microinstruction.
3The Enginen will resume operation if this bit is cleared while the engine was in a breakpoint.

Table 11-3. NDEDI_ENGINEn_DC Field Descriptions (continued)

Bits Name Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.3 ENGINEn Development Status Register
(NDEDI_ENGINEn_DS)

The NDEDI_ENGINEn_DS register shows the status of various conditions that impact
development support. All status bits are dynamic and do not require clearing. If the Class 3
is enabled, any time the value of any bit in this register changes, a debug status event is
queued, and then will generate a debug status message. If the event queue is not enabled to
store snapshots while a DS event should be queued, then an error event is queued as soon
as the event queue is enabled for storing snapshots.

4The HALT instruction within eTPU is ignored if the DBE bit is cleared.
5The DBR request cause a breakpoint after the execution of the current microinstruction.
6A request to delay the processor while the eTPU is in TST will be recognized after eTPU exits TST and before the
first instruction of the thread.
7One microcycle of the eTPU corresponds to two system clocks. And since the NDEDI events are evaluated on
every single clock, one single microcycle may generate up to two snapshots.
8If both registers are programmed to stall while the queue gets full, only the CDC can generate an overrun
message.
9 The next CDC data trace messages are synchronized if the next message from either Engines are synchronized.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 HAT IIBP CBP TBP EBP 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 BP 0 0 DBS STP HWE HWB SWB SSS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 4

Figure 11-4. ENGINEn Development Status Register (NDEDI_ENGINEn_DS)

Table 11-4. NDEDI_ENGINEn_DS Field Descriptions

Bits Name Description

0–2 — Reserved.

3 HAT Halted with active thread. Indicates if the engine was halted during the execution of a
thread or while it was IDLE. 1

0 The eTPU engine is halted with no thread currently active
1 The eTPU engine is halted in the middle of a thread execution

4 IIBP Illegal instruction breakpoint status. Indicates if there is a breakpoint due to an illegal
instruction execution causing the halt condition
0 Breakpoint source is not an illegal instruction execution
1 Breakpoint source is an illegal instruction execution
11-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5 CBP Client breakpoint status. Indicates if there is a breakpoint from an external client
(ipg_debug) causing the halt condition
0 Breakpoint source is not an external client
1 Breakpoint source is an external client

6 TBP Twin breakpoint status. Indicates if there is a breakpoint from the twin eTPU engine
causing the halt condition
0 Breakpoint source is not the twin eTPU engine
1 Breakpoint source is the twin eTPU engine

7 EBP EVTI breakpoint status. Indicates if there is a breakpoint caused by EVTI assertion
0 Breakpoint source is not EVTI assertion
1 Breakpoint source is EVTI assertion

8–16 — Reserved.

17–23 BP Internal breakpoint status. Shows which hardware breakpoints have occurred causing
the ENGINEn to enter debug mode. See Table 11-5 for BP bit encodings.

24–25 — Reserved.

26 DBS Debug status. Indicates if ENGINEn is in debug mode.
0 Processor not halted
1 Processor halted in debug mode

27 STP Stop status. Indicates if the ENGINEn is stopped in low power mode.
0 Processor not stopped
1 Processor stopped in low power mode

28 HWE Hardware error status. Indicates if the ENGINEn has encountered a HW error. The
only hardware error defined for the ENGINE is a MISC miscompare.
0 No HW error
1 Non-recoverable HW error occurred

29 HWB Hardware breakpoint status. Indicates if a hardware breakpoint (e.g address
comparator) has occurred.
0 No hardware breakpoint occurred
1 Hardware breakpoint occurred

30 SWB Software breakpoint status. Indicates if a software breakpoint has occurred. A software
breakpoint occurs with the execution of the HALT instruction.
0 No software breakpoint occurred
1 Software breakpoint occurred

31 SSS Single step status. Indicates if the processor is halted for debug mode due to single
step occurrence.
0 Processor not halted due to single step
1 Processor halted in debug mode due to single step

1The TST state of the eTPU is considered to be an active state.

Table 11-4. NDEDI_ENGINEn_DS Field Descriptions (continued)

Bits Name Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

C

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.4 ENGINEn Watchpoint Trigger Register (NDEDI_ENGINEn_WT)

The NDEDI_ENGINEn_WT register allows traces to be enabled and/or disabled on the
occurrence of a watchpoint. If the same watchpoint is programed to enable and disable a
trace, the occurrence of the watchpoint toggles the current value of the trace flags. If one
watchpoint occurs to enable trace and a different watchpoint occurs to disable trace at the
same time the current value of the trace flags will also be toggled. Trace enable flags from
triggers (PTEF and DTEF) are ORed with the appropriate bit in the TM field of the DC
register and sent to the trace blocks.

Table 11-5. BP Values

Value Description

0b0000000 No breakpoint condition occurred

0b1xxxxxx eTPU breakpoint 1 (based on BWC1 register)

0bx1xxxxx eTPU breakpoint 2 (based on BWC2 register)

0bxx1xxxx Channel register write breakpoint

0bxxx1xxx Host service request breakpoint

0bxxxx1xx Link register breakpoint

0bxxxxx1x MRL breakpoint

0bxxxxxx1 TDL breakpoint

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PTS PTE DTS DTE 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 11

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PTEF DTE

W PTEC DTE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 11

Figure 11-5. ENGINEn Watchpoint Trigger Register (NDEDI_ENGINEn_WT)
11-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-6. NDEDI_ENGINEn_WT Field Descriptions

Bits Name Description

0–2 PTS[0:2] Program trace start. Allows program trace to be enabled at a watchpoint occurrence.
000 Trigger disabled
001 Program trace enabled on eTPU watchpoint 1 occurrence
010 Program trace enabled on eTPU watchpoint 2 occurrence
011 Program trace enabled on channel register write watchpoint occurrence
100 Program trace enabled on host service request watchpoint occurrence
101 Program trace enabled on link register watchpoint occurrence
111 Program trace enabled on TDL watchpoint occurrence

3–5 PTE[0:2] Program trace end. Allows program trace to be disabled at a watchpoint occurrence.
000 Trigger disabled
001 Program trace disabled on eTPU Watchpoint 1 occurrence
010 Program trace disabled on eTPU watchpoint 2 occurrence
011 Program trace disabled on channel register write watchpoint occurrence
100 Program trace disabled on host service request watchpoint occurrence
101 Program trace disabled on link register watchpoint occurrence
110 Program trace disabled on MRL watchpoint occurrence
111 Program trace disabled on TDL watchpoint occurrence

6–8 DTS[0:2] Data trace start. Allows data trace to be enabled at a watchpoint occurrence.
000 Trigger disabled
001 Data trace enabled on eTPU watchpoint 1 occurrence
010 Data trace enabled on eTPU watchpoint 2 occurrence
011 Data trace enabled on channel register write watchpoint occurrence
100 Data trace enabled on host service request watchpoint occurrence
101 Data trace enabled on link register watchpoint occurrence
110 Data trace enabled on MRL watchpoint occurrence
111 Data trace enabled on TDL watchpoint occurrence

9–11 DTE[0:2] Data trace end. Allows data trace to be disabled at a watchpoint occurrence.
000 Trigger disabled
001 Data trace disabled on eTPU watchpoint 1 occurrence
010 Data trace disabled on eTPU watchpoint 2 occurrence
011 Data trace disabled on channel register write watchpoint occurrence
100 Data trace disabled on host service request watchpoint occurrence
101 Data trace disabled on host service request watchpoint occurrence
110 Data trace disabled on MRL watchpoint occurrence
111 Data trace disabled on TDL watchpoint occurrence

12–29 — Reserved.

30 PTEF Program trace enable flag. Shows if program trace is currently enabled due to a
watchpoint trigger.
0 Program trace not enabled due to watchpoint trigger
1 Program trace enabled due to watchpoint trigger

30 PTEC Program trace enable clear. Writing a one to the PTEC bit clears the PTEF flag. This
allows the development tool to turn off program trace started via a trigger without using
a second trigger or module reset.
0 Keep PTEF flag unaltered
1 Clear the PTEF flag
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 11.2.1.5 ENGINEn Data Trace Control Register
(NDEDI_ENGINEn_DTC)

The NDEDI_ENGINEn_DTC register controls which address ranges are enabled for data
trace, and if reads and/or writes are traced in that range.

31 DTEF Data trace enable flag. Shows if data trace is currently enabled due to a watchpoint
trigger.
0 Data Trace not enabled due to watchpoint trigger
1 Data Trace enabled due to watchpoint trigger

31 DTEC Data trace enable clear. Writing a one to the DTEC bit clears the DTEF flag. This allows
the development tool to turn off data trace started via a trigger without using a second
trigger or module reset.
0 Keep DTEF flag unaltered
1 Clear the DTEF flag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RWT0 RWT1 RWT2 RWT3 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 RC0 RC1 RC2 RC3 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 13

Figure 11-6. ENGINEn Data Trace Control Register (NDEDI_ENGINEn_DTC)

Table 11-6. NDEDI_ENGINEn_WT Field Descriptions (continued)

Bits Name Description
11-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-7. NDEDI_ENGINEn_DTC Field Descriptions

Bits Name Description

0–1 RWT0[0:1] ENGINEn read/write trace 0 control. Controls whether data trace messages are
generated for ENGINEn accesses inside eTPU data trace window 0 (see
Section 11.2.1.15, “Data Trace Address Range 0 Register (NDEDI_DTAR0)”), and if
so, whether reads, writes, or both generate the data trace messages.
00 No ENGINEn data trace messages generated for eTPU window 0
01 Enable ENGINEn data read trace for eTPU window 0
10 Enable ENGINEn data write trace for eTPU window 0
11 Enable ENGINEn data read and write trace for eTPU window 0

2–3 RWT1[0:1] ENGINEn read/write trace 1 control. Controls whether data trace messages are
generated for ENGINEn accesses inside eTPU data trace window 1 (see
Section 11.2.1.16, “Data Trace Address Range 1 Register (NDEDI_DTAR1)”), and if
so, whether reads, writes, or both generate the data trace messages.
00 No ENGINEn data trace messages generated for eTPU window 1
01 Enable ENGINEn data read trace for eTPU window 1
10 Enable ENGINEn data write trace for eTPU window 1
11 Enable ENGINEn data read and write trace for eTPU window 1

4–5 RWT2[0:1] ENGINEn read/write trace 2 control. Controls whether data trace messages are
generated for ENGINEn accesses inside eTPU data trace window 2 (see
Section 11.2.1.17, “Data Trace Address Range 2 Register (NDEDI_DTAR2)”), and if
so, whether reads, writes, or both generate the data trace messages.
00 No ENGINEn data trace messages generated for eTPU window 2
01 Enable ENGINEn data read trace for eTPU window 2
10 Enable ENGINEn data write trace for eTPU window 2
11 Enable ENGINEn data read and write trace for eTPU window 2

6–7 RWT3[0:1] ENGINEn read/write trace 3 control. Controls whether data trace messages are
generated for ENGINEn accesses inside eTPU data trace window 3 (see
Section 11.2.1.18, “Data Trace Address Range 3 Register (NDEDI_DTAR3)”), and if
so, whether reads, writes, or both generate the data trace messages.
00 No ENGINEn data trace messages generated for eTPU window 3
01 Enable ENGINEn data read trace for eTPU window 3
10 Enable ENGINEn data write trace for eTPU window 3
11 Enable ENGINEn data read and write trace for eTPU window 3

8–23 — Reserved.

24 RC0 Range control 0. Controls which addresses match data trace window 0.
0 Trace address inside (inclusive) of data trace window 0
1 Trace addresses outside (exclusive) of data trace window

25 RC1 Range control 1. Controls which addresses match data trace window 1.
0 Trace address inside (inclusive) of data trace window 1
1 Trace addresses outside (exclusive) of data trace window 1

26 RC2 Range control 2. Controls which addresses match data trace window 2.
0 Trace address inside (inclusive) of data trace window 2
1 Trace addresses outside (exclusive) of data trace window 2

27 RC3 Range control 3. Controls which addresses match data trace window 3.
0 Trace address inside (inclusive) of data trace window 3
1 Trace addresses outside (exclusive) of data trace window 3

28–31 — Reserved.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.6 ENGINEn Breakpoint/Watchpoint Control Registers
(NDEDI_ENGINEn_BWC1, NDEDI_ENGINEn_BWC2)

The NDEDI_ENGINEn_BWC1 register is used to configure ENGINEn
breakpoint/watchpoint 1 along with the NDEDI_ENGINEn_BWA1 and
NDEDI_ENGINEn_BWD1 registers.

The NDEDI_ENGINEn_BWC2 register is used to configure ENGINEn
breakpoint/watchpoint 2 along with the NDEDI_ENGINEn_BWA2 and
NDEDI_ENGINEn_BWD2 registers.

When a field is set to a reserved value the behavior defaults to the reset values behavior.

The register can be configured for breakpoints based on data write values, instruction
address and data read or write addresses.

When a breakpoint occurs the program execution is halted before the instruction is
executed. This means that data access breakpoints occur before the SPRAM access actually
takes place.

The data accesses that occur within the time slot transition (TST) should not generate
breakpoints. Thus, it is not expected that the eTPU system signalize these transactions to
the NDEDI interface.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BWE BRW 0 0 0 0 BME BSU BWO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 22

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BWO EOC 0 0 0 SCMSK 0 SCMV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 22 (NDEDI_ENGINEn_BWC1); 23 (NDEDI_ENGINEn_BWC2)

Figure 11-7. ENGINEn Breakpoint/Watchpoint Control Registers
(NDEDI_ENGINEn_BWC1, NDEDI_ENGINEn_BWC2)
11-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-8. NDEDI_ENGINEn_BWCn Field Descriptions

Bits Name Description

0–1 BWE[0:1] Breakpoint/watchpoint enable. Enables the ENGINEn breakpoint or watchpoint.
00 Disabled
01 Breakpoint enabled
10 Reserved
11 Watchpoint enabled

2–3 BRW[0:1] Breakpoint/watchpoint read/write select. Selects whether read and/or write accesses
cause a breakpoint/watchpoint.
00 Match on read SPRAM access
01 Match on write SPRAM access
10 Match on any SPRAM accesses
11 Reserved

4–7 — Reserved.

8–11 BME[0:3] Breakpoint/watchpoint data mask enable. Selects which data bytes are used for
breakpoint/watchpoint generation.
0000 All bytes of data compared
1xxx Most significant byte of data masked out
xxx1 Least significant byte of data masked out

12–13 BSU[0:1] Breakpoint/watchpoint data size unit. Indicates the data size unit used by the NDEDI
block. This field always reads as 0b00 to indicate the data size unit is 1 byte.

14–16 BWO[0:2] Breakpoint/watchpoint operand.Selects whether address and/or data matching is done
and if matching is done on data fetches or instruction fetches.
00x Breakpoint/Watchpoint Disabled
x10 Reserved
011 Compare data of a SPRAM write access with BWD
100 Compare instruction Address with BWA
101 Compare address of a SPRAM write/read access with BWA
111 Compare data and address of a SPRAM write access with BWD and BWA

respectively 1

1 A breakpoint/watchpoint occurrence only happens if there is a match in both BWD and BWA.

17 EOC EVTO control. Controls the action of the EVTO output at the occurrence of a
breakpoint or watchpoint.
0 Breakpoint/watchpoint status indication is not output on EVTO
1 Breakpoint/watchpoint status indication is output on EVTO

18–20 — Reserved.

21–25 SCMSK[0:4] Serviced channel mask value. Used to mask what bits of the SCMV field are compared
to the serviced channel. When a bit in the SCMSK field is 0, that bit is not compared
for masking purposes.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK);

26 — Reserved.

27–31 SCMV[0:5] Serviced channel match value.The SCMV field value is compared against the
ENGINEn serviced channel when generating the breakpoints and watchpoints.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.7 ENGINEn Breakpoint/Watchpoint Address Registers
(NDEDI_ENGINEn_BWA1, NDEDI_ENGINEn_BWA2)

The NDEDI_ENGINEn_BWA1 register is used to configure ENGINEn
breakpoint/watchpoint 1 along with the NDEDI_ENGINEn_BWC1 and
NDEDI_ENGINEn_BWD1 registers. It is used for data access and instruction fetches
breakpoints.

The NDEDI_ENGINEn_BWA2 register is used to configure ENGINEn
breakpoint/watchpoint 2 along with the NDEDI_ENGINEn_BWC2 and
NDEDI_ENGINEn_BWD2 registers. It is used for data access and instruction fetches
breakpoints.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BWAM 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 30 (NDEDI_ENGINEx_BWA1); 31(NDEDI_ENGINEx_BWA2)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BWA 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 30 (NDEDI_ENGINEx_BWA1); 31(NDEDI_ENGINEx_BWA2)

Figure 11-8. ENGINEn Breakpoint/Watchpoint Address Registers
(NDEDI_ENGINEn_BWA1, NDEDI_ENGINEn_BWA2)

Table 11-9. NDEDI_ENGINEn_BWAn Field Descriptions

Bits Name Description

0–13 BWAM[0:13] Breakpoint/watchpoint address mask. Used to select which address bits are compared
for breakpoint and watchpoint generation.
Address match = (BWA&BWAM) == (Address & BWAM)

14–15 — Reserved.

16–29 BWA[0:13] Breakpoint/watchpoint address. Used to compare address operands (address of
instruction or data).
The BWA field represent a word addressable address. For SPRAM accesses, any
access inside that word matches.
The most significant two bits are ignored for address of data comparisons because the
SPRAM address space is only 14 bits.

30–31 — Reserved.
11-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.8 ENGINEx Breakpoint/Watchpoint Data Registers
(NDEDI_ENGINEn_BWD1, NDEDI_ENGINEn_BWD2)

The NDEDI_ENGINEn_BWD1 register is used to configure ENGINEn
breakpoint/watchpoint 1 along with the NDEDI_ENGINEn_BWC1 and
NDEDI_ENGINEn_BWA1 registers. It is used for data access breakpoints only.

The NDEDI_ENGINEn_BWD2 register is used to configure ENGINEn
breakpoint/watchpoint 2 along with the NDEDI_ENGINEn_BWC2 and
NDEDI_ENGINEn_BWA2 registers. It is used for data access breakpoints only.

11.2.1.9 ENGINEn Program Trace Channel Enable Register
(NDEDI_ENGINEn_PTCE)

The NDEDI_ENGINEn_PTCE register enables program tracing for each of the 32
ENGINEn channels. There is one enable bit per channel. And the bit corresponding to the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 38 (NDEDI_ENGINEn_BWD1); 39 (NDEDI_ENGINEn_BWD2)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 38 (NDEDI_ENGINEn_BWD1); 39 (NDEDI_ENGINEn_BWD2)

Figure 11-9. ENGINEn Breakpoint/Watchpoint Data Registers
(NDEDI_ENGINEn_BWD1, NDEDI_ENGINEn_BWD2)

Table 11-10. NDEDI_ENGINEn_BWDn Field Descriptions

Bits Name Description

0–31 BWD[0:31] Breakpoint/watchpoint data. Used to compare data operands whether in a SPRAM
write access. Depending on the size of the access, only certain bits of BWD are
compared against the data written to the SPRAM. The table below shows which bits of
BWD are compared against the data written to the SPRAM.

Operation Size Bits Compared

8-bits 8 most significant bits of BWD

24-bits 24 least significant bits of BWD

32-bits All bits from BWD
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

P
T

C
E

16
P

T
C

E
0

Fi)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

serviced channel is the only bit tested for enabling program trace. For these bits to have any
effect, program trace must also be enabled in the TM field of the DC register or via a
watchpoint trigger.

11.2.1.10 ENGINEn Breakpoint/Watchpoint Control 3 Register
(NDEDI_ENGINEn_BWC3)

The NDEDI_ENGINEn_BWC3 register is used to configure miscellaneous ENGINEn
breakpoint/watchpoint sources. This is a vendor-defined register with different fields that
the other breakpoint/watchpoint control registers.

When a field is set to a reserved value the behavior defaults to the reset values behavior.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
N

G
IN

E
n_

P
T

C
E

31

E
N

G
IN

E
n_

P
T

C
E

30

E
N

G
IN

E
n_

P
T

C
E

29

E
N

G
IN

E
n_

P
T

C
E

28

E
N

G
IN

E
n_

P
T

C
E

27

E
N

G
IN

E
n_

P
T

C
E

26

E
N

G
IN

E
n_

P
T

C
E

25

E
N

G
IN

E
n_

P
T

C
E

24

E
N

G
IN

E
n_

P
T

C
E

23

E
N

G
IN

E
n_

P
T

C
E

22

E
N

G
IN

E
n_

P
T

C
E

21

E
N

G
IN

E
n_

P
T

C
E

20

E
N

G
IN

E
n_

P
T

C
E

19

E
N

G
IN

E
n_

P
T

C
E

18

E
N

G
IN

E
n_

P
T

C
E

17

E
N

G
IN

E
n_

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Index 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
N

G
IN

E
n_

P
T

C
E

15

E
N

G
IN

E
n_

P
T

C
E

14

E
N

G
IN

E
n_

P
T

C
E

13

E
N

G
IN

E
n_

P
T

C
E

12

E
N

G
IN

E
n_

P
T

C
E

11

E
N

G
IN

E
n_

P
T

C
E

10

E
N

G
IN

E
n_

P
T

C
E

9

E
N

G
IN

E
n_

P
T

C
E

8

E
N

G
IN

E
n_

P
T

C
E

7

E
N

G
IN

E
n_

P
T

C
E

6

E
N

G
IN

E
n_

P
T

C
E

5

E
N

G
IN

E
n_

P
T

C
E

4

E
N

G
IN

E
n_

P
T

C
E

3

E
N

G
IN

E
n_

P
T

C
E

2

E
N

G
IN

E
n_

P
T

C
E

1

E
N

G
IN

E
n_

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Index 64

gure 11-10. ENGINEn Program Trace Channel Enable Register (NDEDI_ENGINEn_PTCE

Table 11-11. NDEDI_ENGINEn_PTCE Field Descriptions

Bits Name Description

0–31 ENGINEn_PTCEn ENGINEn timer channel n program trace enable.
0 Program tracing disabled for ENGINEn timer channel n
1 Program tracing enabled for ENGINEn timer channel n
11-22 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 SCMV 0 0 0 SCMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 24

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 BCRW BHSR BLINK BMRL BTDL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 24

Figure 11-11. ENGINEn Breakpoint/Watchpoint Control 3 Register
(NDEDI_ENGINEn_BWC3)

Table 11-12. NDEDI_ENGINEn_BWC3 Field Descriptions

Bits Name Description

0–2 — Reserved.

3–7 SCMV[0:4] Serviced channel match value. Compared against the serviced channel register when
generating a breakpoint due to a write in the CHAN register or due to the start of a
service.

8–10 — Reserved.

11–15 SCMSK[0:4] Serviced channel mask value. Used to mask what bits of the SCMV field are compared
to the serviced channel register when generating a breakpoint due to a write in the
CHAN register or due to the start of a service. When a bit in the SCMSK field is 0, that
bit is not compared for masking purposes.

16 — Reserved.

17–19 BCRW[0:2] Break on channel register write. Configures the action when there is a write to the
CHAN register and there is a serviced channel match (as described below). The
breakpoint causes execution to halt at the completion of the current microinstruction,
which means after the CHAN register is written.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK)
00x Disabled
01x Breakpoint enabled
10x Reserved
11x Watchpoint enabled
xx0 Breakpoint/watchpoint status indication not output on EVTO
xx1 Breakpoint/watchpoint status indication output on EVTO
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

20–22 BHSR[0:2] Break on host service request. Configures the action when there is a serviced channel
match (as described below) and the host service request is asserted at the beginning
of the channel service. The breakpoint causes execution to halt after the time slot
transition (TST) completes but before the first instruction of the thread is executed.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK)
00x Disabled
01x Breakpoint enabled
10x Reserved
11x Watchpoint enabled
xx0 Breakpoint/watchpoint status indication not output on EVTO
xx1 Breakpoint/watchpoint status indication output on EVTO

23–25 BLINK[0:2] Break on link service request. Configures the action when there is a serviced channel
match (as described below) and the link service register is asserted at the beginning
of the channel service. The breakpoint causes execution to halt after the time slot
transition (TST) completes but before the first instruction of the thread is executed.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK)
00x Disabled
01x Breakpoint enabled
10x Reserved
11x Watchpoint enabled
xx0 Breakpoint/watchpoint status indication not output on EVTO
xx1 Breakpoint/watchpoint status indication output on EVTO

26–28 BMRL[0:2] Break on match recognition request. Configures the action when there is a serviced
channel match (as described below) and either MRL1 or MRL_B is asserted at the
beginning of the channel service. The breakpoint causes execution to halt after the
time slot transition (TST) completes but before the first instruction of the thread is
executed.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK)
00x Disabled
01x Breakpoint enabled
10x Reserved
11x Watchpoint enabled
xx0 Breakpoint/watchpoint status indication not output on EVTO
xxx1 Breakpoint/watchpoint status indication output on EVTO

29–31 BTDL[0:2] Break on transition detect request.Configures the action when there is a serviced
channel match (as described below) and the TDL_A or TDL_B is asserted at the
beginning of the channel service. The breakpoint causes execution to halt after the
time slot transition (TST) completes but before the first instruction of the thread is
executed.
Serviced channel match = (SCMV&SCMSK) == (Serviced Channel & SCMSK)
00x Disabled
01x Breakpoint enabled
10x Reserved
11x Watchpoint enabled
xx0 Breakpoint/watchpoint status indication not output on EVTO
xx1 Breakpoint/watchpoint status indication output on EVTO

Table 11-12. NDEDI_ENGINEn_BWC3 Field Descriptions (continued)

Bits Name Description
11-24 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.11 ENGINEn Microinstruction Debug Register
(NDEDI_ENGINEn_INST)

The NDEDI_ENGINEn_INST register is used for forcing a microinstruction on the
microinstruction register. This register should only be accessed while the ENGINEn is
halted. If accessed while the ENGINEn is not halted, writes are ignored.

Writes to the register in debug mode force the execution of an arbitrary instruction. This is
used to retrieve information about internal status, set internal flag values among other
things during debug mode. Some fields of this microinstruction may be ignored, for
instance an END instruction will be ignored. For further information about the arbitrary
instruction refer to the.

11.2.1.12 ENGINEn Microprogram Counter Debug Register
(NDEDI_ENGINEn_MPC)

The NDEDI_ENGINEn_MPC register is used for reading the microprogram counter value.
This register is only meaningful while the ENGINEn is halted. If accessed while the
ENGINEn is not halted, reads return zero. Writes to this register are always ignored.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ENGINEn_INST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 69

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ENGINEn_INST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 69

Figure 11-12. ENGINEn Microinstruction Debug Register (NDEDI_ENGINEn_INST)
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F)

5

Re

In

1

E

Re

In

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.13 ENGINEn Channel Flag Status Register
(NDEDI_ENGINEn_CFSR)

The NDEDI_ENGINEn_CFSR register provides read-only access to the flags of the
channel being serviced by ENGINEn. Reads to this register when ENGINEn is out of halt
mode return zero. Transition detection and match recognition flags are available in two
versions: one reflecting the branch condition selection (BCC), TDL_A, TDL_B, MRL_A,
and MRL_B, and an ‘internal’ version, ITDL1, ITDL2, IMR1, and IMR2, reflecting the
flag value within the channel logic.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 70

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NDEDI_ENGINEn_MPC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 70

igure 11-13. ENGINEn Microprogram Counter Debug Register (NDEDI_ENGINEn_MPC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

R V N C Z MV MN MC MZ TDL_
A

TDL_
B

MRL_
A

MRL_
B

LSR SMLCK FM

W

set 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dex 71

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

R SRI HSR FLAG0 FLAG1 MRLE1 MRLE2 ITDL1 ITDL2 IMRL1 IMRL2 PSS PSTI PSTO OB

W

set 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dex 71

Figure 11-14. ENGINEn Channel Flag Status Register (NDEDI_ENGINEn_CSFR)
11-26 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-13. NDEDI_ENGINEn_CSFR Field Descriptions

Bits Name Description

0 V EAU overflow flag. Overflow status flag from an EAU operation.
0 EAU overflow flag is cleared
1 EAU overflow flag is set

1 N EAU negative flag. Negative status flag from an EAU operation.
0 EAU negative flag is cleared
1 EAU negative flag is set

2 C EAU carry flag. Carry status flag from an EAU operation.
0 EAU carry flag is cleared
1 EAU carry flag is set

3 Z EAU carry flag. Zero status flag from an EAU operation.
0 EAU zero flag is cleared
1 EAU zero flag is set

4 MV MAC/divide unit overflow flag. Overflow status flag from an MAC/Divide Unit operation.
0 MAC/divide unit overflow flag is cleared
1 MAC/divide unit overflow flag is set

5 MN MAC/divide unit negative flag. Negative status flag from an MAC/Divide Unit operation.
0 MAC/Divide Unit negative flag is cleared
1 MAC/Divide Unit negative flag is set

6 MC MAC/divide unit carry flag. Carry status flag from an MAC/Divide Unit operation.
0 MAC/Divide Unit carry flag is cleared
1 MAC/Divide Unit carry flag is set

7 MZ MAC/Divide unit zero flag. Zero status flag from an MAC/Divide Unit operation.
0 MAC/Divide Unit zero flag is cleared
1 MAC/Divide Unit zero flag is set

8 TDL_A Channel transition detection latch 1. Channel transition detection status flag 1 as
available in the BCC.
0 Channel Transition flag 1 in BCC is cleared
1 Channel Transition flag 1 in BCC is set

9 TDL_B Channel transition detection latch 2. Channel transition detection status flag 2 as
available in the BCC.
0 Channel Transition flag 2 in BCC is cleared
1 Channel Transition flag 2 in BCC is set

10 MRL1 Channel match recognition latch 1. Channel Match Recognition status flag 1 as
available in the BCC.
0 Match Recognition flag 1 in BCC is cleared
1 Match Recognition flag 1 in BCC is set

11 MRL2 Channel match recognition latch 2. Channel Match Recognition status flag 2 as
available in the BCC.
0 Match Recognition flag 2 in BCC is cleared
1 Match Recognition flag 2 in BCC is set

12 LSR Channel link service register. Channel link service register flag.
0 Link even to currently serviced channel did not occur
1 Link event to currently serviced channel occurred

13 SMLCK Channel semaphore flag.
0 Semaphore flag is cleared
1 Semaphore flag is set
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

14–15 FM[0:1] Channel function mode. Reflects the state of the FM field of the status control register
of the current channel.

16 SRI Service request inhibit. Flag that blocks channel service requests due to the assertion
of MRL1/2 and/or TDL_A/B.
0 Service requests not inhibited
1 Service requests inhibited

17–19 HSR[0:2] Host service request. Indicates the entry point HSR of the thread currently executing,
if any. This was the value of HSR of the serviced channel when the entry point was
chosen. It is not necessarily the value of the host service request register of the current
channel.

20 FLAG0 Channel state resolution flag 0. One of two flags per channel that can be set or cleared
by microcode to further resolve the entry point for a channel service.
0 FLAG0 was cleared by microcode
1 FLAG0 was set by microcode

21 FLAG1 Channel state resolution flag 1. One of two flags per channel that can be set or cleared
by microcode to further resolve the entry point for a channel service.
0 FLAG1 was cleared by microcode
1 FLAG1 was set by microcode

22 MRLE1 Channel match recognition latch enable 1.
0 Match recognition disabled for event 1
1 Match recognition enabled for event 1

23 MRLE2 Channel match recognition latch enable 2.
0 Match recognition disabled for event 2
1 Match recognition enabled for event 2

24 ITDL1 Internal channel transition detection latch 1. Channel transition detection status flag 1
reflecting its status directly in the channel logic.
0 Channel transition flag 1 within the channel logic is cleared
1 Channel transition flag 1 within the channel logic is set

25 ITDL2 Internal channel transition detection latch 2. Channel transition detection status flag 2
reflecting its status directly in the channel logic.
0 Channel transition flag 2 within the channel logic is cleared
1 Channel transition flag 2 within the channel logic is set

26 IMRL1 Internal channel match recognition latch 1. Channel match recognition status flag 1
reflecting its status directly in the channel logic.
0 Match recognition flag 1 within the channel logic is cleared
1 Match recognition flag 1 within the channel logic is set

27 IMRL2 Internal channel match recognition latch 2. Channel match recognition status flag 2
reflecting its status directly in the channel logic.
0 Match recognition flag 2 within the channel logic is cleared
1 Match recognition flag 2 within the channel logic is set

28 PSS Pin sampled state. PReflects the status of the PSS flag for the current channel.
0 PSS is cleared
1 PSS is set

29 PSTI Pin state input. Reflects the status of the filtered input signal for the current channel.
0 Filtered input signal is cleared
1 Filtered input signal is set

Table 11-13. NDEDI_ENGINEn_CSFR Field Descriptions (continued)

Bits Name Description
11-28 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.14 CDC Data Trace Control Register (NDEDI_CDC_DTC)

The NDEDI_CDC_DTC register controls which address ranges are enabled for CDC
access data trace, and if reads and/or writes are traced in that range.

30 PSTO Pin state output. Reflects the status of the value driven by the output control logic of
the current channel.
0 Output pin state register is cleared
1 Output pin state register is set

31 OBE Output buffer enable. Reflects the status of the OBE control register for the current
channel.
0 Output buffer enable is cleared
1 Output buffer enable is set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RWT0 RWT1 RWT2 RWT3 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 RC0 RC1 RC2 RC3 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 13

Figure 11-15. CDC Data Trace Control Register (NDEDI_CDC_DTC)

Table 11-13. NDEDI_ENGINEn_CSFR Field Descriptions (continued)

Bits Name Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-29
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-14. NDEDI_CDC_DTC Field Descriptions

Bits Name Description

0–1 RWT0[0:1] CDC read/write trace 0 control. Controls whether data trace messages are generated
for CDC accesses inside eTPU data trace window 0 (see Section 11.2.1.15, “Data
Trace Address Range 0 Register (NDEDI_DTAR0)”), and if so, whether reads, writes,
or both generate the data trace messages.
00 No CDC data trace messages generated for eTPU window 0
01 Enable CDC data read trace for eTPU window 0
10 Enable CDC data write trace for eTPU window 0
11 Enable CDC data read and write trace for eTPU window 0

2–3 RWT1[0:1] CDC read/write trace 1 control. Controls whether data trace messages are generated
for CDC accesses inside eTPU data trace window 1 (see Section 11.2.1.16, “Data
Trace Address Range 1 Register (NDEDI_DTAR1)”), and if so, whether reads, writes,
or both generate the data trace messages.
00 No CDC data trace messages generated for eTPU window 1
01 Enable CDC data read trace for eTPU window 1
10 Enable CDC data write trace for eTPU window 1
11 Enable CDC data read and write trace for eTPU window 1

4–5 RWT2[0:1] CDC read/write trace 2 control. Controls whether data trace messages are generated
for CDC accesses inside eTPU data trace window 2 (see Section 11.2.1.17, “Data
Trace Address Range 2 Register (NDEDI_DTAR2)”), and if so, whether reads, writes,
or both generate the data trace messages.
00 No CDC data trace messages generated for eTPU window 2
01 Enable CDC data read trace for eTPU window 2
10 Enable CDC data write trace for eTPU window 2
11 Enable CDC data read and write trace for eTPU window 2

6–7 RWT3[0:1] CDC read/write trace 3 control. Controls whether data trace messages are generated
for CDC accesses inside eTPU data trace window 3 (see Section 11.2.1.18, “Data
Trace Address Range 3 Register (NDEDI_DTAR3)”), and if so, whether reads, writes,
or both generate the data trace messages.
00 No CDC data trace messages generated for eTPU window 3
01 Enable CDC data read trace for eTPU window 3
10 Enable CDC data write trace for eTPU window 3
11 Enable CDC data read and write trace for eTPU window 3

8–23 — Reserved.

24 RC0 Range control 0. Controls which addresses match data trace window 0.
0 Trace address inside (inclusive) of data trace window 0
1 Trace addresses outside (exclusive) of data trace window 0

25 RC1 Range control 1. Controls which addresses match data trace window 1.
0 Trace address inside (inclusive) of data trace window 1
1 Trace addresses outside (exclusive) of data trace window 1

26 RC2 Range control 2. Controls which addresses match data trace window 2.
0 Trace address inside (inclusive) of data trace window 2
1 Trace addresses outside (exclusive) of data trace window 2

27 RC3 Range control 3. Controls which addresses match data trace window 3.
0 Trace address inside (inclusive) of data trace window 3
1 Trace addresses outside (exclusive) of data trace window 3

28–31 — Reserved.
11-30 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.2.1.15 Data Trace Address Range 0 Register (NDEDI_DTAR0)

The NDEDI_DTAR0 register defines a data trace address range. The address range is
shared by the two ENGINEs and the CDC. All three of these clients can independently
enable the range for reads and/or writes. If the start address value is greater than the end
address value, all accesses are considered to have the address value outside to the data trace
window 0.

NOTE
If RC0 equals 1 for a determined source, all accesses from that
source will have the address value acknowledged.

Notice that the combination of the start and end addresses for data trace into one register
does not follow the standard’s recommended method of having separate registers for start
and end addresses.

11.2.1.16 Data Trace Address Range 1 Register (NDEDI_DTAR1)

The NDEDI_DTAR1 register defines a data trace address range. The address range is
shared by the two ENGINEs and the CDC. All three of these clients can independently

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 DTSA0 [13:2] 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 65

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 DTEA0 [13:2] 1 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Index 65

Figure 11-16. Data Trace Address Range 0 Register (NDEDI_DTAR0)

Table 11-15. NDEDI_DTAR0 Field Descriptions

Bits Name Description

0–1 — Reserved.

2–13 DTSA0[0:11] Data trace start address 0. The DTSA0 field is the start address for eTPU data trace
window 0.

14–17 — Reserved.

18–29 DTEA0[0:11] Data trace end address 0. The DTEA0 field is the end address for eTPU data trace
window 0.

30–31 — Reserved.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-31
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

enable the range for reads and/or writes. If the start address value is greater than the end
address value, all accesses are considered to have the address value outside to the data trace
window 1.

NOTE
If RC1 equals 1 for a determined source, all accesses from that
source will have the address value acknowledged.

Notice that the combination of the start and end addresses for data trace into one register
does not follow the standard’s recommended method of having separate registers for start
and end addresses.

11.2.1.17 Data Trace Address Range 2 Register (NDEDI_DTAR2)

The NDEDI_DTAR2 register defines a data trace address range. The address range is
shared by the two ENGINEs and the CDC. All three of these clients can independently
enable the range for reads and/or writes. If the start address value is greater than the end
address value, all accesses are considered to have the address value outside to the data trace
window 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 DTSA1 [13:2] 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 66

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 DTEA1 [13:2] 1 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Index 66

Figure 11-17. Data Trace Address Range 1 Register (NDEDI_DTAR1)

Table 11-16. NDEDI_DTAR1 Field Descriptions

Bits Name Description

0–1 — Reserved.

2–13 DTSA1[0:11] Data trace start address 1. Start address for eTPU data trace window 1.

14–17 — Reserved.

18–29 DTEA1[0:11] Data trace end address 1. End address for eTPU data trace window 1.

30–31 — Reserved.
11-32 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Memory Map/Register Definition

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
If RC2 equals 1 for a determined source, all accesses from that
source will have the address value acknowledged.

Notice that the combination of the start and end addresses for data trace into one register
does not follow the standard’s recommended method of having separate registers for start
and end addresses.

11.2.1.18 Data Trace Address Range 3 Register (NDEDI_DTAR3)

The NDEDI_DTAR3 register defines a data trace address range. The address range is
shared by the two ENGINEs and the CDC. All three of these clients can independently
enable the range for reads and/or writes. If the start address value is greater than the end
address value, all accesses are considered to have the address value outside to the data trace
window 3.

NOTE
If RC3 equals 1 for a determined source, all accesses from that
source will have the address value acknowledged.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 DTSA2 [13:2] 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 67

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 DTEA2 [13:2] 1 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Index 67

Figure 11-18. CData Trace Address Range 2 Register (NDEDI_DTAR2)

Table 11-17. NDEDI_DTAR2 Field Descriptions

Bits Name Description

0–1 — Reserved.

2–13 DTSA2[0:11] Data trace start address 2. Start address for eTPU data trace window 2.

14–17 — Reserved.

18–29 DTEA2[0:11] Data trace end address 2.End address for eTPU data trace window 2.

30–31 — Reserved.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-33
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notice that the combination of the start and end addresses for data trace into one register
does not follow the standard’s recommended method of having separate registers for start
and end addresses.

11.2.1.19 Unimplemented Registers

Unimplemented registers are those with client select and index value combinations other
than those listed in Table 11-1. NDEDI will treat unimplemented registers like the JTAG
BYPASS instruction.

11.3 Functional Description

11.3.1 NDEDI Reset Configuration

11.3.1.1 Enabling NDEDI Class 1 Operation

The NDEDI Class 1 features are always enabled after exiting the JTAG test-logic-reset
state. But it is disabled while the JTAG is in this state. Thus, allowing low power mode for
a production part. The registers are always reset while in the JTAG test-logic-reset state.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 DTSA3 [13:2] 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Index 68

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 DTEA3 [13:2] 1 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Index 68

Figure 11-19. Data Trace Address Range 3 Register (NDEDI_DTAR3)

Table 11-18. NDEDI_DTAR3 Field Descriptions

Bits Name Description

0–1 — Reserved.

2–13 DTSA3[0:11] TPU data trace start address 3. Start address for eTPU data trace window 3.

14–17 — Reserved.

18–29 DTEA3[0:11] eTPU data trace end address 3. End address for eTPU data trace window 3.

30–31 — Reserved.
11-34 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.1.2 Enabling NDEDI Class 3 Operation

When NDEDI PCR[MCKO_EN] is asserted the NDEDI Classes 1 and 3 are enabled,
otherwise the NDEDI Class 3 features will be disabled, entering in the disable-port mode,
thus no trace output will be provided, and auxiliary port output pins will be disabled (driven
inactive or used for an alternate function if sharing pins).1

11.3.2 Auxiliary Output Port

11.3.2.1 Output Message Protocol

The protocol for transmitting messages via the auxiliary port is accomplished with the
MSEO functions. MDO and MSEO must be sampled by the development tool on the rising
edge of MCKO.

Figure 11-20 illustrates the state diagram for MSEO transfers. All transitions not included
in the figure are reserved, and are never generated by the NDEDI block.

1Class 1 features are still available in Disable-Port Mode.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-20. MSEO Transfers

11.3.2.2 Output Messages

Table 11-19 describes the messages that the NDEDI can transmit on the auxiliary port.

Table 11-19. NDEDI Messages

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet Name Packet Description

Debug Status
Message

6 6 fixed TCODE Value = 0

K K fixed SRC Client that is the source of the message

32 32 fixed STATUS Value of the Development Status register

Idle

Start

Message

Normal

Transfer

End

Packet

End

Message

MSEO = 11

MSEO = 01

M
SEO = 00

M
S

E
O

 =
 00

MSEO = 00

MSEO = 00

MSEO = 00

MSEO = 11

MSEO =
 11

MSEO = 01

MSEO = 01

M
S

E
O

 =
 1

1

MSEO = 11

M
S

E
O

 =
 0

1

MSEO = 01

MSEO = 10 MSEO =
 10
11-36 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ownership Trace
Message

6 6 fixed TCODE Value = 2

K K fixed SRC Client that is the source of the message

16 16 fixed PROCESS Process ID. This value depends on the eTPU
state at the beginning of a service

Data Trace, Data
Write Message

6 6 fixed TCODE Value = 5

K K fixed SRC Client that is the source of the message

2 2 fixed SIZE Size of data access (8, 24, or 32 bits)

1 14 variable U-ADDR Unique portion of the data write address. Most
significant bits that have 0 values may be
truncated

1 32 variable DATA Data value written

Data Trace, Data
Read Message

6 6 fixed TCODE Value = 6

K K fixed SRC Client that is the source of the message

2 2 fixed SIZE Size of data access (8, 24, or 32 bits)

1 14 variable U-ADDR Unique portion of the data read address. Most
significant bits that have 0 values may be
truncated

1 32 variable DATA Data value read

Error Message 6 6 fixed TCODE Value = 8

K K fixed SRC Client that is the source of the message

5 5 fixed ECODE Error Code

Data Trace, Data
Write with Sync

Message

6 6 fixed TCODE Value = 13

K K fixed SRC Client that is the source of the message

2 2 fixed SIZE Size of data access (8, 24, or 32 bits)

1 14 variable F-ADDR Full address of the memory location written. Most
significant bits that have 0 values may be
truncated

1 32 variable DATA Data value written

Data Trace, Data
Read with Sync

Message

6 6 fixed TCODE Value = 14

K K fixed SRC Client that is the source of the message

2 2 fixed SIZE Size of data access (8, 24, or 32 bits)

1 14 variable F-ADDR Full address of the memory location read. Most
significant bits that have 0 values may be
truncated

1 32 variable DATA Data value read

Table 11-19. NDEDI Messages (continued)

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet Name Packet Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-37
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Watchpoint Hit
Message

6 6 fixed TCODE Value = 15

K K fixed SRC Client that is the source of the message

7 7 fixed WPHIT Number indicating watchpoint source

Resource Full
Message

6 6 fixed TCODE Value = 27

K K fixed SRC Client that is the source of the message

4 4 fixed RCODE Resource Code. Refer to Table 11-21

1 H variable HIST Branch/Predicate Instruction History. This packet
is terminated by a stop bit set to 1 after the last
history bit. This allows the tool to determine
which bits are part of the history packet and
which are padded zeros

Program Trace,
Indirect Branch with

History Message

6 6 fixed TCODE Value = 28

K K fixed SRC Client that is the source of the message

1 8 variable I-CNT Number of instruction units executed since the
last taken branch, not taken direct branch, or
predicated instruction

1 14 variable U-ADDR Unique portion of the branch target address for
an indirect branch. Most significant bits that have
0 values may be truncated

1 H variable HIST Branch/Predicate Instruction History. This packet
is terminated by a stop bit set to 1 after the last
history bit. This allows the tool to determine
which bits are part of the history packet and
which are padded zeros

Program Trace,
Indirect Branch with

History Sync
Message

6 6 fixed TCODE Value = 29

K K fixed SRC Client that is the source of the message

1 8 variable I-CNT Number of instruction units executed since the
last taken branch, not taken direct branch, or
predicated instruction

1 14 variable F-ADDR Full branch target address for an indirect branch.
Most significant bits that have 0 values may be
truncated

1 H variable HIST Branch/Predicate Instruction History. This packet
is terminated by a stop bit set to 1 after the last
history bit. This allows the tool to determine
which bits are part of the history packet and
which are padded zeros

Table 11-19. NDEDI Messages (continued)

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet Name Packet Description
11-38 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Program Trace
Correlation Message

6 6 fixed TCODE Value = 33

K K fixed SRC Client that is the source of the message

4 4 fixed EV-CODE Event Code

1 8 variable I-CNT Number of instruction units executed since the
last taken branch, not taken direct branch, or
predicated instruction

1 H variable HIST Branch/Predicate Instruction History. This packet
is terminated by a stop bit set to 1 after the last
history bit. This allows the tool to determine
which bits are part of the history packet and
which are padded zeros

Program Trace,
Channel Start Service

Message

6 6 fixed TCODE Value = TCODE_CSM (Vendor-Defined
Message)

K K fixed SRC Client that is the source of the message

5 5 fixed S-CHAN Number of the channel being serviced

1 8 variable I-CNT Number of instruction units executed since the
last taken branch, not taken direct branch, or
predicated instruction

1 14 variable F-ADDR Full address of the first instruction. Most
significant bits that have 0 values may be
truncated.

1 H variable HIST Branch/Predicate Instruction History. This packet
is terminated by a stop bit set to 1 after the last
history bit. This allows the tool to determine
which bits are part of the history packet and
which are padded zeros

Program Trace,
Channel Trace

Enable Message

6 6 fixed TCODE Value = TCODE_CTM (Vendor-Defined
Message)

K K fixed SRC Client that is the source of the message

5 5 fixed S-CHAN Number of the channel being serviced

1 14 variable F-ADDR Full address of the first instruction after the
program trace is enabled by a watchpoint. Or, the
full address of the first instruction after the Event
Queue gets empty after a Queue Overrun. Most
significant bits that have 0 values may be
truncated

0 5 variable CHAN Channel Register Value. Only sent if different
from S-CHAN value

Table 11-19. NDEDI Messages (continued)

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet Name Packet Description
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-39
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-20 describes the error code encodings for the error messages generated by the
NDEDI block.

Table 11-21 describes the resource code encodings for the resource full messages.

Message formatting is performed by the message formatter block. Raw messages read from
the message queues are independent of the number of MDO pins implemented.

Channel Register
Write Message

6 6 fixed TCODE Value = TCODE_CWM (Vendor-Defined
Message)

K K fixed SRC Client that is the source of the message

1 5 variable CHAN Value written to the channel register

Table 11-20. Error Codes Encodings (ECODE)

Error Code Description

0b00000 Ownership trace overrun

0b00001 Program trace overrun

0b00010 Data trace overrun

0b00110 Watchpoint overrun

0b00111 Program and/or Data and/or Ownership Trace Overrun

0b01000 Program trace and/or data trace and/or ownership trace and/or watchpoint overrun

0b11000 Debug status overrun

0b11001 Debug status overrun and/or program and/or data and/or ownership trace overrun

0b11010 Debug status and/or program trace and/or data trace and/or ownership trace and/or
watchpoint overrun

Table 11-21. Resource Codes Encodings

Resource Code Resource
DATA Packet

Count
DATA Packet Value

0b0000 Program Trace,
Sequential Counter

1 Branch/predicate instruction history. This packet is
terminated by a stop bit set to 1 after the last history bit.
The value that causes the counter to fill is always the
same and can be determined without sending the value

0b0001 Program Trace,
Branch/Predicate

History

1 Branch/predicate instruction history. This packet is
terminated by a stop bit set to 1 after the last history bit

Table 11-19. NDEDI Messages (continued)

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet Name Packet Description
11-40 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

ize2
s)

K

O K

Dat K

Dat K

K

Dat
w

K

Dat
w

K

Wat K

Res +K

Pro
B

+K

Pro
Bra

+K

Co
+K

Prog
Sta

+K

Prog
Tra

K

Cha K

NOT

1. Mi

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 11-21 shows the various message formats and the location of variable length packets.
Notice that for variable-length packets, the transmitted size of the packet is determined
from the range of the least significant bit to the most significant non-zero-valued bit (i.e.
most significant 0 value bits are not transmitted).

Message TCODE Packet #1 Packet #2 Packet #3 Packet #4 Packet #5
Packet

#6
Min. Size1

(bits)
Max S

(bit

Debug Status
 Message

0 Fixed = K Fixed =32 NA NA NA NA 38+K 38+

wnership Trace
Message

2 Fixed = K Fixed =16 NA NA NA NA 22+K 22+

a Trace, Data Write
Message

5 Fixed = K Fixed3 = 2 Variable
Min = 1

Max = 14

Variable
Min = 1

Max = 32

NA NA 10+K 54+

a Trace, Data Read
Message

6 Fixed = K Fixed3 = 2 Variable
Min = 1

Max = 14

Variable
Min = 1

Max = 32

NA NA 10+K 54+

Error Message 8 Fixed = K Fixed = 5 NA NA NA NA 11+K 11+

a Trace, Data Write
ith Sync Message

13 Fixed = K Fixed3 = 2 Variable
Min = 1

Max = 14

Variable
Min = 1

Max = 32

NA NA 10+K 54+

a Trace, Data Read
ith Sync Message

14 Fixed = K Fixed3 = 2 Variable
Min = 1

Max = 14

Variable
Min = 1

Max = 32

NA NA 10+K 54+

chpoint Hit Message 15 Fixed = K Fixed = 7 NA NA NA NA 13+K 13+

ource Full Message 27 Fixed = K Fixed = 4 Variable
Min = 1
Max = H

NA NA NA 11+K 10+H

gram Trace, Indirect
ranch w/ History

Message

28 Fixed = K Variable
Min = 1
Max = 8

Variable
Min = 1

Max = 14

Variable
Min = 1
Max = H

NA NA 9+K 28+H

gram Trace, Indirect
nch w/ History Sync

Message

29 Fixed = K Variable
Min = 1
Max = 8

Variable
Min = 1

Max = 14

Variable
Min = 1
Max = H

N/A NA 9+K 28+H

Program Trace,
rrelation Message

33 Fixed = K Fixed=4 Variable
Min = 1
Max = 8

Variable
Min = 1
Max = H

NA NA 12+K 18+H

ram Trace, Channel
rt Service Message

TCODE
_CSM

Fixed = K Fixed = 5 Variable
Min = 1
Max = 8

Variable
Min = 1

Max = 14

Variable
Min = 1
Max = H

NA 14+K 33+H

ram Trace, Channel
ce Enable Message

TCODE
_CTM

Fixed = K Fixed=5 Variable
Min = 1

Max = 14

Variable
Min = 0
Max = 5

NA NA 12+K 30+

nnel Register Write
Message

TCODE
_CWM

Fixed = K Variable
Min = 1
Max = 5

NA NA NA NA 7+K 11+

ES:

nimum information size. The actual number of bits transmitted depends on the number of MDO pins.

Figure 11-21. Message Packet Sizes
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-41
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

2. Ma

3. Pa ze.
Pack

ize2
s)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The double edges in Figure 11-21 indicate the starts and ends of messages. The shaded
edges in Figure 11-21 indicate the end of a variable length packet which is not also the end
of the message. Packets without shaded areas between them are grouped into super packets
and are transmitted together without end-of-packet indications between them.

11.3.2.3 Rules of Messaging
• A variable-length packet within a message must end on a port boundary (Port

boundaries depend on the number of MDO pins active with the current reset
configuration)

• A variable-length packet may start within a port boundary only when following a
fixed-length packet.

• Superblocks must end on a port boundary

• When a variable-length packet is sized such that it does not end on a port boundary,
it is necessary to extend and zero fill the remaining bits after the highest order bit so
that it can end on a port boundary

• Multiple fixed-length packets may start and/or end on the same clock

• When any packet follows a variable-length packet, it must start on a port boundary

• The packet containing the TCODE number is always transferred out first, followed
by subsequent packets of information

• Within a packet, the least significant bits are shifted out first. Figure 11-22 shows the
transmission sequence of a message that is made up of a TCODE followed by two
packets

Figure 11-22. Transmission Sequence of Messages

11.3.2.4 Examples

The following are examples of branch trace and data trace messages.

ximum information size. The actual number of bits transmitted depends on the number of MDO pins.

cket is fixed and NDEDI always transmits 2 bits, but other sources sharing the auxiliary port may have a different packet si
et size can always be determined by the value of the SRC packet.

Message TCODE Packet #1 Packet #2 Packet #3 Packet #4 Packet #5
Packet

#6
Min. Size1

(bits)
Max S

(bit

Figure 11-21. Message Packet Sizes

TCODE (6 bits) PACKET #1 PACKET #2

1 2 3

msb lsb msb lsb msb lsb
11-42 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-23 illustrates how the indirect branch with history public message is transmitted.
Notice that the example uses a 4-bit MDO port. For this example, 4 bits are shifted out in
the I-CNT packet, 5 bits are shifted out in the HIST packet, and 11 bits are shifted out for
the UADDR packet. Notice also that T0, S0, H0, I0, and A0 are the least significant bits
where:

Tx= TCODE packet bits (Fixed)
Sx= SRC packet bits (Fixed)
Hx = HIST packet bits (Variable)
Ix = I-CNT packet bits (Variable)
Ax = UADDR packet bits (Variable)

Figure 11-24 shows the same message being sent using 8 MDO pins.

Figure 11-25 illustrates how a data write with sync message is transmitted. Notice that the
example uses a 16-bit MDO port. For this example, 7 bits are sent for the F-ADDR packet,
and 5 bits are sent for the DATA packet. Notice also that T0, S0, A0, and D0 are the least
significant bits where:

Tx = TCODE packet bits (Fixed)
Sx = SRC packet bits (Fixed)
Zx = SIZE packet bits (Fixed)
Dx = DATA packet bits (Variable)

Clock MDO[3:0] MSEO[1:0] State

3 2 1 0

0 X X X X X End Message or Idle

1 T3 T2 T1 T0 00 Start Message

2 S1 S0 T5 T4 00 Normal Transfer

3 I2 I1 I0 S2 00 Normal Transfer

4 0 0 0 I3 01 End Packet

5 A3 A2 A1 A0 00 Normal Transfer

6 A7 A6 A5 A4 00 Normal Transfer

7 0 A10 A9 A8 01 End Packet

8 H3 H2 H1 H0 00 Normal Transfer

9 0 0 0 H4=1 11 End Message

Figure 11-23. Indirect Branch with History Message (4 MDO pins)

Clock MDO[7:0] MSEO[1:0] State

7 6 5 4 3 2 1 0

0 X X X X X X X X X End Message or Idle

1 S1 S0 T5 T4 T3 T2 T1 T0 00 Start Message

2 0 0 0 I3 I2 I1 I0 S2 01 End Packet

4 A7 A6 A5 A4 A3 A2 A1 A0 00 Normal Transfer

5 0 0 0 0 0 A10 A9 A8 01 End Packet

3 0 0 0 H4=1 H3 H2 H1 H0 11 End Message

Figure 11-24. Indirect Branch with History Message (8 pins)
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-43
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

C

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ax = F-ADDR packet bits (Variable)

11.3.2.5 Temporal Ordering of Transmitted Messages

All Messages are sent out in the sequence their related event actually occurred. The eTPU
interface with the NDEDI provides the eTPU signals to be monitored and captured. At the
occurrence of any event that would cause a message, a snapshot of all information needed
by the Message Formatter to generate a message is queued. Doing so, several events from
either Engines or CDC can be queued at the same time.

Thus, as soon as the auxiliary port is granted, the event queue is read and the appropriate
messages are formatted and sent. If more than one messages are to be sent, the message
formatter respects the following priority: messages related to error, debug status,
watchpoints, program trace and data trace.

NDEDI maintain temporal ordering of messages relative to ENGINE1, ENGINE2 and
CDC, but not relative to messages generated by other clients sharing the auxiliary port.The
time slot transition (TST) is considered to be an active state, and since data are accessed at
the SPRAM, it is possible that data trace events are recognized within TST.1 For further
information about TST, refer to the .

11.3.3 Microcode Development Support

The NDEDI contains a number of hardware hooks that aid in the development of microcode
for the eTPUs. This features described in this section make the eTPUs compliant with
Nexus Class 1 features.

The main features provided are the abilities to:

• Read and write eTPU internal registers in debug mode

• Read and write SPRAM in debug mode

• Enter a debug mode at reset negation

• Enter a debug mode during normal execution

• Single step instructions and re-enter debug mode

lock MDO[15:0] MSEO[1:0] State

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X X X X X X End Message or Idl

1 A4 A3 A2 A1 A0 Z1 Z0 S2 S1 S0 T5 T4 T3 T2 T1 T0 00 Start Message

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A6 A5 01 End Packet

3 0 0 0 0 0 0 0 0 0 0 0 D4 D3 D2 D1 D0 11 End Message

Figure 11-25. Data Write with Sync Message (16 pins)

1Due to eTPU operation, speculative accesses may also happen within TST and will be traced.
11-44 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Stop program execution on instruction/data breakpoints or channel service
breakpoints and enter debug mode

• Set breakpoints or watchpoints

• Execute external microcode instruction in debug mode

• Read/write the microprogram counter register value in debug mode

Refer to Section 11.4, “Initialization/Application Information,” on how the following
functions provide the features listed above.

11.3.4 Debug Status

The NDEDI module provides the debug status via the auxiliary port, as defined by the
IEEE-ISTO 5001-2002 standard.

11.3.4.1 Messaging

The NDEDI block provides debug status messaging using IEEE-ISTO 5001-2002
standard-defined public messages. When the development status register changes, a debug
status change event is sent to the event queue. If the debug status change condition occurs
while the event queue is not enabled for storing snapshots, a debug status overrun message
is generated.

The debug status message has the format shown in Figure 11-26.

The DS packet correspond to the ENGINEx DS register value described in Figure 11-4.

11.3.4.2 Error Messages

A debug status overrun error event is queued if a debug status event occurs while the event
queue is not enabled for storing snapshots. The error event is stored as soon as the event
queue is enabled which happens when the queue becomes empty.

The error message has the format shown in Figure 11-27.

[6 bits] [K bits] [32 bits]

TCODE (0) SRC DS

Length = 38+K bits

Figure 11-26. Debug Status Message Format

[6 bits] [K bits] [5 bits]

TCODE (8) SRC ECODE (0b11000)

Length = 11+K bits

Figure 11-27. Debug Status Error Message Format
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-45
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.4.3 Synchronization

Upon the exit of debug mode, the next program and data trace messages are
synchronization messages. The exit of debug mode by one of the engines causes data and
program synchronization for that engine only.

11.3.4.4 Timing Diagrams

Note that all of the following timing diagrams assume a 3-bit SRC size and a 16-bit MDO
port. The state variable is not a signal, but instead is derived from MSEO. It is included for
clarity. Refer to Figure 11-20 for MSEO state diagram.

The following abbreviations are used for the state variable in the diagrams:

• ID = Idle

• SM = Start Message

• NT = Normal Transfer

• EP = End Packet

• EM = End Message

Figure 11-28. Debug Status Message

Figure 11-29. Debug Status Overrun Error Message

11.3.5 Ownership Trace

Ownership trace provides a macroscopic view of the eTPU program flow. This is done by
generating an ownership trace event at the start of each channel service.

TCODE = 0
SRC = 0b010
DS = 0x00000021

MCKO

MSEO[1:0]

state

MDO[15:0]

00 00 11

ID/EM SM NT EM

0x4280 0x0000 0x0000

MCKO

MSEO[1:0]

state

MDO[15:0]

10

ID/EM EM

0x10C8

TCODE = 8
SRC = 0b011
ECODE = 0b01000
11-46 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each engine within the eTPU system generates ownership traces independently, and the
events are queued in the order in which they occur.

11.3.5.1 Messaging

Ownership trace information is transmitted via the auxiliary port using an ownership trace
message (OTM).

Ownership trace information is transmitted in the format shown in Figure 11-30.

Notice that the channel number and entry points number in Figure 11-30 are concatenated
to form the variable length PROCESS packet defined by the IEEE-ISTO 5001-2002
standard.

11.3.5.2 OTM Flow

A channel generates an ownership trace message when service starts if ownership trace is
enabled for the eTPU via the development control register. If ownership trace is enabled
and an engine becomes idle, NDEDI will transmit a special OTM with the PROCESS
packet set to 0.

11.3.5.3 Timing Diagram

Figure 11-31 shows an example of an ownership message being transmitted on the
auxiliary port. The diagram assumes a 3-bit SRC size and a 16-bit MDO port. The state
variable is not a signal but instead, it is derived from MSEO. It is included for clarity. Refer
to Figure 11-20 for MSEO state diagram.

The following abbreviations are used for the state variable in the diagrams:

• ID = Idle

• SM = Start Message

• NT = Normal Transfer

• EP = End Packet

• EM = End Message

[6 bits] [K bits] [16 bits]

TCODE (2) SRC Channel
(5 bits)

HSR
(3 bits)

Link
(1 bit)

M1
(1 bit)

M2
(1 bit)

T1
(1 bit)

T2
(1 bit)

Pin
(1 bit)

CF1
(1 bit)

CF0
(1 bit)

Length = 22+K bits

Figure 11-30. Ownership Trace Message Format
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-47
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-31. Ownership Trace Message

11.3.6 Program Trace

This section details the program trace mechanism supported by the NDEDI for the dual
Engine system. Program trace is implemented via a combination of Branch Trace
Messaging (BTM) and Ownership Trace Messaging (OTM) as per the IEEE-ISTO
5001-2002 standard definition.

11.3.6.1 Branch Trace Messaging

Branch trace messaging facilitates program trace by providing the following types of
information:

• Messages for the start of channel services, each containing the full address of the
first instruction to execute and history and sequential count information left over
from the previously traced channel service. This message is always synchronizing

• Messages to indicate that the program trace was enabled in the middle of a thread .
It includes the address of the enable point, the value of the serviced channel and the
CHAN reg value only if it differs from the serviced channel value

• Messages to indicate that the internal history buffer has filled and been reset. The
current value of the history buffer is included in each of these messages

• Messages to indicate that the internal sequential instruction counter has overflow
and been reset. The current value of the history buffer is included in each of these
messages

• Messages for taken indirect branches, each including a branch/predicate instruction1
history packet, sequential instruction count, and the unique portion of the branch
target address. Indirect branch messages that are generated with pending
synchronization event include the full branch target address (instead of the unique
portion of the address)

• Messages to indicate the entry into debug mode, the entry into low power mode, or
the end of channel service with no new service pending

1Predicate Instructions depend on the AS/CE field within eTPU instructions.

MCKO

MSEO[1:0]

state

MDO[15:0]

00 11

ID/EM SM EM

0x9682 0x016C

TCODE = 2
SRC = 0b010
PROCESS = {0b10110, 0b110, 0b0, 0b1, 0b0, ob0, 0b1, 0b0, 0b1, 0b1}
11-48 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Messages for writes to the CHAN register, indicating the value assigned to the
register

The address packet of a program trace address excludes the 2 least significant bits of the
byte address because they are zero for all instruction addresses.

11.3.6.2 Branch Trace Message Formats

There are seven types of messages used by the eTPU for branch tracing. These types are
shown in Table 11-22.

The occurrence of any of the following conditions requires subsequent synchronization:

• Exit of system reset

• Exit of low power mode

• Exit of debug mode

• Forced End executed in eTPU engine

• Write to the development control register or the program trace channel enable
register1

• 255 branch trace messages of the same are queued without synchronization

• Assertion of the event in (EVTI) pin, depending on how the development control
register is configured

• A watchpoint occurrence2

• A queue overrun

The message that follows any of these synchronizing events will be a synchronizing
message if it is not a resource full message or a channel register write message which have
no synchronizing information. If no code is executing, the next message is always a channel
start service message that is synchronizing.

Table 11-22. eTPU BTM Messages

Message Synchronizing Public/Private

Resource full message No Public

Indirect branch with history message No Public

Indirect branch with history synchronization message Yes Public

Program trace correlation message No Public

Channel start service message Yes Private

Channel trace enable message Yes Private

Channel register write message No Private

1Only the source that have the register written will generate a synchronization message.
2A Watchpoint occurrence for one engine generates synchronization message for that engine only.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-49
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.6.2.1 Resource Full Messages

The resource full message is generated when the branch/predicate history buffer is full or
the sequential instruction counter overflows.

For messages caused by the branch/predicate history buffer filling, the current value of that
buffer is transmitted as part of the resource full message. This information can be
concatenated by the development tool with the branch/predicate history information from
subsequent messages to obtain the complete branch history for a message. The HIST value
is reset by this message, and the I-CNT value is reset as a result of a bit being added to the
history buffer.

For messages caused by sequential instruction counter overflow, the HIST packet is also
transmitted. This occurrence indicates that exactly 256 sequential instructions have been
executed without a history bit being recorded or a message (other than CHAN_WRITE)
being generated. The HIST and I-CNT values are reset by this message.

The resource full message has the format shown in Figure 11-32.

11.3.6.2.2 Indirect Branch with History Messages

The indirect branch with history message is generated on a taken indirect branch with no
synchronization event pending. The program trace indirect branch with history message has
the format shown in Figure 11-33.

11.3.6.2.3 Indirect Branch with History Synchronization Messages

The indirect branch with history synchronization message is generated on a taken indirect
branch with a synchronization event pending.

The program trace indirect branch with history synchronization message has the format
shown in Figure 11-34.

[6 bits] [K bits] [4 bits] [1-H bits]

TCODE (27) SRC RCODE HIST

Min Length = 11+K bits
Max Length = 10+H+K bits

Figure 11-32. Resource Full Message Format

[6 bits] [K bits] [1-8 bits] [1-13 bits] [1-H bits]

TCODE (28) SRC I-CNT U-ADDR HIST

Min Length = 9+K bits
Max Length = 27+H+K bits

Figure 11-33. Indirect Branch with History Message Format
11-50 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.6.2.4 Program Trace Correlation Message

The program trace correlation message is generated at the end of an eTPU channel service
if there is no new service, if there is a new service which channel is not enabled for tracing,
if program trace is disabled in the middle of a thread being traced, upon entry into debug
mode, or upon entry into low power mode.

The message contains the history and sequential instruction count information generated
during the previous traced service since the last message generation.

The correlation message also contains an event code that indicates the event responsible for
the generation of the message. Event code encodings are shown in Table 11-23.

The program trace correlation message has the format shown in Figure 11-35.

11.3.6.2.5 Channel Start Service Message

The channel start service message is generated at the start of an eTPU channel service. The
message contains the history and sequential instruction count information generated during
the previous traced service since the last message generation. The message also contains
the address of the first instruction of the current service.

The program trace channel start service message has the format shown in Figure 11-36.

[6 bits] [K bits] [1-8 bits] [1-13 bits] [1-H bits]

TCODE (29) SRC I-CNT F-ADDR HIST

Min Length = 9+K bits
Max Length = 27+H+K bits

Figure 11-34. Indirect Branch with History Synchronization Message Format

Table 11-23. Event Code Encodings

EV-CODE Description

0b0000 Entry into Debug Mode

0b0001 Entry into Low Power Mode

0b0010 Program Trace disabled in the middle of a thread

0b1110 End Channel Service (no new service)

All Others Reserved

[6 bits] [K bits] [4 bits] [1-8 bits] [1-H bits]

TCODE (33) SRC EV-CODE I-CNT HIST

Min Length = 12+K bits
Max Length = 18+H+K bits

Figure 11-35. Program Trace Correlation Message Format
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-51
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.6.2.6 Channel Trace Enable Message

If the program trace is enabled in the middle of a thread, the channel trace enable message
is sent indicating to the development tool the number of the channel being serviced and the
address of the current instruction.1 If the CHAN register value differs from the serviced
channel, the CHAN field is sent at the end of the message indicating the current CHAN
register value.2

The program trace channel trace enable message has the format shown in Figure 11-37.

11.3.6.2.7 Channel Register Write Messages

The channel register write message is generated when the CHAN register is written to by
the microcode. This message is not necessary to reconstruct program flow and generation
is enabled/disabled by the CHW bit in the ENGINEx development control register.
Program trace must be enabled for the channel that started the current service for this
message to be generated.

The channel register write message has the format shown in Figure 11-38

11.3.6.3 Branch Trace Messaging Operation

Figure 11-39 and Figure 11-40 show the basic flow used to generate branch trace messages
for the eTPUs. The following acronyms are used in the figures:

[6 bits] [K bits] [5 bits] [1-8 bits] [1-13 bits] [1-H bits]

TCODE
(TCODE_CSM)

SRC S-CHAN I-CNT F-ADDR HIST

Min Length = 14+K bits
Max Length = 32+K bits

Figure 11-36. Channel Start Service Synchronization Message Format

1The message does not contains the history and sequential instruction count information since the trace of this channel
was disabled until there.
2Usually the CHAN register equals the serviced channel.

[6 bits] [K bits] [5 bits] [1-13 bits] [0-5 bits]

TCODE
(TCODE_CTM)

SRC S-CHAN F-ADDR CHAN

Min Length = 14+K bits
Max Length = 32+K bits

Figure 11-37. Channel Trace Enable Synchronization Message Format

[6 bits] [K bits] [1-5 bits]

TCODE
(TCODE_CWM)

SRC CHAN

Min Length = 7+K bits
Max Length = 11+K bits

Figure 11-38. Channel Register Write Message Format
11-52 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• CHAN—CHAN register in eTPU execution unit

• S-CHAN—Channel being serviced

• HIST—Nexus shift register whose value is transmitted in the HIST packet of many
BTMs

• I-CNT—Nexus sequential instruction counter whose value is transmitted in the
HIST packet of many BTMs

• CWE— Channel write event

• IHE—Indirect branch with history event

• IHS—Indirect branch with history synchronization event

• CSE—Channel start service event

• CTE—Channel trace enable event

• RFE—Resource full event

• PCE—Program trace correlation event
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-53
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-39. Branch Trace Message Generation (Part 1)

Pgm trace

event?1

Thread

Reset - Disable

enabled for
 trace?

no

 Thread
still active?2

yes

no

B

Snapshot
PCE

 Thread
already

 active?2

New

 thread?

yes
I

Snapshot
CTE

B

Sequential
instruction?

yes

no

Indirect

taken?
 branch

Direct

taken?
 branch

C

yes
E

yes
FG

no

no

no

A

B

Queue

yes

A
no

overrun?

Update
ECODE1

A

1. The update of ECODE within program trace disables the
 program trace event detection
2. A thread is considered to be active if there was a previous
 CSE or a CTE snapshot

no

yes

yes

yes
11-54 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-40. Branch Trace Message Generation (Part 2)

CHAN reg
write?

C

Snapshot
CWE

Conditional
ALU

execution?

Condition
true?

yes

no

no

yes

Left shift
0 in HIST

Left Shift
1 in HIST

HIST
full?

Format
HIST RFE

yes

no

Reset HIST

I-CNT=255?

Snapshot
I-CNT RFE

Increment
I-CNT

yes

no

 End
channel
service?

Reset
I-CNT

Reset
HIST

F

E

Snapshot
IHE

Snapshot
IHS

Sync?

yes

no

G

Left Shift
1 in HIST

Left Shift
0 in HIST

Snapshot
HIST RFE

B

H

New
service?

no

Snapshot
PCE

 I

New

enabled for H
tracing?

no

Snapshot
CSE

no

yes

yes

yes

yes

Reset
I-CNT

yes

no

I

no

channel

Reset I-CNT

HIST
full?
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-55
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.6.3.1 Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2002 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
program trace messages.

The address transmitted for a determined source is relative to the address of the previous
branch trace message sent for that source. It is generated by XOR’ing the new address with
the previous address, and then using only the results up to the most significant ‘1’ in the
result. To recreate this address, an XOR of the (most-significant 0-padded) message address
with the previously decoded address gives the current address. Figure 11-41 shows how a
relative address is generated and how it can be used to recreate the original address.
11-56 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-41. Relative Address Generation and Recreation

11.3.6.3.2 Enabling Program Trace

Program trace for the eTPU is enabled on a channel-by-channel basis. This selective
enabling allows the tool more control over how much information gets transmitted.

Engine 1: Current Address (A1) = 0x65DC,

Address Recreation:

Address Generation:

A1 = 110 0101 1101 11 00
A2 = 001 1010 1111 10 00

A1 ^ A2 = 111 1111 0010 01 00

A1 ^ M1 = A2

A1 = 110 0101 1101 11 00

ME1 = 111 1111 0010 01

A1 ^ ME1 = 001 1010 1111 10 00 = A2

Address Message (M1) = 111 1111 0010 01

Engine 2: Current Address (B1) = 0x7238

Next Message Relative to Engine 1: Address (A2) = 0x1AF8

Address Recreation:

Address Generation for Engine 2:

B1 = 111 0010 0011 10 00

B2 = 101 0100 1100 10 00
B1 ^ B2 = 010 0110 1111 00 00

B1 ^ M1 = B2

B1 = 111 0010 0011 10 00

ME2 = 010 0110 1111 00

B1 ^ ME2 = 101 0100 1100 10 00 = B2

Address Message (ME2) = 10 0110 1111 00

Next Message Relative to Engine 2: Address (B2) = 0x54C8
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-57
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For program trace information to be generated for a channel, the appropriate bit in the
program trace channel enable register must be set and program trace must be enabled via
the TM field in the DC register or via a watchpoint trigger.

Any combination of channels can be enabled for trace at the same time by configuring the
program trace channel enable register. See Section 11.2.1.9, “ENGINEn Program Trace
Channel Enable Register (NDEDI_ENGINEn_PTCE)” for more details.

Note that since the registers may be changed in the middle of a thread, program trace may
be enabled or disabled in the middle of a thread.

If program trace for a determined channel is enabled in the middle of a service routine, a
Channel Trace Enable Message is sent to the development tool indicating the number of the
channel being serviced and the address of the current instruction. Otherwise, normal
program trace begins only on the following service for that channel.If program trace for a
determined channel is disabled in the middle of a service routine, a Program Correlation
Message is sent to the development tool indicating that the trace is disabled and informing
the HIST and I-CNT values.

11.3.6.3.3 Branch/Predicate Instruction History

The HIST packet provides a history of direct branch and predicated instruction execution
used for reconstructing the program flow. This packet is implemented as a left-shifting shift
register. The register is always pre-loaded with a value of 1. This bit acts as a stop bit so the
tool can determine which bit is the end of the history information. The pre-loaded 1 bit itself
is not part of the history information but is transmitted with the packet.

A value of 1 is shifted into the HIST packet on a taken direct branch (conditional or
unconditional) and on a predicate instruction whose predicate condition evaluated as true.
A value of 0 is shifted into the HIST packet on a not taken direct branch and on a predicate
instruction whose predicate condition evaluated as false.

A direct branch is a branch whose target address is hard-coded into the microcode
instruction at compile time. An indirect branch is a branch whose target address depends
on run time conditions. The indirect branches in the eTPU are return from subroutine,
dispatch jump, and dispatch call.

For the eTPU, predicated instructions are those that execute ALU operations conditionally
based on the value of the C, Z, or N flags. This conditional execution is controlled by the
value of the AS/CE packet in the eTPU microcode instruction formats A3, B4, B5, and B6.

11.3.6.3.4 Sequential Instruction Count

The I-CNT packet, present in many of the program trace messages, represents the number
of eTPU microcode instructions executed since the start of channel service, last taken direct
branch, last not-taken direct branch, last taken indirect branch, or last predicated
11-58 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

instruction.1 In other words, I-CNT is reset whenever it is transmitted within a message or
a bit is recorded to HIST.

When a sequential instruction is executed and the current I-CNT value is 255, a resource
full message is transmitted to tell the tool that the I-CNT has reached a value of 256. The
current HIST packet is transmitted as part of this message and reset inside the NDEDI. The
HIST and I-CNT information in the resource full message are combined with information
from subsequent messages to provide the development tool a full picture of the program
flow.

If additional HIST bits are recorded between a resource full message for the I-CNT and the
next program trace message, the I-CNT overflow can be ignored by the tool. In this case,
the HIST packet transmitted by any resource full messages and the next program trace are
concatenated to provide the full HIST information.

Multiple I-CNT resource full messages can be received between other program trace
messages. In these cases, the HIST packets are concatenated, and the I-CNT values are
added only when no HIST bits were recorded between the resource full messages.

11.3.6.3.5 Interleaved ENGINE1 and ENGINE2 messages

Both ENGINE1 and ENGINE2 may be enabled for program trace at the same time. Each
Engine microcode instruction takes two system clocks to execute. The dual Engine system
alternates instruction completion between ENGINE1 and ENGINE2 so that one module
never completes an instruction in the same clock as the other.The NDEDI block formats and
queues ENGINE1 and ENGINE2 messages in the order they are generated. There is no way
for the development tool to infer any other temporal information from the eTPU messages.

11.3.6.4 Timing Diagrams

Note that all of the following timing diagrams assume a 3-bit SRC size and either a 4-bit
MDO port or a 16-bit MDO port. The state variable is not a signal, but instead is derived
from MSEO. It is included for clarity. Refer to Figure 11-20 for MSEO state diagram.

The following abbreviations are used for the state variable in the diagrams:

• ID = Idle

• SM = Start message

• NT = Normal transfer

• EP = End packet

• EM = End message

1The eTPU does not have a conditional indirect branch. Thus, there is no not-taken indirect branch.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-59
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-42. Resource Full Message, I-CNT Overflow

Figure 11-43. Resource Full Message, HIST Buffer Full

Figure 11-44. Indirect Branch with History Message

MCKO

MSEO[1:0]

state

MDO[3:0]

00 00 00 00 00 00 11

ID/EM SM NT NT NT NT NT EM

0xB 0x1 0x0 0x6 0x0 0x0 0x1

TCODE = 27
SRC = 0b000
RCODE = 0b0000
HIST = 0x803

MCKO

MSEO[1:0]

state

MDO[15:0]

00 11

ID/EM SM EM

0xA21B 0x0016

TCODE = 27
SRC = 0b000
RCODE = 0b0001
HIST = 0x0b5

MCKO

MSEO[1:0]

state

MDO[15:0]

01 01 11

ID/EM EP EP EM

0x9A9C 0x030D 0x000A

TCODE = 28
SRC = 0b010

HIST = 0x00A

I-CNT = 0x4D
U-ADDR = 0x030D
11-60 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-45. Indirect Branch with History Synchronization Message

Figure 11-46. Program Trace Correlation Message

Figure 11-47. Channel Start Service Message

MCKO

MSEO[1:0]

state

MDO[3:0]

00 00 00 01 00 01 00 00 00 11

ID/EM SM NT NT EP NT EP NT NT NT EM

 0xD 0xD 0x7 0x5 0xF 0x7 0x5 0x1 0x2 0x3
TCODE = 29
SRC = 0b111

HIST = 0x032

I-CNT = 0x2B
F-ADDR = 0x157F

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 11

ID/EM SM EP EM

0xBCA1 0x0009 0x000A

TCODE = 33
SRC = 0b010

HIST = 0x00A

EV-CODE = 0xE
I-CNT = 0x4D

TCODE = 58
SRC = 0b011

HIST = 0x08A

I-CNT = 0x09
F-ADDR = 0x07B4

CHAN = 0x01

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 01 11

ID/EM SM EP EP EM

0x42FA 0x0002 0x07B4 0x008A
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-61
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-48. Channel Trace Enable Message with the same value for CHAN and
S-CHAN

Figure 11-49. Channel Trace Enable Message with different values for CHAN and
S-CHAN

Figure 11-50. Channel Register Write Message

11.3.7 Data Trace

Dual engines perform loads and stores to the shared parameter RAM (SPRAM). The
NDEDI block gathers information about these accesses on a dedicated bus. The NDEDI
block traces all SPRAM accesses that meet the selected address range and attributes. This
includes accesses from either engines as well as coherent dual-parameter controller (CDC)

TCODE = 59
SRC = 0b010

F-ADDR = 0x542C
CHAN = 0b00001

S-CHAN = 0b00001

MCKO

MSEO[1:0]

state

MDO[15:0]

00 11

ID/EM SM EM

0x02DB 0x150B

TCODE = 59
SRC = 0b010

F-ADDR = 0x542C
CHAN = 0b00100

S-CHAN = 0b00001

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 11

ID/EM SM EP EM

0x02DB 0x150B 0x0004

MCKO

MSEO[1:0]

state

MDO[15:0]

10

ID/EM EM

0x34BC

TCODE = 60
SRC = 0b010
CHAN = 0x1A
11-62 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

accesses. SPRAM accesses can have data sizes of 8, 24, and 32 bits. The NDEDI block
supports all three data sizes.

Whenever performing 8-bits accesses, the eTPU accesses the 8 most significant bits of the
word addressed, while the 24-bits accesses are accomplished by accessing the 24 least
significant bits. Thus, since the eTPU system uses the Big Endian convention and since the
eTPU data addresses are byte-relative the two least significant bits of the transmitted
address follows the convention shown in Table 11-24.

11.3.7.1 Data Trace Message Formats

There are four types of data trace messages (DTMs):

• Data write message

• Data read message

• Data write with synchronization message

• Data read with synchronization message

All of the data trace messages contain a SIZE packet. Table 11-25 shows the decoding for
this packet.

11.3.7.1.1 Data Write Message

The data write message contains the data write value and the address of the target location
relative to the address of the previous data trace message from the same source.

The data write message has the format shown in Figure 11-51.

Table 11-24. Two least significant bits for Data Trace Addresses

Value Access

0b00 eTPU 8-bits or 32-bits accesses

0b01 eTPU 24-bits accesses

0b1x Are not meaningful for eTPU

Table 11-25. Data Trace SIZE Packet Decodings

SIZE Packet Access Size

0b00 8-bits

0b01 24-bits

0b10 32-bits

0b11 Not Meaningful
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-63
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.7.1.2 Data Read Message

The data read message contains the data read value and the address of the target location
relative to the address of the previous data trace message from the same source.

The data read message has the format shown in Figure 11-52.

11.3.7.1.3 Data Trace Synchronization Messages

The occurrence of any of the following conditions requires the following data trace
message to be synchronizing:

• Exit of system reset

• Exit of low power mode

• Exit of debug mode

• Write to the development control register or data trace control register1

• Write to any of the eTPU data trace address range registers

• Forced end executed in eTPU engine

• Exit of NDEDI reset

• 255 data trace messages of the same source are queued without synchronization

• Assertion of the event in (EVTI) pin, depending on how the development control
register is configured

• A watchpoint occurrence2

• A queue overrun

Data trace synchronization messages provide the full addresses (without leading zeros) and
ensure that the development tools fully synchronize with data trace regularly. Each
synchronization message provides a reference address for subsequent DTMs, in which only
the unique portion of the data trace address is transmitted.

[6 bits] [K bits] [2 bits] [1-14 bits] [1-32 bits]

TCODE (5) SRC SIZE U-ADDR DATA

Min Length = 10+K bits
Max Length = 52+K bits

Figure 11-51. Data Write Message Format

[6 bits] [K bits] [2 bits] [1-14 bits] [1-32 bits]

TCODE (6) SRC SIZE U-ADDR DATA

Min Length = 10+K bits
Max Length = 52+K bits

Figure 11-52. Data Read Message Format

1Only the source that have the register written will generate a synchronization message.
2A watchpoint occurrence for one engine generates synchronization message for that engine only.
11-64 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There are two types of data trace synchronization messages: data write synchronization and
data read synchronization.

Data Write Synchronization Message

The data write synchronization message has the format shown in Figure 11-53.

Data Read Synchronization Message

The data read synchronization message has the format shown in Figure 11-54.

11.3.7.2 Data Trace Operation

Data tracing is performed by snooping a dedicated eTPU/Nexus interface for SPRAM read
and write cycles. Data trace functions are enabled by setting the appropriate fields in the
following registers:

• ENGINE1 development control (NDEDI_ENGINE1_DC) register

• ENGINE2 development control (NDEDI_ENGINE2_DC) register

• ENGINE1 data trace control (NDEDI_ENGINE1_DTC) register

• ENGINE2 data trace control (NDEDI_ENGINE2_DTC) register

• CDC data trace control (NDEDI_CDC_DTC) register

• eTPU data trace address range 0 (NDEDI_ETPU_DTAR0) register

• eTPU data trace address range 1 (NDEDI_ETPU_DTAR1) register

• eTPU data trace address range 2 (NDEDI_ETPU_DTAR2) register

• eTPU data trace address range 3 (NDEDI_ETPU_DTAR3) register

For details on register configuration, refer to Section 11.2.1, “Register Descriptions.”

The dual engines and CDC data tracing share the same data trace address range registers.
This enables usage of more address ranges for one client when the others are not being
traced, or monitoring a certain range regardless of which client accesses the range.

The eTPU provides information to the NDEDI block when the access is actually being
performed. The NDEDI does not have to track a bus protocol or check for error conditions

[6 bits] [K bits] [2-bits] [1-14 bits] [1-32 bits]

TCODE (13) SRC SIZE F-ADDR DATA

Min Length = 10+K bits
Max Length = 52+K bits

Figure 11-53. Data Write Synchronization Message Format

[6 bits] [K bits] [2-bits] [1-14 bits] [1-32 bits]

TCODE (14) SRC SIZE F-ADDR DATA

Min Length = 10+K bits
Max Length = 52+K bits

Figure 11-54. Data Read Synchronization Message Format
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-65
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

on the accesses, since SPRAM does not generate errors. Any access signaled by the
eTPU/NDEDI interface completes without error. Data trace flow is depicted in
Figure 11-55.

Figure 11-55. eTPU/CDC Data Trace Flow Diagram

11.3.7.2.1 Data Trace Windowing

Data trace windowing is provided so the development tool can decrease the auxiliary port
usage by limiting the accesses that are traced.

Data trace windowing is achieved via the address range defined by the DTSA and the
DTEA fields of the DTAR registers. These registers are shared by ENGINE1, ENGINE2,
and the CDC. SPRAM accesses will be traced if their address fall in any of these ranges and
the specific range is enabled in the data trace control register of the source making the

Reset

Data
read/write
detected?

Address

Store addressQueue Event

Store data

no

no

yes

yes

Queue
 full?

Generate queue
error event

no

yes

Data
 trace
enabled?

yes

no

in any DTAR?
11-66 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

access. Data read and/or data write trace may be enabled via the read/write trace control
fields in the data trace control registers.

Data trace ranges are 32-bit aligned. This alignment is done by making the two least
significant bits of the DTSA and DTEA fields read only. Since the two least significant bits
of DTSA and DTEA are read only and default to different values, DTSA can never equal
DTEA. Table 11-26 shows the relationship between the DTSA and DTEA fields.

11.3.7.2.2 Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2002 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
data read and data write messages.

The address transmitted for a determined source is relative to the address of the previous
data trace message sent for that source. It is generated by XOR’ing the new address with
the previous address and then using only the results up to the most significant ‘1’ in the
result. To recreate this address, an XOR of the (most-significant 0-padded) message address
with the previously decoded address gives the current address. Figure 11-56 shows how a
relative address is generated and how it can be used to recreate the original address.

Table 11-26. Data Trace Address Range Options

Programmed Value Range Selected

DTSA < DTEA DTSA −> <− DTEA

DTSA > DTEA All addresses are out of Range 1

1 Since all addresses are considered to be out of Range, a Data
Trace Event may be recognized if the DTC register is
programmed so that addresses out of range are queued.

DTSA==DTEA Impossible 2

2 DTSA can not be equal to DTEA since the two least significant
bits of these field are always different. DTSA[1:0] = 00 and
DTEA[1:0] = 11.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-67
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-56. Relative Address Generation and Recreation

11.3.7.3 Timing Diagrams

Note that all of the following timing diagrams assume a 3-bit SRC size and either a 4-bit
MDO port or a 16-bit MDO port. The state variable is not a signal, but instead is derived
from MSEO. It is included for clarity. Refer to Figure 11-20 for MSEO state diagram.

The following abbreviations are used for the state variable in the diagrams:

• ID = Idle

• SM = Start message

• NT = Normal transfer

• EP = End packet

• EM = End message

Figure 11-57. Data Write Message

Previous Address (A1) = 0xC10, New Address (A2) = 0xF64

Address Recreation:

Address Generation:

A1 = 1100 0001 0000
A2 = 1111 0110 0100

A1 ^ A2 = 0011 0111 0100

Address Message (M1) = 11 0111 0100

A1 ^ M1 = A2

A1 = 1100 0001 0000
M1 = 0011 0111 0100

A1 ^ M1 = 1111 0110 0100 = A2

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 11

ID/EM SM EP EM

0xD885 0x000E 0x43

TCODE = 5
SRC = 0b010
SIZE = 0b00
U-ADDR = 0x1DB
DATA = 0x43
11-68 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-58. Data Read Message

Figure 11-59. Data Write with Synchronization Message

Figure 11-60. Data Read with Synchronization Message

11.3.8 Watchpoint Trace

The NDEDI module provides eTPU watchpoint messaging via the auxiliary port, as
defined by the IEEE-ISTO 5001-2002 standard.

11.3.8.1 Messaging

The NDEDI block provides watchpoint messaging using IEEE-ISTO 5001-2002
standard-defined public messages. When a watchpoint occurs, a watchpoint event is sent to

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 00 11

ID/EM SM EP NT EM

0xA2C6 0x0001 0x4321 0x1234

TCODE = 6
SRC = 0b011
SIZE = 0b01
U-ADDR = 0x034
DATA = 0x12344321

MCKO

MSEO[1:0]

state

MDO[15:0]

00 01 00 11

ID/EM SM EP NT EM

0x050D 0x004D 0x9987 0x0078

TCODE = 13
SRC = 0b100
SIZE = 0b10
F-ADDR = 0x9A0
DATA = 0x789987

MCKO

MSEO[1:0]

state

MDO[3:0]

00 00 00 01 11

ID/EM SM NT NT EP EM

 0xE 0x8 0x0 0x2 0x0

TCODE = 14
SRC = 0b010
SIZE = 0b00
F-ADDR = 0x004
DATA = 0x00
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-69
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the event queue. If the watchpoint condition occurs while the event queue is not enabled for
storing snapshots, a watchpoint overrun message is generated.

The watchpoint message has the format shown in Figure 11-61.

The values for the WPHIT packet are described in Table 11-27. Notice that WPHIT is never
0 because the message is only generated when a watchpoint has occurred.

11.3.8.2 Error Messages

A watchpoint overrun error event is queued if an watchpoint event occurs and the event
queue is not enabled for storing snapshots. This event is queued as soon as the event queue
becomes empty.

The error message has the format shown in Figure 11-62.

11.3.8.3 Synchronization

Upon the occurrence of a watchpoint, the next program and data trace messages are
synchronization messages. A watchpoint in one of the engines causes data and program
synchronization for that engine only.

[6 bits] [K bits] [7 bits]

TCODE (15) SRC WPHIT

Length = 13+Kbits

Figure 11-61. Watchpoint Hit Message Format

Table 11-27. WPHIT Values

Value Description

0b1xxxxxx eTPU watchpoint 1 (based on BWC1 register)

0bx1xxxxx eTPU watchpoint 2 (based on BWC2 register)

0bxx1xxxx Channel register write watchpoint

0bxxx1xxx Host service request watchpoint

0bxxxx1xx Link register watchpoint

0bxxxxx1x MRL watchpoint

0bxxxxxx1 TDL watchpoint

[6 bits] [K bits] [5 bits]

TCODE (8) SRC ECODE (0b00110)

Length = 11+K bits

Figure 11-62. Watchpoint Overrun Error Message Format
11-70 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.8.4 Timing Diagrams

Note that all of the following timing diagrams assume a 3-bit SRC size and a 16-bit MDO
port. The state variable is not a signal, but instead is derived from MSEO. It is included for
clarity. Refer to Figure 11-20 for MSEO state diagram.

The following abbreviations are used for the state variable in the diagrams:

• ID = Idle

• SM = Start Message

• NT = Normal Transfer

• EP = End Packet

• EM = End Message

Figure 11-63. Watchpoint Message

Figure 11-64. Watchpoint Overrun Error Message

11.3.9 eTPU Message Queue

The NDEDI implements an external Q_SIZE location queue that is shared by data trace,
ownership trace, program trace, watchpoint, error and debug status events.

One single microcycle may generate a combination of data trace, ownership trace, program
trace, watchpoint, error and debug status events. The data trace events related to one engine
have different timing though, being generated at the system clock subsequent to the other
events. Thus, since the ENGINE1 and ENGINE2 alternate instructions, a snapshot may

MCKO

MSEO[1:0]

state

MDO[15:0]

10

ID/EM EM

0x028F

TCODE = 15
SRC = 0b010
WPHIT = 1

MCKO

MSEO[1:0]

state

MDO[15:0]

10

ID/EM EM

0xCC8

TCODE = 8
SRC = 0b011
ECODE = 0b00110
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-71
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

contain data trace information regarding to one engine and other events information related
to the other engine.

With the occurrence of one or more events at one specific cycle, a snapshot of the signals,
that can give information about all events, is queued in only one location of the queue. The
information of the source which have generated the events is also queued at the same
position, so the message formatter can reconstruct the messages of the occurred events.
Figure 11-65 shows the event queue block diagram.

The queue operation is transparent to the user.

The event queue is read whenever there is at least one position of the FIFO occupied and
there are no concurrent writes to the queue. Thus, the appropriate message is formatted and
a request to send the message is sent to the Nexus Port Controller (NPC). The request will
be assigned a level based on the number of used positions in the Queue as shown in
Table 11-28.

l

According to the request priority of the NDEDI and the other Nexus modules within the
chip, the NPC will grant the Auxiliary port to the NDEDI, and as soon as the auxiliary port
is granted, the NDEDI will send the message. If there are other pending messages in the
same snapshot, a new request is sent and a new grant is expected from the NPC. The next
snapshot is only read when there are no pending messages in the event queue and there are
no concurrent write accesses to the Queue.

If more than one message event are to be sent, the message formatter sends first the
messages related to debug status, then the messages related to watchpoints, then the
messages related to program trace, and last the data trace messages. If the Q_SIZE position
queue is full and an event occurs, the event queue is disabled for storing any information.
When the queue gets empty, an error event is queued containing information of all lost
events. At this point, snapshots may be queued again.1

NDEDI maintain temporal ordering of messages relative to ENGINE1, ENGINE2 and
CDC, but not relative to messages generated by other clients sharing the auxiliary port.

Table 11-28. MDO Request Level

Level Used positions (q) as a fraction Queue size

0 q = 0

1 1 ≤ q < 0.5

2 0.5 ≤ q < 0.75

3 0.75 < q

1If ENGINEn is in stall condition, and an error happens due to the other engine or to the CDC operation, the ENGINEn
operation will only be resumed after the queue is empty.
11-72 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Functional Description

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-65. Event Queue

11.3.9.1 Queue Control

The queue is able to perform a single read or write operation per system clock. Thus, since
there are no buffers to neither traces nor watchpoint events, the message formatter can only
read the event queue if no events happen at the same time.

11.3.9.2 Error Messages

A trace or watchpoint overrun error occurs when an event cannot be queued. The error code
(ECODE) within the error message indicates what type of trace overrun has occurred and
that messages might have been lost for any or all of these events. Table 11-20 shows the
error code encodings for the various overrun error conditions.

When information is lost, the event queue is disabled and no events are queued until the
event queue gets empty. After the event queue gets empty an error message is queued with
the information of which information was lost for each engine. At this point the queue is
enabled for storing snapshots again.

The error message indicates which source lost information and what kind of trace
information was lost. If multiple sources lose information at the same time multiple error
messages are sent.

The error message has the format shown in Figure 11-66.

Program trace/
ownership trace

monitor

Data Trace
Monitor

Watchpoint
Trace Monitor

 Event
queue

Message
Formatter

MDO[N-1:0]

MSEO[1:0]Queue
Control

E
v
e
n
t

S
n
a
p
s
h
o
t

eTPU Input Signal

NPC arbitration
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-73
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Initialization/Application Information

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.9.3 Timing Diagrams

Note that the following timing diagram assumes a 3-bit SRC size and a 16-bit MDO port.
The state variable is not a signal, but instead is derived from MSEO. It is included for
clarity. Refer to Figure 11-20 for MSEO state diagram.

The following abbreviations are the values for the state variable in the diagram:

• ID = Idle

• SM = Start message

• NT = Normal transfer

• EP = End packet

• EM = End message

Figure 11-67. Error Messages (Program/Data/Ownership Trace Overrun)

Notice that three overrun messages are transmitted in Figure 11-67. The first is an overrun
indication for ENGINE1, the second is an overrun indication for ENGINE2, and the third
is an overrun indication for the CDC.

11.4 Initialization/Application Information

11.4.1 Accessing NDEDI Tool-Mapped Registers

To initialize the JTAG port for register accesses, the following sequence is required:

1. Enable the Nexus TAP controller

2. Retrieve device ID if needed

3. Load the Nexus TAP controller with the NEXUS-ENABLE instruction

[6 bits] [K bits] [5 bits]

TCODE (8) SRC ECODE

Length = 11+K bits

Figure 11-66. Error Message Format

MCKO

MSEO[1:0]

state

MDO[15:0]

10 11 10 11 10

ID/EM EM ID EM ID EM

0x0E88 0x0000 0xEC8 0x0000 0xF08

TCODE = 8
ENGINE1 SRC = 0b010

ECODE = 0b00111

ENGINE2 SRC = 0b011
CDC SRC = 0b100
11-74 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Initialization/Application Information

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To write control data to NDEDI tool-mapped registers, the following sequence is required:

1. Write to the client select control register, if needed

2. Write the 7-bit register index and set the write bit to select register with a pass
through the SELECT-DR-SCAN path in the JTAG state machine

3. Write the register value with a pass through the SELECT-DR-SCAN path. Notice
that the prior value of this register is shifted out during the write

To read status and control data from NDEDI tool-mapped registers, the following sequence
is required:

1. Write to the client select control register if needed

2. Write the 7-bit register index and clear write bit to select register with a pass
through SELECT-DR-SCAN path

3. Read the register value with a pass through the SELECT-DR-SCAN path. Data
shifted in is ignored

11.4.2 Program Trace Reconstruction

11.4.3 Microcode Development Support

The following sections describe the steps required to perform various class 1 features with
the NDEDI block.

11.4.3.1 Read and Write SPRAM In Debug Mode

Reading and writing to the SPRAM is done through Nexus read/write access hardware
external to the NDEDI module. SPRAM reads and writes are done the same in debug mode
as they are in run mode.

11.4.3.2 Read and Write eTPU Internal Registers in Debug Mode
1. Select an area of the SPRAM to be used for dumping the register values

2. Read the current value of those SPRAM locations and store them

3. Write to the SPRAM as needed for writing internal eTPU registers

4. Execute external microcode that reads values from the SPRAM location and writes
the values to registers or reads registers and writes the values to the SPRAM. See
Section 11.4.3.8, “Execute Forced Microcode Instruction in Debug Mode,” for
more details

5. Read the SPRAM as needed to retrieve register read values

6. Write the SPRAM back to the original values
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-75
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Initialization/Application Information

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.4.3.3 Enter Debug Mode at the Negation of Reset

To enter debug mode at the negation of reset, configure the eTPU’s development control
register during reset so that the DBE is set. Configure other bits as appropriate.

11.4.3.4 Enter Debug Mode During Normal Execution

To enter debug mode during normal execution, write the eTPU’s development control
register to set the DBE and DBR bits. Configure other bits as appropriate.

11.4.3.5 Stop Program Execution on a Breakpoint

There are four possibilities to stop the program execution on a Breakpoint:

1. Program execution stops at the end of the current microcycle when a synchronous
breakpoint condition is reached. A synchronous breakpoint condition occurs due to
a twin engine breakpoint, an external source (ipg_debug) request (depending on the
value of the CBT field at the DC register) or due to certain conditions at the
beginning of a thread (refer to Section 11.2.1.10, “ENGINEn
Breakpoint/Watchpoint Control 3 Register (NDEDI_ENGINEn_BWC3) for more
information”).

2. Program execution stops at the beginning of the current microcycle when an
asynchronous breakpoint condition is reached. An asynchronous condition occurs
due to a SPRAM access breakpoint, an illegal instruction breakpoint, or at the first
microinstruction after a write operation to the CHAN register

3. Program execution stops at the end of the current thread if a twin breakpoint or an
external source (ipg_debug) requests to enter in debug mode and the NDEDI is
programmed to enter in debug mode only at the end of the current thread

4. Whenever fetching an instruction, if the microprogram counter matches the BWA
related to one of the breakpoint conditions programmed for breaking into an
instruction fetch, the instruction is tagged indicating that it should not be executed.
Thus, the microengine halts just before the execution of this instruction if this
instruction should be executed. So, it won’t stop in case the tagged instruction is the
instruction following a Jump with Flush instruction

Refer to Section 11.4.3.7, “Set Breakpoint or Watchpoints,” and Section 11.2.1, “Register
Descriptions,” for details on configuring breakpoints.

11.4.3.6 Single Step Instructions and Re-Enter Debug Mode

To single step an instruction from shared code memory in debug mode, write to the engine’s
development control register so the CBR bit is asserted, the DBR bit is cleared and the SS
bit is set. Single stepping this way causes the Engine to exit debug mode for a microcycle
11-76 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Initialization/Application Information

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

where the TCRs, decrementors, and microprogram counter can update. Program Trace
events are not generated within Single Step operation.

11.4.3.7 Set Breakpoint or Watchpoints

There are two main eTPU breakpoint/watchpoint sources that are independent of each other
but have identical configuration registers. Each can be configured as either a breakpoint or
watchpoint that detects reads and/or writes, compares data and/or address. Each can be
configured to occur only on certain channel services.

In addition, there is a breakpoint/watchpoint that can be configured to occur when the
CHAN register is written to a certain value.

There are also four channel service breakpoint/watchpoints that can be configured to occur
when a specific channel is serviced for one of the following reasons: host service request,
link request, match detect, and transition detect.

Breakpoints cause the Engine to halt. Watchpoints cause a watchpoint hit message. All
breakpoint/watchpoint sources can be configured to assert EVTO on an
breakpoint/watchpoint occurrence.

Refer to the applicable implementation-specific reference manual for detailed descriptions
of breakpoint/watchpoint registers.

11.4.3.8 Execute Forced Microcode Instruction in Debug Mode

To execute a forced instruction in debug mode, write the instruction into the
microinstruction debug register. This mechanism does not cause the engine to exit debug
mode so the microprogram counter is not updated (unless a branch instruction is executed)
and the TCRs and decrementors are not updated if the CLKS bit is asserted in the
development control register. Executing instructions in this manner is useful for reading
and writing internal engine registers.
MOTOROLA Chapter 11. Nexus Dual eTPU Development Interface (NDEDI). 11-77
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Initialization/Application Information

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11-78 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 12
Initialization/Application Information

12.1 Configuration Sequence
After initial power-on reset the eTPU remains in an idle state, requiring initialization of
several registers before any function can begin execution. Also, if the SCM is implemented
in RAM, it should be initialized with the eTPU application code prior to configuring the
ETPU. Configuration procedures are summarized as follows:

• If SCM is implemented as RAM, load the eTPU application code.

• Initialize the SCM MISC logic (see Section 10.3.1, “SCM Test for MISC (Multiple
Input Signature Calculator)”).

• Initialize the eTPU time base configuration registers (ETPUTBCR) to setup:

— TCR1 and TCR2 prescalers and clock sources.

— Select digital filtering mode.

— TCRCLK signal filter control.

— Angle mode operation (if necessary).

• Initialize the eTPU engine configuration register (ETPUECR) to setup:

— Entry table base.

— Filter prescaler clock control.

• Initialize eTPU configuration register (ETPUREDCR) to setup TCR1/2 resource
client/server operation.

• Write to the Channel Configuration registers (ETPUCxCR) to choose the function
to be performed by each channel, and its parameter base address.

• Write to channel status control register (ETPUCxSCR) to choose the possible
variations within the function flow (FM bits).

• Write to SPRAM for parameter initialization of each configured channel.

• Write to channel x Host Service Request registers (ETPUCxHSRR) to initialize the
active channels.1

1. 1 This operation is done before enabling active channels to avoid time events happening before the channel
initialization.
MOTOROLA Chapter 12. Initialization/Application Information. 12-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Reset Options

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Write to the channel interrupt enable register (ETPUCIER) if interrupts are to be
enabled from the appropriate channels. Likewise for Data Transfer Requests
(ETPUCDTRER). This can be done through ETPUCxCR.

• Write to channel x configuration registers (ETPUCxCR) to enable each channel by
assigning it a high, middle, or low priority (CPR field).1

• Monitor the host service request registers (ETPUCxHSRR) for completion of
initialization.

• Write ETPUMCR[GTBE] = 1 to start TCR1/TCR2 time base counting at same time
in both Engines.

See Appendix B, “eTPU Initialization Code Example.”

12.2 Reset Options

12.2.1 Hardware Reset

Both engines and common logic are reset, and even the System Configuration and Global
Channel registers assume their reset values.

12.2.2 Software Reset

The eTPU has no Software reset. It only has the Force END mechanism to break
(suspected) infinite loops if they appear to have been entered. For more information, see
field FEND in Section 4.1.4, “eTPU Engine Configuration Register (ETPUECR).”

12.3 Multiple Parameter Coherency Methods
This section contains descriptions of two methods for coherent transfer of multiple
parameters between the host and eTPU. Both methods involve the use of two parameter
areas: the transfer parameter area (hereafter called TPA), which is the SPRAM area directly
accessed by the host for reads and writes, and the permanent parameter area (hereafter
called PPA), which are the SPRAM positions where channel parameters are normally
accessed by function microcode. Note that parameters in either TPA or PPA do not have to
be in sequential addresses. TPAs and PPAs allocation are completely defined by the
application, and there may be any number of them, independent of the channels.

The methods described here are not the only solutions for the coherent transfer problem,
and both can coexist in eTPU and even used in combination. Also note that for transfers of
a pair of parameters, the coherent dual-parameter controller is faster and has less impact on
both eTPU and host performance. That being said, the two methods are:

• Transfer Service: upon host service request, a microengine thread transfers data
from/to a TPA to/from a PPA.Coherency is guaranteed by the fact that a thread is
12-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Programming Hints and Caveats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

atomic with respect to other threads in the same engine, and so are its transfers. If
parameters in PPA are shared by both engines, hardware semaphores have to be used
to access them.

• Mailbox: for host to eTPU transfers, the microcode checks a flag set by the host,
which indicates the existence of new parameter data in the TPA. The microcode can
then either access TPA data directly or copy it to the PPA. For eTPU to host transfers,
when microcode changes PPA, it copies them to the TPA and flags updated TPA data
to host using an interrupt or a data transfer request. The mailbox flag is reset when
data is copied by the eTPU microcode, when it transfers TPA to PPA (possibly
followed by an interrupt), or by the host, when it reads data from the TPA. This
indicates that TPA is free for another transfer.

Transfer service has the advantage of separating the task of data transfer from the functional
service thread that accesses the parameters, with less impact to the latter. However,
compared to the mailbox method, the transfer service method has a longer average latency,
because the transfer service thread has to contend for a time slot to execute. This latency
can be minimized if transfer service thread is assigned to a separate channel with higher
priority, but even this does not guarantee that PPA is updated before the next execution of
the functional thread that uses it.

The mailbox method, on the other hand, makes the functional thread check for the existence
of new data (host to ETPU). It does not have to be responsible for the transfer. The mailbox
method may access the TPA directly, and once the access is finished, a transfer service can
be used to copy data from TPA to PPA.

12.4 Programming Hints and Caveats

12.4.1 Atomic Dual Access After a Call, Return

A dual, back-to-back parameter access is not atomic after a call, a jump, or a return if they
occur in parallel with an odd SPRAM access. It is safer to make a pair of parameter accesses
that must be coherent begin at the second instruction after a call/jump/return.

12.4.2 Resource Polling

The use of polling while waiting for a condition or a resource (except semaphore lock)
should be avoided in order not to hang the processor in long loops. This general
programming guideline is greatly enforced in eTPU microengine, as a thread cannot be
suspended for any reason. Safer polling, albeit with long and indeterministic latency, can
be obtained if one issues a channel link to itself and terminates the thread. The microengine
is then free to do other tasks, and the next poll happens at the next time the channel is
serviced. This mechanism can be combined with finite (timed out) loops for better latency.
MOTOROLA Chapter 12. Initialization/Application Information. 12-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.4.3 Changing Channel Function, Parameter Base, or Entry
Table Scheme

Channel Function, Parameter Base Address and Entry Table Scheme are determined by the
ETPUCxCR register fields CFS, CPBA and ETCS. They cannot be changed when the
channel is enabled. If the channel is disabled first, one may still have service requests from
the previous function, so before the channel is enabled again one must be sure that:

• the first thread executed in the new function is the initialization one.

• the initialization thread of the new function clears any previously pending service
request.

Follow a safe procedure for function changing:

1. disable the channel (write ETPUCxCR field CPR=00).

2. change the function configuration (ETPUCxCR fields CFS and/or CPBA and/or
ETCS).

3. request the initialization thread, writing ETPUCxHSRR with the initialization HSR
(channel still disabled).

4. enable the channel (write ETPUCxCR field CPR > 0); the initialization HSR is
serviced before any other formerly pending service requests, clearing them.

12.4.4 Checking and Clearing Interrupts of a Stopped Engine

An engine may be stopped with interrupts (or DMA requests) pending. This includes the
case when the engine’s MDIS bit is set and a thread is still running: the thread will complete
execution, possibly issuing an interrupt or DMA request before the engine stops, setting the
STF bit.

As soon as the engine stops the channel registers become inaccessible, issuing bus errors
when accessed. However, interrupts and DMA requests can still be checked and cleared
through the Global Channel Registers. DMA requests can also be cleared by the hardware
handshaking with the DMA controller when the engine is stopped.

12.5 Estimating Worst Case Latency
Reliable systems are designed to work under worst-case conditions. This section explains
how to estimate worst-case latency (WCL) for any eTPU function in any system. This
section covers the following topics:

• Introduction to worst-case latency

• Using worst-case latency estimates to evaluate performance

• Priority scheme details used in WCL analyses

• First-pass WCL analysis
12-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Second-pass WCL analysis

The first-pass WCL analysis is based on a deterministic, generalized formula that is easy to
apply. Because of the generalizations in the formula, the first analysis result is almost
always much worse than the real worst case. If the desired system performance is within
the limits of this first analysis, then no further analysis is required; the system is well within
the performance limits of the eTPU. If the desired system performance exceeds that
indicated by the first analysis, the second-pass WCL analysis should be applied. The
second-pass analysis is not a generalized formula, but rather uses specific system details for
a realistic worst-case estimation.

12.5.1 Introduction to Worst-Case Latency

NOTE
In this section the latency calculation and examples refer to old
TPU functions such as PWM, DIO etc. These functions use
single action channels which have single transition and single
match functionality. They are not optimized for the eTPU
hardware enhancement which support various double action
modes. These examples are for reference only. New eTPU
functions which are optimized for the new hardware will
impose different latency calculations.

Worst-case latency for a channel is the longest amount of time that can elapse between the
execution of any two function states on that channel. For example, if in a particular system,
channel 5 is running PWM, the worst-case latency for channel 5 is the longest possible time
between the execution of two PWM threads. The worst case time includes the time the
execution unit takes to execute threads for other active channels, and other delays described
later in this section. Refer to Figure 12-1.

Figure 12-1. Worst-Case Latency for PWM

Worst-case latency for a channel depends both on the function running on that channel and
on the activity on other channels. Since the 32 eTPU channels must all share the same

Additional Channel Threads
and other delays.

Worst Case Latency
for Channel 5

PWM Thread
executed for
Channel 5

Next PWM Thread
executed for
Channel 5
MOTOROLA Chapter 12. Initialization/Application Information. 12-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

execution unit, execution speed of a particular function varies with each system. The PWM
thread response is faster if there are no other active channels than if other channels are also
active. In addition, changing the priority scheme and channel number assignments can
change performance for a function even if the same set of functions are still active.

Each function is divided into threads, as shown in Figure 12-2, see also Section 5.1,
“Functions and Threads.” The eTPU microengine executes one thread of a function at a
time. For example, the microengine might execute thread 1 of PWM, then thread 3 of DIO,
then thread 2 of PWM, then thread 2 of SM, and so on. The amount of time the eTPU
microengine grants a function to execute a thread varies with the number of microcode
instructions in the thread.

Since there is only one eTPU microengine (in each eTPU engine), the eTPU cannot actually
execute the software for multiple functions simultaneously. However, the hardware for
each of the channels is independent. This means that, for example, all 32 channel signals
can change thread at the same moment, provided that the function software sets up the
channel hardware to do so beforehand.

With host CPU code, the system designer assigns functions to channels and initializes the
functions. After initialization, functions typically run without host intervention, except for
eTPU channel interrupts to the host to give or receive information. Most functions can run
continuously with periodic servicing from the eTPU microengine. As required, the
channels request service from the eTPU microengine and the eTPU scheduler determines
the order in which the channels are serviced. Worst-case latency for a channel can be
derived from the details of the priority scheme that the scheduler uses. For scheduler
details, see Section 5.3, “Scheduler.”

Figure 12-2. Function Threads

DIO Function Threads PWM Function Threads

SM Function Threads

S1

S2 S3 S4

S5 S6

S1

S2 S3 S4

S5 S6

S1

S2 S3 S4
12-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.5.2 Using Worst-Case Latency Estimates to Evaluate
Performance

Once the WCL is found for a channel, the user must determine how to use this number to
analyze performance. To analyze the performance of a channel running the PWM function,
for example, some information about what happens in each thread is necessary.

The following example refers to an old TPU PWM function, which is not optimized to the
eTPU enhanced hardware. For the PWM, thread 1 is the initialization thread, and threads 2
and 3 are used during normal function execution. PWM threads 4, 5, and 6 are for special
modes and will be assumed to be unused on channel 5.

 Thread 2 writes a time into the channel 5 match register and performs other operations that
will cause the channel 5 signal to go from low to high at the time indicated in the match
register (match time). At match time, the signal goes high and channel 5 requests service
from the eTPU microengine to execute thread 3. Thread 3 writes a time into the channel 5
match register and performs other operations that will cause the channel 5 signal to go from
high to low at match time. At match time, the signal goes low and channel 5 requests service
from the eTPU microengine to execute thread 2. A PWM wave is kept running on the
system by the eTPU executing thread 2, then thread 3, then thread 2, then thread 3, and so
on.

Since the definition of worse-case latency assumes a fully loaded running system,
initialization threads are not part of worst-case calculations. For the channel 5 example, the
two PWM threads in Figure 12-1 are thus the two normal running threads, threads 2 and 3.

Figure 12-1 does not define which thread is thread 2 and which is thread 3. Since the
worst-case latency derived from the first-pass analysis is the worst case between any 2
threads (not counting initialization threads), it is safe to say that the worst-case latency
shown in Figure 12-2 represents both the worst-case high time and the worst-case low time.

Notice in Figure 12-1 that worst-case latency is drawn from the end of the execution of the
first PWM thread to the end of the execution of the next PWM thread. It is drawn from end
to end because the microcode instructions that make up the threads control the channel
hardware. To make sure that all the microcode instructions needed to change the pin thread
have been executed, it is necessary to include the execution time of the second thread.

12.5.3 Priority Scheme Details Used in WCL Analysis

The user assigns functions to channel numbers and gives each active channel a priority
level of high, middle, or low. The scheduler uses the channel number and channel priority
level to determine the order in which to grant service.

The scheduler allocates time slots to specific priority levels of high, middle, or low. One
function state is executed in each time slot. The length of a time slot varies according to the
length of the executing state. When fully loaded, the scheduler always assigns time slots in
MOTOROLA Chapter 12. Initialization/Application Information. 12-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

a seven-slot sequence, see Figure 12-3. After a seven-slot sequence is completed, another
seven-slot sequence begins, see Figure 12-4. Note that in the eTPU, when no service
request exists, the scheduler goes to thread 1, but the WCL calculation considers the full
load.

Figure 12-3. Time-Slot Sequence

This sequence scheme gives higher-priority channels more service time than lower-priority
channels. High-priority channels are allocated four of seven time slots, middle-priority
channels are allocated two of seven time slots, and low-priority channels are allocated one
of seven time slots.

Figure 12-4. Multiple Time-Slot Sequences

12.5.3.1 Priority Passing

If no channel of the priority level assigned to the time slot is requesting service, the eTPU
scheduler can pass priority to other levels. If no high-level channel is requesting service
during a high level time slot, a middle-level channel is granted service; or, if no middle
level-channel is requesting service, a low-level channel is granted service. If no
middle-level channel is requesting service during a middle-level time slot, a high-level
channel is granted service; or, if no high-level channel is requesting service, a low-level
channel is granted service. If no low-level channel is requesting service during a low-level
time slot, a high-level channel is granted service; or, if no high-level channel is requesting
service, a middle-level channel is granted service. If no channel is requesting service, the
time slot sequence is reset to state 1 and the scheduler idles until a request is received.

H M H L H M H

Time Slot Transitions
(10 CPU Clock Cycles Each)

Time Slots of
Varying Lengths

H M H L H M H

New 7-slot
Sequence

H M H L H M H H M H

New 7-slot New 7-slot
Sequence Sequence
12-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Priority passing is implemented in hardware and does not contribute to worst case latency.

12.5.3.2 Time-Slot Transition

After each time slot, the eTPU must prepare for the next time slot. This preparation time
between each time slot is called a time-slot transition. See Section 5.1.2, “Time Slot
Transition.” Time-slot transitions take from 6 to 10 system clocks.

12.5.3.3 Channel Number Priority

If more than one channel of a priority level is requesting service, the lowest numbered
channel is granted service first. For example, if channels 0, 5, and 9 are all high-level
channels requesting service during a high time slot, channel 0 is granted service first.
Continuing this example, if channel 0 requests service again immediately after being
serviced, it is not serviced again until channels 5 and 9 are serviced. This scheme is
implemented so that continuously-requesting low numbered channels do not take all the
time on the eTPU execution unit and leave no time for other channels.

The scheduler uses registers to keep track of which channels have been serviced and which
require servicing. Each channel has two register bits: a service request register (SRR) and
a service grant register (SGR). The SRR is set when a channel requests service. After the
channel has been granted service, the SGR is set and the SRR is cleared.

SGRs are not cleared individually by channel, but rather as priority level groups. The
clearing of a group of SGRs begins a new cycle for that priority level. An SGR group is
cleared on the condition that a channel of that priority level has just been serviced, and no
other channel of that priority level is requesting service (has a set SRR) and has not been
granted service (has a clear SGR).

For example, if a middle-priority channel has just been serviced (either in a middle-priority
time slot or a high or low-priority time slot gained by priority passing), the SRRs and SGRs
of all middle-priority channels are compared. If there is no middle-priority channel with its
SRR set and SGR cleared, the scheduler clears all middle-level SGRs. If there is a
middle-level channel with its SRR set and SGR cleared, the scheduler does not clear the
SGR group, and the requesting middle-level channel is serviced on the next middle-level
time slot (or possibly sooner by priority passing).

12.5.3.4 SPRAM Collision Rate

Most function threads read or write to the eTPU SPRAM at least once. Because both the
eTPU microengine and the host can access the SPRAM but not at the same time, the
microengine may suspend execution during the SPRAM access while waiting for the host
to finish accessing the SPRAM. At other times the host may wait for the microengine. Wait
states can take up to two system clocks, when the host accesses the SPRAM directly,
without using CDC. Microengine wait-states must be added into the worst-case latency
MOTOROLA Chapter 12. Initialization/Application Information. 12-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

calculation. The system designer should estimate the percentage of SPRAM accesses in the
system that will result in microengine wait-states. This percentage is called the RAM
collision rate (RCR). In each collision with direct host accesses to the SPRAM, the
microengine waits for two system clocks.

In the eTPU the coherent dual-parameter controller (CDC) may also access the SPRAM for
atomic transfers of two parameters. The eTPU microengine may wait on this operation (if it
is in service time) until the transfer is complete. The CDC always transfers two parameters,
making four consecutive accesses (read, write, read, write) of one system clock each. The
system designer should estimate the percentage of SPRAM accesses in the system that will
result in a microengine wait due to coherent transfer, and multiply it with the average
number of system clocks the microengine waits for each transfer. This percentage is called
the coherent parameter collision rate (CPCR).

In addition, microengine-to-microengine multiple parameter coherent communication,
using the hardware semaphores, may hold one microengine which is waiting to lock the
semaphore while the other microengine is holding it. This waiting is due to a software loop,
not hardware wait-states. Note that single parameter access of one microengine does not
affect the timing of the other microengine due to SPRAM time interlace. This implies that
single parameter microengine-to-microengine communication does not affect the
performance. The microengine which is waiting for the semaphore will loop until it is freed
by the other microengine. This time depends on the eTPU application. The system designer
should estimate the percentage of microengine-to-microengine coherent multiple
parameter coherent communication that will result in the eTPU, and multiply it with the
average number of system clocks the microengine is stalled for each such transfer. This
percentage is called CCR (communication collision rate).

A 100% collision rate for a system is the theoretical worst case. In many systems, however,
the RCR, CPCR, and CCR would be very low, sometimes even near 0%. This is because
the eTPU is an independent processor capable of servicing most function needs. Thus, the
host rarely needs to access the eTPU parameter RAM. Also coherent
microengine-to-microengine communication of more than one parameter may be rare. To
find a realistic RCR and CPCR, the system designer should evaluate the host code and find
the percentage of time it accesses the eTPU parameter RAM with or without using the
CDC. This percentage gives a good RCR and CPCR. The eTPU application provides a
good estimation of CCR.

NOTE
The programming practice of polling a flag in the eTPU
SPRAM causes a very high RCR and should be avoided in
high-performance systems.

After the collision rate for a system is found, it can be applied to the WCL calculations for
each channel. The system designer can use the collision percentage and the number of
12-10 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SPRAM accesses (with and without semaphores) to estimate the eTPU loop time for a
function. Note that in old TPU functions CPCR and CCR are both zero.

The estimation of eTPU stall time is as follows:

Variables:

• N1 = number of simple RAM accesses in the longest thread

• RCRWait = maximum system clock stall time for simple RAM collision = 2

• CPCRWait = average system clocks for coherent parameter transfer (using CDC).

• N2 = number of eTPU-eTPU semaphore RAM accesses in the longest thread

• CCRWait = average system clocks for microengine-microengine communication
transfer.

Estimated stall time:

Function eTPU maximal wait time =
N1 * (RCR * RCRWait + CPCR * CPCRWait) + N2 * CCR * CCRWait

12.5.4 First-Pass Worst-Case Latency Analysis

Following is the first-pass calculation of worst-case latency for a channel. Remember that
this analysis uses generalizations that usually produce a result much worse than the real
worst case. If the worst-case result from the first analysis is too long for the desired
performance, use the second analysis for a more realistic worst-case analysis.

12.5.4.1 Worst-Case Assumptions and Formula

To estimate worst-case latency for a channel, assume this worst-case condition: the channel
has just been serviced in a time slot of its priority level, and all other channels in the system
are continuously requesting service and have cleared SGRs. The worst-case latency is the
time from the end of the channel’s service until the end of the channel’s next service. See
Figure 12-5.

Figure 12-5. First-Pass Worst-Case Latency

To estimate worst-case latency:

• Find the worst-case service time for each active channel.

Channel X
Serviced

Worst Case Latency Channel X

Other Channels Serviced

Channel X
Serviced Next
MOTOROLA Chapter 12. Initialization/Application Information. 12-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Using the H-M-H-L-H-M-H time-slot sequence, map the channels that are granted
for each time slot.

• Add time for six-clock time-slot transitions.

12.5.4.2 Finding the Worst-Case Service Time for Each Active Channel

A table for eTPU functions should lists the longest threads (not counting initialization
threads) for the functions, and the number of eTPU SPRAM accesses in the longest state
(semaphored and non-semaphored). These figures will be used for estimating microengine
wait time.Table 12-1 is an example for old TPU functions in which there are only simple
parameter RAM accesses. It does not take into consideration the CDC operation and
microengine-to-microengine communication.

The worst-case service time for each channel is: (CPCR=CCR=0)

Longest thread + (number of RAM accesses in longest thread * RCR * 2 clocks)

NOTE

The formula adds 1 RAM accesses for the parameter preload
that occurs during TST. There are actually 3 accesses during
TST, but only the first one can receive wait-states.

Table 12-1. Longest Threads and RAM Accesses for old TPU Functions

Function Longest Thread RAM Accesses

DIO 10 4

ITC 40 (no linking)
42 (linking)

7

OC 40 7

PWM 24 4

SPWM
Mode 0
Mode1
Mode 2

14
18

20 (no linking)
22 (linking)

4
4
4
4

PMA 94 8

PMM 94 8

PSP
Angle-Angle Mode
Angle-Time Mode

76
50

6
3

12-12 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.5.4.3 Mapping the Channels for Each Time Slot

To determine when a channel will be serviced again, it is necessary to determine which
other channels will be serviced first. Do this by assuming all channels are continuously
requesting service and mapping the channels into the time-slot sequence.

12.5.4.4 Adding Time for Time-Slot Transitions

Add six system clocks for time-slot transitions which occur after each time slot.

12.5.4.5 First-Pass Analysis Worst-Case Latency Examples

The examples in this section assume the system configuration shown in Table 12-2.

12.5.4.6 Finding the WCL for PWM on Channel 0

The following shows how to find the WCL for PWM on channel 0.

1. Find the worst-case service time for each active channel.

a) Longest thread of PWM is 24 CPU clocks with four RAM accesses.

SM
1

160 21

PPWA
Mode 0

Mode 1
Mode 2
Mode 3

44

50
2

44
50

9

10
9

10

1. Assumes one master and one slave. For each
additional slave
a) Add 32 clocks and 2 RAM accesses, and
b) Add (STEP_RATE_CNT ∗ two clocks)

2. With one channel linked. Add two clocks for each
additional channel linked.

Table 12-2. System Configuration Example

Channel Priority Function1, 2

1. 9% RAM Collision Rate (RCR)
2. CPU clock rate = 40 MHz, or 25 ns per clock period

0 High PWM (driving a DC motor)

1 Middle PPWA (Mode 0, measuring the DC motor speed)

2 Low DIO (Input)

Table 12-1. Longest Threads and RAM Accesses for old TPU Functions (continued)

Function Longest Thread RAM Accesses
MOTOROLA Chapter 12. Initialization/Application Information. 12-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

24 + ((4 RAM accesses+1) * 0.09 * 2 CPU clock waits) = 24.9 CPU clocks,
rounded up to 25 CPU clocks (since there are no partial clock periods)

Channel 0 worst-case service time = 25 CPU clocks.

b) Longest thread of PPWA in mode 0 is 44 CPU clocks with nine RAM accesses.

44 + ((9 RAM accesses+1) * 0.09 * 2 CPU clock waits) = 45.8 CPU clocks,
rounded up to 46 CPU clocks

Channel 1 worst-case service time = 46 CPU clocks.

c) Longest thread of DIO is ten CPU clocks with four RAM accesses.

10 + ((4 RAM accesses +1) * 0.09 * 2 CPU clock waits) = 10.9 CPU clocks,
rounded up to 11 CPU clocks

Channel 2 worst-case service time = 11 CPU clocks.

2. Assume channel 0 has just been serviced and that channels 1 and 2 are continuously
requesting service. Using the H-M-H-L-H-M-H time-slot sequence, map the
channels that are granted for each time slot. See Figure 12-6.

Figure 12-6. Next Servicing for Channel 0

Channel 1 will be serviced in the middle-priority time slot before channel 0 is serviced
again.

3. Add time for the six-clock CPU time-slot transitions. See Figure 12-6 and
Table 12-3.

A four-clock NOP occurs after each channel is serviced since there is one channel
in each priority level, i.e., a new cycle for a priority level is started after each channel
is serviced. Time-slot transitions occur after each time slot.

Table 12-3. Worst-Case Latency for Channel 0

Channel 0 worst-case service time 25 clocks

Channel 1 worst-case service time 46 clocks

Two 6-clock time-slot transitions 12 clocks

TPU CH0 WCL TIMTPU CH0 WCL TIM

CHANNEL 0
SERVICED

WORST CASE LATENCY
CHANNEL 0

H M H L H M H H

CHANNEL 1
SERVICED

CHANNEL 0
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

Start new time
slot sequence
12-14 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conclusion: in this system configuration PWM can run with a minimum high time
or low time of 2075 ns.

Note that in double match eTPU system the PWM can be serviced once in each
period, and there is no latency for minimum high time. The latency in eTPU PWM
function will represent the minimum PWM period.

12.5.4.7 Finding the WCL for PPWA on Channel 1

The following shows how to find the WCL for PPWA on channel 1.

1. Find the worst-case service time for each active channel. See step 1 of previous
example.

2. Assume channel 1 has just been serviced and that channels 0 and 2 are continuously
requesting service. Using the H-M-H-L-H-M-H time-slot sequence, map the
channels that are granted for each time slot. See Figure 12-7

Figure 12-7. Next Servicing for Channel 1

Channel 0 will be serviced twice and channel 2 once before channel 1 is serviced
again.

3. Add time for the six-clock CPU time-slot transitions. See Figure 12-7 and
Table 12-4.

Total clocks 83 clocks

Note: 83 clocks * 25 ns/clock = 2075 ns

Table 12-4. Worst Case Latency for Channel 1

Two Channel 0 worst-case service times 50 clocks

Channel 1 worst-case service time 46 clocks

Channel 2 worst-case service time 11 clocks

Four 6-clock time-slot transitions 24 clocks

Table 12-3. Worst-Case Latency for Channel 0

TPU CH1 WCL TIMTPU CH1 WCL TIM

CHANNEL 1
SERVICED

WORST CASE LATENCY
CHANNEL 1

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 2
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

CHANNEL 1
SERVICED
MOTOROLA Chapter 12. Initialization/Application Information. 12-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conclusion: in this system configuration PPWA can measure a period or pulse of
minimum 3275 ns.

Note that PPWA function optimized for eTPU hardware can use double transition
mode to measure very narrow pulses with one service after the second transition, and
latency will affect only the minimum gap between two input pulses. Also the
function threads would have more efficient coding.

12.5.4.8 Finding the WCL for DIO on Channel 2

The following shows how to find the WCL for DIO on channel 2.

1. Find the worst-case service time for each active channel. See step 1 of previous
examples.

2. Assume channel 2 has just been serviced and that channels 0 and 1 are continuously
requesting service. Using the H-M-H-L-H-M-H time-slot sequence, map the
channels that are granted for each time slot. See Figure 12-8.

Figure 12-8. Next Servicing for Channel 2

Channel 0 will be serviced four times and channel 1 twice before channel 2 is
serviced again.

3. Add time for the 10-clock CPU time-slot transitions. See Figure 12-8 and
Table 12-5.

Total clocks 131 clocks

Note: 131 clocks * 25 ns/clock = 3275 ns

Table 12-5. Worst Case Latency for Channel 2

Four Channel 0 worst-case service times 100 clocks

Two Channel 1 worst-case service time 92 clocks

Channel 2 worst-case service time 11 clocks

Seven 6-clock time-slot transitions 42 clocks

Table 12-4. Worst Case Latency for Channel 1

TPU CH2 WCL TIMTPU CH2 WCL TIM

CHANNEL 2
SERVICED

WORST CASE LATENCY
CHANNEL 2

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 1
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

CHANNEL 0
SERVICED

M H L H

CHANNEL 1
SERVICED

CHANNEL 0
SERVICED

CHANNEL 2
SERVICED
12-16 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conclusion: in this system configuration DIO can keep track of the input level at a
minimum of every 6125 ns.

Note that DIO function optimized for eTPU hardware can use double transition
mode to measure two pin transitions at a time and reduce the service time, improving
the overall system performance and latency.

12.5.5 Second-Pass Worst-Case Latency Analysis

The section gives an example of a second-pass analysis for calculating worst-case latency
for a channel. The second-pass analysis is useful for higher-performance systems, since it
gives a more realistic worst-case latency result than first-pass analysis.

This example uses a relatively simple system in order to illustrate the basic principles of
second-pass analysis. For a more complex example of second-pass analysis, refer to,
“Multiphase Motor Commutation TPU Function (COMM) (order number: TPUPN09/ D).”

12.5.5.1 Second-Pass Analysis Guidelines

Rather than use a fixed formula, a second-pass analysis relies on the application of the
following guidelines.

1. The first-pass analysis makes the assumption that all channels in the system are
continually requesting service. For many systems this is an unrealistic assumption.
For example, if TCR1 is counting at a rate of 2 MHz (500 ns per count) and a channel
is running the DIO function with a match rate of 20,000 TCR1 counts, the DIO will
request service every 10 ms (20,000 * 500 ns = 10,000,000 ns or 10 ms). It is
therefore unrealistic to assume that the channel running this DIO function is
continuously requesting service. Figure out a realistic service request rate for each
channel. Time slots can then be mapped to each channel at the real rate of request.

2. If a function is active during system initialization but not during the high-speed
running mode of the system, then that system does not need to be included in the
high-speed worst-case latency calculations.

3. Use a realistic SPRAM collision rate.

4. Be careful when assigning functions priority levels and channel numbers. Decide
which function or functions will be most difficult to perform at the desired level.
Assign those channels high priority and low channel numbers. Try different priority
and channel assignments to see how it affects the system.

Total clocks 245 clocks

Note: 245 clocks * 25 ns/clock = 6125 ns

Table 12-5. Worst Case Latency for Channel 2
MOTOROLA Chapter 12. Initialization/Application Information. 12-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5. The seven-slot sequence of || H | M | H | L | H | M | H || is asymmetrical when put
back-to-back with other seven-slot sequences. Note that in the following sequence
there are two high-priority slots next to each other:

|| H | M | H | L | H | M | H |||| H | M | H | L | H | M | H ||

6. When mapping out channels to the sequence, choose a worst-case slot to start the
mapping. For example, when estimating WCL for a high-priority channel, do not
start the mapping in the last high-priority slot in a seven-slot sequence, as that is a
best case for a high-priority channel since another high-priority time slot is next.

7. Instead of always using the longest thread in the function as the worst-case state,
evaluate the threads in the function that will be used in the system and use the
appropriate worst-case threads. For example, in the preceding example of first-pass
analysis, the PWM was shown to be able to achieve a high time and low time of
2475 ns under worst-case conditions. This was derived using the longest PWM
state of 24 CPU clocks. This longest state is actually thread 2, the thread that is
entered after the pin has just gone high. Thread 3, the thread that is entered after the
pin has just gone low, requires only 2 CPU clocks. Therefore, in the first-pass
example, the high time was correctly derived, but the low time is actually shorter
than was estimated.

12.5.5.2 Second-Pass Analysis Example

This example requires three 50% PWM waveforms: one 5 kHz (200 ms/period) and two
50 kHz (20 ms/period), each running DC motors. (Remember that the PWM function
requests service from the eTPU after each high time and after each low time, so the eTPU
must handle a request every 100 ms for the 5 kHz PWM and every 10 ms for the 50 MHz
PWM.)

NOTE
This example uses square waves for simplicity. Note that to use
a PWM waveform in the typical way, in which the pulse is
modulated, the pulse must not be modulated in a way that
violates the worst-case latency requirements.

This example also uses one DIO channel monitoring a signal level every millisecond and
one PPWA channel in mode 0 monitoring the speed of the 5-kHz DC motor. The PPWA
must measure periods of 5 kHz (200 ms/period).

The CPU is interrupted by the channel running the PPWA function after measuring
200 periods (every 40 ms). The interrupt service routine performs an averaging of the
period accumulation and checks it against a known parameter. The interrupt service time is
so short and infrequent that it is a tiny fraction of total system time. The interrupt service
routine contains no polling of the parameter RAM. Therefore, RCR = 0% is a realistic
assumption.
12-18 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

12.5.5.3 First-Try System Configuration

Try a system configuration that seems likely to work. If it does not, change priority levels
or channel numbers.

The 5 kHz and 50 kHz PWMs are the most time-critical functions. Those are as-signed high
priority. PPWA is assigned middle priority. The DIO is low performance and is assigned
low priority. Refer to Table 12-6.

With this system configuration, worst-case service time for each active channel is
determined as follows:

a) Longest thread of the PWM is 24 CPU clocks with four RAM accesses.

24 + (4 RAM accesses+1) * 0 * 2 CPU clock waits) = 24 CPU clocks

Channels 0–2 worst-case service time = 24 CPU clocks.

b) Longest thread of PPWA in mode 0 is 44 CPU clocks with nine RAM accesses.

44 + ((9 RAM accesses +1)* 0 * 2 CPU clock waits) = 44 CPU clocks

Channel 8 worst-case service time = 44 CPU clocks.

c) Longest thread of DIO is 10 CPU clocks with 4 RAM accesses.

10 + ((4 RAM accesses +1)* 0 * 2 CPU clock waits) = 10 CPU clocks

Channel 15 worst-case service time = 10 CPU clocks.

To find the WCL for channel 0, assume channel 0 has just finished service.

Map the channels in the H-M-H-L-H-M-H sequence. See Figure 12-9.

Table 12-6. First-Try System Configuration

Channel Priority Function1, 2

1. 0% RAM collision rate
2. CPU clock rate = 40 MHz, or 60 ns per clock period

0 High PWM at 50 kHz (needs a 4-µs WCL)

1 High PWM at 50 kHz (needs a 4-µs WCL)

2 High PWM at 5 kHz (needs a 40-µs WCL)

8 Middle PPWA at 5 kHz (needs a 80-µs WCL)

15 Low DIO as input at rate of 1 ms
MOTOROLA Chapter 12. Initialization/Application Information. 12-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Estimating Worst Case Latency

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 12-9. Worst-Case Latency for Channel 0 (First Try)

Conclusion: with this system configuration, worst-case latencies for channels 0
and 1 are too high (WCL for channel 1 is the same as WCL for channel 0). Try
a different system configuration.

12.5.5.4 Second-Try System Configuration

The second-try system configuration is shown in Table 12-7.

To find the WCL for channel 0, assume channel 0 has just finished service. Map the
channels in the H-M-H-L-H-M-H sequence. See Figure 12-10.

Figure 12-10. Worst-Case Latency for Channel 0 (Second Try)

Conclusion: with this system configuration, the WCL of both channel 0 and channel 1 is
3.85 ms, which is within the limit of 4 ms needed for a 50-kHz PWM.

Table 12-7. Second-Try System Configuration

Channel Priority Function1, 2

1. 0% RAM collision rate

2. CPU clock rate = 40 MHz, or 60 ns per clock period

0 High PWM at 50 kHz (needs a 4-µs WCL)

1 High PWM at 50 kHz (needs a 4-µs WCL)

2 Middle PWM at 5 kHz (needs a 40-µs WCL)

8 Middle PPWA at 5 kHz (needs a 80-µs WCL)

15 Low DIO as input at rate of 1 ms

TPU CH0 WCL TIM 1TPU CH0 WCL TIM 1

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 8
SERVICED

CHANNEL 1
SERVICED

CHANNEL 15
SERVICED

CHANNEL 2
SERVICED

M H L

CHANNEL 0
SERVICED

TPU CH0 WCL TIM 2

TPU CH0 WCL TIM 2

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 2
OR CHANNEL 8

SERVICED

CHANNEL 1
SERVICED

CHANNEL 15
SERVICED

CHANNEL 0
SERVICED

M H L
12-20 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Endianness

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Next, find the WCL for channel 2. Assume channel 2 has just finished service. Map the
channels in the H-M-H-L-H-M-H sequence. See Figure 12-11.

Figure 12-11. Worst-Case Latency for Channel 2

Conclusion: with this system configuration, the WCL for channels 2 and 8 is 4.7 ms, which
is within the 40 and 80 ms WCL requirements.

Notice that channels 2 and 8 are well within their WCL requirements. The system could be
reconfigured as shown in Table 12-8 to give channels 0 and 1 a larger margin while still
keeping channels 2, 8 and 15 within their WCL requirements.

12.6 Endianness
The address of the 24-bit parameters and the most significant byte depends on the
endianness of the MCU. Table 12-9 shows the parameter addresses for big and little endian
machines.

Table 12-8. Second-Try System with Channel 0 and 1 Reconfigured

Channel Priority Function1, 2

1. 0% RAM collision rate
2. CPU clock rate = 40 MHz, or 60 ns per clock period

0 High PWM at 50 kHz (needs a 10-µs WCL)

1 High PWM at 50 kHz (needs a 10-µs WCL)

2 Middle PWM at 5 kHz (needs a 40-µs WCL)

8 Low PPWA at 5 kHz (needs a 80-µs WCL)

15 Low DIO as input at rate of 1 ms

Table 12-9. Parameter Addresses and Endianness

Parameter

Byte Address Offset
(n = Word Address Offset)

Big Endian Little Endian

32-bit 4*n

24-bit 4*n + 1 4*n

TPU CH2 WCL TIM 1TPU CH2 WCL TIM 1

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 2
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 15
SERVICED

CHANNEL 1
SERVICED

CHANNEL 8
SERVICED

M H L

CHANNEL 2
SERVICED
MOTOROLA Chapter 12. Initialization/Application Information. 12-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

Endianness

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

32-bit parameter is most significant byte 4*n 4*n + 3

24-bit parameter is most significant byte 4*n + 1 4*n + 2

least significant byte 4*n + 3 4*n

Table 12-9. Parameter Addresses and Endianness

Parameter

Byte Address Offset
(n = Word Address Offset)

Big Endian Little Endian
12-22 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A
Microcycle Timing
Figure A-1 shows the main timings relevant to the eTPU user.
MOTOROLA . Appendix A. Microcycle Timing A-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure A-1. Channel I/O Timing

The sequential occurrence of the four T states (T1 – T4) constitutes a microcycle. Only T2
and T4 are taken as reference for timings, either internal or external. T2 and T4 have the
timing of the positive system clock pulses, and are used in most of the eTPU logic in an
edge-triggered design style. Some special logics with special timing requirements (like the
SPRAM, SCM and synchronizers) also use T1 and T3 to achieve fine timing adjustments.

TCR1/2*

T2 T4T2 T4 T2 T4

1 microcycle 1 microcycle 1 microcycle

tn tn+1 tn+2tn-1

tn-1

MRL_A/B
TDL_A/B

CAP1/2

Pin Action
Due to

uInstr
uInstn uInstn+1uInst=Set Pin

Pin Action
due uInstr

Note: *TCR clock/prescaler selection = 2 x system clock

Updated Pin Value

Updated Pin Value

uInstr uInstn
Pre-fetch

uInstn+1 uInstn+2

Execution

System
Clock

T4

(match on tn-1)

Match
A-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The eTPU system requires 50% duty cycle on the system clock to meet the RAM discharge
and precharge requirements.

Two additional T states are derived from the system clocks: T2 and T4. T2 occurs when the
eTPU loses SPRAM arbitration to a bus master or due to attempt to lock a semaphore which
is locked by the other eTPU. T4 occurs in halt state (due to a breakpoint or ipg_debug
assertion, for instance).

T2 and T4 states are defined as wait states of one system clock in which the T clocks
continue to run, but the control signals associated with the clocks are unaffected. That is,
no operation occurs during these states. Both T2 and T4 states occur in multiples of two
system clocks to keep the microengine synchronized with the free running channels.

Thus, the eTPU has two types of wait states:

• Wait-T2: Wait for SPRAM access or for SPRAM semaphore lock, from clock pulse
T2 until one of the next T2 clock pulses of another microcycle.

• Wait-T4: Wait in debug mode, from clock pulse T4 until one of the next T4 clock
pulses of another microcycle.

Figure A-2 and Figure A-3 shows the timing of T2 and T3 wait-states, respectively.

Figure A-2. T2 Wait-State Timing

T4 T2 T2 T2 T2

T21st 2ndT2

T4 T2 T4 T2T CLOCKS

SYS.CLOCK

Nth T2

WAIT-T2

T4

µPC A1 A2

T4

T4

A2 A3

T2

(A1)(A0) (A1)µINST
MOTOROLA . Appendix A. Microcycle Timing A-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure A-3. T4 Wait-State Timing

T2 T4 T4 T4 T4

T41st 2ndT4

T2 T4 T2 T4T CLOCKS

SYS.CLOCK

Nth T4

WAIT-T4

T2

µPC A1 A2

T2

T2

A2

T4

A3

T4

(A1) (A1) (A2)µINST
A-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B
Initialization Code Example
The code example below initializes eTPU_A engine and configures an eTPU UART
function to perform the receiver at channel 1 and the transmitter at channel 0. The function
works without parity and the data word is 8 bits in size. The initialization code assumes the
microcode function is previously loaded into the SCM.

**

// Initilization program for eTPU engine A,

// function microcode previously loaded into SCM.

// No angle mode, eTPU UART function configured to perform at channels 0 and 1.

// Channel0 - Tx_UART

// Channel1 - Rx_UART

// UART Specifications:

// Data word size: 8 bits

// Parity: disabled

// ********************* Definitions ******************************

//Bases

#define ETPU_BASE 0x000 //MCU-dependent

#define SPRAM_BASE 0x000 //MCU-dependent

//General Configuration Registers

#define ETPUMCR_OFFSET 0x000 //Module configuration register

#define ETPUTBCR_A_OFFSET 0x020 //Time base configuration register
MOTOROLA . Appendix B. Initialization Code Example B-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#define ETPUECR_A_OFFSET 0x014 //Engine configuration register

#define ETPUCIER_A_OFFSET 0x240 //Channel interrupt enable register

#define ETPUCDTRER_A_OFFSET 0x250 //Data transfer interrupt enable register

//channel0 configuration registers

#define ETPUC0CR_A_OFFSET 0x400 //Channel0 configuration register

#define ETPUC0SCR_A_OFFSET 0x404 //Channel0 status control register

#define ETPUC0HSRR_A_OFFSET 0x408 //Channel0 host service request. register

//channel1 configuration registers

#define ETPUC1CR_A_OFFSET 0x410 //Channel1 configuration register

#define ETPUC1SCR_A_OFFSET 0x414 //Channel1 status control register

#define ETPUC1HSRR_A_OFFSET 0x418 //Channel1 status control register

// Tx_UART SPRAM parameters

#define MATCH_RATE_TX_OFFSET 0x004 //Channel0 parameter 1

#define DATA_UART_TX_OFFSET 0x008 //Channel0 parameter 2

#define DATA_SIZE_TX_OFFSET 0x00C //Channel0 parameter 3

// Rx_UART SPRAM parameters

#define MATCH_RATE_RX_OFFSET 0x024 //Channel1 parameter 1

#define DATA_UART_RX_OFFSET 0x028 //Channel1 parameter 2

#define DATA_SIZE_RX_OFFSET 0x02C //Channel1 parameter 3

//

#define ETPUMCR (*((int*)(ETPUMCR_OFFSET + ETPU_BASE)))

#define ETPUTBCR_A (*((int*)(ETPUTBCR_A_OFFSET + ETPU_BASE)))

#define ETPUECR_A (*((int*)(ETPUECR_A_OFFSET + ETPU_BASE)))

#define ETPUCIER_A (*((int*)(ETPUCIER_A_OFFSET + ETPU_BASE)))

#define ETPUCDTRER_A (*((int*)(ETPUCDTRER_A_OFFSET + ETPU_BASE)))

#define ETPUC0CR_A (*((int*)(ETPUC0CR_A_OFFSET + ETPU_BASE)))

#define ETPUC0SCR_A (*((int*)(ETPUC0SCR_A_OFFSET + ETPU_BASE)))
B-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

#define ETPUC0HSRR_A (*((int*)(ETPUC0HSRR_A_OFFSET + ETPU_BASE)))

#define ETPUC1CR_A (*((int*)(ETPUC1CR_A_OFFSET + ETPU_BASE)))

#define ETPUC1SCR_A (*((int*)(ETPUC1SCR_A_OFFSET + ETPU_BASE)))

#define ETPUC1HSRR_A (*((int*)(ETPUC1HSRR_A_OFFSET + ETPU_BASE)))

#define MATCH_RATE_TX (*((int*)(MATCH_RATE_TX_OFFSET + SPRAM_BASE)))

#define DATA_UART_TX (*((int*)(DATA_UART_TX_OFFSET + SPRAM_BASE)))

#define DATA_SIZE_TX (*((int*)(DATA_SIZE_TX_OFFSET + SPRAM_BASE)))

#define MATCH_RATE_RX (*((int*)(MATCH_RATE_RX_OFFSET + SPRAM_BASE)))

#define DATA_UART_RX (*((int*)(DATA_UART_RX_OFFSET + SPRAM_BASE)))

#define DATA_SIZE_RX (*((int*)(DATA_SIZE_RX_OFFSET + SPRAM_BASE)))

// Macros

#define TCR2_PRESCALER(x) ((x & 0x3F) << 8)

#define TCR1_PRESCALER(x) (x & 0xFF)

#define CHANNEL_FUNCTION(x) ((x & 0x1F) << 16)

#define CHANNEL_PARAM_BASE_ADDR(x) (x & 0xFF)

#define FUNCTION_MODE(x) (x & 0x3)

#define MATCH_RATE_TRANS(x) (x & 0xFFFF)

#define MATCH_RATE_REC(x) (x & 0xFFFF)

#define DATA_WORD_Tx(x) (x & 0x3FFF)

#define DATA_SIZE_TRANS(x) (x & 0xF)

#define DATA_SIZE_REC(x) (x & 0xF)

#define HOST_SERV_REQ(x) (x & 0x7)

#define ENTRY_TABLE_BASE(x) (x & 0x1F)

//ETPUMCR fields - Module Configuration Register

#define PSE 0x00000002 //Parameter sign extension

#define SCMMISEN 0x00000200 //SCM MISC enable

#define VIS 0x00000040 //SCM visibility

#define GTBE 0x00000001 //Global time base enable
MOTOROLA . Appendix B. Initialization Code Example B-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

//ETPUTBCR_A fields - Time Base Configuration Register

#define TCRCLK_FILTER_TWOSAMPLE 0x00000000
//TCRCLK filter in two sample mode

#define TCRCLK_FILTER_INTEGRATION 0x00800000
//TCRCLK filter in integration mode

#define TCRCLK_FILTER_DIV2CLOCK 0x00000000
//TCRCLK filter uses system clock divided by 2

#define TCRCLK_FILTER_CHANNELCLOCK 0x00400000
//TCRCLK filter uses channel clock

#define TCR2_RISE 0x00100000 //TCR2 inc rising edge

#define TCR2_FALL 0x00200000 //TCR2 inc falling edge

#define TCR2_RISEFALL 0x00300000 //TCR2 inc rise and fall

#define TCR2_GATEDDIV8 0x00000000 //TCRCLK gates system clock/8

#define TCR1CLK_SOURCE_DIV2 0x00000000 //TCR1 source system clock/2

#define TRC1CLK_SOURCE_TCRCLK 0x00040000 //TCR1 source is TCRCLK pin

#define CHANNEL_FILTER_TWOSAMPLEMODE 0x00000000 //Filter: two sample mode

#define CHANNEL_FILTER_THREESAMPLEMODE 0x00008000 //Filter: three sample mode

#define CHANNEL_FILTER_CONTMODE 0x0000C000 //Filter: continuous mode

//ETPUECR fields - Engine Configuration Register

#define FILTER_PRESCALER_CLOCK_DIV4 0x00010000 //System clock/4

//ETPUCxCR fields - channel_x configuration register

#define CHANNEL_INT_ENABLE 0x80000000 //Channel interrupt enable

#define CHANNEL_DATA_TRANSF_REQ_ENABLE 0x40000000
//Channel data transfer req. enable

#define CHANNEL_PRIORITY_DISABLE 0x00000000 //Channel disable

#define CHANNEL_PRIORITY_LOW 0x10000000 //Low priority channel

#define CHANNEL_PRIORITY_MIDDLE 0x20000000 //Middle priority channel

#define CHANNEL_PRIORITY_HIGH 0x30000000 //High priority channel

//DATA_UART - SPRAM

#define CLEAR_TDRE 0x007FFFFF //TDRE must be zero to signal new valid
B-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 //data to be transmitted

void init_etpu(){

volatile int temp;

//Initialize eTPU module configuration register(ETPUMCR)

ETPUMCR = 0x00070000; //SCMSIZE is 16K(7 2K blocks)

//Initialize eTPU time base configuration register(ETPUTBCR)

ETPUTBCR_A = (TCR1CLK_SOURCE_DIV2 | CHANNEL_FILTER_TWOSAMPLEMODE |
TCR1_PRESCALER(8));

//Initialize eTPU engine configuration register(ETPUECR)

ETPUECR_A = (ENTRY_TABLE_BASE(0x1F) | FILTER_PRESCALER_CLOCK_DIV4);

//Write to the channel configuration Registers(ETPUCxCR) to choose the

//function to be performed by the channel and its parameter
//base address. Standard entry table is selected.

ETPUC0CR_A = (CHANNEL_INT_ENABLE | CHANNEL_FUNCTION(15) |
CHANNEL_PARAM_BASE_ADDR(0x00));

ETPUC1CR_A = (CHANNEL_INT_ENABLE | CHANNEL_FUNCTION(15) |
CHANNEL_PARAM_BASE_ADDR(0x02));

//Write to the channel status control registers(ETPUCxSCR) to choose

//variations within the function flow.

ETPUC0SCR_A = (FUNCTION_MODE(0)); // no parity for transmitter

ETPUC1SCR_A = (FUNCTION_MODE(0)); // no parity for receiver

//Write to spram for parameter initialization of each configured channel

MATCH_RATE_TX = MATCH_RATE_TRANS(0x412); //setup match rate for transmitter

DATA_UART_TX = DATA_WORD_TX(0x000000AA); //load first byte to be transmitted=AA
MOTOROLA . Appendix B. Initialization Code Example B-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DATA_SIZE_TX = DATA_SIZE_TRANS(8); //8-bit data word for transmitter

MATCH_RATE_RX = MATCH_RATE_REC(0x412); //setup match rate for receiver

DATA_SIZE_RX = DATA_SIZE_REC(8); //8-bit data word for receiver

//Write to channel host service request registers(ETPUCxHSRR) to

//initialize active channels(Channel 0 and 1)

ETPUC0HSRR_A = HOST_SERV_REQ(3);

ETPUC1HSRR_A = HOST_SERV_REQ(2);

//write to channel priority field to enable each channel by

//assigning it a high, middle, or low priority

ETPUC0CR_A =(ETPUC0CR_A | CHANNEL_PRIORITY_HIGH);

ETPUC1CR_A =(ETPUC1CR_A | CHANNEL_PRIORITY_HIGH);

//Monitor channel host service request register for completion

//of initialization

//HSR should be zero in the end of initialization

do

{

temp = ETPUC0HSRR_A;

} while (temp != 0);

do

{

temp = ETPUC1HSRR_A;

} while (temp != 0);

//Write GTBE bit to start TCR1 and TCR2 time bases counting

//at the same time

ETPUMCR = (ETPUMCR | GTBE);
B-6 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

}// end of etpu_initialization routine

MOTOROLA . Appendix B. Initialization Code Example B-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B-8 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix C
Channel Mode Summary
Table C-1 explains channel double match submode functionality by showing all event
sequence possibilities. The initial state considered for all submodes is channel flags
MRL_A, MRL_B, TDL_A and TDL_B reset. From the initial state one can follow the table
and verify how each submode behaves in a determined sequence of events. Note that the
actions performed by an event type depend on all previous events following the initial state,
for a given channel submode.

There are three columns for each event: one for event type, one for enable/disable actions
and one for capture. The event type column can be match1, match2, trans1 and trans2 (for
double transition modes). The enable/disable actions column, identified as
“[blocks](enables)” in column head, specifies which other events are enabled or disabled.
Initially disabled events, specified in “initially blocked” column, are usually enabled by
other events.

In double transition submodes, the first transition detected is always considered trans1 and
the second is considered trans2. This means that trans1 event actually enables the detection
of trans2 event. This is not explicit in the table, since it is a general behavior for all double
transition submodes.

A sequence of four events (two matches and two transitions) are necessary to describe the
behavior of some channel submodes. When a determined sequence of events has less than
four events, the other event columns are left blank.

Cells in an “event type” column that have light-grayed background indicate that a service
request is generated. More than one event in the same event sequence can issue service
request.
MOTOROLA . Appendix C. Channel Mode Summary C-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

N
O

T
E

T
he

 t
ab

le
 d

oe
s

no
t

ex
ha

us
t

al
l

po
ss

ib
il

iti
es

 o
f

ch
an

ne
l

lo
gi

c
ev

en
t

se
qu

en
ce

s,
 b

ec
au

se
 i

t
do

es
n’

t
ac

co
un

t
fo

r
po

ss
ib

le
 m

ic
ro

co
de

 i
nt

er
ve

nt
io

ns
.

Fo
r

in
st

an
ce

,
if

 m
at

ch
es

 a
re

 b
lo

ck
ed

 b
y

fi
rs

t
tr

an
si

tio
n

an
d

m
ic

ro
co

de
 r

es
et

s
T

D
L

_A
, t

he
 m

at
ch

es
 b

ec
om

e
en

ab
le

d
ag

ai
n,

 a
nd

 f
ro

m
 t

hi
s

po
in

t
on

 th
e

ch
an

ne
l b

eh
av

es
 a

s
if

 th
e

fi
rs

t t
ra

ns
iti

on
 h

ad
 n

ev
er

 o
cc

ur
re

d.

F
ig

u
re

 C
-1

. C
h

an
n

el
 M

o
d

e
S

u
m

m
ar

y

M
o

d
e

In
it

ia
lly

B

lo
ck

ed

1s
t

ev
en

t
2n

d
 e

ve
n

t
3r

d
 e

ve
n

t
4t

h
 e

ve
n

t

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s1)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

em
_n

b_
st

no
ne

m
at

ch
 1

/2
no

ne
1/

2
m

at
ch

 2
/1

no
ne

2/
1

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

em
_n

b_
dt

no
ne

m
at

ch
 1

/2
no

ne
1/

2
m

at
ch

 2
/1

no
ne

2/
1

tr
an

s
1

no
ne

1
tr

an
s

2
no

ne
2

m
at

ch
 1

no
ne

1
tr

an
s

1
no

ne
1

m
at

ch
 2

no
ne

2
tr

an
s

2
no

ne
2

tr
an

s
2

[m
at

ch
 2

]
2

m
at

ch
 2

no

ne
2

tr
an

s
1

[m
at

ch
 1

]
1

tr
an

s
2

[m
at

ch
2]

2

tr
an

s
1

[m
at

ch
 1

]
1

m
at

ch
 2

no
ne

2
tr

an
s

2
no

ne
2

tr
an

s
2

[m
at

ch
 2

]
2

em
_b

_s
t

no
ne

m
at

ch
 1

[m
at

ch
 2

]
bo

th
tr

an
s

1
[m

at
ch

es
]

bo
th

tr
an

s
2

no
ne

2

m
at

ch
 2

[m
at

ch
 1

]
bo

th

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

em
_b

_d
t

no
ne

m
at

ch
 1

[m
at

ch
 2

]
bo

th
tr

an
s

1
no

ne
1

tr
an

s
2

no
ne

2

m
at

ch
 2

[m
at

ch
 1

]
bo

th

tr
an

s
1

[m
at

ch
 1

]
1

m
at

ch
 2

no
ne

2
tr

an
s

2
no

ne
2

tr
an

s
2

[m
at

ch
 2

]
2

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bm
_s

t
no

ne
m

at
ch

 1
/2

no
ne

1/
2

m
at

ch
 2

/1
no

ne
2/

1
tr

an
s

1
[m

at
ch

es
]

bo
th

tr
an

s
2

no
ne

2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

bm
_d

t
no

ne
m

at
ch

 1
/2

no
ne

1/
2

m
at

ch
 2

/1
no

ne
2/

1
tr

an
s

1
no

ne
1

tr
an

s
2

[m
at

ch
es

]
2

tr
an

s
1

no
ne

1
m

at
ch

 2
/1

no
ne

2/
no

ne
tr

an
s

2
[m

at
ch

es
]

2

tr
an

s
2

[m
at

ch
es

]
2

tr
an

s
1

no
ne

1
m

at
ch

 1
/2

no
ne

no
ne

/2
m

at
ch

 2
/1

no
ne

2/
no

ne
tr

an
s

2
[m

at
ch

es
]

2

tr
an

s
2

[m
at

ch
es

]
2

tr
an

s
2

[m
at

ch
es

]
2

m
2_

st
tr

an
s

1
m

at
ch

 1
(t

ra
ns

 1
)

1
m

at
ch

 2
no

ne
2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

tr
an

s
1

[m
at

ch
es

]
bo

th
tr

an
s

2
no

ne
2

m
at

ch
 1

an

d
m

at
ch

 2

(t
ra

ns
 1

)
bo

th
tr

an
s

1
[m

at
ch

es
]

bo
th

tr
an

s
2

no
ne

2

m
at

ch
 2

[m
at

ch
 1

]
2

m
2_

dt
tr

an
s

1
m

at
ch

 1
(t

ra
ns

 1
)

1
tr

an
s

1
no

ne
1

tr
an

s
2

[m
at

ch
 2

]
2

m
at

ch
 2

no
ne

2
tr

an
s

2
no

ne
2

m
at

ch
 2

no
ne

2
tr

an
s

1
no

ne
1

tr
an

s
2

no
ne

2

m
at

ch
 1

an
d

m
at

ch
2

(t
ra

ns
 1

)
bo

th
tr

an
s

1
no

ne
1

tr
an

s
2

no
ne

2

m
at

ch
 2

[m
at

ch
 1

]
2F

ig
u

re
 C

-1
. C

h
an

n
el

 M
o

d
e

S
u

m
m

ar
y

M
o

d
e

In
it

ia
lly

B

lo
ck

ed

1s
t

ev
en

t
2n

d
 e

ve
n

t
3r

d
 e

ve
n

t
4t

h
 e

ve
n

t

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s1)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

m
2_

o_
st

tr
an

s
1

m
at

ch
 2

m
at

ch
 1

(m
at

ch
 2

)
(t

ra
ns

 1
)

1
tr

an
s

1
[m

at
ch

es
]

bo
th

tr
an

s
2

no
ne

2

m
at

ch
 2

[tr
an

s
1]

2

m
2_

o_
dt

tr
an

s
1

m
at

ch
 2

m
at

ch
 1

(m
at

ch
 2

)
(t

ra
ns

 1
)

1
tr

an
s

1
no

ne
1

tr
an

s
2

[m
at

ch
 2

]
2

m
at

ch
 2

[tr
an

s
2]

2

m
at

ch
 2

[tr
an

s
1]

2

sm
_s

t2
m

at
ch

 2
m

at
ch

 1
no

ne
bo

th
tr

an
s

1
no

ne
bo

th
tr

an
s

2
no

ne
2

tr
an

s
1

[m
at

ch
 1

]
bo

th
tr

an
s

2
no

ne
2

sm
_d

t
m

at
ch

 2
m

at
ch

 1
no

ne
bo

th
tr

an
s

1
no

ne
1

tr
an

s
2

no
ne

2

tr
an

s
1

no
ne

1
m

at
ch

 1
no

ne
2

tr
an

s
2

no
ne

2

tr
an

s
1

no
ne

1
tr

an
s

2
[m

at
ch

1]
2

sm
_s

t_
e3

m
at

ch
 2

tr
an

s
2

m
at

ch
 1

no
ne

1
tr

an
s

1
no

ne
1

tr
an

s
1

[m
at

ch
 1

]
1

G
en

er
at

es
 S

er
vi

ce
 R

eq
ue

st
1.

 T
ra

ns
iti

on
 1

 a
lw

ay
s

en
ab

le
s

Tr
an

si
tio

n
2

2.
 s

m
_s

t i
s

co
m

pa
tib

le
 w

ith
 T

P
U

3
ch

an
ne

l l
og

ic
.

3.
 It

 is
 n

ot
 p

os
si

bl
e

to
 in

cl
ud

e
al

l f
un

ct
io

na
lit

y
of

 th
is

 s
ub

m
od

e
in

 ta
bl

e.
 S

ee
 S

ec
tio

n
5.

5.
4.

9,
 “

S
in

gl
e

M
at

ch
 E

nh
an

ce
d

M
od

e
(s

m
_s

t_
e)

,”
 fo

r
m

or
e

de
ta

ils
.

F
ig

u
re

 C
-1

. C
h

an
n

el
 M

o
d

e
S

u
m

m
ar

y

M
o

d
e

In
it

ia
lly

B

lo
ck

ed

1s
t

ev
en

t
2n

d
 e

ve
n

t
3r

d
 e

ve
n

t
4t

h
 e

ve
n

t

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s1)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

ev
en

t
ty

p
e

[b
lo

ck
s]

(e

n
ab

le
s)

C
ap

t.
ev

en
t

ty
p

e
[b

lo
ck

s]

(e
n

ab
le

s)
C

ap
t.

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix D
eTPU MISC Algorithm
The MISC generator is based on the following polynomial:

G(x) = 1 + x1 + x2 + x22 + x31 = 0x80400007

The MISC signature generation starts by clearing the MISC accumulator value to 0 and
preloading the MISC counter with the highest SCM address. It then steps through each
address decrementing the counter, reading 32 bit values and following the algorithm below:

If the least significant bit in MISC is 1 then

MISC = MISC right shifted by 1 bit

MISC = MISC XOR 0x80400007

else

MISC = MISC right shifted by 1 bit

end if

MISC = MISC XOR RAM data

The code example below shows an excerpt of C code that calculates the MISC signature for
a given array of data, based on the previous algorithm:

#define SCM_size (MAX_SCM_ADDRESS)

#define POLY 0x80400007 /* G(x) = 1 + x1 + x2 + x22 + x31 */

/***

 FUNCTION : void calc_misc()

 PURPOSE : This function calculates the MISC value.

 INPUTS NOTES : none

 RETURNS NOTES : MISC value

 GENERAL NOTES : the array ’unsigned int data[]’ represents the actual memory

 array, organized in 32-bit words.
MOTOROLA . Appendix D. eTPU MISC Algorithm D-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

***/

int calc_misc (void)

{

int j; /* loop counter */

unsigned int misc = 0;

misc = SCM_size-1; /* according to the algorithm, shouldn’t this go here? */

for (j = (SCM_size-1); j >= 0 ; j-=4) { /* SCM_size has the number of in SCM */

if (misc & 0x1) {

misc >>= 1;

misc ^= POLY;

}

else {

misc >>= 1;

}

misc ^= data[j]; /* data[j] is the actual 32-bit word (byte
addressed) taken from the SCM array */

}

return (misc); /* final signature calculated */

};

The value calculated by this algorithm must be loaded into register ETPUMISCCMPR
prior to activating the SCM MISC calculator in eTPU. Once the MISC calculator is
activated (bit SCMMISEN in register ETPUMCR is written to 1) eTPU itself will start this
procedure, see Note: , reading the SCM whenever allowed by microengine. At the end of
the cycle, when all of the array has been read and the SCM signature is calculated, the host
CPU can be notified via Global Exception if the MISC accumulator does not match the
value in ETPUMISCCMPR.
D-2 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE
eTPU MISC hardware is optimized to read 32-bit words from
memory and to calculate this CRC in parallel, rather than
shifting one bit at a time. The actual implementation inside
eTPU arrives at the same results, though it doesn’t exactly
match exactly the algorithm shown here.

Further detail on MISC calculation can be found on Section 5.10.3.1, “SCM Test for MISC
(Multiple Input Signature Calculator).” The application note, “AN2192 - Detecting Errors
in the Dual Port RAM (DPTRAM) Module,” is also a good source of MISC signature
information (though it refers to the TPU).

The average time taken by MISC to complete the signature of the whole SCM can be given
by the formula:

Average MISC period = S / (4 * f * (1 - L))

where f is clock frequency, S is SCM size in bytes and L is eTPU load (as a percentage of
execution clocks over a period of time, including TST clocks).
MOTOROLA . Appendix D. eTPU MISC Algorithm D-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

D-4 eTPU Reference Manual MOTOROLA
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
 Go to: www.freescale.com

	Enhanced Time Processing Unit (eTPU) Preliminary Reference Manual
	Table of Contents
	Chapter 1 Enhanced Time Processing Unit (eTPU) Overview
	1.1 Overview
	Figure 1-1. eTPU Block Diagram
	1.1.1 eTPU Block Components
	1.1.2 eTPU Operation Overview
	1.1.3 eTPU Engine
	Figure 1-2. eTPU engine Block Diagram
	1.1.3.1 Time Bases
	1.1.3.2 eTPU Timer Channels
	1.1.3.3 Host Interface
	1.1.3.4 Shared Parameter RAM (SPRAM)
	1.1.3.5 Scheduler
	1.1.3.6 Microengine
	1.1.3.7 Dual eTPU engine System

	1.2 Features
	1.2.1 eTPU Feature Summary
	1.2.2 eTPU Enhancements over TPU3

	1.3 Modes of Operation
	1.3.1 eTPU Mode Selection

	Chapter 2 External Signal Description
	2.1 Introduction
	2.2 eTPU Signals
	2.2.1 Output and Input Channel Signals
	Table 2-1. eTPU_A Channel Connection Table (continued)
	Table 2-2. eTPU_B Channel Connection Table

	2.2.2 TCRCLK_[A:B], Time Base Clock Signal (TCRCLK)
	2.2.3 Channel Output Disable Signals
	Table 2-3. Output Disable Channel Groups

	Chapter 3 Memory Map
	3.1 Introduction
	3.2 Memory Map
	Table 3-1. High-Level Memory Map (continued)
	Table 3-2. Detailed Memory Map

	Chapter 4 Programming Model
	4.1 Introduction
	4.2 System Configuration Registers
	4.2.1 eTPU Module Configuration Register (ETPUMCR)
	Figure 4-1. ETPUMCR Register
	Table 4-1. ETPUMCR Bit Field Descriptions

	4.2.2 eTPU Coherent Dual-Parameter Controller Register (ETPUCDCR)
	Figure 4-2. ETPUCDCR Register
	Table 4-2. ETPUCDCR Field Descriptions

	4.2.3 eTPU MISC Compare Register (ETPUMISCCMPR)
	Figure 4-3. ETPUMISCCMPR Register
	Table 4-3. ETPUMISCCMPR Bit Field Descriptions

	4.2.4 eTPU Engine Configuration Register (ETPUECR)
	Figure 4-4. ETPUECR Register
	Table 4-4. ETPUECR Field Descriptions
	Table 4-5. Filter Prescaler Clock Control
	Table 4-6. Channel Digital Filter Control
	Table 4-7. Entry Table Base Address Options

	4.3 Time Base Registers
	4.3.1 eTPU Time Base Configuration Register (ETPUTBCR)
	Figure 4-5. ETPUTBCR Register
	Table 4-8. ETPUTBCR Field Descriptions
	Table 4-9. TCR2 Clock Source
	Table 4-10. TCRCLK Filter Clock/Mode
	Table 4-11. TCR1 Clock Source

	4.3.2 eTPU Time Base 1 (TCR1) Visibility Register (ETPUTB1R)
	Figure 4-6. ETPUTB1R Register
	Table 4-12. ETPUTB1R Bit Field Descriptions

	4.3.3 eTPU Time Base 2 (TCR2) Visibility Register (ETPUTB2R)
	Figure 4-7. ETPUTB2R Register
	Table 4-13. ETPUTB2R Bit Field Descriptions

	4.3.4 STAC Bus Configuration Register (ETPUREDCR)
	Figure 4-8. ETPUREDCR Register
	Table 4-14. ETPUREDCR Field Descriptions

	4.4 Channel Registers Layout
	Table 4-15. eTPU Channel Register Map
	Table 4-16. eTPU Channel Registers Structure

	4.5 Global Channel Registers
	4.5.1 eTPU Channel Interrupt Status Register (ETPUCISR)
	Figure 4-9. ETPUCISR Register
	Table 4-17. ETPUCISR Bit Field Descriptions

	4.5.2 eTPU Channel Data Transfer Request Status Register (ETPUCDTRSR)
	Figure 4-10. ETPUCDTRSR Register
	Table 4-18. ETPUCDTRSR Bit Field Descriptions

	4.5.3 eTPU Channel Interrupt Overflow Status Register (ETPUCIOSR)
	Figure 4-11. ETPUCIOSR Register
	Table 4-19. ETPUCIOSR Bit Field Descriptions

	4.5.4 eTPU Channel Data Transfer Request Overflow Status Register (ETPUCDTROSR)
	Figure 4-12. ETPUCDTROSR Register
	Table 4-20. ETPUCDTROSR Bit Field Descriptions

	4.5.5 eTPU Channel Interrupt Enable Register (ETPUCIER)
	Figure 4-13. ETPUCIER Register
	Table 4-21. ETPUCIER Bit Field Descriptions

	4.5.6 eTPU Channel Data Transfer Request Enable Register (ETPUCDTRER)
	Figure 4-14. ETPUCDTRER Register
	Table 4-22. ETPUCDTRER Bit Field Descriptions

	4.5.7 eTPU Channel Pending Service Status Register (ETPUCPSSR)
	Figure 4-15. ETPUCPSSR Register
	Table 4-23. ETPUCPSSR Bit Field Descriptions

	4.5.8 eTPU Channel Service Status Register (ETPUCSSR)
	Figure 4-16. ETPUCSSR Register
	Table 4-24. ETPUCSSR Bit Field Descriptions

	4.6 Channel Configuration and Control Registers
	Table 4-25. Channel Registers Structure
	Table 4-26. Channel Registers Map
	4.6.1 eTPU Channel x Configuration Register (ETPUCxCR)
	Figure 4-17. ETPUCxCR Register
	Table 4-27. ETPUCxCR Bit Field Descriptions
	Table 4-28. Priority level Bits

	4.6.2 eTPU Channel x Status Control Register (ETPUCxSCR)
	Figure 4-18. ETPUCxSCR Register
	Table 4-29. ETPUCxSCR Bit Field Descriptions

	4.6.3 eTPU Channel x Host Service Request Register (ETPUCxHSRR)
	Figure 4-19. ETPUCxHSRR Register
	Table 4-30. ETPUCxHSRR Bit Field Descriptions

	Chapter 5 Host Interface
	5.1 System Configuration
	5.2 Interrupts and Data Transfer Requests
	5.2.1 Interrupt Types and Sources
	5.2.2 Interrupt and Data Transfer Request Overflow

	5.3 Parameter Access
	5.3.1 Parameter Access Widths
	5.3.2 Parameter Addresses and Endianess
	5.3.3 Parameter Concurrency
	5.3.4 Parameter Sign Extension Area

	5.4 SPRAM Organization
	Figure 5-1. SPRAM Organization Example

	5.5 Host Service Requests
	5.6 SCM Access
	5.6.1 SCM RAM Implementations
	5.6.2 SCM Low Power

	5.7 Parameter Sharing and Coherency
	5.7.1 Host Side Atomic Access
	5.7.2 Microengine Side Atomic Accesses
	5.7.2.1 Microengine Single Parameter Atomicity
	5.7.2.2 Microengine Dual Parameter Atomicity
	5.7.2.3 Microengine Side Multiple Atomicity

	5.7.3 Coherent Dual-parameter Controller (CDC)
	Figure 5-2. CDC Block Diagram
	5.7.3.1 CDC Programming

	5.7.4 Hardware Semaphores
	5.7.5 SPRAM Arbitration

	5.8 Enhanced Channels
	Figure 5-3. Greater-Equal Comparator
	Figure 5-4. Channel Logic Block Diagram
	5.8.1 Channel Registers and Flags
	5.8.1.1 Event Registers (ER)
	Table 5-1. Event Registers Microcode Accesses
	5.8.1.1.1 Match1 and Match2 Registers
	5.8.1.1.2 Capture1 and Capture2 Registers
	5.8.1.1.3 Time Base Selection Registers (TBS1) and (TBS2)
	Table 5-2. TBS1/2 Programming States

	5.8.1.2 Pin Control Registers
	Table 5-3. Pin Control Registers microcode accesses
	5.8.1.2.1 Input and Output Pin Action Control Registers (IPAC1), (IPAC2), (OPAC1), and (OPAC2)
	Table 5-4. IPAC1/2 and OPAC1/2 Encoding

	5.8.1.2.2 Output Pin Control Logic and Pin State Output Register (PSTO)
	Table 5-5. PSC and PSCS encoding

	5.8.1.2.3 Pin State Input and Pin Sampled State Registers (PSTI) and (PSS)

	5.8.1.3 General Channel Registers
	Table 5-6. General Channel registers microcode access
	5.8.1.3.1 Channel Selection Register (CHAN)
	Table 5-7. CHAN Selected Features

	5.8.1.3.2 Pre-Defined Channel Mode (PDCM)
	Table 5-8. PDCM encoding

	5.8.1.3.3 Match/Transition Service Request Inhibit Latch (SRI)
	5.8.1.3.4 Channel ‘State Resolution’ Flags (Flag1), (Flag0)

	5.8.2 Match Recognition
	5.8.2.1 Match Recognition Latches (MRL_A/B)
	5.8.2.2 Match Enable Flag (MEF)
	5.8.2.3 Match Recognition Latch Enable (MRLE1/2)

	5.8.3 Transition Detection and Time Base Capture
	5.8.3.1 Transition Detect Latches (TDL_A/B)

	5.8.4 Channel Modes
	5.8.4.1 Channel Modes Overview
	5.8.4.2 Either Match, Blocking Modes (em_b_st, em_b_dt)
	5.8.4.3 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)
	5.8.4.4 Match2 Request Modes (m2_st, m2_dt)
	5.8.4.5 Both Match Request Modes (bm_st, bm_dt)
	5.8.4.6 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt)
	5.8.4.7 Single Match Modes (sm_st, sm_dt)
	5.8.4.8 Single Match Enhanced Mode (sm_st_e)
	5.8.4.9 Channel Modes on Input Signal Processing
	5.8.4.10 Either Match, Blocking, Single Transition (em_b_st)
	5.8.4.11 Either Match, Blocking, Double Transition (em_b_dt)
	5.8.4.12 Either Match, Non Blocking, Single Transition (em_nb_st)
	5.8.4.13 Either Match, Non Blocking, Double Transition (em_nb_dt)
	5.8.4.14 Match2 Request, Single Transition (m2_st)
	5.8.4.15 Match2 Request, Double Transition (m2_dt)
	5.8.4.16 Both Match Request, Single Transition (bm_st)
	5.8.4.17 Both Match Request, Double Transition (bm_dt)
	5.8.4.18 Ordered Mode with Match2 Request, Single Transition (m2_o_st)
	5.8.4.19 Ordered Mode with Match2 Request, Double Transition (m2_o_dt)
	5.8.4.20 Single Match Enhanced Mode (sm_st_e)
	5.8.4.21 Single Match, Single Transition (sm_st)
	5.8.4.22 Single Match, Double Transition (sm_dt)
	5.8.4.23 Channel Modes on Output Signal Generation
	5.8.4.24 Either Match, Blocking Modes (em_b_st, em_b_dt)
	5.8.4.25 Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)
	5.8.4.26 Match2 Request Modes (m2_st, m2_dt)
	5.8.4.27 Both Match Request Modes (bm_st, bm_dt)
	5.8.4.28 Ordered Modes with Match2 Request (m2_o_st, m2_o_dt)
	5.8.4.29 Single Match Modes (sm_st, sm_dt, sm_st_e)
	5.8.4.30 Match/Transition Pin Action Conflict Resolution
	Table 5-9. Simultaneous Match Pin Action Priority

	5.8.4.31 Combining Input and Output Signals
	Figure 5-5. Input/Output combination

	5.8.5 Channel Link
	Figure 5-6. Microengine LINK Register
	Table 5-10. LINK Engine Selection

	5.8.6 Enhanced Digital Filter (EDF)
	5.8.6.1 Two-Sample Mode
	5.8.6.2 Three-Sample Mode
	5.8.6.3 Continuous Mode
	5.8.6.4 Filter Clock Prescaler
	Table 5-11. Minimum Detected Pulse / Maximum filtered Pulse Width

	5.9 Time Bases
	5.9.1 Timer Count Register 1 (TCR1)
	5.9.1.1 Externally Clocked Mode
	Figure 5-7. TCR1 Clock Selection

	5.9.1.2 Internally Clocked Mode

	5.9.2 Timer Count Register 2 (TCR2)
	Figure 5-8. TCR2 Clock Control
	5.9.2.1 TCR2 Clock Prescaling
	5.9.2.2 TCR2 Gated Mode
	5.9.2.3 TCR2 Signal Transition Modes
	5.9.2.4 TCR2 Bus in Angle Clock Mode

	5.9.3 Shared Time and Angel Count (STAC) Bus Interface
	Table 5-12. Interface Bus and Host Read Sources

	5.9.4 Global Time Base Enable (GTBE)
	5.9.5 TCRCLK Digital Filter

	5.10 eTPU Angle Counter (EAC)
	5.10.1 General
	5.10.2 Angle Mode Registers
	5.10.2.1 Tooth Program Register (TPR)
	Figure 5-9. TPR Register
	Table 5-13. TPR Bit Field Descriptions
	Table 5-14. MISSCNT Values

	5.10.2.2 Timer Counter 2 (TCR2)
	Figure 5-10. TCR2 in Angle Mode

	5.10.2.3 Tick Rate Register (TRR)
	Figure 5-11. TRR Register
	Table 5-15. TRR Register Bit Field Descriptions
	Figure 5-12. EAC “PLL”
	Figure 5-13. eTPU Angle Counter System

	5.10.3 Acceleration and Deceleration
	5.10.4 Angle Tick Generator
	5.10.4.1 Calculating the Angle Tick Period Integer and Fraction
	Figure 5-14. Angle Ticks Generation

	5.10.4.2 Generating the Angle Ticks

	5.10.5 Count Control and High Rate Logic
	5.10.5.1 Normal Mode
	Figure 5-15. Normal Mode

	5.10.5.2 Halt Mode (Deceleration)
	Figure 5-16. Halt Mode, Deceleration

	5.10.5.3 High Rate Mode (Acceleration)
	Figure 5-17. High Rate Mode, Acceleration

	5.10.6 Special Cases of Missing Teeth and Last Tooth
	5.10.6.1 Handling the Last Tooth
	5.10.6.2 Handling Missing Teeth
	5.10.6.3 Combining Missing Teeth and Last Tooth
	Figure 5-18. Missing Teeth and Last Tooth Combination

	5.10.7 Handling Mechanical Tooth Correction
	5.10.8 Handling Mis-detected Tooth
	5.10.9 Handling False Tooth Detection

	Chapter 6 Scheduler
	6.1 Channel Enabling and Priority Assignment
	6.2 Channel Priority Schemes
	Figure 6-1. Time Slot Priority levels
	6.2.1 Primary Scheme: Priority Among Channels on Different Levels
	Table 6-1. Priority Passing
	Figure 6-2. Priority Passing Example

	6.2.2 Secondary Scheme: Priority Among Channels on the Same Level
	6.2.3 Priority Scheme Example

	6.3 Time Slot Latency
	Figure 6-3. Time-Slot Variation

	Chapter 7 Functions and Threads
	7.1 Introduction
	7.2 Entry Points
	7.2.1 Entry Table
	Figure 7-1. Entry Table

	7.2.2 Entry Point Address Generation
	Figure 7-2. Entry Point Address (Host Address Offset)

	7.2.3 Standard Condition Encoding Scheme
	Table 7-1. Standard Channel Condition Encoding Scheme

	7.2.4 Alternate Condition Encoding Scheme
	Table 7-2. Alternate Channel Condition Encoding Scheme

	7.2.5 Entry Point Format
	Figure 7-3. Entry Point Format
	Table 7-3. Entry Point Format

	7.3 Time Slot Transition
	Figure 7-4. TST Timing, No Wait-states
	Figure 7-5. TST Timing, 1 Wait-State
	Figure 7-6. TST Timing, 2 Wait-states

	Chapter 8 Microengine
	8.1 Introduction
	Figure 8-1. Microengine Block Diagram

	8.2 Registers
	8.2.1 Preload Register (P)
	8.2.2 DIOB Register
	8.2.3 Event Register Temporary (ERT_A) and (ERT_B)
	8.2.4 Shift Register (SR)
	8.2.5 Multiply Accumulate High/Low Register (MACH) and (MACL)
	8.2.6 LINK Register
	8.2.7 Return Address Register (RAR)
	8.2.8 CHAN Register
	8.2.9 Counter Registers: TCR1, TCR2, TPR, and TRR
	8.2.10 General Purpose Registers: A, B C and D

	8.3 ALU and Post-ALU Shifter
	8.3.1 ALU Flags
	8.3.1.1 Carry Flag (C)
	8.3.1.2 Negative Flag (N)
	Table 8-1. Negative (N) Flag Behavior

	8.3.1.3 Overflow (V)
	Table 8-2. Overflow Flag on Addition (V)

	8.3.1.4 Zero Flag (Z)
	Table 8-3. Zero Flag (Z)

	8.3.2 ALU ADD Operation with and without Shifting
	Table 8-4. Types of ADD Operations
	Table 8-5. Carry Flag Update on ADD Operation

	8.3.3 ADC Operation
	Table 8-6. Types of ADC operations

	8.3.4 Bitwise Operations
	Table 8-7. Types of Bitwise Operations

	8.3.5 Set Bit/Clear Bit Operations
	8.3.6 Exchange Bit
	8.3.7 Multibit Shift/Rotate Operations
	Table 8-8. Number of Shifted/Rotated Bits for Each BS[1:0] Value
	Table 8-9. Carry Flag Value on Multibit Shift/Rotate Operations

	8.3.8 Absolute Value Operation
	Table 8-10. ALU Flags in Absolute Value operation

	8.4 MAC and Divide Unit (MDU)
	Table 8-11. CIN and BINV with MDU Operations
	8.4.1 Multiply and Multiply-Accumulate Operation Length
	8.4.2 Divide Operation Length
	8.4.3 Signed Multiplication (mults)
	8.4.4 Unsigned Multiplication (multu)
	8.4.5 Signed Multiply-Accumulate (macs)
	8.4.6 Unsigned Multiply-Accumulate (macu)
	8.4.7 Signed Fractional Multiplication (fmults)
	8.4.8 Unsigned Fractional Multiplication (fmultu)
	8.4.9 Unsigned Divide (div)
	8.4.10 MDU Flags
	8.4.10.1 MDU Negative Flag (MN)
	8.4.10.2 MDU Carry Flag (MC)
	8.4.10.3 MDU Zero Flag (MZ)
	8.4.10.4 MDU Overflow Flag (MV)
	8.4.10.5 MDU Busy Flag (MB)

	8.5 Branch Conditions
	Table 8-12. Channel Flags as Branch Condition

	Chapter 9 Microinstruction Set
	9.1 Introduction
	9.2 SPRAM Microoperations
	9.2.1 SPRAM Addressing Modes
	9.2.1.1 Absolute Addressing Mode
	9.2.1.2 Selected Channel Relative Addressing Mode
	9.2.1.3 Indirect Addressing Mode

	9.2.2 SPRAM Source/Destination Registers
	Table 9-1. SPRAM Source/Destination Register Selection

	9.2.3 SPRAM Operation Size
	Table 9-2. SPRAM P Access Size

	9.2.4 SPRAM Access Direction
	Table 9-3. SPRAM Access Direction

	9.2.5 Zero SPRAM Operation
	Table 9-4. Zero SPRAM Operation

	9.2.6 DIOB Stack Operation
	Table 9-5. DIOB Post-Increment / Pre-Decrement (STC)

	9.2.7 Semaphore Operations
	Table 9-6. Semaphore Operations Fields

	9.3 ALU/MDU Operations
	9.3.1 A-Source and Destination Register Set Selection
	9.3.1.1 Microinstructions With Fields ABSE and ABDE
	Table 9-7. Register Set Selection by ABSE or ABDE

	9.3.1.2 Microinstructions Without Fields ABSE and ABDE
	Table 9-8. Register Set Selection by T4BBS w/o ABSE,ABDE

	9.3.2 Selecting Sources and Destination
	Table 9-9. B Source Selection (T4BBS)
	Table 9-10. A Source Selection (T4ABS)
	Table 9-11. Destination Selection (T2ABD)
	9.3.2.1 Max Const Generation With T4BBS=111
	9.3.2.2 Special T4ABS Source Operation: Read Match Registers
	9.3.2.3 CHAN_BASE as a Source

	9.3.3 Flags Sampling Control
	Table 9-12. Operation Size Determination
	Table 9-13. Flag Sampling Using CCS field
	Table 9-14. Flag Sampling Using CCSV field

	9.3.4 B-Source Inversion
	Table 9-15. B-Source Inversion (BINV)

	9.3.5 Carry-in Control
	Table 9-16. ALU Carry-In Control

	9.3.6 Generating “Max” Constant
	9.3.7 Shift Operations
	9.3.8 Shift Register Operations
	Table 9-17. Shift Register Control (SRC)

	9.3.9 Post-ALU Shift Operations
	Table 9-18. Post-ALU Shift Operation

	9.3.10 Conditional ALU/MDU Operation Execution
	Table 9-19. ALU/MDU Conditional Execution

	9.3.11 A-Source Size Override
	Table 9-20. A-Source Size Override
	Table 9-21. AS/CE field A source size override functionary

	9.3.12 A-source Sign Extension
	Table 9-22. A Source Sign Extension

	9.3.13 ALU/MDU Operation Selection
	Table 9-23. ALU Operation Selection (ALUOP)

	9.3.14 Operations With Immediate Data
	9.3.14.1 24-bit Immediate Destination
	Table 9-24. 24-bit Immediate Destination (T2D)

	9.3.14.2 Enhanced ALU Operations With Immediate Data
	Table 9-25. ALU Operation Selection With Immediate Data (ALUOPI)

	9.4 Channel Control and Configuration Microoperations
	9.4.1 Channel Flags Operations
	Table 9-26. P Flags Operation (FLC)

	9.4.2 Comparator and Time Base Selection
	Table 9-27. Time Base Selection 1 (TBS1)
	Table 9-28. Time Base Selection 2 (TBS2)

	9.4.3 Transition Detection and Pin Action Control
	Table 9-29. Input and Output Pin Action Control (IPAC1/2) and (OPAC1/2)

	9.4.4 Immediate Pin State Control
	Table 9-30. Immediate Pin State Control (PSC) and (PSCS)

	9.4.5 Write Channel Match Registers
	Table 9-31. Write Match1/2 (ERW1/2)

	9.4.6 Clear Transition/Match Event Registers
	Table 9-32. Clear Transition/Match Event Registers (MRL_A/B), (TDL)

	9.4.7 Disable Matches
	Table 9-33. Disable Matches (MRLE)

	9.4.8 Disable Match and Transition Service Requests
	Table 9-34. Disable Match and Transition Service Request (MTD)

	9.4.9 Predefined Channel Modes
	Table 9-35. Predefined Channel Modes

	9.4.10 Channel Interrupt and Data Transfer Requests
	Table 9-36. Channel and Data Transfer Requests (CIRC)

	9.4.11 Clear Link Service Request
	Table 9-37. Link Service Request Negation Control (LSR)

	9.5 Flow Control Microoperations
	9.5.1 Ending Current Thread (END)
	9.5.2 Branch Operations
	9.5.2.1 Selecting Jump or Call Microoperations
	Table 9-38. Jump / Call Selection (J/C)

	9.5.2.2 Branch Target Address
	9.5.2.3 Conditional/Unconditional Branch
	Table 9-39. Branch Condition Inversion (BCF)
	Table 9-40. Branch Condition Selection (BCC)

	9.5.3 Dispatch Microoperation
	Table 9-41. Return and Dispatch (R/D)

	9.5.4 Return from Subroutine
	Table 9-42. Return from Sub-routine (RTN)

	9.5.5 Flush Pipeline
	Table 9-43. Flush Pipeline (FLS)
	Figure 9-1. Flush Pipeline

	9.5.6 HALT Microinstruction
	9.5.7 NOP Microinstruction

	9.6 Illegal Instructions
	9.7 Microinstruction Parallelism Issues
	9.7.1 ALU Operations and Read Match Registers
	9.7.2 ALU and SPRAM Operations
	9.7.3 ERT_A/B as ALU destination and ERW1/2
	9.7.4 ERW1/2 and MRLE
	9.7.5 CHAN Assignment, Read Match and ERW1/2
	9.7.6 Read Match and ERW1/2
	9.7.7 Stack Accesses and ALU Operations
	Table 9-44. DIOB load from SPRAM and ALU

	9.7.8 SRC and ALU Operations
	9.7.9 Semaphore Lock/Free and SMLCK Branch Condition

	9.8 Microinstruction Formats
	Table 9-45. Microinstruction Formats

	Chapter 10 Test and Development Support
	10.1 Introduction
	10.2 Development Support Features
	10.2.1 Internal Debug Interface and Nexus Class 3 Support
	10.2.2 Microengine Halt State
	10.2.3 Hardware Breakpoints
	10.2.4 Hardware Watchpoints
	10.2.5 Software Breakpoints
	10.2.6 Single-step Execution
	10.2.7 Forced Microinstruction Execution
	10.2.8 Microengine Register Access
	10.2.9 Microengine Flag Access
	10.2.10 Microengine Stall
	10.2.11 SCM Emulation

	10.3 Test Support Features
	10.3.1 SCM Test for MISC (Multiple Input Signature Calculator)

	Chapter 11 Nexus Dual eTPU Development Interface (NDEDI)
	11.1 Introduction
	11.1.1 Block Diagram
	Figure 11-1. Nexus eTPU Development Interface Block Diagram

	11.1.2 Overview
	11.1.3 Features
	11.1.4 Modes of Operation
	11.1.4.1 Reset
	11.1.4.2 Disabled-Port Mode
	11.1.4.3 Full-Port Mode
	11.1.4.4 Reduced-Port Mode

	11.2 Memory Map/Register Definition
	Table 11-1. NDEDI Memory Map
	11.2.1 Register Descriptions
	11.2.1.1 Client Select Control Register (CSC)
	Figure 11-2. Client Select Control Register (CSC)
	Table 11-2. CSC Field Descriptions

	11.2.1.2 ENGINEn Development Control Register (NDEDI_ENGINEn_DC)
	Figure 11-3. ENGINEn Development Control Register (NDEDI_ENGINEn_DC)
	Table 11-3. NDEDI_ENGINEn_DC Field Descriptions

	11.2.1.3 ENGINEn Development Status Register (NDEDI_ENGINEn_DS)
	Figure 11-4. ENGINEn Development Status Register (NDEDI_ENGINEn_DS)
	Table 11-4. NDEDI_ENGINEn_DS Field Descriptions
	Table 11-5. BP Values

	11.2.1.4 ENGINEn Watchpoint Trigger Register (NDEDI_ENGINEn_WT)
	Figure 11-5. ENGINEn Watchpoint Trigger Register (NDEDI_ENGINEn_WT)
	Table 11-6. NDEDI_ENGINEn_WT Field Descriptions

	11.2.1.5 ENGINEn Data Trace Control Register (NDEDI_ENGINEn_DTC)
	Figure 11-6. ENGINEn Data Trace Control Register (NDEDI_ENGINEn_DTC)
	Table 11-7. NDEDI_ENGINEn_DTC Field Descriptions

	11.2.1.6 ENGINEn Breakpoint/Watchpoint Control Registers (NDEDI_ENGINEn_BWC1, NDEDI_ENGINEn_BWC2)
	Figure 11-7. ENGINEn Breakpoint/Watchpoint Control Registers (NDEDI_ENGINEn_BWC1, NDEDI_ENGINEn_BWC2)
	Table 11-8. NDEDI_ENGINEn_BWCn Field Descriptions

	11.2.1.7 ENGINEn Breakpoint/Watchpoint Address Registers (NDEDI_ENGINEn_BWA1, NDEDI_ENGINEn_BWA2)
	Figure 11-8. ENGINEn Breakpoint/Watchpoint Address Registers (NDEDI_ENGINEn_BWA1, NDEDI_ENGINEn_BWA2)
	Table 11-9. NDEDI_ENGINEn_BWAn Field Descriptions

	11.2.1.8 ENGINEx Breakpoint/Watchpoint Data Registers (NDEDI_ENGINEn_BWD1, NDEDI_ENGINEn_BWD2)
	Figure 11-9. ENGINEn Breakpoint/Watchpoint Data Registers (NDEDI_ENGINEn_BWD1, NDEDI_ENGINEn_BWD2)
	Table 11-10. NDEDI_ENGINEn_BWDn Field Descriptions

	11.2.1.9 ENGINEn Program Trace Channel Enable Register (NDEDI_ENGINEn_PTCE)
	Figure 11-10. ENGINEn Program Trace Channel Enable Register (NDEDI_ENGINEn_PTCE)
	Table 11-11. NDEDI_ENGINEn_PTCE Field Descriptions

	11.2.1.10 ENGINEn Breakpoint/Watchpoint Control 3 Register (NDEDI_ENGINEn_BWC3)
	Figure 11-11. ENGINEn Breakpoint/Watchpoint Control 3 Register (NDEDI_ENGINEn_BWC3)
	Table 11-12. NDEDI_ENGINEn_BWC3 Field Descriptions

	11.2.1.11 ENGINEn Microinstruction Debug Register (NDEDI_ENGINEn_INST)
	Figure 11-12. ENGINEn Microinstruction Debug Register (NDEDI_ENGINEn_INST)

	11.2.1.12 ENGINEn Microprogram Counter Debug Register (NDEDI_ENGINEn_MPC)
	Figure 11-13. ENGINEn Microprogram Counter Debug Register (NDEDI_ENGINEn_MPC)

	11.2.1.13 ENGINEn Channel Flag Status Register (NDEDI_ENGINEn_CFSR)
	Figure 11-14. ENGINEn Channel Flag Status Register (NDEDI_ENGINEn_CSFR)
	Table 11-13. NDEDI_ENGINEn_CSFR Field Descriptions

	11.2.1.14 CDC Data Trace Control Register (NDEDI_CDC_DTC)
	Figure 11-15. CDC Data Trace Control Register (NDEDI_CDC_DTC)
	Table 11-14. NDEDI_CDC_DTC Field Descriptions

	11.2.1.15 Data Trace Address Range 0 Register (NDEDI_DTAR0)
	Figure 11-16. Data Trace Address Range 0 Register (NDEDI_DTAR0)
	Table 11-15. NDEDI_DTAR0 Field Descriptions

	11.2.1.16 Data Trace Address Range 1 Register (NDEDI_DTAR1)
	Figure 11-17. Data Trace Address Range 1 Register (NDEDI_DTAR1)
	Table 11-16. NDEDI_DTAR1 Field Descriptions

	11.2.1.17 Data Trace Address Range 2 Register (NDEDI_DTAR2)
	Figure 11-18. CData Trace Address Range 2 Register (NDEDI_DTAR2)
	Table 11-17. NDEDI_DTAR2 Field Descriptions

	11.2.1.18 Data Trace Address Range 3 Register (NDEDI_DTAR3)
	Figure 11-19. Data Trace Address Range 3 Register (NDEDI_DTAR3)
	Table 11-18. NDEDI_DTAR3 Field Descriptions

	11.2.1.19 Unimplemented Registers

	11.3 Functional Description
	11.3.1 NDEDI Reset Configuration
	11.3.1.1 Enabling NDEDI Class 1 Operation
	11.3.1.2 Enabling NDEDI Class 3 Operation

	11.3.2 Auxiliary Output Port
	11.3.2.1 Output Message Protocol
	Figure 11-20. MSEO Transfers

	11.3.2.2 Output Messages
	Table 11-19. NDEDI Messages
	Table 11-20. Error Codes Encodings (ECODE)
	Table 11-21. Resource Codes Encodings
	Figure 11-21. Message Packet Sizes

	11.3.2.3 Rules of Messaging
	Figure 11-22. Transmission Sequence of Messages

	11.3.2.4 Examples
	Figure 11-23. Indirect Branch with History Message (4 MDO pins)
	Figure 11-24. Indirect Branch with History Message (8 pins)
	Figure 11-25. Data Write with Sync Message (16 pins)

	11.3.2.5 Temporal Ordering of Transmitted Messages

	11.3.3 Microcode Development Support
	11.3.4 Debug Status
	11.3.4.1 Messaging
	Figure 11-26. Debug Status Message Format

	11.3.4.2 Error Messages
	Figure 11-27. Debug Status Error Message Format

	11.3.4.3 Synchronization
	11.3.4.4 Timing Diagrams
	Figure 11-28. Debug Status Message
	Figure 11-29. Debug Status Overrun Error Message

	11.3.5 Ownership Trace
	11.3.5.1 Messaging
	Figure 11-30. Ownership Trace Message Format

	11.3.5.2 OTM Flow
	11.3.5.3 Timing Diagram
	Figure 11-31. Ownership Trace Message

	11.3.6 Program Trace
	11.3.6.1 Branch Trace Messaging
	11.3.6.2 Branch Trace Message Formats
	Table 11-22. eTPU BTM Messages
	11.3.6.2.1 Resource Full Messages
	Figure 11-32. Resource Full Message Format

	11.3.6.2.2 Indirect Branch with History Messages
	Figure 11-33. Indirect Branch with History Message Format

	11.3.6.2.3 Indirect Branch with History Synchronization Messages
	Figure 11-34. Indirect Branch with History Synchronization Message Format

	11.3.6.2.4 Program Trace Correlation Message
	Table 11-23. Event Code Encodings
	Figure 11-35. Program Trace Correlation Message Format

	11.3.6.2.5 Channel Start Service Message
	Figure 11-36. Channel Start Service Synchronization Message Format

	11.3.6.2.6 Channel Trace Enable Message
	Figure 11-37. Channel Trace Enable Synchronization Message Format

	11.3.6.2.7 Channel Register Write Messages
	Figure 11-38. Channel Register Write Message Format

	11.3.6.3 Branch Trace Messaging Operation
	Figure 11-39. Branch Trace Message Generation (Part 1)
	Figure 11-40. Branch Trace Message Generation (Part 2)
	11.3.6.3.1 Relative Addressing
	Figure 11-41. Relative Address Generation and Recreation

	11.3.6.3.2 Enabling Program Trace
	11.3.6.3.3 Branch/Predicate Instruction History
	11.3.6.3.4 Sequential Instruction Count
	11.3.6.3.5 Interleaved ENGINE1 and ENGINE2 messages

	11.3.6.4 Timing Diagrams
	Figure 11-42. Resource Full Message, I-CNT Overflow
	Figure 11-43. Resource Full Message, HIST Buffer Full
	Figure 11-44. Indirect Branch with History Message
	Figure 11-45. Indirect Branch with History Synchronization Message
	Figure 11-46. Program Trace Correlation Message
	Figure 11-47. Channel Start Service Message
	Figure 11-48. Channel Trace Enable Message with the same value for CHAN and S-CHAN
	Figure 11-49. Channel Trace Enable Message with different values for CHAN and S-CHAN
	Figure 11-50. Channel Register Write Message

	11.3.7 Data Trace
	Table 11-24. Two least significant bits for Data Trace Addresses
	11.3.7.1 Data Trace Message Formats
	Table 11-25. Data Trace SIZE Packet Decodings
	11.3.7.1.1 Data Write Message
	Figure 11-51. Data Write Message Format

	11.3.7.1.2 Data Read Message
	Figure 11-52. Data Read Message Format

	11.3.7.1.3 Data Trace Synchronization Messages
	Figure 11-53. Data Write Synchronization Message Format
	Figure 11-54. Data Read Synchronization Message Format

	11.3.7.2 Data Trace Operation
	Figure 11-55. eTPU/CDC Data Trace Flow Diagram
	11.3.7.2.1 Data Trace Windowing
	Table 11-26. Data Trace Address Range Options

	11.3.7.2.2 Relative Addressing
	Figure 11-56. Relative Address Generation and Recreation

	11.3.7.3 Timing Diagrams
	Figure 11-57. Data Write Message
	Figure 11-58. Data Read Message
	Figure 11-59. Data Write with Synchronization Message
	Figure 11-60. Data Read with Synchronization Message

	11.3.8 Watchpoint Trace
	11.3.8.1 Messaging
	Figure 11-61. Watchpoint Hit Message Format
	Table 11-27. WPHIT Values

	11.3.8.2 Error Messages
	Figure 11-62. Watchpoint Overrun Error Message Format

	11.3.8.3 Synchronization
	11.3.8.4 Timing Diagrams
	Figure 11-63. Watchpoint Message
	Figure 11-64. Watchpoint Overrun Error Message

	11.3.9 eTPU Message Queue
	Table 11-28. MDO Request Level
	Figure 11-65. Event Queue
	11.3.9.1 Queue Control
	11.3.9.2 Error Messages
	Figure 11-66. Error Message Format

	11.3.9.3 Timing Diagrams
	Figure 11-67. Error Messages (Program/Data/Ownership Trace Overrun)

	11.4 Initialization/Application Information
	11.4.1 Accessing NDEDI Tool-Mapped Registers
	11.4.2 Program Trace Reconstruction
	11.4.3 Microcode Development Support
	11.4.3.1 Read and Write SPRAM In Debug Mode
	11.4.3.2 Read and Write eTPU Internal Registers in Debug Mode
	11.4.3.3 Enter Debug Mode at the Negation of Reset
	11.4.3.4 Enter Debug Mode During Normal Execution
	11.4.3.5 Stop Program Execution on a Breakpoint
	11.4.3.6 Single Step Instructions and Re-Enter Debug Mode
	11.4.3.7 Set Breakpoint or Watchpoints
	11.4.3.8 Execute Forced Microcode Instruction in Debug Mode

	Chapter 12 Initialization/Application Information
	12.1 Configuration Sequence
	12.2 Reset Options
	12.2.1 Hardware Reset
	12.2.2 Software Reset

	12.3 Multiple Parameter Coherency Methods
	12.4 Programming Hints and Caveats
	12.4.1 Atomic Dual Access After a Call, Return
	12.4.2 Resource Polling
	12.4.3 Changing Channel Function, Parameter Base, or Entry Table Scheme
	12.4.4 Checking and Clearing Interrupts of a Stopped Engine

	12.5 Estimating Worst Case Latency
	12.5.1 Introduction to Worst-Case Latency
	Figure 12-1. Worst-Case Latency for PWM
	Figure 12-2. Function Threads

	12.5.2 Using Worst-Case Latency Estimates to Evaluate Performance
	12.5.3 Priority Scheme Details Used in WCL Analysis
	Figure 12-3. Time-Slot Sequence
	Figure 12-4. Multiple Time-Slot Sequences
	12.5.3.1 Priority Passing
	12.5.3.2 Time-Slot Transition
	12.5.3.3 Channel Number Priority
	12.5.3.4 SPRAM Collision Rate

	12.5.4 First-Pass Worst-Case Latency Analysis
	12.5.4.1 Worst-Case Assumptions and Formula
	Figure 12-5. First-Pass Worst-Case Latency

	12.5.4.2 Finding the Worst-Case Service Time for Each Active Channel
	Table 12-1. Longest Threads and RAM Accesses for old TPU Functions

	12.5.4.3 Mapping the Channels for Each Time Slot
	12.5.4.4 Adding Time for Time-Slot Transitions
	12.5.4.5 First-Pass Analysis Worst-Case Latency Examples
	Table 12-2. System Configuration Example

	12.5.4.6 Finding the WCL for PWM on Channel 0
	Figure 12-6. Next Servicing for Channel 0
	Table 12-3. Worst-Case Latency for Channel 0

	12.5.4.7 Finding the WCL for PPWA on Channel 1
	Figure 12-7. Next Servicing for Channel 1
	Table 12-4. Worst Case Latency for Channel 1

	12.5.4.8 Finding the WCL for DIO on Channel 2
	Figure 12-8. Next Servicing for Channel 2
	Table 12-5. Worst Case Latency for Channel 2

	12.5.5 Second-Pass Worst-Case Latency Analysis
	12.5.5.1 Second-Pass Analysis Guidelines
	12.5.5.2 Second-Pass Analysis Example
	12.5.5.3 First-Try System Configuration
	Table 12-6. First-Try System Configuration
	Figure 12-9. Worst-Case Latency for Channel 0 (First Try)

	12.5.5.4 Second-Try System Configuration
	Table 12-7. Second-Try System Configuration
	Figure 12-10. Worst-Case Latency for Channel 0 (Second Try)
	Figure 12-11. Worst-Case Latency for Channel 2
	Table 12-8. Second-Try System with Channel 0 and 1 Reconfigured

	12.6 Endianness
	Table 12-9. Parameter Addresses and Endianness

	Appendix A Microcycle Timing
	Figure A-1. Channel I/O Timing
	Figure A-2. T2 Wait-State Timing
	Figure A-3. T4 Wait-State Timing

	Appendix B Initialization Code Example
	Appendix C Channel Mode Summary
	Figure C-1. Channel Mode Summary

	Appendix D eTPU MISC Algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (U.S. Prepress Defaults)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

