

Video Segmentation

CVPR 2014 Tutorial

http://www.supervoxel.com/CVPR14_videoseg/

Jason J. Corso Chenliang Xu

University of Michigan jjcorso@eecs.umich.edu

ELECTRICAL ENGINEERING & COMPUTER SCIENCE

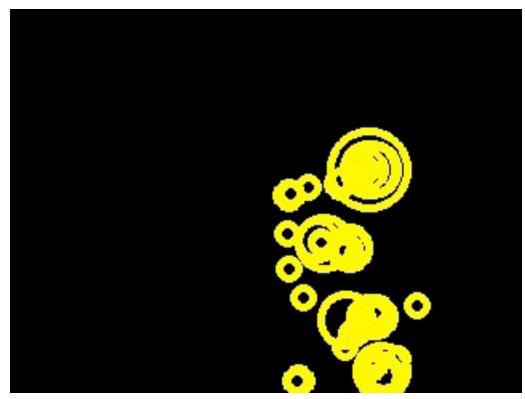
Matthias Grundmann

Google Research grundman@cc.gatech.edu

Irfan Essa

Georgia Tech irfan@cc.gatech.edu

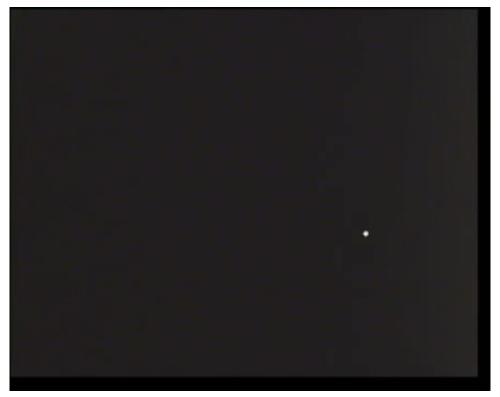
Representing Video Content



Method: Laptev. "On Space-Time Interest Points." IJCV 64(2/3):107-123. 2005.

Representing Video Content

A good representation is paramount to good high-level video understanding.

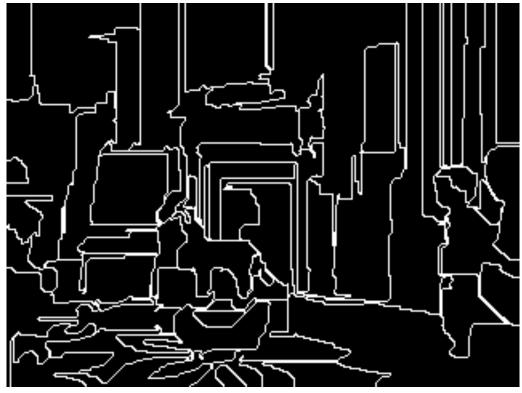


Sources: Maas 1971 with Johansson; downloaded from Youtube.

Not There Yet...

Method: Yang and Ramanan. "Articulated Pose Estimation with Flexible Mixtures-of-Parts." CVPR 2011.

Alas, what makes such a good representation?



Method: Supervoxel segment boundaries. Xu and Corso CVPR 2012.

Segmentation: Toward a Rich Representation?

Applications of Video Understanding

- Real-time / Interactive
 - Mobile robotic guidance, navigation and manipulation.
 - Human computer/machine/robot interaction and entertainment.
 - Healthcare monitoring and surveillance.
- Off-line
 - Video indexing and search.
 - Video to text.
 - Sports analysis.
 - Advertising analytics.
- Vision meets Big Data.
 - The vast majority of all visual data is video data (YouTube: 72h/min).
 - Need methods for video analysis before we can handle the deluge.

Goals of the Tutorial

- 1. Spread the word on the advances of recent supervoxel methods—this tutorial is about an alternative representation of video content suitable for various subsequent inquiries.
- 2. Expose the vision audience to the how these methods can be used as an early step in various video analysis problems.
- 3. Introduce the software tools we have produced and released that are available to the community.

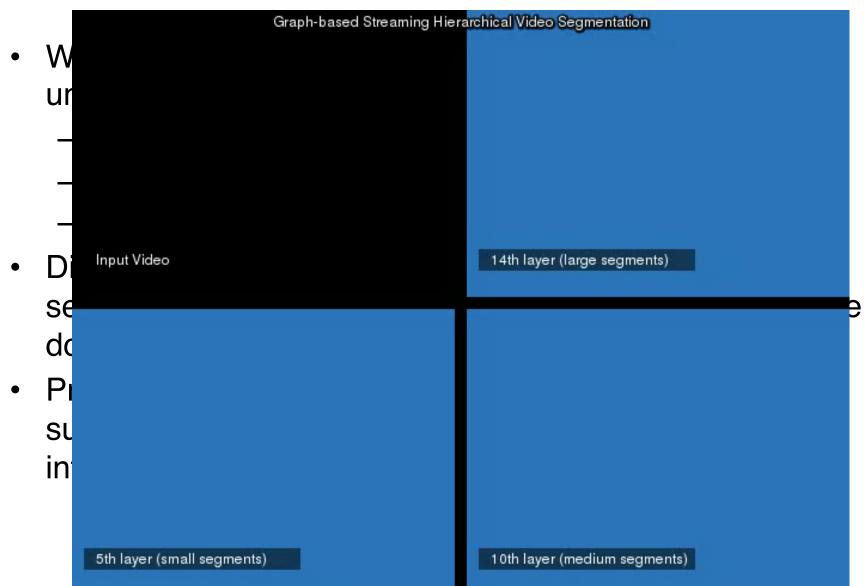
Distinct Types of Video Segmentation

- Shot Segmentation
- Motion Segmentation
- Supervoxel Over-Segmentation
- Video Segmentation
- Semantic Segmentation

Tutorial Plan

1:00 – 1:30	Introduction	Jason
1:30 – 2:00	Graph-Based Hierarchical Segmentation	Matthias
2:00 - 2:30	Segmentation by Weighted Aggregation	Jason
2:30 - 3:00	Other Methods/Topics	Jason
3:00 - 3:30	Coffee Break	
3:30 – 4:15	Applications of Video Segmentation	Irfan & Matthias
4:15 – 4:45	LIBSVX and Evaluation	Chenliang
4:45 – 5:00	Wrap-Up	All

Supervoxels: A Complementary "Feature"?



What makes a good spatial segmentation method?

11

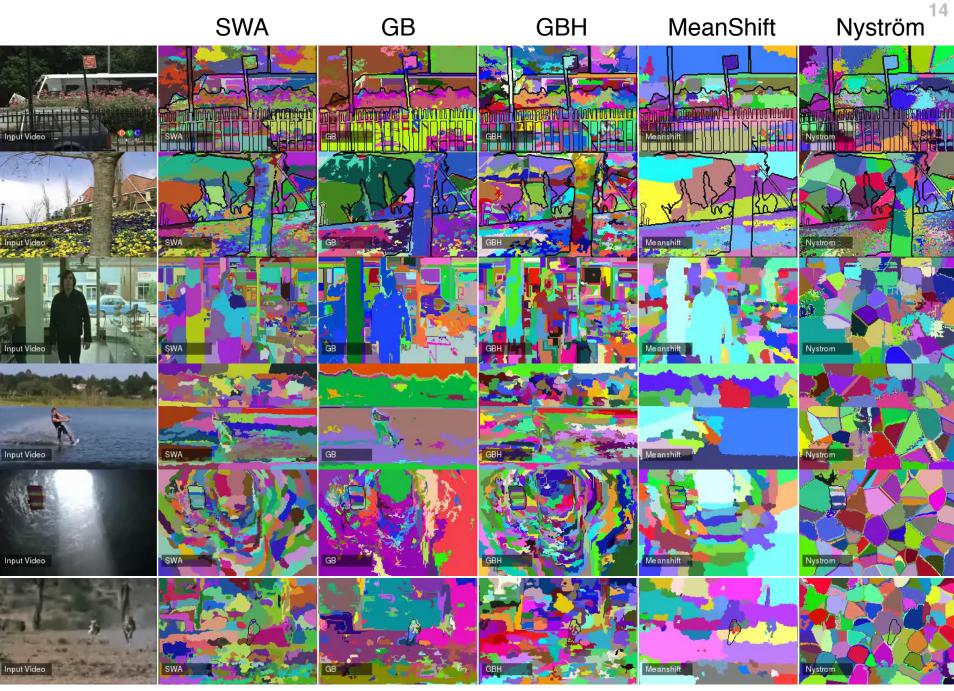
- Rationale for oversegmentation
 - Pixels are not natural elements in images.
 - The number of pixels is very high.
- **Spatial uniformity** prefers compact and uniformly shaped superpixels.
 - Embeds basic Gestalt principles of continuity, closure, etc.
- **Spatial boundary preservation** as superpixel boundaries should align with perceptual boundaries when present and should be stable when they are not.
- Computation the overall computational cost for a particular application should be reduced via superpixels.
- **Performance** the overall performance of a method should be increased.
- **Parsimony** The above properties should be maintained with as few superpixels as possible.

What makes a good space-time segmentation method?

- Rationale for oversegmentation
 - Voxels are not natural elements in video.
 - The number of voxels is very high.
- **Spatiotemporal uniformity** prefers compact and uniformly shaped supervoxels.
 - Embeds basic Gestalt principles of continuity, closure, etc.
- Spatiotemporal boundary preservation as supervoxel boundaries should align with perceptual boundaries when present and should be stable when they are not.
- Computation the overall computational cost for a particular application should be reduced via supervoxels.
- **Performance** the overall performance of a method should be increased.
- **Parsimony** The above properties should be maintained with as few supervoxels as possible.

Evaluating Standard Methods.

- Meanshift
 - Fukunaga and Hostetler, Comaniciu and Meer, Wang et al.
- Graph-based / Minimum Spanning Forest
 - Felzenswalb and Huttenlocher.
 - Arguably the most popular superpixel method.
- Hierarchical graph-based
 - Grundmann et al.
- Nyström normalized cuts.
 - Shi and Malik, Fowlkes et al.
- Segmentation by weighted aggregation
 - Sharon et al., Corso et al.



LIBSVX: Library and Benchmark

- We implemented a set of quantitative evaluation benchmarks to assess these five methods against the properties discussed earlier.
 - 3D undersegmentation error.
 - 3D boundary recall.
 - 3D segmentation accuracy.
 - Explained variation (human independent).
- Three data sets

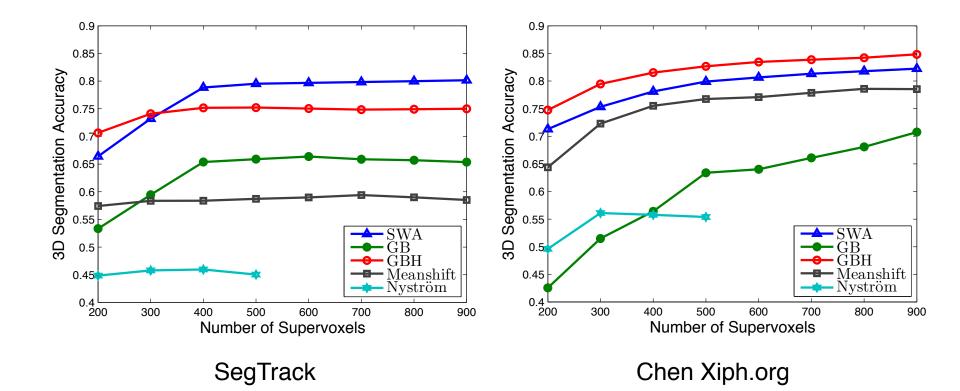
	Human Annotation	No. Videos	Mean FPV
SegTrack	Single Object	6	41
GaTech	None	15	86
Chen Xiph.org	Full Scene Segments	8	85

Chen Xiph.org Video Example

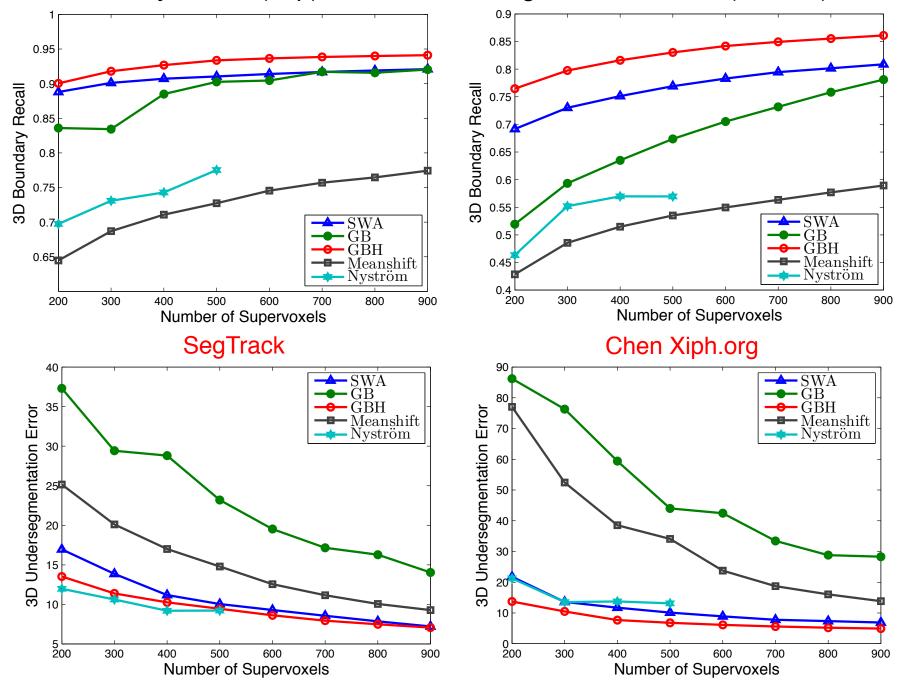


Quantitative Evaluation Results

3D Segmentation Accuracy

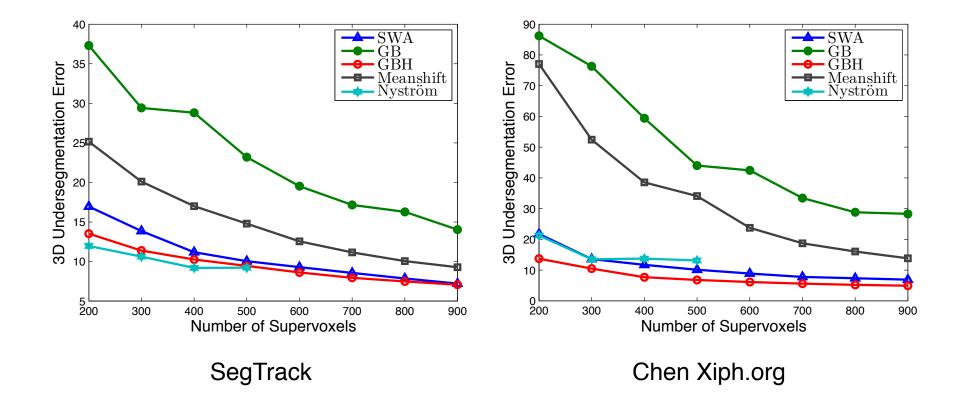


• 3D Boundary Recall (Top) and 3D Undersegmentation Error (Bottom)



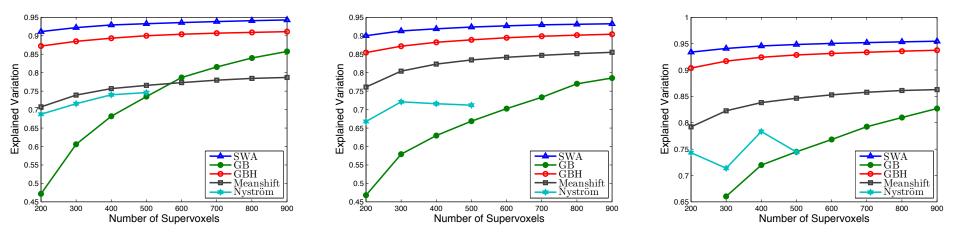
Quantitative Evaluation Results

• 3D Undersegmentation Error



Quantitative Evaluation Results

• Explained Variation



SegTrack

Chen Xiph.org

GaTech

Key Finding

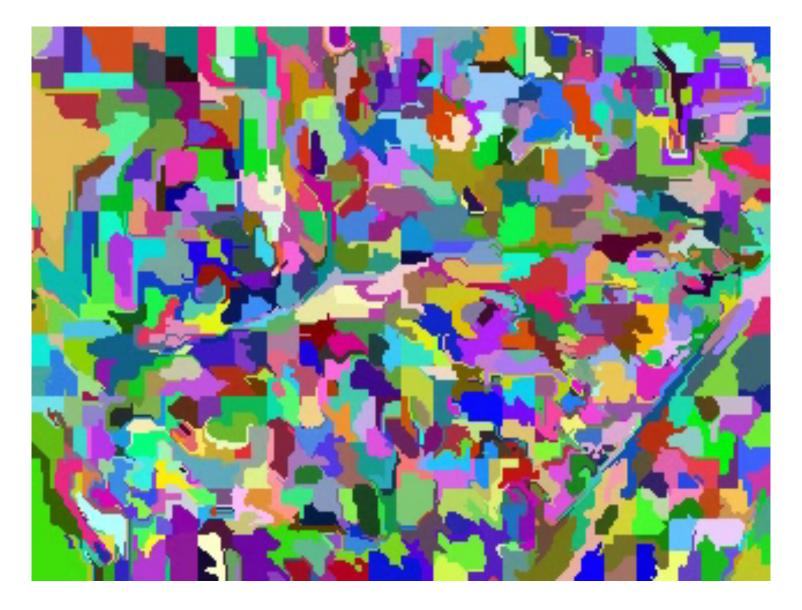
- SWA and GBH systematically outperform the other three methods, despite sharing some similarities. E.g.,
 - SWA and Nyström both minimize the normalized cut function.
 - GB and GBH are both based on the MST grouping method.
 - SWA, GBH, MeanShift are all hierarchical.
- Why?
- The characteristic that separates them is that they recompute similarity/affinity at multiple scales as the hierarchy increases incorporating coarse and fine information.

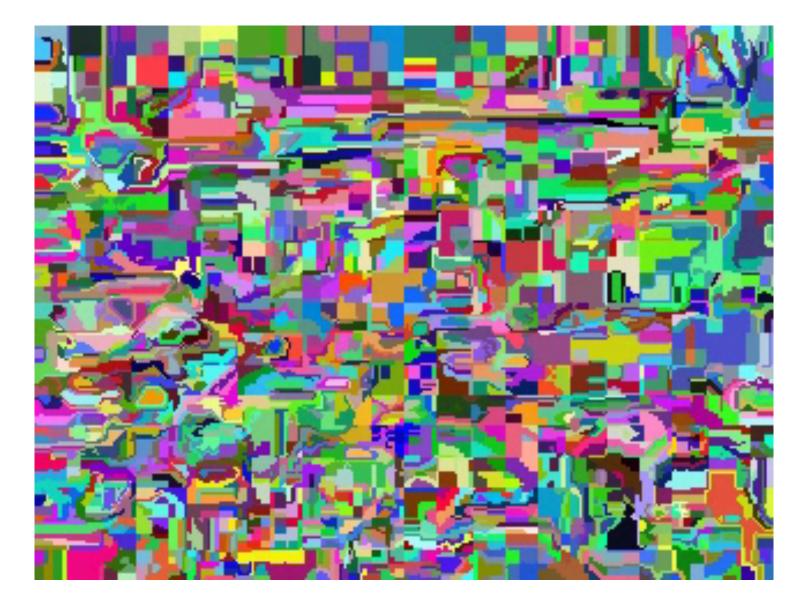
Detailed Methods to the Discussed

- Hence, we will focus on two methods in detail in the tutorial
 - Graph-based hierarchical segmentation
 - Segmentation by Weighted Aggregation
- We will discuss other variants and applications of these.
- Disclaimer: this is not to say there are no other methods we should also be discussing. But, given time and goals, this is what we choose. Examples you may consider reading:
 - Galasso et al. ACCV 12
 - TSP Chang et al. CVPR 13
 - Video Seeds, Van der Bergh et al. ICCV 13
 - Trajectory Binary Partition Tree, Palou and Salembier CVPR13
- However, first, some results on why you should care of supervoxels as a feature.

A Study on Human Supervoxel Perception

Are Actor and Action Semantics Retained in Video Supervoxel Segmentation?





Study Questions

- Primary Question:
 - Do the segmentation hierarchies retain enough information for the human perceiver to recognize
 - Actor? (human or animal)
 - Act? (forced-choice one of eight)
- Secondary Questions:
 - How does the human performance vary with density of the supervoxels?
 - How does the human performance vary with actor?
 - How does human performance vary with static versus moving background?
 - How does speed vary with act? with correctness?

Study Setup: Participant Cohort and Data Set

- Study cohort of 20 college-age participants.
 - No student is studying segmentation.
- Data Set
 - Stratified according to Actors, Acts, and Background
 - Actors: human or animal
 - **Background:** static or moving
 - Acts: climbing, crawling, eating, flying, jumping, running, spinning, walking.
 - Sample 3 levels of the segmentation hierarchy (coarse, medium, and fine).
 - In total, we have 96 videos
 - 2 actors * 2 backgrounds * 8 acts * 3 levels

Study Setup: The Interface and Instructions

- Web-based interface
- Each participant is shown 32 videos and sees a given (input) video only once (in a single segmentation level).
- Participants never see the input RGB videos.

 Select Actor

 Human
 Animal

 Select Act
 Climbing
 Crawling
 Eating

 Walking
 Don't Know Act or Actor
 Flying

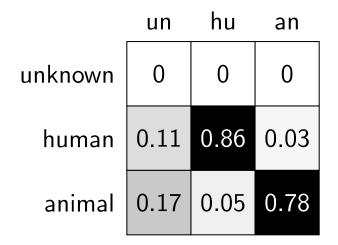
 Spinning
 Running
 Jumping

[Xu, Doell,... Corso ICSC 2013 and IJSC In Press]

Segmentation Video HIT

Study Results: Actor Discrimination

• High actor discrimination rate: 82.4% overall accuracy.



[Xu, Doell,... Corso ICSC 2013 and IJSC In Press]

Study Results: Act Discrimination

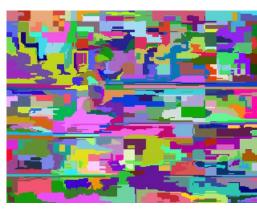
• Overall act discrimination rate: 70.5%.

	un	wl	sp	rn	jm	ea	cl	cr	fl
unknown	0	0	0	0	0	0	0	0	0
walking	0.11	0.57	0.12	0.12	0	0.01	0.01	0.04	0
spinning	0.15	0.06	0.65	0.03	0	0	0.01	0.04	0.06
running	0.01	0.07	0.07	0.79	0.04	0	0	0.01	0
jumping	0.19	0.01	0.04	0.09	0.57	0	0	0.01	0.09
eating	0.19	0	0	0	0	0.76	0.04	0	0.01
climbing	0.06	0.01	0	0	0.03	0	0.90	0	0
crawling	0.20	0.03	0	0.06	0.01	0	0.01	0.69	0
flying	0.19	0.03	0.01	0	0.01	0.01	0.03	0.03	0.70

Study Results: Action Discrimination

• Dominant unidirectional motion.

	un	wl	sp	rn	jm	ea	cl	cr	fl
unknown	0	0	0	0	0	0	0	0	0
walking	0.11	0.57	0.12	0.12	0	0.01	0.01	0.04	0
spinning	0.15	0.06	0.65	0.03	0	0	0.01	0.04	0.06
running	0.01	.07	0.07	0.79	.04	0	0	0.01	0
jumping	0.19	0.01	0.04	0.09	0.57	0	0	0.01	0.09
eating	0.19	0	0	0	0	0.76	0.04	0	0.01
climbing	0.06	.01	0	0	0.03	0	0.90	0	0
crawling	0.20	0.03	0	0.06	0.01	0	0.01	0.69	0
flying	0.19	0.03	0.01	0	0.01	0.01	0.03	0.03	0.70



Human_Running

Human_Climbing

Animal_Running

Animal_Climbing

[Xu, Doell,... Corso ICSC 2013 and IJSC In Press]

Study Results: Action Discrimination

• Dominant unidirectional motion.

	un	wl	sp	rn	jm	ea	cl	cr	fl
unknown	0	0	0	0	0	0	0	0	0
walking	0.11	0.57	0.12	0.12	0	0.01	0.01	0.04	0
spinning	0.15	0.06	0.65	0.03	0	0	0.01	0.04	0.06
running	0.01	.07	0.07	0.79	.04	0	0	0.01	0
jumping	0.19	0.01	0.04	0.09	0.57	0	0	0.01	0.09
eating	0.19	0	0	0	0	0.76	0.04	0	0.01
climbing	0.06	.01	0	0	0.03	O	0.90	0	0
crawling	0.20	0.03	0	0.06	0.01	0	0.01	0.69	0
flying	0.19	0.03	0.01	0	0.01	0.01	0.03	0.03	0.70

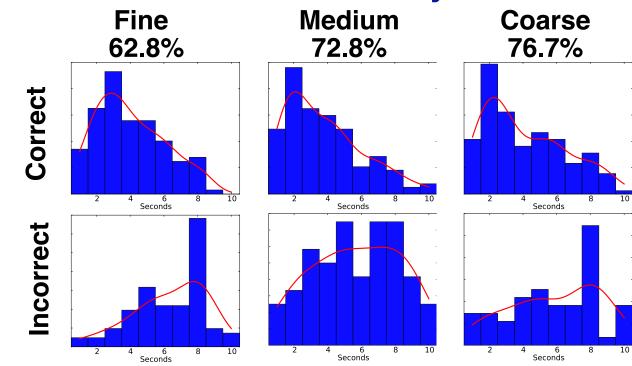
Human_Running

Human_Climbing

Animal_Running

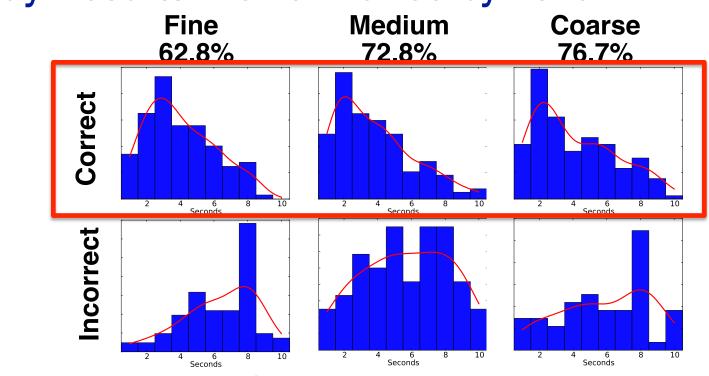
Animal_Climbing

[Xu, Doell,... Corso ICSC 2013 and IJSC In Press]



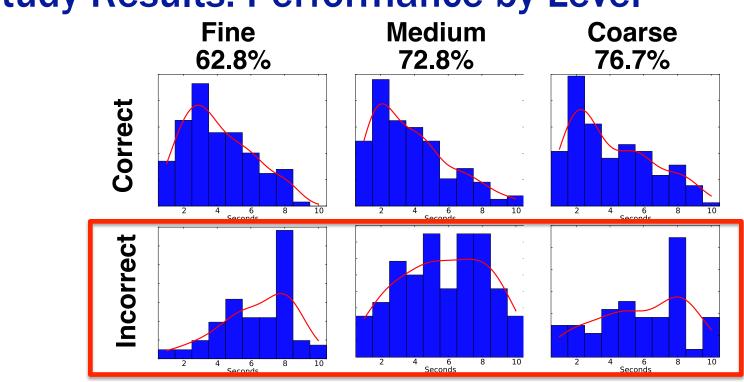
Study Results: Performance by Level

- Bar figures are the response time.
 - X-axis: Time at the half-frame-rate.
 - Y-axis: density of responses.
 - Blue bars: simple histogram.
 - Red curve: Gaussian kernel density estimate.



Study Results: Performance by Level

- Correct action matches:
 - Response distributions are early equivalent.
 - Heavily weighted toward the shorter end of X-axis.
- If the participant knows the answer then typically knows it quickly.



Study Results: Performance by Level

- Incorrect action matches:
 - Different patterns.
 - Fine videos peaked at about eight seconds.
- Participant watched the whole video and still got the wrong action perception.

Summary of Study

- Segmentation hierarchies generate rich decompositions of the video content.
- They compress the signal significantly, but does enough semantic information remain to discriminative actor and act?
- Yes! 82% accuracy on actor and 70% on act.
- Act discrimination increases with coarseness of the signal.
- Act discrimination for human actors is better than animals.
- Act discrimination for a static background is better than a moving background.
- Limitation: 20 participants on 32 input videos. Moving to 64 input videos and Mechanical Turk.