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Expectation-Maximization for GMMs

I Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data
such as the latent variables z indicating the mixture
component.

I Recall the conditions that must be satisfied at a maximum of
the likelihood function.

I For the mean µk, setting the derivatives of ln p(X|π,µ,Σ)
w.r.t. µk to zero yields

0 = −
N∑
n=1

πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

Σk(xn − µk) (20)

= −
N∑
n=1

γ(znk)Σk(xn − µk) (21)

I Note the natural appearance of the responsibility terms on the
RHS.
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I Multiplying by Σ−1
k , which we assume is non-singular, gives

µk =
1

Nk

N∑
n=1

γ(znk)xn (22)

where

Nk =

N∑
n=1

γ(znk) (23)

I We see the kth mean is the weighted mean over all of the
points in the dataset.

I Interpret Nk as the number of points assigned to component k.
I We find a similar result for the covariance matrix:

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T . (24)
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I We also need to maximize ln p(X|π,µ,Σ) with respect to the
mixing coefficients πk.

I Introduce a Lagrange multiplier to enforce the constraint∑
k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

I Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

I After multiplying both sides by π and summing over k, we get

λ = −N (27)

I Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)



I We also need to maximize ln p(X|π,µ,Σ) with respect to the
mixing coefficients πk.

I Introduce a Lagrange multiplier to enforce the constraint∑
k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

I Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

I After multiplying both sides by π and summing over k, we get

λ = −N (27)

I Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)



I We also need to maximize ln p(X|π,µ,Σ) with respect to the
mixing coefficients πk.

I Introduce a Lagrange multiplier to enforce the constraint∑
k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

I Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

I After multiplying both sides by π and summing over k, we get

λ = −N (27)

I Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)



I We also need to maximize ln p(X|π,µ,Σ) with respect to the
mixing coefficients πk.

I Introduce a Lagrange multiplier to enforce the constraint∑
k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

I Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

I After multiplying both sides by π and summing over k, we get

λ = −N (27)

I Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)



I We also need to maximize ln p(X|π,µ,Σ) with respect to the
mixing coefficients πk.

I Introduce a Lagrange multiplier to enforce the constraint∑
k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(25)

I Maximizing it yields:

0 =
1

Nk

∑
n=1

γ(znk) + λ (26)

I After multiplying both sides by π and summing over k, we get

λ = −N (27)

I Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)



Solved...right?

I So, we’re done, right? We’ve computed the maximum
likelihood solutions for each of the unknown parameters.

I Wrong!
I The responsibility terms depend on these parameters in an

intricate way:

γ(zk)
.
= p(zk = 1|x) = πkN (x|µk,Σk)∑K

j=1 πjN (x|µj ,Σj)

I But, these results do suggest an iterative scheme for finding a
solution to the maximum likelihood problem.

1. Chooce some initial values for the parameters, π,µ,Σ.
2. Use the current parameters estimates to compute the

posteriors on the latent terms, i.e., the responsibilities.
3. Use the responsibilities to update the estimates of the

parameters.
4. Repeat 2 and 3 until convergence.
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Some Quick, Early Notes on EM

I EM generally tends to take more steps than the K-Means
clustering algorithm.

I Each step is more computationally intense than with K-Means
too.

I So, one commonly computes K-Means first and then initializes
EM from the resulting clusters.

I Care must be taken to avoid singularities in the MLE solution.
I There will generally be multiple local maxima of the likelihood

function and EM is not guaranteed to find the largest of these.



Some Quick, Early Notes on EM

I EM generally tends to take more steps than the K-Means
clustering algorithm.

I Each step is more computationally intense than with K-Means
too.

I So, one commonly computes K-Means first and then initializes
EM from the resulting clusters.

I Care must be taken to avoid singularities in the MLE solution.
I There will generally be multiple local maxima of the likelihood

function and EM is not guaranteed to find the largest of these.



Some Quick, Early Notes on EM

I EM generally tends to take more steps than the K-Means
clustering algorithm.

I Each step is more computationally intense than with K-Means
too.

I So, one commonly computes K-Means first and then initializes
EM from the resulting clusters.

I Care must be taken to avoid singularities in the MLE solution.
I There will generally be multiple local maxima of the likelihood

function and EM is not guaranteed to find the largest of these.



Some Quick, Early Notes on EM

I EM generally tends to take more steps than the K-Means
clustering algorithm.

I Each step is more computationally intense than with K-Means
too.

I So, one commonly computes K-Means first and then initializes
EM from the resulting clusters.

I Care must be taken to avoid singularities in the MLE solution.

I There will generally be multiple local maxima of the likelihood
function and EM is not guaranteed to find the largest of these.



Some Quick, Early Notes on EM

I EM generally tends to take more steps than the K-Means
clustering algorithm.

I Each step is more computationally intense than with K-Means
too.

I So, one commonly computes K-Means first and then initializes
EM from the resulting clusters.

I Care must be taken to avoid singularities in the MLE solution.
I There will generally be multiple local maxima of the likelihood

function and EM is not guaranteed to find the largest of these.



Given a GMM, the goal is to maximize the likelihood function with respect to
the parameters (the means, the covarianes, and the mixing coefficients).

1. Initialize the means, µk, the covariances, Σk, and mixing coefficients,
πk. Evaluate the initial value of the log-likelihood.

2. E-Step Evaluate the responsibilities using the current parameter values:

γ(zk) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

3. M-Step Update the parameters using the current responsibilities

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn (29)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (30)

πnew
k =

Nk

N
(31)

where

Nk =

N∑
n=1

γ(znk) (32)
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4. Evaluate the log-likelihood

ln p(X|µnew,Σnew,πnew) =

N∑
n=1

ln

[
K∑

k=1

πnew
k N (xn|µnew

k ,Σnew
k )

]
(33)

5. Check for convergence of either the parameters of the log-likelihood. If
the convergence is not satisfied, set the parameters:

µ = µnew (34)

Σ = Σnew (35)

π = πnew (36)

and goto step 2.
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A More General View of EM

I The goal of EM is to find maximum likelihood solutions for
models having latent variables.

I Denote the set of all model parameters as θ, and so the
log-likelihood function is

ln p(X|θ) = ln

[∑
Z

p(X,Z|θ)

]
(37)

I Note how the summation over the latent variables appears
inside of the log.

I Even if the joint distribution p(X,Z|θ) belongs to the
exponential family, the marginal p(X|θ) typically does not.

I If, for each sample xn we were given the value of the latent
variable zn, then we would have a complete data set, {X,Z},
with which maximizing this likelihood term would be
straightforward.
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I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.



I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.



I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.



I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.



I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.



I However, in practice, we are not given the latent variables
values.

I So, instead, we focus on the expectation of the log-likelihood
under the posterior distribution of the latent variables.

I In the E-Step, we use the current parameter values θold to find
the posterior distribution of the latent variables given by
p(Z|X,θold).

I This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is
given by

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ) (38)

I Then, in the M-step, we revise the parameters to θnew by
maximizing this function:

θnew = argmax
θ
Q(θ,θold) (39)

I Note that the log acts directly on the joint distribution
p(X,Z|θ) and so the M-step maximization will likely be
tractable.




