
Geometric Camera Calibration 

Instructor: Jason Corso (jjcorso)!
web.eecs.umich.edu/~jjcorso/t/598F14!

!

Materials on these slides have come from many sources in addition to myself; I am infinitely grateful to these, especially Greg Hager, Silvio Savarese, and Steve Seitz.!

EECS 598-08 Fall 2014!
Foundations of Computer Vision!
!

Readings:  FP 1.3; SZ 6.3  (FL 4.6; extra notes)  !
Date:  9/17/14!
!



Plan 

•  Review Perspective Projection!
•  Geometric Camera Calibration!

–  Indirect camera calibration!
•  Solve for projection matrix then the parameters!

–  Direct camera calibration!
–  Multi-planes method!

•  Example with the Matlab Toolbox!
•  Catadioptric Sensing!

–  Different slide-deck.  (See Chris Geyer’s CVPR 2003 Tutorial)!

•  Other calibration methods not covered!
–  Vanishing points-based method (see SZ)!
–  Self-calibration!
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Projection equation 
 
 
 

•  The projection matrix models the cumulative effect of all parameters 
•  Useful to decompose into a series of operations 
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Camera parameters 
A camera is described by several parameters 

•  Translation T of the optical center from the origin of world coords 
•  Rotation R of the image plane 
•  focal length   , principle point (x’c, y’c), pixel size (sx, sy) 
•  blue parameters are called “extrinsics,”  red are “intrinsics” 

•  The definitions of these parameters are not completely standardized 
–  especially intrinsics—varies from one book to another Source: S Seitz slides.!
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Oc 

focal length:  

Source: S Savarese slides.!

Projective Camera 
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Projective Camera: The Normalized Image Plane 
5 

•  The normalized image plane is parallel to the physical retina (e.g., ccd) 
but located at unit distance (   = 1) from the pinhole.!

Image Source: Forsyth and Ponce Book.!



Projective Camera: The Normalized Image Plane 

•  Physical pixels in the retina (e.g. ccd) may not be square, so 
we have two additional scale parameters.!

•  Units:!
–       is a distance expressed in meters!
–  A pixel will have dimensions          where    and    are in!

•  Can replace dependent pixel parameters !
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Source: S Savarese slides.!

Projective Camera 
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focal length:  
image center-point:  



Source: S Savarese slides.!

Projective Camera 
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focal length:  
image center-point: 
non-square pixels: 
skew angle:  
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K has 5 degrees of freedom! 
Source: S Savarese slides.!

Projective Camera 
9 

focal length:  
image center-point: 
non-square pixels: 
skew angle:  
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Source: S Savarese slides.!

Projective Camera 
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focal length:  
image center-point: 
non-square pixels: 
skew angle:  



Ow 

iw 

kw 

jw 

Source: S Savarese slides.!

Projective Camera 
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focal length:  
image center-point: 
non-square pixels: 
skew angle: 
rotation, translation:   



Ow 

iw 

kw 

jw 

Internal parameters 
External parameters 

Source: S Savarese slides.!

Projective Camera 
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focal length:  
image center-point: 
non-square pixels: 
skew angle: 
rotation, translation:   



Properties of Pinhole Perspective Projection 

•  Distant objects appear smaller!
•  Points project to points!
•  Lines project to lines!

•  Angles are not preserved.!
•  Parallel lines meet!!
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Source: S. Savarese slides.!

Vanishing Point!



wPMP =ʹ′ [ ] wPTRK=
Internal parameters 

External parameters 

Source: S Savarese slides.!

Projective Camera 
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Projective Camera 
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Internal parameters 
External parameters 
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Projective Camera 
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Estimate intrinsic and extrinsic parameters   
from 1 or multiple images 

Change notation: 
P = Pw 

p = P’ ⎥
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Source: S Savarese slides.!

Goal of Calibration 
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• P1… Pn with known positions in [Ow,iw,jw,kw] 
• p1, … pn known positions in the image  
Goal: compute  intrinsic and extrinsic parameters 

jC 

Calibration rig 

Source: S Savarese slides.!

The Calibration Problem 
18 



• P1… Pn with known positions in [Ow,iw,jw,kw] 
• p1, … pn known positions in the image  
Goal: compute  intrinsic and extrinsic parameters 

jC 

Calibration rig 

image!

Source: S Savarese slides.!

The Calibration Problem 
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jC 

Calibration rig 

How many correspondences do we need? 
•  M has 11 unknown •  We need 11 equations •  6 correspondences would do it 

image!

Source: S Savarese slides.!

The Calibration Problem 
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image!
jC 

Calibration rig 

In practice, using more than 6 
correspondences enables more robust results 

Source: S Savarese slides.!

The Calibration Problem 
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jC 
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The Calibration Problem 
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Source: S Savarese slides.!

The Calibration Problem 
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…
 

…
 

0)( 12131 =− PPv mm

0)( 11131 =− PPu mm

0)( 23 =− iii PPv mm

0)( 13 =− iii PPu mm

0)( 23 =− nnn PPv mm

0)( 13 =− nnn PPu mm

Source: S Savarese slides.!

The Calibration Problem 
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Source: S Savarese slides.!

Block Matrix Multiplication 
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Homogenous linear system 

known 
unknown 

0)( 12131 =+− PPv mm

0)( 11131 =+− PPu mm

0)( 23 =+− nnn PPv mm

0)( 13 =+− nnn PPu mm

Source: S Savarese slides.!

The Calibration Problem 
26 



P! m 0 = 

Rectangular system (M>N) 

•   0 is always a solution 

Minimize |P m|2  
 

under the constraint |m|2   =1 

M=number of equations = 2n 
N=number of unknown = 11 

•   To find non-zero solution 

Source: S Savarese slides.!

Homogeneous M x N Linear Systems 
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•  How do we solve this homogenous linear system? 

•  Using DLT (Direct Linear Transformation) algorithm 
via SVD decomposition!

Source: S Savarese slides.!

The Calibration Problem 
28 



12

1

1

.
−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Λ= SSSSA

Nλ

λ

λ

Eigenvectors of A are 
columns of S 

[ ]NS vv1=

Eigendecomposition 
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Eigenvalues and Eigenvectors 
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Source: S Savarese slides.!

Singular Value Decomposition 
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Properties of SVD 

•  Recall the singular values of a matrix are related to its rank.!
•  Recall that Ax = 0 can have a nonzero x as solution only if A 

is singular.!
•  Finally, note that the matrix V of the SVD is an orthogonal 

basis for the domain of A; in particular the zero singular 
values are the basis vectors for the null space.!

•  Putting all this together, we see that A must have rank 7 (in 
this particular case) and thus x must be a vector in this 
subspace.  !

•  Clearly, x is defined only up to scale.!

31 

Source: G Hager slides.!



ix ixʹ′

H 

0Ai =h
Function of measurements 

unknown 

ii xHx =ʹ′
Source: S Savarese slides.!

DLT algorithm (Direct Linear Transformation) 
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1212
T

121212n2 VDU ×××

Last column of V gives m

M iPM ip→

SVD decomposition of P 

Why?	  See	  pag	  593	  of	  AZ	  

Source: S Savarese slides.!

The Calibration Problem 
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T
nnnnnmnm VDUP ×××× =

T
nnnmmmnm VDUP ×××× =

Has n orthogonal 
columns 

Orthogonal 
matrix 

•   This is one of the possible SVD decompositions 
•   This is typically used for efficiency 
•   The classic SVD is actually:  

• Thanks to Pat O’ Keefe!!

orthogonal Orthogonal Source: S Savarese slides.!

Clarification about SVD 
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Estimated values 

Intrinsic 

Source: S Savarese slides.!

Extracting Camera Parameters 
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Source: S Savarese slides.!

Theorem (Faugeras, 1993) 
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Estimated values 

Intrinsic 

Source: S Savarese slides.!

Extracting Camera Parameters 
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Estimated values 

Extrinsic 

Source: S Savarese slides.!

Extracting Camera Parameters 
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Degenerate cases 

• Pi’s cannot lie on the same plane! 
•  Points cannot lie on the intersection curve of two  
   quadric surfaces 

Source: S Savarese slides.!
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Taking lens distortions into account 
•  Chromatic Aberration!
•  Spherical aberration !
•  Radial Distortion!

Source: S Savarese slides.!

40 



No distortion 

Pin cushion 

Barrel 

Dealing with Radial Distortion As Well 

–  Caused by imperfect lenses!
–  Deviations are most noticeable for rays that pass through 

the edge of the lens!

Source: S Savarese slides.!
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Issues with lenses: Radial Distortion 

Pin cushion 

Barrel (fisheye lens) Source: S Savarese slides.!
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Source: S Savarese slides.!

Radial Distortion 
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Image magnification in(de)creases with 
distance from the optical center 
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Source: S Savarese slides.!

Radial Distortion 
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Source: S Savarese slides.!

Radial Distortion 
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 )(PfX =

measurement parameter 

f( ) is nonlinear 

- Newton Method 
- Levenberg-Marquardt Algorithm 

•  Iterative, starts from initial solution  
•  May be slow if initial solution far from real solution  
•  Estimated solution may be function of the initial solution 
•  Newton requires the computation of J, H 
•  Levenberg-Marquardt doesn’t require the computation of H 
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Source: S Savarese slides.!

General Calibration Problem 
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A possible algorithm 
 
1. Solve linear part of the system to find approximated solution  
2.   Use this solution as initial condition for the full system 
3.   Solve full system using Newton or L.M. 

 )(PfX =
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f( ) is nonlinear 
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General Calibration Problem 
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Typical assumptions: 

- zero-skew, square pixel 
-  uo, vo = known center of the image 
-  no distortion 

Just estimate f  
and R, T 

 )(PfX =

measurement parameter 

f( ) is nonlinear 
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General Calibration Problem 
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Can estimate m1 and m2 and ignore the radial distortion?!
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Radial Distortion 
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Estimating m1 and m2…!
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Radial Distortion 
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Once that m1 and m2 are estimated…!
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Source: S Savarese slides.!

Radial Distortion 
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Direct Calibration: The Algorithm 

1.  Compute image center from orthocenter!
2.  Compute the Intrinsic matrix (6.8)!
3.  Compute solution with SVD!
4.  Compute gamma and alpha!
5.  Compute R (and normalize)!
6.  Compute fx and and Tz!

Source: G Hager slides.!
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Basic Equations 

Source: G Hager slides.!
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Basic Equations 

Source: G Hager slides.!
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Basic Equations 

one of these for each point!

Source: G Hager slides.!
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Basic Equations 

Source: G Hager slides.!
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Properties of SVD Again 

•  Recall the singular values of a matrix are related to its rank.!
•  Recall that Ax = 0 can have a nonzero x as solution only if A is singular.!
•  Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of 

A; in particular the zero singular values are the basis vectors for the null space.!

•  Putting all this together, we see that A must have rank 7 (in this particular case) 
and thus x must be a vector in this subspace.  !

•  Clearly, x is defined only up to scale.!

Source: G Hager slides.!
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Basic Equations 

We now know Rx and Ry up to a sign and gamma.!
Rz = Rx x Ry!
!
We will probably use another SVD to orthogonalize!
this system (R = U D V’; set D to I and multiply).!

Source: G Hager slides.!
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Last Details about Direct Calibration 

•  We still need to compute the correct sign.!
–  note that the denominator of the original equations must be 

positive (points must be in front of the cameras)!
–  Thus, the numerator and the projection must disagree in sign.!
–  We know everything in numerator and we know the projection, 

hence we can determine the sign.!

•  We still need to compute Tz and fx!
–  we can formulate this as a least squares problem on those two 

values using the first equation.!

Source: G Hager slides.!
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Self-Calibration 

•  Calculate the intrinsic parameters solely from point 
correspondences from multiple images.!

•  Static scene and intrinsics are assumed.!
•  No expensive apparatus.!
•  Highly flexible but not well-established.!
•  Projective Geometry – image of the absolute conic.!

Source: G Hager slides.!



Multi-Plane Calibration 

•  Hybrid method:  Photogrammetric and Self-Calibration.!
•  Uses a planar pattern imaged multiple times (inexpensive).!
•  Used widely in practice and there are many 

implementations.!
•  Based on a group of projective transformations called 

homographies.!

•   m be a 2d point [u v 1]’ and M be a 3d point [x y z 1]’.!

•  Projection is !

Source: G Hager slides.!



Planar Homographies 

•  First Fundamental Theorem of Projective Geometry:!
–  There exists a unique homography that performs a change of basis 

between two projective spaces of the same dimension.!

–  Projection Becomes !

–  Notice that the homography is defined up to scale (s).!

Source: G Hager slides.!



Computing the Intrinsics 

•  We know that!

•  From one homography, how many constraints on the 
intrinsic parameters can we obtain? !
–  Extrinsics have 6 degrees of freedom.!
–  The homography has 8 degrees of freedom.!
–  Thus, we should be able to obtain 2 constraints per 

homography.!

•  Use the constraints on the rotation matrix columns…!

Source: G Hager slides.!



Computing Intrinsics 

•  Rotation Matrix is orthonormal:!

•  Write the homography in terms of its columns…!

Source: G Hager slides.!



Computing Intrinsics 

•  Derive the two constraints:!

Source: G Hager slides.!



Closed-Form Solution 

•  Notice     is symmetric, 6 parameters can be written as a vector b.!
•  From the two constraints, we have!

•  Stack up n of these for n images and build a 2n*6 system.!
•  Solve with SVD (yet again). !
•  Extrinsics “fall-out” of the result easily.!

Source: G Hager slides.!



Non-linear Refinement 

•  Closed-form solution minimized algebraic distance.!
•  Since full-perspective is a non-linear model!

–  Can include distortion parameters (radial, tangential)!
–  Minimize squared distance with a non-linear method.!

Source: G Hager slides.!



Camera Calibration Toolbox for Matlab!
J. Bouguet – [1998-2000]!
 !http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples!

Source: S Savarese slides.!
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Next Lecture: Photometric and Radiometric Aspects 

•  Reading: FP 2, 3; SZ 2.2, 2.3!
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