Geometric Camera Calibration

EECS 598-08 Fall 2014
 Foundations of Computer Vision

Instructor: Jason Corso (jjcorso)
web.eecs.umich.edu/~jjcorso/t/598F14

Readings: FP 1.3; SZ 6.3 (FL 4.6; extra notes)
Date: 9/17/14

Plan

- Review Perspective Projection
- Geometric Camera Calibration
- Indirect camera calibration
- Solve for projection matrix then the parameters
- Direct camera calibration
- Multi-planes method
- Example with the Matlab Toolbox
- Catadioptric Sensing
- Different slide-deck. (See Chris Geyer's CVPR 2003 Tutorial)
- Other calibration methods not covered
- Vanishing points-based method (see SZ)
- Self-calibration

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point $\left(x^{\prime}{ }_{c}, y^{\prime}{ }_{c}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are"intrinsics"

Projection equation

$$
\mathbf{X}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\mathbf{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
identity matrix

$$
\boldsymbol{\Pi}=\underset{\text { intrinsics }}{\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]} \underset{\text { projection }}{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]} \underset{\text { translation }}{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]}
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Projective Camera

focal length: f

Projective Camera: The Normalized Image Plane

- The normalized image plane is parallel to the physical retina (e.g., ccd) but located at unit distance $(f=1)$ from the pinhole.

$$
\hat{\mathbf{P}}=\frac{1}{Z}\left[\begin{array}{ll}
\mathcal{I} & \mathbf{0}
\end{array}\right] \mathbf{P}=\left[\begin{array}{c}
\hat{X} \\
\hat{Y} \\
1
\end{array}\right]=\left[\begin{array}{c}
X / Z \\
Y / Z \\
1
\end{array}\right]
$$

$\mathbf{P}^{\prime}=\frac{1}{Z} \mathcal{M} \mathbf{P}$

Projective Camera: The Normalized Image Plane

- Physical pixels in the retina (e.g. ccd) may not be square, so we have two additional scale parameters.

$$
\begin{aligned}
x & =k f \hat{X}
\end{aligned}=k f \frac{X}{Z}
$$

- Units:
- f is a distance expressed in meters
- A pixel will have dimensions $\frac{1}{k} \times \frac{1}{l}$ where k and l are in $\frac{\mathrm{px}}{m}$
- Can replace dependent pixel parameters

$$
\begin{aligned}
& \alpha=k f \\
& \beta=l f
\end{aligned}
$$

Projective Camera

focal length: f image center-point: c_{0}

Projective Camera

focal length: f image center-point: c_{0} non-square pixels: α, β skew angle: θ

Projective Camera

$$
P^{\prime}=\left[\begin{array}{ccc:c}
\alpha & S & u_{o} & 0 \\
0 & \beta & v_{o} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

focal length: f image center-point: c_{0} non-square pixels: α, β skew angle: θ

K has 5 degrees of freedom!

Projective Camera

$$
\mathrm{P}^{\prime}=\left[\begin{array}{ccc:c}
\boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathrm{u}_{\mathrm{o}} & 0 \\
0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathrm{v}_{\mathrm{o}} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
1
\end{array}\right]
$$

focal length: f image center-point: c_{0} non-square pixels: α, β skew angle: θ

K has 5 degrees of freedom!

Projective Camera

Projective Camera

External parameters
focal length: f
image center-point: c_{0} non-square pixels: α, β skew angle: θ rotation, translation: \mathcal{R}, \mathbf{T}

Properties of Pinhole Perspective Projection

- Distant objects appear smaller
- Points project to points

Vanishing Point

- Lines project to lines

- Angles are not preserved.
- Parallel lines meet!

Projective Camera

$$
\mathrm{P}^{\prime}=\mathrm{M} \mathrm{P}_{\mathrm{w}} \underset{\substack{\text { Interal pearameters } \\ \text { Exemal prameters }}}{\mathrm{K}[\mathrm{R}} \quad \mathrm{T}
$$

Projective Camera

External parameters

Projective Camera

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)_{3 \times 4}
$$

$$
\mathrm{K}=\left[\begin{array}{ccc}
\boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathrm{u}_{\mathrm{o}} \\
0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathrm{v}_{\mathrm{o}} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right]
$$

Goal of Calibration

Estimate intrinsic and extrinsic parameters from 1 or multiple images

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathcal{M} \mathbf{P}_{w} \\
& =\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \mathbf{P}_{w}
\end{aligned}
$$

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)_{3 \times 4}
$$

$$
\mathrm{K}=\left[\begin{array}{ccc}
\boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathrm{u}_{\mathrm{o}} \\
0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathrm{v}_{\mathrm{o}} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{l}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{l}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right] \quad \begin{aligned}
& \text { Change notation: } \\
& \mathrm{P}=\mathrm{P}_{\mathrm{w}} \\
& \mathrm{p}=\mathrm{P}^{\prime}
\end{aligned}
$$

The Calibration Problem

$\cdot \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}$ with known positions in $\left[\mathrm{O}_{\mathrm{w}}, \mathrm{i}_{\mathrm{w}}, \mathrm{j}_{\mathrm{w}}, \mathrm{k}_{\mathrm{w}}\right]$
$\cdot p_{1}, \ldots p_{n}$ known positions in the image
Goal: compute intrinsic and extrinsic parameters

The Calibration Problem

$\cdot \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}$ with known positions in $\left[\mathrm{O}_{\mathrm{w}}, \mathrm{i}_{\mathrm{w}}, \mathrm{j}_{\mathrm{w}}, \mathrm{k}_{\mathrm{w}}\right]$
$\cdot p_{1}, \ldots p_{n}$ known positions in the image
Goal: compute intrinsic and extrinsic parameters

The Calibration Problem

How many correspondences do we need?

- M has 11 unknown •We need 11 equations • 6 correspondences would do it

The Calibration Problem

In practice, using more than 6 correspondences enables more robust results

The Calibration Problem

The Calibration Problem

$$
\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\
\frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{i}}=\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \rightarrow \mathrm{u}_{\mathrm{i}}\left(\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}\right)=\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{u}_{i}\left(\mathbf{m}_{3} \mathrm{P}_{i}\right)-\mathbf{m}_{1} \mathrm{P}_{i}=0 \\
& \mathrm{v}_{\mathrm{i}}=\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \rightarrow \mathrm{v}_{\mathrm{i}}\left(\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}\right)=\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{v}_{i}\left(\mathbf{m}_{3} \mathrm{P}_{i}\right)-\mathbf{m}_{2} \mathrm{P}_{i}=0
\end{aligned}
$$

The Calibration Problem

$$
\left\{\begin{array}{c}
u_{1}\left(\mathbf{m}_{3} P_{1}\right)-\mathbf{m}_{1} P_{1}=0 \\
v_{1}\left(\mathbf{m}_{3} P_{1}\right)-\mathbf{m}_{2} P_{1}=0 \\
\vdots \\
u_{i}\left(\mathbf{m}_{3} P_{i}\right)-\mathbf{m}_{1} P_{i}=0 \\
v_{i}\left(\mathbf{m}_{3} P_{i}\right)-\mathbf{m}_{2} P_{i}=0 \\
\vdots \\
u_{n}\left(\mathbf{m}_{3} P_{n}\right)-\mathbf{m}_{1} P_{n}=0 \\
v_{n}\left(\mathbf{m}_{3} P_{n}\right)-\mathbf{m}_{2} P_{n}=0
\end{array}\right.
$$

Block Matrix Multiplication

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}
\mathrm{B}_{11} & \mathrm{~B}_{12} \\
\mathrm{~B}_{21} & \mathrm{~B}_{22}
\end{array}\right]
$$

What is $A B$?

$$
A B=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

The Calibration Problem

Homogenous linear system
$-v_{n}\left(\mathbf{m}_{3} P_{n}\right)+\mathbf{m}_{2} P_{n}=0$

Homogeneous M x N Linear Systems

$M=$ number of equations $=2 n$
$\mathrm{N}=$ number of unknown $=11$

Rectangular system ($\mathrm{M}>\mathrm{N}$)

- 0 is always a solution
- To find non-zero solution Minimize $|\mathbf{P ~ m}|^{2}$ under the constraint $|m|^{2}=1$

The Calibration Problem

$$
\mathcal{P} m=0
$$

- How do we solve this homogenous linear system?
- Using DLT (Direct Linear Transformation) algorithm via SVD decomposition

Eigenvalues and Eigenvectors

Eigendecomposition

Eigenvectors of A are columns of S

$$
S=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{N}
\end{array}\right]
$$

Singular Value Decomposition

$$
\begin{array}{ll}
\sigma_{i}=\sqrt{\lambda_{i}} & \begin{array}{l}
\sigma=\text { singular value } \\
\lambda=\text { eigenvalue of } A^{t} A
\end{array}
\end{array}
$$

Properties of SVD

- Recall the singular values of a matrix are related to its rank.
- Recall that $A x=0$ can have a nonzero x as solution only if A is singular.
- Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of A; in particular the zero singular values are the basis vectors for the null space.
- Putting all this together, we see that A must have rank 7 (in this particular case) and thus x must be a vector in this subspace.
- Clearly, x is defined only up to scale.

DLT algorithm (Direct Linear Transformation)

$$
\mathrm{x}_{\mathrm{i}}^{\prime}=\mathrm{Hx}_{\mathrm{i}}
$$

The Calibration Problem

Last column of V gives \boldsymbol{m} Why? See pag 593 of AZ

M
$M \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{p}_{\mathrm{i}}$

Clarification about SVD

-Thanks to Pat O' Keefe!

Has n orthogonal columns

Orthogonal matrix

- This is one of the possible SVD decompositions
- This is typically used for efficiency
- The classic SVD is actually:

Extracting Camera Parameters

$$
\begin{aligned}
& \rho \mathcal{M}=\left(\begin{array}{c}
\alpha \mathbf{r}_{1}^{\top}-\alpha \cot \theta \mathbf{r}_{2}^{\top}+u_{0} \mathbf{r}_{3}^{\top} \\
\frac{\beta}{\sin \theta} \mathbf{r}_{2}^{\top}+v_{0} \mathbf{r}_{3}^{\top} \mathbf{r}_{3}^{\top}
\end{array} \begin{array}{c}
\alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
t_{z}
\end{array}\right)=\mathcal{K}\left[\begin{array}{ll}
\mathcal{R} & \mathbf{T}
\end{array}\right] \\
& \mathcal{A} \quad \mathbf{b} \quad \mathcal{K}=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{9}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \text { Intrinsic } \\
& \begin{array}{rr}
\rho=\frac{ \pm 1}{\left|\mathbf{a}_{3}\right|} & \begin{array}{l}
u_{0}=\rho^{2} \mathbf{a}_{1}^{\top} \mathbf{a}_{3} \\
v_{0}=\rho^{2} \mathbf{a}_{2}^{\top} \mathbf{a}_{3} \\
\\
\cos \theta=\frac{\left(\mathbf{a}_{1} \times \mathbf{a}_{3}\right)^{\top}\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}{\left|\mathbf{a}_{1} \times \mathbf{a}_{3}\right| \cdot\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|}
\end{array}
\end{array}
\end{aligned}
$$

Theorem (Faugeras, 1993)

Let $\mathcal{M}=\left(\begin{array}{ll}\mathcal{A} & \boldsymbol{b}\end{array}\right)$ be a 3×4 matrix and let $\boldsymbol{a}_{i}^{T}(i=1,2,3)$ denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M}.

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\operatorname{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\operatorname{Det}(\mathcal{A}) \neq 0$ and

$$
\left(\boldsymbol{a}_{1} \times \boldsymbol{a}_{3}\right) \cdot\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)=0 .
$$

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix with zero skew and unit aspect-ratio is that $\operatorname{Det}(\mathcal{A}) \neq 0$ and

$$
\left\{\begin{array}{l}
\left(\boldsymbol{a}_{1} \times \boldsymbol{a}_{3}\right) \cdot\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)=0, \\
\left(\boldsymbol{a}_{1} \times \boldsymbol{a}_{3}\right) \cdot\left(\boldsymbol{a}_{1} \times \boldsymbol{a}_{3}\right)=\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right) \cdot\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right) .
\end{array}\right.
$$

Extracting Camera Parameters

$$
\mathcal{A} \quad \mathbf{b} \quad \mathcal{K}=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & \sin & 1
\end{array}\right]
$$

Intrinsic

$$
\mathcal{A}=\left[\begin{array}{l}
\mathbf{a}_{\mathbf{1}}^{\top} \\
\mathbf{a}_{2}^{\top} \\
\mathbf{a}_{3}^{\top}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
\alpha & =\rho^{2}\left|\mathbf{a}_{1} \times \mathbf{a}_{3}\right| \sin \theta \\
\beta & =\rho^{2}\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right| \sin \theta
\end{array}\right\} \rightarrow f
$$

Estimated values

Extracting Camera Parameters

$$
\begin{aligned}
& \mathcal{A}=\left[\begin{array}{l}
\mathbf{a}_{\mathbf{1}}^{\top} \\
\mathbf{a}_{2}^{\top} \\
\mathbf{a}_{3}^{\top}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \mathbf{r}_{1}=\frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|} \quad \mathbf{r}_{3}=\frac{ \pm \mathbf{a}_{3}}{\left|\mathbf{a}_{3}\right|} \\
& \mathbf{r}_{2}=\mathbf{r}_{3} \times \mathbf{r}_{1} \\
& \mathbf{T}=\rho \mathcal{K}^{-1} \mathbf{b}
\end{aligned}
$$

Degenerate cases

-P's cannot lie on the same plane!

- Points cannot lie on the intersection curve of two quadric surfaces

Taking lens distortions into account

- Chromatic Aberration
- Spherical aberration
- Radial Distortion

Dealing with Radial Distortion As Well

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Pin cushion

Barrel

Issues with lenses: Radial Distortion

Pin cushion

Barrel (fisheye lens)

Radial Distortion

Click on the four extreme corners of the rectangular pattern...

Radial Distortion

Image magnification in(de)creases with distance from the optical center

$d^{2}=a u^{2}+b v^{2}+c u v$
To model radial behavior

Distortion coefficient

Radial Distortion

$$
\left[\begin{array}{ccc}
\frac{1}{\lambda} & 0 & 0 \\
0 & \frac{1}{\lambda} & 0 \\
0 & 0 & 1
\end{array}\right] M\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=p_{i} \quad Q=\left[\begin{array}{l}
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Is this a linear system of equations?

$$
\mathrm{p}_{\mathrm{i}}=\left[\begin{array}{l}
\mathbf{u}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{q}_{2} P_{i}}{\mathbf{q}_{3} P_{i}}
\end{array}\right] \longrightarrow\left\{\begin{array}{l}
\mathrm{u}_{\mathrm{i}} \mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}=\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}} \\
\mathrm{~V}_{\mathrm{i}} \mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}=\mathbf{q}_{2} \mathrm{P}
\end{array}\right.
$$

General Calibration Problem

$$
\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{q}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{n}}
\end{array}\right] \longrightarrow X=f(P)
$$

$f()$ is nonlinear

-Newton Method
-Levenberg-Marquardt Algorithm

- Iterative, starts from initial solution
- May be slow if initial solution far from real solution
- Estimated solution may be function of the initial solution
- Newton requires the computation of J, H
- Levenberg-Marquardt doesn't require the computation of H

General Calibration Problem

$$
\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{q}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{D}_{\mathrm{D}}}
\end{array}\right] \xrightarrow[\text { measurement }]{ } \quad \underset{\text { parameter }}{ }=f(P)
$$

$f()$ is nonlinear

A possible algorithm

1. Solve linear part of the system to find approximated solution
2. Use this solution as initial condition for the full system
3. Solve full system using Newton or L.M.

General Calibration Problem

$$
\left[\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{q}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}}
\end{array}\right] \xrightarrow{\text { measurement }}=f(P)
$$

$f()$ is nonlinear

Typical assumptions:

- zero-skew, square pixel
$-u_{0}, v_{0}=$ known center of the image
Just estimate f and R, T
- no distortion

Radial Distortion

$$
\mathrm{p}_{\mathrm{i}}=\left[\begin{array}{l}
\mathrm{u}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{q}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{q}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{q}_{3} \mathrm{P}_{\mathrm{i}}}
\end{array}\right]=\frac{1}{\lambda}\left[\begin{array}{l}
\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}}
\end{array}\right]
$$

Can estimate m_{1} and m_{2} and ignore the radial distortion?

$$
\frac{\mathrm{u}_{\mathrm{i}}}{\mathrm{v}_{\mathrm{i}}}=\text { slope }
$$

Radial Distortion

Estimating m_{1} and $\mathrm{m}_{2} \ldots$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{i}}=\left[\begin{array}{c}
\mathrm{u}_{\mathrm{i}} \\
\mathrm{~V}_{\mathrm{i}}
\end{array}\right]=\frac{1}{\lambda}\left[\begin{array}{c}
\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}}
\end{array}\right] \quad \frac{u_{i}}{v_{i}}=\frac{\frac{\left(\mathbf{m}_{1} P_{i}\right)}{\left(\mathbf{m}_{3} P_{i}\right)}}{\frac{\left(\mathbf{m}_{2} P_{i}\right)}{\left(\mathbf{m}_{3} P_{i}\right)}}=\frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{2} P_{i}} \\
& \left\{\begin{array}{cc}
v_{1}\left(\mathbf{m}_{1} P_{1}\right)-u_{1}\left(\mathbf{m}_{2} P_{1}\right)=0 \\
v_{i}\left(\mathbf{m}_{1} P_{i}\right)-u_{i}\left(\mathbf{m}_{2} P_{i}\right)=0 & \mathrm{Q} \mathbf{n}=0 \quad \mathbf{n}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2}
\end{array}\right] \\
v_{n}\left(\mathbf{m}_{1} P_{n}\right)-u_{n}\left(\mathbf{m}_{2} P_{n}\right)=0 & \text { Tsai technique }[87]
\end{array}\right.
\end{aligned}
$$

Radial Distortion

Once that \mathbf{m}_{1} and $\mathbf{m}_{\mathbf{2}}$ are estimated...

$$
\mathrm{p}_{\mathrm{i}}=\left[\begin{array}{l}
\mathrm{u}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}}
\end{array}\right]=\frac{1}{\lambda}\left[\begin{array}{l}
\frac{\mathbf{m}_{1} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}} \\
\frac{\mathbf{m}_{2} \mathrm{P}_{\mathrm{i}}}{\mathbf{m}_{3} \mathrm{P}_{\mathrm{i}}}
\end{array}\right]
$$

\mathbf{m}_{3} is non linear function of $\mathbf{m}_{1}, \mathbf{m}_{2}, \boldsymbol{\lambda}$

There are some degenerate configurations for which m_{1} and m_{2} cannot be computed

Direct Calibration: The Algorithm

1. Compute image center from orthocenter
2. Compute the Intrinsic matrix (6.8)
3. Compute solution with SVD
4. Compute gamma and alpha
5. Compute R (and normalize)
6. Compute f_{x} and and T_{z}

Basic Equations

$$
\begin{aligned}
{ }^{c} T_{w} & =\left(T_{x}, T_{y}, T_{z}\right)^{\prime} \\
{ }^{c} R_{w} & =\left(R_{x}, R_{y}, R_{z}\right)^{\prime} \\
{ }^{c} p & ={ }^{c} R_{w}{ }^{w} p+{ }^{c} T_{w} \\
u & =-f \frac{R_{x} p+T_{x}}{R_{z} p+T_{z}} \\
v & =-f \frac{R_{y} p+T_{y}}{R_{z} p+T_{z}}
\end{aligned}
$$

Basic Equations

$$
\begin{gathered}
u_{p i x}=\frac{1}{s_{x}} u+o_{x} \\
v_{p i x}=\frac{1}{s_{y}} v+o_{y} \\
\bar{u}=u_{p i x}-o_{x}=-f_{x} \frac{R_{x} p+T_{x}}{R_{z} p+T_{z}} \\
\bar{v}=v_{p i x}-o_{y}=-f_{y} \frac{R_{y} p+T_{y}}{R_{z} p+T_{z}}
\end{gathered}
$$

Basic Equations

$$
\begin{aligned}
& \bar{u}_{i} f_{y}\left(R_{y} p_{i}+T_{y}\right)=\bar{v}_{i} f_{x}\left(R_{x} p_{i}+T_{x}\right) \\
& \bar{u}_{i}\left(R_{y} p_{i}-T_{y}\right)-\bar{v}_{i} \alpha\left(R_{x} p_{i}+T_{x}\right)=0 \\
& r=\alpha R_{x} \text { and } w=\alpha T_{x} \\
& t=R_{y} \text { and } s=T_{y}
\end{aligned}
$$

one of these for each point

$$
A_{i}=\left(u_{i} p_{i}, u_{i},-v_{i} p_{i},-v_{i}\right) \text { and } A[t, s, w, r]^{\prime}=0
$$

Basic Equations

$$
\begin{aligned}
& A_{i}=\left(u_{i} p_{i}, u_{i},-v_{i} p_{i},-v_{i}\right) \text { and } \\
& A[t, s, w, r]^{\prime}=A m=0
\end{aligned}
$$

Note that m is defined up a scale factor!
$A=U D V^{\prime}$ and choose m as column of V corresponding to the smallest singular value

Properties of SVD Again

- Recall the singular values of a matrix are related to its rank.
- Recall that $A x=0$ can have a nonzero x as solution only if A is singular.
- Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of A; in particular the zero singular values are the basis vectors for the null space.
- Putting all this together, we see that A must have rank 7 (in this particular case) and thus x must be a vector in this subspace.
- Clearly, x is defined only up to scale.

Basic Equations

$$
\begin{aligned}
& A_{i}=\left(u_{i} p_{i}, u_{i},-v_{i} p_{i},-v_{i}\right) \text { and } \\
& A[t, s, w, r]^{\prime}=A m=0 \\
& \|t\|=|\gamma| \text { gives scale factor for solution } \\
& \|w\|=|\gamma| \alpha
\end{aligned}
$$

We now know R_{x} and R_{y} up to a sign and gamma. $R_{z}=R_{x} \times R_{y}$

We will probably use another SVD to orthogonalize this system ($\mathrm{R}=\mathrm{U}$ D V'; set D to I and multiply).

Last Details about Direct Calibration

- We still need to compute the correct sign.
- note that the denominator of the original equations must be positive (points must be in front of the cameras)
- Thus, the numerator and the projection must disagree in sign.
- We know everything in numerator and we know the projection, hence we can determine the sign.
- We still need to compute T_{z} and f_{x}
- we can formulate this as a least squares problem on those two values using the first equation.

$$
\begin{aligned}
& \bar{u}=-f_{x} \frac{R_{x} p+T_{x}}{R_{z} p+T_{z}} \rightarrow \\
& \bar{u}\left(R_{z} p+T_{z}\right)=-f_{x}\left(R_{x} p+T_{x}\right) \\
& f_{x}\left(R_{x} p+T_{x}\right)+\bar{u} T_{z}=-\bar{u} R_{z} p \\
& A\left(f_{x}, T_{z}\right)^{\prime}=b \rightarrow\left(f_{x}, T_{z}\right)^{\prime}=\left(A^{\prime} A\right)^{-1} A^{\prime} b
\end{aligned}
$$

Self-Calibration

- Calculate the intrinsic parameters solely from point correspondences from multiple images.
- Static scene and intrinsics are assumed.
- No expensive apparatus.
- Highly flexible but not well-established.
- Projective Geometry - image of the absolute conic.

Multi-Plane Calibration

- Hybrid method: Photogrammetric and Self-Calibration.
- Uses a planar pattern imaged multiple times (inexpensive).
- Used widely in practice and there are many implementations.
- Based on a group of projective transformations called homographies.
- m be a $2 d$ point [u v 1]' and M be a 3d point [x y \quad z 1 1].
- Projection is

$$
s \tilde{m}=A\left[\begin{array}{ll}
R & T
\end{array}\right] \tilde{M}
$$

Planar Homographies

- First Fundamental Theorem of Projective Geometry:
- There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

$$
\begin{aligned}
s\left[\begin{array}{lll}
u & v & 1
\end{array}\right]^{T} & =A\left[\begin{array}{llll}
r_{1} & r_{2} & r_{3} & t
\end{array}\right]\left[\begin{array}{llll}
X & Y & Z & 1
\end{array}\right]^{T} \\
s\left[\begin{array}{lll}
u & v & 1
\end{array}\right]^{T} & =A\left[\begin{array}{llll}
r_{1} & r_{2} & r_{3} & t
\end{array}\right]\left[\begin{array}{lll}
X & Y & 1
\end{array}\right]^{T} \\
s\left[\begin{array}{lll}
u & v & 1
\end{array}\right]^{T} & =A\left[\begin{array}{llll}
r_{1} & r_{2} & t
\end{array}\right]\left[\begin{array}{lll}
X & Y & 1
\end{array}\right]^{T} \\
s\left[\begin{array}{lll}
u & v & 1
\end{array}\right]^{T} & =H\left[\begin{array}{lll}
X & Y & 1
\end{array}\right]^{T}
\end{aligned}
$$

- Projection Becomes

$$
s \tilde{m}=H \tilde{M}
$$

- Notice that the homography is defined up to scale (s).

Computing the Intrinsics

- We know that

$$
\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3}
\end{array}\right]=s A\left[\begin{array}{lll}
r_{1} & r_{2} & t
\end{array}\right]
$$

- From one homography, how many constraints on the intrinsic parameters can we obtain?
- Extrinsics have 6 degrees of freedom.
- The homography has 8 degrees of freedom.
- Thus, we should be able to obtain 2 constraints per homography.
- Use the constraints on the rotation matrix columns...

Computing Intrinsics

- Rotation Matrix is orthonormal:

$$
\begin{gathered}
r_{i}^{T} r_{j}=0 \\
r_{i}^{T} r_{i}=r_{j}^{T} r_{j}
\end{gathered}
$$

- Write the homography in terms of its columns...

$$
\begin{aligned}
& h_{1}=s A r_{1} \\
& h_{2}=s A r_{2} \\
& h_{3}=s A t
\end{aligned}
$$

Computing Intrinsics

- Derive the two constraints:

$$
\begin{aligned}
h_{1} & =s A r_{1} \\
\frac{1}{s} A^{-1} h_{1} & =r_{1} \\
\frac{1}{s} A^{-1} h_{2} & =r_{2} \\
r_{1}^{T} r_{2} & =0 \\
\hline h_{1}^{T} A^{-T} A^{-1} h_{2} & =0 \\
\hline r_{1}^{T} r_{1} & =r_{2}^{T} r_{2} \\
\hline h_{1}^{T} A^{-T} A^{-1} h_{1} & =h_{2}^{T} A^{-T} A^{-1} h_{2}
\end{aligned}
$$

Closed-Form Solution

$$
\text { Let } B=A^{-T} A^{-1}=\left[\begin{array}{ccc}
\frac{1}{\alpha^{2}} & -\frac{\gamma}{\alpha^{2} \beta} & \frac{v_{0} \gamma-u_{0} \beta}{\alpha^{2} \beta} \\
-\frac{\gamma}{\alpha^{2} \beta} & \frac{\gamma^{2}}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2}} & -\frac{\left.\gamma\left(v_{0} \gamma-u_{0} \beta\right)\right)}{\alpha^{2} \beta^{2}}-\frac{v_{0}}{\beta^{2}} \\
\frac{v_{0} \gamma-u_{0} \beta}{\alpha^{2} \beta} & -\frac{\left.\gamma\left(v_{0} \gamma-u_{0} \beta\right)\right)}{\alpha^{2} \beta^{2}}-\frac{v_{0}}{\beta^{2}} & \frac{\left(v_{0} \gamma-u_{0} \beta\right)^{2}}{\alpha^{2} \beta^{2}}+\frac{v_{0}^{2}}{\beta^{2}}+1
\end{array}\right]
$$

- Notice B is symmetric, 6 parameters can be written as a vector b.
- From the two constraints, we have $h_{i}^{T} B h_{j}=v_{i j}^{T}$

$$
\left[\begin{array}{c}
v_{i j}^{T} \\
\left(v_{11}-v_{22}\right)^{T}
\end{array}\right] b=0
$$

- Stack up n of these for n images and build a $2 n^{*} 6$ system.
- Solve with SVD (yet again).
- Extrinsics "fall-out" of the result easily.

Non-linear Refinement

- Closed-form solution minimized algebraic distance.
- Since full-perspective is a non-linear model
- Can include distortion parameters (radial, tangential)
- Minimize squared distance with a non-linear method.

$$
\sum_{i=1}^{n} \sum_{j=1}^{m}\left\|m_{i j}-\hat{m}\left(A, R_{k}, T_{k}, M_{j}\right)\right\|^{2}
$$

Example Calibration Procedure
 Camera Calibration Toolbox for Matlab J. Bouguet - [1998-2000]

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

Example Calibration Procedure

Calibration images

Example Calibration Procedure

Click on the four extreme comers of the rectangular pattem (first comer = origin)... Image 1 Click on the four extreme comers of the rectangular pattem (first comer = origin)... Image 1

Click on the four extreme comers of the rectangular pattem (first corner $=$ origin)... Image 1 Cick on the four extreme comers of the rectangular paftem (first corner = origin)... Image 1

Example Calibration Procedure

Example Calibration Procedure

Example Calibration Procedure

Example Calibration Procedure

Extrinsic parameters

Example Calibration Procedure

Extrinsic parameters

Next Lecture: Photometric and Radiometric Aspects

- Reading: FP 2, 3; SZ 2.2, 2.3

