

Clustering in Computer Vision

EECS 598-08 Fall 2014 Foundations of Computer Vision Instructor: Jason Corso (jjcorso) web.eecs.umich.edu/~jjcorso/t/598F14

Readings: FP 6.2, 9; SZ 5.2-5.4 **Date:** 10/6/14

Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

What is Clustering?

- What is clustering?
 - Grouping of "objects" into meaningful categories
 - Given a representation of N objects, find k clusters based on a suitable measure of similarity.
- Data Clustering is useful in and beyond Computer Vision
 - Segmentation as clustering (today)
 - Texture modeling
 - Quantization
 - Beyond
 - Data exploration
 - Compression
 - Natural classification
- Evidently important: Google Scholar tells us that more than 1500 papers get published on clustering a year!

Feature Space

- Every token is identified by a set of salient visual characteristics. For example:
 - Position
 - Color
 - Texture
 - Motion vector
 - Size, orientation (if token is larger than a pixel)

ı١

Feature space: each token is represented by a point

Token similarity is thus measured by distance between points ("feature vectors") in feature space

Source: Savarese slides.

Cluster together tokens with high similarity

Source: Savarese slides.

E.g.: Topic Discovery

• 800,000 scientific papers clustered into 776 topics based on how often the papers were cited together by authors of other papers

Formal Definition of Clustering

• Given a set of N data samples $D = x_1, x_2, \ldots, x_N$ in a d-dimensional feature space, D is partitioned into a number of disjoint subsets D_j :

$$D = \bigcup_{j=1}^{k} D_j$$
 where $D_i \cup D_j = \emptyset$ $\forall i \neq j$

where the points in each subset are similar to each other according to the given similarity function.

• A partition is denoted by

$$\pi = (D_1, D_2, \dots, D_k)$$

and clustering is then formulated as

$$\pi^* = \arg\min_{\pi} f(\pi)$$

for $f(\cdot)$ that captures the desired cluster properties.

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

First choose k arbitrary centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Assign points to closest centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Recompute centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Assign points to closest centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Recompute centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Assign points to closest centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Recompute centers

- 1. Randomly initialize $\mu_1, \mu_2, ..., \mu_c$
- 2. Repeat until no change in μ_i :
 - (a) Classify N samples according to nearest μ_i
 - (b) Recompute μ_i

Points already assigned to nearest centers: Algorithm ends

- Choose starting centers iteratively.
- Let D(x) be the distance from x to the nearest existing center, take x as new center with probability $\propto D(x)^2$.
- Repeat until no change in μ_i :
 - Classify N samples according to nearest μ_i
 - Recompute μ_i

K-Means pros and cons

- Pros
 - Simple and fast

 $\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$

- (Always) converges to a local minimum of the error function
- Available implementations (e.g., in Matlab)

•Cons

- -Need to pick K
- -Sensitive to initialization
- -Only finds "spherical" clusters
- -Sensitive to outliers

Choosing Exemplars (Medoids)

- like k-means, but means must be data points
- Algorithms:
 - greedy k-means
 - affinity propagation (Frey & Dueck 2007)
 - medoid shift (Sheikh et al. 2007)
- <u>Scene Summarization</u>

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

User's Dilemma

- 1. What is a cluster?
- 2. How to define pair-wise similarity?
- 3. Which features? Which normalizations scheme?
- 4. How many clusters?
- 5. Which clustering method?
- 6. Are the discovered clusters and partitioning valid?
- 7. Does the data have any clustering tendency?

Cluster Similarity?

- Compact Clusters
 - Within-cluster distance < between-cluster connectivity
- Connected Clusters
 - Within-cluster connectivity > between-cluster connectivity
- Ideal cluster: compact and isolated.

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

Representation; what features?

• There is no universal representation.

nxn similarity matrix

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

Good Representations

A good representation leads to compact and isolated clusters.

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

How should the features be weighted?

• Two different meaningful groupings produced by different weighting schemes.

http://www.ofai.at/~elias.pampalk/kdd03/animals/

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.
How do we decide on the number of clusters?

These samples are generated by 6 independent classes.

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

Cluster Validity

 Clustering algorithms find clusters, even if there are no natural clusters in the data!

100 2D Uniform Data Points

K-means with K=3

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

Choosing a Clustering Method

• Which is best?

Choosing a Clustering Method

- Depends on problem/data.
- Each algorithm imposes some structure.

Source: R. Dubes and A. K. Jain. "Clustering Techniques: User's Dilemma" PR 1976.

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

Probabilistic clustering

- Basic questions
 - what's the probability that a point **x** is in cluster m?
 - what's the shape of each cluster?
- K-means doesn't answer these questions
- Basic idea
 - instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function
 - This function is called a **generative model**
 - defined by a vector of parameters $\pmb{\theta}$

Gaussian Mixture Models

Recall the Gaussian distribution

$$\mathcal{N}(x|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$$

- It forms the basis for the mixture of Gaussians density
- The Gaussian mixture is linear superposition of Gaussians:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• The π_k are non-negative scalars called mixing coefficients and they govern the relative importance between the various Gaussians in the mixture density. $\sum_k \pi_k = 1$

GMM: Introducing Latent Variables

- Define a K-dimensional binary random variable \mathbf{z}
- z has a 1-of-K representation such that a particular element z_k is 1 and all of the others are zero. Hence:

$$z_k \in \{0,1\}$$
 $\sum_k z_k = 1$

• The marginal distribution over z is specified in terms of the mixing coefficients:

$$p(z_k = 1) = \pi_k$$

And recall that $0 \le \pi_k \le 1$ and $\sum_k \pi_k = 1$

GMM: Introducing Latent Variables

Since z has a 1-of-K representation, we can also write the distribution as

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

• The conditional distribution of \mathbf{x} given \mathbf{z} is a Gaussian:

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})^{z_k}$$

GMM: Introducing Latent Variables

• We are interested in the marginal distribution of \mathbf{x}

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$
$$= \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z})$$
$$= \sum_{\mathbf{z}} \prod_{k=1}^{K} \pi_{k}^{z_{k}} \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{k}}$$
$$= \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

- So, given our latent variable ${\bf z}$, the marginal distribution of ${\bf x}$ is a Gaussian mixture.
- If we have N observations, x_1, \ldots, x_N , then because of our chosen representation, if follows that we have a latent variable z_n for each observed data point x_n .

Component Responsibility Term

- We need to also express the conditional probability of $\ \mathbf{z}$ given \mathbf{x} .
- Denote this conditional $p(z_k = 1 | \mathbf{x})$ as $\gamma(z_k)$
- Via Bayes' theorem:

$$\gamma(z_k) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- View π_k as the prior probability of $z_k = 1$ and the quantity $\gamma(z_k)$ as the corresponding posterior probability after observing \mathbf{x} .
- $\gamma(z_k)$ is also the *responsibility* that component k takes for \mathbf{x}

Sampling from the GMM

- To sample from the GMM, we can first generate a value for z from the marginal distribution p(z). Denote this sample \hat{z} .
- Then, sample from the conditional distribution $p(\mathbf{x}|\hat{\mathbf{z}})$.
- The figure below-left shows samples from a three-mixture and colors the samples based on the component (z). The figure below-middle shows samples from the marginal *p*(x) and ignores z. On the right, we show the *γ*(*z_k*) for each sampled point, colored accordingly.

Maximum-Likelihood Fitting

Suppose we have a set of N observations $\{x_1, \ldots, x_N\}$ that we wish to model with a GMM.

Consider this data set as an $N \times d$ matrix **X** in which the n^{th} row is given by $\mathbf{x}_n^{\mathsf{T}}$.

Similarly, the corresponding latent variables define an $N \times K$ matrix \mathbf{Z} with rows $\mathbf{z}_n^{\mathsf{T}}$.

The log-likelihood of the corresponding GMM is given by

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left[\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

Ultimately, we want to find the values of the parameters π, μ, Σ that maximize this function.

However, maximizing the log-likelihood terms for GMMs is much more complicated than for the case of a single Gaussian. Why?

The difficulty arises from the sum over k inside of the log-term. The log function no longer acts directly on the Gaussian, and no closed-form solution is available.

Singularities with GMM Fitting

There is a significant problem when we apply MLE to estimate GMM parameters.

Consider simply covariances defined by $\Sigma_k = \sigma_k^2 \mathbf{I}$.

Suppose that one of the components of the mixture model, j, has its mean μ_j exactly equal to one of the data points so that $\mu_j = \mathbf{x}_n$ for some n.

This term contributes

$$\mathcal{N}(\mathbf{x}_n | \mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{(1/2)} \sigma_j}$$

Consider the limit $\sigma_j \rightarrow 0$ to see that this term goes to infinity and hence the loglikelihood will also go to infinity.

Thus, the maximization of the log-likelihood function is not a well posed problem because such a singularity will occur whenever one of the components collapses to a single, specific data point.

Singularities with GMM Fitting

Expectation-Maximization

- External PDF slides
- <u>em_fitting_gmm.pdf</u>

Problems with EM

 Local minima k-means is NP-hard even with k=2

2. Need to know number of segments solutions: AIC, BIC, Dirichlet process mixture

3. Need to choose generative model

Source: Seitz slides.

Applications of EM

- Turns out this is useful for all sorts of problems
 - any clustering problem
 - any model estimation problem
 - missing data problems
 - finding outliers
 - segmentation problems
 - segmentation based on color
 - segmentation based on motion
 - foreground/background separation

• http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

Finding Modes in a Histogram

- How Many Modes Are There?
 - Easy to see, hard to compute

Source: Seitz slides.

Mean Shift [Comaniciu & Meer]

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

- Iterative Mode Search
 - 1. Initialize random seed, and window W
 - 2. Calculate center of gravity (the "mean") of W: $\sum_{x \in W} xH(x)$
 - 3. Translate the search window to the mean
 - 4. Repeat Step 2 until convergence

Source: Seitz slides.

Mean-shift for image segmentation

- Useful to take into account spatial information
 - instead of (R, G, B), run in (R, G, B, x, y) space
 - D. Comaniciu, P. Meer, Mean shift analysis and applications, *7th International Conference on Computer Vision*, Kerkyra, Greece, September 1999, 1197-1203.
 - <u>http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft.pdf</u>

More Examples: http://www.caip.rutgers.edu/~comanici/segm_images.html

Mean shift algorithm

Fukunaga, Keinosuke; Larry D. Hostetler (January 1975). "The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition". *IEEE Transactions on Information Theory* (IEEE) **21** (1): 32–40

- The mean shift algorithm seeks a *mode* or local maximum of density of a given distribution
 - Choose a search window (width and location)
 - Compute the mean of the data in the search window
 - Center the search window at the new mean location
 - Repeat until convergence

Computing The Mean Shift

Simple Mean Shift procedure:

- Compute mean shift vector
- Translate the Kernel window by m(x)

Multimodal distributions

Real Modality Analysis

Source: Savarese slides.

Attraction basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Attraction basin

Slide by Y. Ukrainitz & B. Sarel

Segmentation by Mean Shift

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Source: Savarese slides.

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html Source: Savarese slides.

Mean shift pros and cons

- Pros
 - Does not assume spherical clusters
 - Just a single parameter (window size)
 - Finds variable number of modes
 - Robust to outliers
- Cons
 - Output depends on window size
 - Computationally expensive
 - Does not scale well with dimension of feature space

Plan

- What is Clustering? Challenges in Clustering
- Clustering (for Segmentation)
 - K-Means
 - GMMs (and Expectation-Maximization)
 - Mean-Shift
- Other uses of clustering in vision
 - Texture and Textons
 - Quantization
 - Bag of Words

Source: Martin, Fowlkes, Malik NIPS 2002 slides.

Texture Feature

- Texture Gradient TG(x,y,r,θ)
 - $-\chi^2$ difference of texton histograms
 - Textons are vector-quantized filter outputs

NIPS Vancouver 2002

UC Berkeley Vision Group

http://www.cs.berkeley.edu/projects/vision

P_b Images II

P_b Images III

The (Very Common) Bag-of-Features Pipeline

Source: materials adapted from Laptev's CVPR 2008 slides.

• Examples include Schüldt et al. ICPR 2004, Niebles et al. IJCV 2008, and many works building on this basic idea.

Next Lecture: Model-Fitting and Contours

• Readings: FP 10; SZ 4.3, 5.1