
Fitting 

Instructor: Jason Corso (jjcorso)!
web.eecs.umich.edu/~jjcorso/t/598F14!

!

Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.!

EECS 598-08 Fall 2014!
Foundations of Computer Vision!
!

Readings:  FP 10; SZ 4.3, 5.1 !
Date:  10/8/14!
!



Plan 

•  Problem Formulation!
•  Least Squares Methods!
•  RANSAC!
•  Hough Transform!
•  Multi-model Fitting!
•  Expectation-Maximization!
•  Examples of Uses of Fitting!

2 



Goals:!
•  Choose a parametric model to fit a certain 

quantity from data!
•  Estimate model parameters!

-  Lines !
-  Curves!
-  Homographic transformation!
-  Fundamental matrix!
-  Shape model!

What is Fitting? 
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Example: fitting lines!
(for computing vanishing points)!
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H!

Example: Estimating an homographic !
! !  transformation!
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Example: Estimating F!
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A
Example: fitting a 2D shape template!
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Example: fitting a 3D object model!
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Fitting 

•  Critical issues:!
–  Noisy data!
–  Outliers!
–  Missing data!

9 

Source: S. Savarese slides.!



Critical issues: noisy data!
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A 

Critical issues: noisy data !
(intra-class variability)!
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H!

Critical issues: outliers!
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Critical issues: missing data !
(occlusions)!
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Fitting!
Goal: Choose a parametric model to !

fit a certain quantity from data!

Techniques: !
• Least square methods!
• RANSAC!
• Hough transform!
• EM (Expectation Maximization)!
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Least squares methods 
- fitting a line - 
•  Data: (x1, y1), …, (xn, yn) 
 
•  Line equation: yi = m xi + b 

•  Find (m, b) to minimize !
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Least squares methods 
- fitting a line - 
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Least squares methods 
- fitting a line - 
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Find (m, b) that minimize E !
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Least squares methods 
- fitting a line - 

•  Fails completely for vertical lines!
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Limitations!
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Least squares methods 
- fitting a line - 

∑ =
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•  Distance between point !
     (xn, yn) and line ax+by=d  

•  Find (a, b, d) to minimize the sum 
of squared perpendicular 
distances!

ax+by=d 

(xi, yi) 

0=NU
data! model parameters!
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1||h||tosubject||hA||Minimize =

TUDVA =

V  ofcolumn last h =

A h = 0 

Least squares methods 
- fitting a line - 
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H!

x!

y!

x’!

y’!

0=NU
data! model parameters!

Least squares methods 
-- fitting an homography -- 
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Least squares: Robustness to noise 
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Least squares: Robustness to noise 

outlier!!
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H!

Critical issues: outliers!

CONCLUSION: Least square is not robust w.r.t. outliers!
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Least squares: Robust estimators 
   !

  
!

!
•  ui  = error (residual) of ith point w.r.t. model parameters β = (a,b,d)  
!

( )σρ ;i
i

uE ∑=

The robust function ρ !
•  Favors a configuration !
with small residuals!
•  Penalizes large residuals"
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dybxau iii −+=We minimize!

•  ρ = robust function of ui  with scale parameter σ  !

u!

ρ!
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Least squares: Robust estimators 
   !

  
!

!
•  ui  = error (residual) of ith point w.r.t. model parameters β = (a,b,d)  
!

( )σρ ;i
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The robust function ρ !
•  Favors a configuration !
with small residuals!
•  Penalizes large residuals"
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2)(Instead of minimizing !

dybxau iii −+=We minimize!

•  ρ = robust function of ui  with scale parameter σ  !
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The effect of the outlier is eliminated!

Least squares: Robust estimators 

Good scale parameter σ!
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Least squares: Robust estimators 

Bad scale parameter σ (too small!)!
Fits only locally!
Sensitive to initial condition!
!
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Least squares: Robust estimators 

Bad scale parameter σ (too large!)!
!

Same as standard LSQ!
!

• CONCLUSION: Robust estimator useful if prior info 
about the distribution of points is known!

• Robust fitting is a nonlinear optimization problem (iterative solution)!
• Least squares solution provides good initial condition!
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Fitting!
Goal: Choose a parametric model to !

fit a certain quantity from data!

Techniques: !
• Least square methods!
• RANSAC!
• Hough transform!
• EM (Expectation Maximization)!
!
!
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Basic philosophy 
(voting scheme) 
•  Data elements are used to vote for one (or multiple) 

models!

•  Robust to outliers and missing data!

•  Assumption 1: Noisy features will not vote consistently for 
any single model   (“few” outliers)!

!

•  Assumption 2: there are enough features to agree on a good 
model  (“few” missing data)!
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Model parameters!

Fischler & Bolles in ‘81.!

(RANdom SAmple Consensus) :!
Learning technique to estimate !
parameters of a model by random !
sampling of observed data!

RANSAC 
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Algorithm:!
!

1.   Select random sample of minimum required size to fit model !
2.   Compute a putative model from sample set!
3.   Compute the set of inliers to this model from whole data set!
Repeat 1-3 until model with the most inliers over all samples is found !

Sample set = set of points in 2D!

RANSAC 
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Algorithm:!
!

1.   Select random sample of minimum required size to fit model [?]!
2.   Compute a putative model from sample set!
3.   Compute the set of inliers to this model from whole data set!
Repeat 1-3 until model with the most inliers over all samples is found !

Sample set = set of points in 2D!

RANSAC 
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Algorithm:!
!

1.   Select random sample of minimum required size to fit model [?]!
2.   Compute a putative model from sample set!
3.   Compute the set of inliers to this model from whole data set!
Repeat 1-3 until model with the most inliers over all samples is found !

Sample set = set of points in 2D!

RANSAC 
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δ

Algorithm:!
!

1.   Select random sample of minimum required size to fit model [?]!
2.   Compute a putative model from sample set!
3.   Compute the set of inliers to this model from whole data set!
Repeat 1-3 until model with the most inliers over all samples is found !

O = 14!

Sample set = set of points in 2D!

RANSAC 
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δ

O = 6!

Algorithm:!
!

1.   Select random sample of minimum required size to fit model [?]!
2.   Compute a putative model from sample set!
3.   Compute the set of inliers to this model from whole data set!
Repeat 1-3 until model with the most inliers over all samples is found !

RANSAC 
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How many samples? 
•  Number of samples S"

§  p = probability at least one random sample is valid (free from outliers) !
§  e = outlier ratio  (1-p)!
§  P is total probability of success after S trials!
§  Likelihood in one trial that all s samples are inliers is !
§  s = minimum number needed to fit the model!

§  Likelihood that S such trials will all fail is!
§  Hence the required number of minimum trials is !

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 

38 

Source: S. Savarese slides.!



Estimating H !
by RANSAC!

Algorithm:!
!

1.   Select a random sample of minimum required size [?]!
2.   Compute a putative model from these!
3.   Compute the set of inliers to this model from whole sample space !
Repeat 1-3 until model with the most inliers over all samples is found !

Sample set = set of matches between 2 images!

• H → 8 DOF!
• Need 4 correspondences!
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Estimating F !
by RANSAC!

Algorithm:!
!

1.   Select a random sample of minimum required size [?]!
2.   Compute a putative model from these!
3.   Compute the set of inliers to this model from whole sample space !
Repeat 1-3 until model with the most inliers over all samples is found !

Sample set = set of matches between 2 images!

• F → 7 DOF!
• Need 7 (8) correspondences!

Outlier matches!
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RANSAC Conclusions 

•  Simple and easily implementable!
•  Successful in different contexts!

Good:!

Bad:!
•  Many parameters to tune!
•  Trade-off accuracy-vs-time!
•  Cannot be used if ratio inliers/outliers is too small!
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Fitting!
Goal: Choose a parametric model to !

fit a certain quantity from data!

Techniques: !
• Least square methods!
• RANSAC!
• Hough transform!
!
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x!

y!

Hough transform!

Given a set of points, find the curve or line that explains 
the data points best!

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 !
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x!

y!

n!

m!

y = m x + n!

Hough transform!

Given a set of points, find the curve or line that explains 
the data points best!

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 !

Hough space!

y1 = m x1 + n!

(x1, y1)!
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x!

y!

n!

m!

x!

y! m!
3! 5! 3! 3! 2! 2!

3! 7! 11! 10! 4! 3!

2! 3! 1! 4! 5! 2!
2! 1! 0! 1! 3! 3!

n!

Hough transform!
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x!

y!

Hough transform!

Issue : parameter space [m,n] is unbounded…!

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 !

Hough space!

ρθθ =+   siny  cosx

 θ
ρ

• Use a polar representation for the parameter space !

 θ

ρ
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features! votes!

Hough transform - experiments!
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features! votes!
!
How to compute the intersection point?!
IDEA: introduce a grid a count intersection points in each cell!
Issue: Grid size needs to be adjusted…!

Hough transform - experiments!

Noisy data!
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Issue: spurious peaks due to uniform noise!

features votes 

Hough transform - experiments!
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•  All points are processed independently, so can cope with 
occlusion/outliers!

•  Some robustness to noise: noise points unlikely to 
contribute consistently to any single bin!

Hough transform - conclusions!
Good:!

Bad:!
•  Spurious peaks due to uniform noise!
•  Trade-off noise-grid size (hard to find sweet point)!
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Courtesy of TKK Automation Technology Laboratory!
!

Hough transform - experiments!
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Credit slide: K. Grauman!
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p 

a 

θ r(θ) 

Generalized Hough transform 

•  Identify a shape model by measuring the location of its parts 
and shape centroid!

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern 
Recognition 13(2), 1981!

•  Measurements: orientation theta, location of p!
•  Each measurement casts a vote in the Hough space: p + r(θ)!
! ! !

[more on forthcoming lectures]!
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B. Leibe, A. Leonardis, and B. Schiele, 
Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV 
Workshop on Statistical Learning in Computer Vision 2004!

Generalized Hough transform 
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Plan 

•  Problem Formulation!
•  Least Squares Methods!
•  RANSAC!
•  Hough Transform!
•  Multi-model Fitting!
•  Expectation-Maximization!
•  Examples of Uses of Fitting!
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Fitting multiple models!

•  Incremental fitting!

•  E.M. (probabilistic fitting)!

•  Hough transform!
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Incremental line fitting 

Scan data point sequentially (using locality constraints)!

Perform following loop:!

1.  Select N point and fit line to N points!
2.  Compute residual RN!
3.  Add a new point, re-fit line and re-compute RN+1!
4.  Continue while line fitting residual is small enough, !

Ø  When residual exceeds a threshold, start fitting new model 
(line)!
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Hough transform!
C

ourtesy of unknow
n!

Same cons and pros as before…!
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Plan 

•  Problem Formulation!
•  Least Squares Methods!
•  RANSAC!
•  Hough Transform!
•  Multi-model Fitting!
•  Expectation-Maximization!
•  Examples of Uses of Fitting!
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Feature are matched (for instance, based on correlation)!

Fitting helps matching!!
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Idea: !
• Fitting an homography  H (by RANSAC) mapping features from images 1 to 2 !
• Bad matches will be labeled as outliers (hence rejected)!!

Matches bases on appearance only!
Red: good matches!
Green: bad matches!

Image 1! Image 2!

Fitting helps matching!!
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Fitting helps matching!!
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M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on 
Computer Vision -- ICCV2003!

Recognising Panoramas!
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Fitting helps matching!!

Images courtesy of Brandon Lloyd !
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Next Lecture: Moving on to Motion Module 

•  Readings:   FP  10.6;  SZ 8; TV 8!
–  (TV is Trucco and Verri, which is not a required book.)  !
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bAx =

•  More equations than unknowns!

•  Look for solution which minimizes ||Ax-b|| = (Ax-b)T(Ax-b) 
•  Solve                              !

•  LS solution !
!

0)()(
=

∂

−−∂

i

T

x
bAxbAx

bAAAx TT 1)( −=

Least squares methods 
- fitting a line - 
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t1t A)AA(A −+ =

UVA 11 −− ∑=

with! equal to          for all nonzero singular!
 values and zero otherwise!

1−∑

= pseudo-inverse of A!

Solving! bAAAx tt 1)( −=

Least squares methods 
- fitting a line -!

tVUA ∑=

UVA ++ ∑=

= SVD decomposition of A!

+∑

69 

Source: S. Savarese slides.!



Least squares methods 
- fitting an homography -!

A h = 0 

0

h

h
h

3,3

2,1

1,1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

!

From n>=4 corresponding points:!
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