Fitting

EECS 598-08 Fall 2014
 Foundations of Computer Vision

Instructor: Jason Corso (jjcorso)
web.eecs.umich.edu/~jjcorso/t/598F14

Readings: FP 10; SZ 4.3, 5.1
Date: 10/8/14

Plan

- Problem Formulation
- Least Squares Methods
- RANSAC
- Hough Transform
- Multi-model Fitting
- Expectation-Maximization
- Examples of Uses of Fitting

What is Fitting?

Goals:

- Choose a parametric model to fit a certain quantity from data
- Estimate model parameters
- Lines
- Curves
- Homographic transformation
- Fundamental matrix
- Shape model

Example: fitting lines

(for computing vanishing points)

Example: Estimating an homographic transformation

Example: Estimating F

Example: fitting a 2D shape template

Example: fitting a 3D object model

Fitting

- Critical issues:
- Noisy data
- Outliers
- Missing data

Critical issues: noisy data

Critical issues: noisy data (intra-class variability)

Critical issues: outliers

Critical issues: missing data (occlusions)

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

-Least square methods
-RANSAC
-Hough transform
-EM (Expectation Maximization)

Least squares methods

- fitting a line -
- Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Line equation: $y_{i}=m x_{i}+b$
- Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

Least squares methods

- fitting a line -

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

Least squares methods

- fitting a line -

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\mathrm{E}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\left[\begin{array}{ll}
\mathrm{x}_{\mathrm{i}} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{~b}
\end{array}\right]\right)^{2}=\left\|\left[\begin{array}{c}
\mathrm{y}_{1} \\
\vdots \\
\mathrm{y}_{\mathrm{n}}
\end{array}\right]-\left[\begin{array}{cc}
\mathrm{x}_{1} & 1 \\
\vdots & \vdots \\
\mathrm{x}_{\mathrm{n}} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{~b}
\end{array}\right]\right\|^{2}=\|Y-\mathrm{XB}\|^{2}
$$

$$
=(Y-X B)^{T}(Y-X B)=Y^{T} Y-2(X B)^{T} Y+(X B)^{T}(X B)
$$

Find (m, b) that minimize E

$$
\begin{gathered}
\frac{d E}{d B}=-2 X^{T} Y+2 X^{T} X B=0 \\
\mathrm{~B}=\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{X}^{\mathrm{T}} \mathrm{Y}
\end{gathered}
$$

$\mathrm{X}^{\mathrm{T}} \mathrm{XB}=\mathrm{X}^{\mathrm{T}} \mathrm{Y}$
Normal equation

Least squares methods

- fitting a line -

$$
\begin{aligned}
& \mathrm{E}=\sum_{\mathrm{i}=1}^{n}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{mx}_{\mathrm{i}}-\mathrm{b}\right)^{2} \\
& \mathrm{~B}=\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{X}^{\mathrm{T}} \mathrm{Y} \quad \mathrm{~B}=\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{~b}
\end{array}\right] \\
& \text { Limitations }
\end{aligned}
$$

- Fails completely for vertical lines

Least squares methods

- fitting a line -
- Distance between point $\left(x_{n}, y_{n}\right)$ and line $a x+b y=d$
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Least squares methods

- fitting a line -

$\mathrm{Ah}=0$

Minimize \|A h \| subject to $\|\mathrm{h}\|=1$

$$
A=U D V^{T}
$$

$$
\mathrm{h}=\text { last column of } \mathrm{V}
$$

Least squares methods

- fitting an homography -

Least squares: Robustness to noise

Least squares: Robustness to noise

Critical issues: outliers

CONCLUSION: Least square is not robust w.r.t. outliers

Least squares: Robust estimators

Instead of minimizing $E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}$
We minimize

$$
E=\sum_{i} \rho\left(u_{i} ; \sigma\right) \quad u_{i}=a x_{i}+b y_{i}-d
$$

- $u_{i}=$ error (residual) of $\mathrm{i}^{\text {th }}$ point w.r.t. model parameters $\beta=(\mathrm{a}, \mathrm{b}, \mathrm{d})$ - $\rho=$ robust function of u_{i} with scale parameter σ

$$
\rho(u ; \sigma)=\frac{u^{2}}{\sigma^{2}+u^{2}}
$$

The robust function ρ

- Favors a configuration with small residuals
- Penalizes large residuals

Least squares: Robust estimators

 Instead of minimizing $E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}$We minimize

$$
E=\sum_{i} \rho\left(u_{i} ; \sigma\right) \quad u_{i}=a x_{i}+b y_{i}-d
$$

- $u_{i}=$ error (residual) of $\mathrm{i}^{\text {th }}$ point w.r.t. model parameters $\beta=(\mathrm{a}, \mathrm{b}, \mathrm{d})$ - $\rho=$ robust function of u_{i} with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Penalizes large residuals

Least squares: Robust estimators

The effect of the outlier is eliminated

Least squares: Robust estimators

Least squares: Robust estimators

-CONCLUSION: Robust estimator useful if prior info about the distribution of points is known
-Robust fitting is a nonlinear optimization problem (iterative solution)
-Least squares solution provides good initial condition

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

-Least square methods

- RANSAC
- Hough transform
-EM (Expectation Maximization)

Basic philosophy

 (voting scheme)- Data elements are used to vote for one (or multiple) models
- Robust to outliers and missing data
- Assumption 1: Noisy features will not vote consistently for any single model ("few" outliers)
- Assumption 2: there are enough features to agree on a good model ("few" missing data)

RANSAC

(RANdom SAmple Consensus) :
Learning technique to estimate parameters of a model by random sampling of observed data

Fischler \& Bolles in ‘ 81.

Model parameters
such that:
$\boldsymbol{f}(\boldsymbol{P}, \beta)<\delta$

$$
\boldsymbol{f}(\boldsymbol{P}, \boldsymbol{\beta})=\left\|\beta-\left(\boldsymbol{P}^{T} \boldsymbol{P}\right)^{-1} \boldsymbol{P}^{T}\right\|
$$

RANSAC

Sample set $=$ set of points in 2D

Algorithm:

1. Select random sample of minimum required size to fit model
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

RANSAC

Sample set $=$ set of points in 2D

Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat $1-3$ until model with the most inliers over all samples is found

RANSAC

Sample set $=$ set of points in 2D

Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

RANSAC

Sample set = set of points in 2D

Algorithm:

$$
|\boldsymbol{O}|=14
$$

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found

RANSAC

Algorithm:

1. Select random sample of minimum required size to fit model [?]
2. Compute a putative model from sample set
3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

How many samples?

- Number of samples S
- $p=$ probability at least one random sample is valid (free from outliers)
- e = outlier ratio (1-p)
- P is total probability of success after S trials
- Likelihood in one trial that all s samples are inliers is p^{s}
- $s=$ minimum number needed to fit the model
- Likelihood that S such trials will all fail is $1-P=\left(1-p^{s}\right)^{S}$
- Hence the required number of minimum trials is

proportion of outliers e							
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

$$
S=\frac{\log (1-P)}{\log \left(1-p^{s}\right)}
$$

Estimating H by RANSAC

$\cdot \mathrm{H} \rightarrow 8$ DOF

- Need 4 correspondences

Sample set = set of matches between 2 images
Algorithm:

1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample space Repeat 1-3 until model with the most inliers over all samples is found

Estimating F by RANSAC

\bullet $\mathrm{F} \rightarrow 7 \mathrm{DOF}$
-Need 7 (8) correspondences
Outlier matches

Sample set = set of matches between 2 images

Algorithm:

1. Select a random sample of minimum required size [?]
2. Compute a putative model from these
3. Compute the set of inliers to this model from whole sample space Repeat 1-3 until model with the most inliers over all samples is found

RANSAC Conclusions

Good:

- Simple and easily implementable
- Successful in different contexts

Bad:

- Many parameters to tune
- Trade-off accuracy-vs-time
- Cannot be used if ratio inliers/outliers is too small

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

-Least square methods
-RANSAC
-Hough transform

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High

Energy Accelerators and Instrumentation, 1959
Given a set of points, find the curve or line that explains the data points best

$$
y=m x+n
$$

Hough transform

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High

Energy Accelerators and Instrumentation, 1959
Issue : parameter space [m,n] is unbounded...
-Use a polar representation for the parameter space

$$
\mathrm{x} \cos \boldsymbol{\theta}+\mathrm{y} \sin \boldsymbol{\theta}=\boldsymbol{\rho}
$$

Hough transform - experiments

Hough transform - experiments

Noisy data

How to compute the intersection point?
IDEA: introduce a grid a count intersection points in each cell Issue: Grid size needs to be adjusted...

Hough transform - experiments

features

votes

Issue: spurious peaks due to uniform noise

Hough transform - conclusions

Good:

- All points are processed independently, so can cope with occlusion/outliers
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Bad:

- Spurious peaks due to uniform noise
- Trade-off noise-grid size (hard to find sweet point)

Hough transform - experiments

Courtesy of TKK Automation Technology Laboratory

Generalized Hough transform

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Sh forthcoming lectures] Recognition 13(2), 1981

- Identify a shape model by measuring the location of its parts and shape centroid
- Measurements: orientation theta, location of p
- Each measurement casts a vote in the Hough space: $p+r(\theta)$

Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Plan

- Problem Formulation
- Least Squares Methods
- RANSAC
- Hough Transform
- Multi-model Fitting
- Expectation-Maximization
- Examples of Uses of Fitting

Fitting multiple models

- Incremental fitting
- E.M. (probabilistic fitting)
- Hough transform

Incremental line fitting

Scan data point sequentially (using locality constraints)

Perform following loop:

1. Select N point and fit line to N points
2. Compute residual R_{N}
3. Add a new point, re-fit line and re-compute R_{N+1}
4. Continue while line fitting residual is small enough,
> When residual exceeds a threshold, start fitting new model (line)

Hough transform

Same cons and pros as before...

Plan

- Problem Formulation
- Least Squares Methods
- RANSAC
- Hough Transform
- Multi-model Fitting
- Expectation-Maximization
- Examples of Uses of Fitting

Fitting helps matching!

Feature are matched (for instance, based on correlation)

Fitting helps matching!

Matches bases on appearance only
Red: good matches
Green: bad matches

Idea:

-Fitting an homography H (by RANSAC) mapping features from images 1 to 2
-Bad matches will be labeled as outliers (hence rejected)!

Fitting helps matching!

Recognising Panoramas

M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on Computer Vision -- ICCV2003

Fitting helps matching!

Next Lecture: Moving on to Motion Module

- Readings: FP 10.6; SZ 8; TV 8
- (TV is Trucco and Verri, which is not a required book.)

Least squares methods

- fitting a line -

$$
A x=b
$$

- More equations than unknowns
- Look for solution which minimizes $\|A x-b\|=(A x-b)^{T}(A x-b)$
- Solve $\frac{\partial(A x-b)^{T}(A x-b)}{\partial x_{i}}=0$
- LS solution

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

Least squares methods
 - fitting a line -

Solving $x=\left(A^{t} A\right)^{-1} A^{t} b$
$A^{+}=\left(A^{t} A\right)^{-1} A^{t}=$ pseudo-inverse of A
$\mathrm{A}=\mathrm{U} \sum \mathrm{V}^{\mathrm{t}} \quad=$ SVD decomposition of A
$\mathrm{A}^{-1}=\mathrm{V} \sum^{-1} \mathrm{U}$
$\mathrm{A}^{+}=\mathrm{V} \sum^{+} \mathrm{U}$
with $\quad \sum^{+}$equal to \sum^{-1} for all nonzero singular values and zero otherwise

Least squares methods

- fitting an homography -

$$
\begin{aligned}
& h_{11} x+h_{12} y+h_{13}-h_{31} x x^{\prime}-h_{32} y x^{\prime}-x^{\prime}=0 \\
& h_{21} x+h_{22} y+h_{23}-h_{31} x y^{\prime}-h_{32} y y^{\prime}-y^{\prime}=0
\end{aligned}
$$

From $n>=4$ corresponding points:

$$
\mathrm{Ah}=0
$$

$\left(\begin{array}{ccccccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{1}^{\prime} & -y_{1} x_{1}^{\prime} & -x_{1}^{\prime} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{1}^{\prime} & -y_{1} y_{1}^{\prime} & -y_{1}^{\prime} \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 & -x_{2} x_{2}^{\prime} & -y_{2} x_{2}^{\prime} & -x_{2}^{\prime} \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 & -x_{2} y_{2}^{\prime} & -y_{2} y_{2}^{\prime} & -y_{2}^{\prime} \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n} x_{n}^{\prime} & -y_{n} x_{n}^{\prime} & -x_{n}^{\prime} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n} y_{n}^{\prime} & -y_{n} y_{n}^{\prime} & -y_{n}^{\prime}\end{array}\right)\left[\begin{array}{l}\mathrm{h}_{1,1} \\ \mathrm{~h}_{1,2} \\ \vdots \\ \mathrm{~h}_{3,3}\end{array}\right]=0$

