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Plan

* What is affine SFM?
 Algebraic Methods from Two Views

 Factorization



Application

Courtesy of Oxford Visual Geometry Group




Structure from motion problem
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Given m images of n fixed 3D points

x;, =M, X,, i=1L...m j=1 ..,n

Courtesy of Silvio Savarese.



ructure from motion problem

From the mxn correspondences x;;, estimate:
*m projection matrices M, motion
*n 3D points X, structure

Courtesy of Silvio Savarese.




Affine structure from motion
(simpler problem)
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From the mxn correspondences x;;, estimate:
*m projection matrices M, (affine cameras)
*n 3D points X,

Courtesy of Silvio Savarese.



Courtesy of Silvio Savarese.



Question:

1
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x=K[R T|X P

Canonical perspective projection matrix

1 0 O :
g a s x
M=K, 0 1 0 O: _
PO 1o 1} K=10 e v,
omograpny |00 1 O oaraony 0 0 1
(in 2D) SO B (0 15)

Courtesy of Silvio Savarese.




Projective & Affine cameras

x=K[R TI|X
Projective case
a, S X 1 0 0 O] ]
X 0 R T
K={0 a, vy, M=K{0 1 0 of "
0O 0 1 0 0 I Oft -

Affine case

Courtesy of Silvio Savarese.



Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

r / ® R

™~

Scaling function of the distance (magnification)

q < ®0

P < ®p

Courtesy of Silvio Savarese.



Orthographic (affine) projection

When the camera is at a (roughly constant) distance from the scene

Courtesy of Silvio Savarese.
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Transformation in 2D

|b_‘k<

Courtesy of Silvio Savarese.



K=|

Projective & Affine cameras

x=K[R TI|X

/1

Magnification (scaling term)

Courtesy of Silvio

Savarese.

a, S X,
0 a, v,
0 0 1
o, S X,
] (_) _____ (_x_ X_,i Yo
‘0 0 1

M

1 0 0
Klo 1 0
0 0 1
10 0
Klo 1 0
0 00

]It

Parallel projection matrix )

Projective case

R T
0 1
Affine case
R T
0 1

(points at infinity are mapped as points at infinity)



Affine cameras

X = K[R T]X [Homogeneous]
a, 0 0] '] 0 0 O]
R T
K=10 a, 0 M=K|0O 1 0 O [O 1}
O 0 1 0O 0 0 1

. A b
[4x4affine]=|a,, a,, a, b, =[ ]

10
M =[3x3affine][0 1 0 1
0 0

N ~ ™~ —~ o o

b, X P
+ =AX+b=M,, | =M, | X

M = [A b] [non-homogeneous
image coordinates]

Courtesy of Silvio Savarese.



To recap:

Affine cameras

M = camera matrix

from now on we define M as the camera matrix for the affine case

p=
v

Courtesy of Silvio Savarese.

=AP+b=M

p-
1

: M=[A b]



The Affine Structure-from-Motion Problem

Given mimages of n fixed points P; (=X;) we can write

P;
1

pz-_]-=Mz'< )=A5P.j+bz- for 7=1,...)m| and j=1,...,n.

N of cameras N of points

Problem: estimate the m 2x4 matrices M, and
the n positions P, from the mxn correspondences p;; -

How many equations and how many unknown?

2m x n equations in 8m+3n unknowns

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

Courtesy of Silvio Savarese.



Algebraic analysis (2-view case)

- Derive the fundamental matrix F, for the
affine case

- Compute F,

- Use F, 1o estimate projection matrices

- Use projection matrices to estimate 3D
points



1. Deriving the fundamental matrix F,

p=AP+b
pIZA,P—{-b,

A p->
q Det(AI pl_bl

Courtesy of Silvio Savarese.
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Homogeneous system

au+ v+ au + 58V +6=0

Affine Epipolar Constraint




Deriving the fundamental matrix F,

au+ Bv+adu +680V+6=0

1

[ u' (0 0 a)
(w,v, )F| v | =0 where F €lo o0 p
\ 1) o B )

The Affine Fundamental Matrix!

Are the epipolar lines parallel or converging?

Courtesy of Silvio Savarese.






Courtesy of Silvio Savarese.

Affine Epipolar Geometry
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Estimating F,

-

. | | re 1 RN |
au+ Bv+au +0v 4+90=0
- Measurements: u, u’, v, v’

* From n correspondences, we obtain a linear system on
the unknown alpha, beta, etc...

-/ /

u, v, u v, |1

- Computed by least square and by enforcing Ifl=1
- SVD

Courtesy of Silvio Savarese.



Estimating projection matrices from F,
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M=(A b) M=(A b)

Courtesy of Silvio Savarese.



Affine ambiguity

Courtesy of Silvio Savarese.



2. Estimating projection matrices
from epipolar constraints

If M, and P, are solutions,
then M’ and P, are also solutions,

where
M. = M;Q and (IZ’) =Q! (IZ’)
and
Q_(C d) Qis an affine
—\of 1 transformation.
Proof:

Courtesy of Silvio Savarese.



3. Estimating projection matrices from F,
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M=(A b) M=(A b)

Courtesy of Silvio Savarese.



Estimating projection matrices from F,

M=(A b) M = (A b

\ \

-~ (1.0 0 0 -, (0 0 1 0
M_(OIOO)M_(abcd

'
.
!

2l

u
v
u’

Q'P

Where a,b,c,d can be expressed as function of the parameters of F,

Courtesy of Silvio Savarese.



4. Estimating the structure from F,

(1 0 0 u
0 1 0 v P =
- P
0 0 1 u' (—1) ¥ =
\a b ¢ v —d)

Can be solved by least square again

Courtesy of Silvio Savarese.




3. Estimating projection matrices from epipolar constraints

M= (A b) M = (A b) P
M= MQ M = M'Q P=9Q'P
. 1 0 0 0 -, (0 0 1 0\ =
M:(OIOO) M_(a.b ) ol
Canonical
- 1
L&=[1 0 O] ] affine
01 0 a b ¢
N ) b cameras
b=[0 o] b =[o [d]

Courtesy of Silvio Savarese. Function of the parameters of F



Estimating projection matrices from epipolar constraints

M= (A b) M =(A V) P
v v v
M= MQ M = M'Q P=Q'P
v v v
M={o100) M(asca) P

By re-enforcing the epipolar constraint, we can compute
a, b, c, d directly from the measurements

Courtesy of Silvio Savarese.



Reminder: epipolar constraint

Homogeneous system

poaren, b (4 2Th)(5)-0
{p'=A’P+b’ A p'=b' )\ -1

A p—-0>b
# Det(A, p,_b,)zo # au+ Bv+adu + 087 +6=0

Courtesy of Silvio Savarese.



Estimating projection matrices from epipolar constraints

M=(A b) M=(A b) P
M= MQ M = M'Q P=9Q'P
~ Tee 0 ...... 0 0 ) v o1 o ~
M=o 1 g0) M=(ayca) P
A b
(1 0 0 w )
A p-—0>b 0 1 0 v B
Det(A, p'—b'):O =P Det 00 1 o =0
\a b ¢ v —d)

Courtesy of Silvio Savarese.



Estimating projection matrices from epipolar constraints

M=(A b) M=(A b) P
M= MQ M = M'Q P=Q'P
e () ...... 0 0 ) D01 ~
M=o 100 M=(0yca) P
A b
(1 0 0 w
0 1 0 v / ! o

Det 00 1 o =au—bv+cu +v —d=0

\a b ¢ v —d

Courtesy of Silvio Savarese.



Estimating projection matrices from epipolar constraints

(1 T
v
Det a | = e bv+cu' +v' —d=0
!

v’ —d )

0O = O O

o O = O

* Linear relationship between measurements and unknown

Unknown: a, b, c, d
Measurements: u, u’, v, v’

* From at least 4 correspondences, we can solve this linear system
and compute a, b, ¢, d (via least square)

* The cameras can be computed

 How about the structure?

Courtesy of Silvio Savarese.



4. Estimating the structure from F,

0.1.00 o bcd) P
A Db

A p-> P
(«4’ p’—b’)(—l) ° =
(1 0 0 u "
0 1 0 v P B P_lo
00 1 (—1)_0 = o
\a b ¢ v —d)

Can be solved by least square again

Courtesy of Silvio Savarese.
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First reconstruction. Mean re- @@
projection error: 1.6pixel @@g; ]
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&

Second reconstruction. Mean
re-projection error: 7.8pixel

Courtesy of Silvio Savarese




A factorization method —
Tomasi & Kanade algorithm

C. Tomasi and T. Kanade.
Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154,
November 1992.

- Centering the data
 Factorization

Courtesy of Silvio Savarese.



A factorization method - Centering the data

« Centering: subtract the centroid of the image points

N _ 1 L Xl
Xi =X —— ) X
n {3
/ _________________ ® Xk
/
e i . /
/ /
/ /
@ T - Y S ®
/ / /
I; / é
;&S Xik
/ 1
t,
/
é

Courtesy of Silvio Savarese.



A factorization method - Centering the data

« Centering: subtract the centroid of the image points

. ] & ] &
X =X __ink = A X, +b, __Z(Aixk +bi)
n =] n =]

X, =AZ.XJ. +b.

Courtesy of Silvio Savarese.



A factorization method - Centering the data

« Centering: subtract the centroid of the image points

. 1 1y
%, =XU—;ink =AX, +b, ——Z(Aixk +b,)

(s i) |

Assume that the origin of the world coordinate system is at thel centroid Pf
the 3D points

After centering, each normalized point x; is related to the 3D point X; by

X, =AZ.X].

Courtesy of Silvio Savarese.



A factorization method - Centering the data
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Courtesy of Silvio Savarese.



A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

X, X o Xy,
D=/ 22 2n cameras
' (2m)
_Xml Xm2 T an 1

points (n)

Courtesy of Silvio Savarese.



A factorization method - factorization

Let’s create a 2m x n data (measurement) matrix:

’A‘n &12 &m Al S
X X X A, |
D= 21 22 2n | _ .2 [Xl Xz Xn]
A A A points (3 x n)
_Xml Xm2 an | _Am 1: M
(2m x n) cameras
(2m x 3)

The measurement matrix D =M S has rank 3
(it’s a product of a 2mx3 matrix and 3xn matrix)



Factorizing the measurement matrix

o < |
| D = MS
< p > < 3 >

Source: M. Hebert

2m




Factorizing the measurement matrix

« Singular value decomposition of D:
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Source: M. Hebert



Factorizing the measurement matrix

« Singular value decomposition of D:

Since rank (D)=3, there are only 3 non-zero singular values

D —
N
3 V3T I 3
A K,
P o —
— U3 4
M Source: M. Hebert
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Factorizing the measurement matrix
« QObtaining a factorization from SVD:

n

2m D _

13

S = structure

M = Motion (cameras)

What is the issue here?

D has rank>3 because of - measurement noise
- affine approximation

Courtesy of Silvio Savarese.



Factorizing the measurement matrix
« QObtaining a factorization from SVD:

N

n

2m D _

S = structure

M = motion

Theorem: When D has a rank greater than p, U, W, VI is the best
& p, Lp¥VpVy
possible rank-p approximation of D in the sense of the Frobenius

nori.

Ao =U;

D = UgWng )

| Po = W3Vy

Courtesy of Silvio Savarese.



Affine ambiguity

« The decomposition is not unique. We get the same D
by using any 3x3 matrix C and applying the
transformations M — MC, S —C-1S

« We can enforce some Euclidean constraints to resolve
 this ambiguity (more on next lecture!)

Courtesy of Silvio Savarese.



Algorithm summary

1. Given: mimages and n features Xx;
2. For each image i, center the feature coordinates

3. Construct a 2m x n measurement matrix D:
— Column j contains the projection of point jin all views
— Row / contains one coordinate of the projections of all
the n points in image |
4. Factorize D:
— Compute SVD:D=UW VT
— Create U, by taking the first 3 columns of U
— Create V; by taking the first 3 columns of V
— Create W, by taking the upper left 3 x 3 block of W

5. Create the motion and shape matrices:
— M=M=U;and S =W,V," (or U;W,” and S = W,
Vi)
6. Eliminate affine ambiguity

Courtesy of Silvio Savarese.



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Courtesy of Silvio Savarese.




Next Lecture: Perspective SFM

 Readings: FP 8.3



