Projective Structure from Motion (Uncalibrated Perspective Cameras)

EECS 598-08 Fall 2014
 Foundations of Computer Vision

Readings: FP 8.3

Date: 11/5/14

Structure from motion problem

Given m images of n fixed 3D points

$$
\cdot \mathbf{x}_{i j}=\mathbf{M}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

Structure from motion problem

From the $m \times n$ correspondences $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i}
$\cdot n$ 3D points \mathbf{X}_{j}

Structure from motion ambiguity

- Position ambiguity: it is impossible based on the images alone to estimate the absolute location and pose of the scene w.r.t. a 3D world coordinate frame

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{s}}=\left[\begin{array}{lll}
\mathrm{s} & & \\
& \mathrm{~s} & \\
& & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t} \\
0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mathrm{R} & \mathrm{t} \\
0 & 1 / \mathrm{s}
\end{array}\right] \\
& \begin{array}{cc}
\mathrm{x}_{\mathrm{j}}=\mathrm{M} \mathrm{X}_{\mathrm{i}} & \mathrm{M}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}\left[\begin{array}{ll}
\mathrm{R}_{\mathrm{i}} & \mathrm{~T}_{\mathrm{i}}
\end{array}\right] \\
\mathrm{H}_{\mathrm{s}} \mathrm{X}_{\mathrm{i}} & \mathrm{M}_{\mathrm{i}} \mathrm{H}_{\mathrm{s}}^{\mathrm{T}}
\end{array} \\
& \widetilde{\mathrm{x}}_{\mathrm{j}}=\mathrm{M}_{\mathrm{i}} \mathrm{H}_{\mathrm{s}}^{-1} \mathrm{H}_{\mathrm{s}} \mathrm{X}_{\mathrm{j}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}} \\
& \left.\mathrm{M}_{\mathrm{i}} \mathrm{H}_{\mathrm{s}}^{-1}=\mathrm{K}_{\mathrm{i}}\left[\begin{array}{ll}
\mathrm{R}_{\mathrm{i}} & \mathrm{~T}_{\mathrm{i}}
\end{array}\right] \mathrm{H}_{\mathrm{s}}^{-1}=\mathrm{K}_{[} \mathrm{R}_{\mathrm{i}} \mathrm{R}^{-1} \quad \mathrm{~T}_{\mathrm{i}}^{\prime}\right] \\
& \text { The calibration matrix has not changed! }
\end{aligned}
$$

Structure from motion ambiguity

- In the general case (nothing is known) the ambiguity is expressed by an arbitrary affine or projective transformation

$$
\begin{aligned}
x_{j}=M_{i} X_{i} & M_{i}=K_{i}\left[\begin{array}{ll}
R_{i} & T_{i}
\end{array}\right] \\
\hdashline H X_{i} & M_{j} H^{-1} \\
x_{j}=M_{i} X_{j}= & \left(M_{i} H^{-1}\right)\left(H X_{j}\right)
\end{aligned}
$$

Projective ambiguity

Affine ambiguity

Structure from motion ambiguity

- The ambiguity exists even for calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity
[Longuet-Higgins '81]

-The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)

Structure from motion ambiguity

-Scale ambiguity: it is impossible based on the images alone to estimate the absolute scale of the scene (i.e. house height)

Structure from motion problem

Given m images of n fixed 3D points

$$
\cdot \mathbf{x}_{i j}=\mathbf{M}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

Structure from motion problem

m cameras $M_{1} \ldots M_{m} \quad M_{i}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & 1\end{array}\right]$

The Projective Structure-from-Motion Problem

Given m images of n fixed points X_{j} we can write

$$
\mathbf{X}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \quad \text { for } \quad i=1, \ldots, m \text { and } j=1, \ldots, n
$$

Problem: estimate the $m 3 \times 4$ matrices M_{i} and the n positions X_{i} from the $m \times n$ correspondences $x_{i j}$.

- With no calibration info, cameras and points can only be recovered up to a 4×4 projective (15 parameters)
- Given two cameras, how many points are needed?
- How many equations and how many unknown?
$2 m \times n$ equations in $11 m+3 n-15$ unknowns
So 7 points! [$2 \times 2 \times 7=28 ; 11 \times 2+3 \times 7-15=28]$

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Algebraic approach (2-view case)

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- Use F to estimate projective cameras
- Use these cameras to triangulate and estimate points in 3D

Algebraic approach (2-view case)

$$
\mathrm{x}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}
$$

Apply a projective transformation H such that:

$$
\mathrm{M}_{1} \mathrm{H}^{-1}=\underset{\text { Canonical perspective cameras }}{\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad \mathrm{M}_{2} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right]}
$$

Algebraic approach (Fundamental matrix)

$\widetilde{\mathbf{X}}=\mathrm{H} \mathbf{X}$
$\mathbf{x}=\mathrm{M}_{1} \mathrm{H}^{-1} \widetilde{\mathbf{X}}=[\mathbf{I} \mid \mathbf{0}] \widetilde{\mathbf{X}}$

$$
\mathbf{x}^{\prime}=\mathrm{M}_{2} \mathrm{H}^{-1} \widetilde{\mathbf{X}}=[\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}}
$$

$\mathbf{x}^{\prime}=[\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}}^{\prime}=[\mathbf{A} \mid \mathbf{b}]\left[\begin{array}{c}\widetilde{X}_{1} \\ \widetilde{X}_{2} \\ \widetilde{X}_{3} \\ 1\end{array}\right]=\mathbf{A}[I \mid 0]\left[\begin{array}{c}\widetilde{X}_{1} \\ \widetilde{x}_{2} \\ \widetilde{X}_{3} \\ 1\end{array}\right]+\mathbf{b}=\mathbf{A}[| | 0] \widetilde{\mathbf{X}}^{2}+b=A \mathbf{x}+\mathrm{b}$
$\mathbf{x}^{\prime} \times \mathbf{b}=(\mathbf{A x}+\mathbf{b}) \times \mathbf{b}=\mathbf{A} \times \mathbf{b}$
$(\mathbf{A} \mathbf{x} \times \mathbf{b}) \cdot \mathbf{x}^{\prime}=\left(\mathbf{x}^{\prime} \times \mathbf{b}\right) \cdot \mathbf{x}^{\prime}=0$
$\mathbf{x}^{\prime T}(\mathbf{A} \mathbf{x} \times \mathbf{b})^{T}=0$
$\mathbf{x}^{\prime \prime}\left[\mathbf{b}_{\times}\right] \mathbf{A} \mathbf{x}=0 \quad$ is this familiar?

$$
\mathbf{F}=\left[\mathbf{b}_{x}\right] \mathbf{A}
$$

Cross product as matrix multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

Algebraic approach (Fundamental matrix)

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\mathbf{x}}\right] \mathbf{A}
$$

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)

Can verify that :
$\mathbf{F} \cdot \mathbf{b}=\left[\mathbf{b}_{\mathbf{x}}\right] \mathbf{A} \cdot \mathbf{b}=0$

Compute \mathbf{b} as least sq.
solution of $\mathbf{F} \mathbf{b}=0$ $\operatorname{det}(F)=0 ;|b|=1$

$$
\begin{aligned}
\mathbf{A} & =\left[\mathbf{b}_{\times}\right]^{-1} \mathbf{F} \\
& =-\left[\mathbf{b}_{\times}\right] \mathbf{F}
\end{aligned}
$$

Notice that b is an epipole

Epipolar Constraint [from earlier lecture]

- $F x_{2}$ is the epipolar line associated with $x_{2}\left(l_{1}=F x_{2}\right)$
- $F^{\top} x_{1}$ is the epipolar line associated with $x_{1}\left(l_{2}=F^{\top} x_{1}\right)$
- F is singular (rank two)
- $F e_{2}=0$ and $F^{\top} e_{1}=0$
- F is $3 x 3$ matrix; 7 DOF

Algebraic approach (Fundamental matrix)

$$
\mathbf{x}^{\mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}
$$

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)

Can verify that:
$\mathbf{F} \cdot \mathrm{b}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \cdot \mathrm{b}=0$

Compute \mathbf{b} as least sq.

$$
\begin{aligned}
\mathbf{A} & =\left[\mathbf{b}_{\times}\right]^{-1} \mathbf{F} \\
& =-\left[\mathbf{b}_{\times}\right] \mathbf{F}
\end{aligned}
$$

Notice that b is an epipole

$$
\mathrm{M}_{1}^{\mathrm{p}}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad M_{2}^{p}=\left[\begin{array}{ll}
-\left[\mathbf{e}_{x}\right] \mathbf{F} & \mathbf{e}
\end{array}\right]
$$

Perspective cameras are known

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Projective factorization

$$
\mathbf{D}=\left[\begin{array}{cccc}
\mathrm{z}_{11} \mathbf{x}_{11} & \mathrm{z}_{12} \mathbf{x}_{12} & \cdots & \mathrm{z}_{1 \mathrm{n}} \mathbf{x}_{1 \mathrm{n}} \\
\mathrm{z}_{21} \mathbf{x}_{21} & \mathrm{z}_{22} \mathbf{x}_{22} & \cdots & \mathrm{z}_{2 \mathrm{n}} \mathbf{x}_{2 \mathrm{n}} \\
& & \ddots & \\
\mathrm{z}_{\mathrm{m} 1} \mathbf{x}_{\mathrm{m} 1} & \mathrm{z}_{\mathrm{m} 2} \mathbf{x}_{\mathrm{m} 2} & \cdots & \mathrm{z}_{\mathrm{m}} \mathbf{x}_{\mathrm{mn}}
\end{array}\right]=\underset{\substack{\text { cameras } \\
(3 m \times 4)}}{\left[\begin{array}{c}
\mathrm{M}_{1} \\
\mathrm{M}_{2} \\
\vdots \\
\mathrm{M}_{\mathrm{m}}
\end{array}\right] \underset{\text { llll}}{\left[\begin{array}{llll}
\mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{\mathrm{n}}
\end{array}\right]} \text { points (4×n)}}
$$

$\mathbf{D}=\mathbf{M S}$ has rank 4

A factorization method - (affine case; last lecture)

- Let's create a $2 \mathrm{~m} \times \mathrm{n}$ data (measurement) matrix:

The measurement matrix $\mathbf{D}=\mathbf{M} \mathbf{S}$ has rank 3 (it's a product of a $2 m x 3$ matrix and $3 x n$ matrix)

Projective factorization

$$
\mathbf{D}=\left[\begin{array}{cccc}
\mathrm{z}_{11} \mathbf{x}_{11} & \mathrm{z}_{12} \mathbf{x}_{12} & \cdots & \mathrm{z}_{1 \mathrm{n}} \mathbf{x}_{1 \mathrm{n}} \\
\mathrm{z}_{21} \mathbf{x}_{21} & \mathrm{z}_{22} \mathbf{x}_{22} & \cdots & \mathrm{z}_{2 \mathrm{n}} \mathbf{x}_{2 \mathrm{n}} \\
& & \ddots & \\
\mathrm{z}_{\mathrm{m} 1} \mathbf{x}_{\mathrm{m} 1} & \mathrm{z}_{\mathrm{m} 2} \mathbf{x}_{\mathrm{m} 2} & \cdots & \mathrm{z}_{\mathrm{mn}} \mathbf{x}_{\mathrm{mn}}
\end{array}\right]=\underset{\substack{\text { cameras } \\
(3 \mathrm{~m} \times 4)}}{\left.\left[\begin{array}{ccc}
\mathrm{M}_{1} \\
\mathrm{M}_{2} \\
\vdots \\
\mathrm{M}_{\mathrm{m}}
\end{array}\right] \underset{\substack{\mathbf{X}_{1} \\
\mathbf{X}_{2} \\
\text { points (4×n) }}}{ } \quad \begin{array}{l}
\mathbf{X}_{\mathrm{n}}
\end{array}\right]}
$$

$\mathbf{D}=\mathbf{M S}$ has rank 4

- If we knew the depths z, we could factorize \mathbf{D} to estimate \mathbf{M} and \mathbf{S}
- If we knew \mathbf{M} and \mathbf{S}, we could solve for \boldsymbol{z}
- Solution: iterative approach (alternate between above two steps)

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing re-projection error

$$
\mathrm{E}(\mathrm{M}, \mathbf{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}\left(\mathbf{x}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)^{2}
$$

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing re-projection error

$$
\mathrm{E}(\mathrm{M}, \mathbf{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}\left(\mathbf{x}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)^{2}
$$

- Advantages
- Handle large number of views
- Handle missing data
- Limitations
- Large minimization problem (parameters grow with number of views)
- requires good initial condition

Used as the final step of SFM

Removing the ambiguities: the Stratified reconstruction

- up grade reconstruction from perspective to affine [by measuring the plane at infinity]
-up grade reconstruction from affine to metric [by measuring the absolute conic]

Recovering the metric reconstruction from the perspective one is called self-calibration

Self-calibration

Process of determining intrinsic camera parameters directly from un-calibrated images

Suppose we have a projective reconstruction $\left\{\mathrm{M}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\}$
GOAL: find a rectifying (non-singular) homography H such that
$\left\{\mathrm{M}_{\mathrm{i}} \mathrm{H}, \mathrm{H}^{-1} \mathrm{X}\right\}$ is a metric reconstruction $\overline{\mathrm{M}}_{\mathrm{i}} \quad \bar{X}_{\mathrm{j}}$

$$
\overline{\mathrm{M}}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i}} \mathrm{H} \quad \mathrm{i}=1 \cdots \mathrm{~m} \quad \overline{\mathrm{M}}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}\left[\begin{array}{ll}
\mathrm{R}_{\mathrm{i}} & \mathrm{~T}_{\mathrm{i}}
\end{array}\right]
$$

If world ref. system = camera 1 ref. system:

$$
\overline{\mathrm{M}}_{1}=\mathrm{K}_{1}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right]
$$

If the perspective camera is canonical:

$$
\mathrm{M}_{1}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right]
$$

Self-calibration

$$
\begin{aligned}
& \begin{array}{l}
\overline{\mathrm{M}}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i}} \mathrm{H} \\
\\
\downarrow \\
{\left[\begin{array}{ll}
\mathrm{K}_{1} & 0
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \mathrm{H}}
\end{array} \\
& \overline{\mathrm{M}}_{1}=\mathrm{K}_{1}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \\
& \mathrm{M}_{1}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \\
& H=\left[\begin{array}{ll}
A & t \\
v & k
\end{array}\right] \\
& \mathrm{A}=\mathrm{K}_{1} \\
& \mathrm{t}=0 \\
& \text { We can set } \mathrm{k}=1 \\
& \text { (this fixes the scale of the reconstruction) }
\end{aligned}
$$

Planes at infinity (lecture 5)

In the metric
(Euclidean) world coordinates

2 planes are parallel iff their intersections is a line that belongs to

The projective transformation of a plane at infinity can be expressed as

$$
\pi_{\infty}=\mathrm{H}^{-1} \Pi_{\infty}=\left[\begin{array}{l}
\mathrm{p} \\
1
\end{array}\right]
$$

Self-calibration

$$
\left.\begin{array}{rl}
& \boldsymbol{\pi}_{\infty}=\left[\begin{array}{l}
\mathrm{p} \\
1
\end{array}\right]=\mathrm{H}^{-1}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
= & \mathrm{H}=\left[\begin{array}{cc}
\mathrm{K}_{1} & 0 \\
\mathrm{v} & 1
\end{array}\right] \\
\mathrm{K}_{1}^{-\mathrm{T}} & -\mathrm{K}_{1}^{-\mathrm{T}} \mathrm{v} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-\mathrm{K}_{1}^{-\mathrm{T}} \mathrm{~V} \\
1
\end{array}\right] \quad \mathrm{V}=-\mathrm{p}^{\mathrm{T}} \mathrm{~K}_{1} .
$$

Self-calibration

GOAL: find a rectifying homography H such that
$\left\{\mathrm{M}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\} \rightarrow\left\{\mathrm{M}_{\mathrm{i}} \mathrm{H}, \mathrm{H}^{-1} \mathrm{X}_{\mathrm{j}}\right\}$ is a metric reconstruction

$$
\mathrm{H}=\left[\begin{array}{cc}
\mathrm{K}_{1} & 0 \\
-\mathrm{p}^{\mathrm{T}} \mathrm{~K}_{1} & 1
\end{array}\right]
$$

$$
\mathrm{K}=\left[\begin{array}{ccc}
\boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathrm{u}_{\mathrm{o}} \\
0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathrm{v}_{\mathrm{o}} \\
0 & 0 & 1
\end{array}\right]
$$

$\mathrm{K}_{1}=$ calibration matrix of first camera
$\boldsymbol{\pi}_{\infty}=\left[\begin{array}{ll}\mathrm{p} & 1\end{array}\right]^{\mathrm{T}}=$ plane at infinity in the projective reconstruction

Self-calibration basic equation

$\mathrm{M}_{\mathrm{i}}=\left[\begin{array}{ll}\mathrm{A}_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}}\end{array}\right]=$ perspective reconstruction of the camera (known)
$\overline{\mathrm{M}}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}\left[\begin{array}{ll}\mathrm{R}_{\mathrm{i}} & \mathrm{T}_{\mathrm{i}}\end{array}\right]=$ metric reconstruction of the camera (unknown)
$\mathrm{H}=\left[\begin{array}{cc}\mathrm{K}_{1} & 0 \\ \mathrm{p}^{\mathrm{T}} \mathrm{K}_{1} & 1\end{array}\right]=$ rectifying homography (unknown)
$\left[\begin{array}{ll}K_{i} R_{i} & T_{i}\end{array}\right]=\left[\begin{array}{ll}A_{i} & a_{i}\end{array}\right]\left[\begin{array}{cc}\mathrm{K}_{1} & 0 \\ -\mathrm{p}^{\mathrm{T}} \mathrm{K}_{1} & 1\end{array}\right]=\left[\begin{array}{cc}\mathrm{A}_{\mathrm{i}} \mathrm{K}_{1}-\mathrm{a}_{\mathrm{i}} \mathrm{p}^{\mathrm{T}} \mathrm{K}_{1} & \mathrm{a}_{\mathrm{i}}\end{array}\right]$

$$
K_{i} R_{i}=\left(A_{i}-a_{i} p^{T}\right) K_{1} \rightarrow R_{i}=K_{i}^{-1}\left(A_{i}-a_{i} p^{T}\right) K_{1}
$$

Self-calibration basic equation

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
R_{i}=K_{i}^{-1}\left(A_{i}-a_{i} p^{T}\right) K_{1} \\
R_{i}^{T}=K_{1}^{T}\left(A_{i}-a_{i} p^{T}\right)^{T} K_{i}^{-T}
\end{array}\right. \\
R_{i} R_{i}^{T}=I
\end{array}\right\} \begin{aligned}
& K_{i}^{-1}\left(A_{i}-a_{i} p^{T}\right) K_{1} K_{1}^{T}\left(A_{i}-a_{i} p^{T}\right)^{T} K_{i}^{-T}=I \\
& \left(A_{i}-a_{i} p^{T}\right) K_{1} K_{1}^{T}\left(A_{i}-a_{i} p^{T}\right)^{T}=K_{i} K_{i}^{T} \leftarrow ?
\end{aligned}
$$

Absolute conic Ω_{∞} is a $\mathrm{C} \in \Pi_{\infty}$

Any $\mathrm{x} \in \Omega_{\infty}$ satisfies:

$$
\mathrm{X}^{\mathrm{T}} \Omega_{\infty} \mathrm{X}=0 \quad \Omega_{\infty}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 0
\end{array}\right] \quad\left\{\begin{array}{c}
\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}=0 \\
\\
\\
\\
\mathrm{x}_{4}=0
\end{array}\right.
$$

Projective transformation of Ω_{∞}

$$
\boldsymbol{\omega}=\left(\mathrm{K}^{\mathrm{T}} \mathrm{~K}\right)^{-1}
$$

$$
\omega^{*}=\mathrm{K} \mathrm{~K}^{\mathrm{T}}
$$

Properties of ω

$\omega=\left(\mathrm{K}^{\mathrm{T}} \mathrm{K}\right)^{-1}$

- It is not function of R, T
- symmetric (5 unknowns) $\omega=\left[\begin{array}{lll}\omega_{1} & \omega_{2} & \omega_{4} \\ \omega_{2} & \omega_{3} & \omega_{5} \\ \omega_{4} & \omega_{5} & \omega_{6}\end{array}\right]$

Self-calibration basic equation

$$
\begin{aligned}
& \left(A_{i}-a_{i} p^{T}\right) K_{1} K_{1}^{T}\left(A_{i}-a_{i} p^{T}\right)^{T}=K_{i} K_{i}^{T} \\
& \left(A_{i}-a_{i} p^{T}\right) \omega_{1}^{*}\left(A_{i}-a_{i} p^{T}\right)^{T}=\omega_{i}^{*} \quad i=2 \ldots m
\end{aligned}
$$

[A_{i} and a_{i} are known]
How many unknowns?
-3 from \mathbf{p}

- 5 from $\omega_{i} \quad$ [per view]

How many equations? 5 independent equations [per view]

Art of self-calibration:

use constraints on $\omega(\mathrm{K})$ to generate enough equations on the unknowns

Self-calibration - identical Ks

$$
\begin{aligned}
& \left(A_{i}-a_{i} p^{T}\right) \omega_{1}^{*}\left(A_{i}-a_{i} p^{T}\right)^{T}=\omega_{i}^{*} \\
& \left(A_{i}-a_{i} p^{T}\right) \omega^{*}\left(A_{i}-a_{i} p^{T}\right)^{T}=\omega^{*}
\end{aligned}
$$

-For m views, $5(\mathrm{~m}-1)$ constraints
-Number of unknowns: 8
$\longrightarrow m>=3$ provides enough constraints
To solve the self-calibration problem with identical cameras we need at least 3 views

Properties of ω

$\boldsymbol{\omega}=\left(\mathrm{K}^{\mathrm{T}} \mathrm{K}\right)^{-1}$

$$
\begin{array}{ll}
\text { 1. } \omega=\left[\begin{array}{lll}
\omega_{1} & \omega_{2} & \omega_{4} \\
\omega_{2} & \omega_{3} & \omega_{5} \\
\omega_{4} & \omega_{5} & \omega_{6}
\end{array}\right] & \text { 2. } \omega_{2}=0 \text { zero-skew } \\
\begin{array}{ll}
\omega_{2}=0 & \text { 4. } \omega_{4}=\omega_{5}=0 \\
\omega_{1}=\omega_{3} & \text { zero-offset }
\end{array}
\end{array}
$$

Self-calibration - other constraints

$$
\left(\mathrm{A}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}} \mathrm{p}^{\mathrm{T}}\right) \omega_{1}^{*}\left(\mathrm{~A}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}} \mathrm{p}^{\mathrm{T}}\right)^{\mathrm{T}}=\omega_{\mathrm{i}}^{*}
$$

- zero-offset $\omega_{4}=\omega_{5}=0 \longrightarrow 2 \mathrm{~m}$ linear constraints
- zero-skew $\omega_{2}=0 \quad \longrightarrow$ m linear constraints etc...

Self-calibration - summary

Condition	N. Views
•Constant internal parameters	3
-Aspect ratio and skew known •Focal length and offset vary	4
•Aspect ratio and skew constant	
•Focal length and offset vary	5
•skew $=0$, all other parameters vary	8

Issue: the larger is the number of view, the harder is the correspondence problem

Self-calibration - summary

Constraints on camera motion can be incorporated

- Linearly translating camera

- Single axis of rotation: turntable motion

SFM problem - summary

1. Estimate structure and motion up perspective transformation
2. Algebraic
3. factorization method
4. bundle adjustment
5. Convert from perspective to metric (self-calibration)
6. Bundle adjustment
** or **
7. Bundle adjustment with self-calibration constraints

Correspondences

- Can refine feature matching after a structure and motion estimate has been produced
- decide which ones obey the epipolar geometry
- decide which ones are geometrically consistent
- (optional) iterate between correspondences and SfM estimates using MCMC [Dellaert et al., Machine Learning 2003]

SFM Summed Up...

Applications

Courtesy of Oxford Visual Geometry Group

Applications

D. Nistér, PhD thesis '01

Applications

M. Pollefeys et al 98---

Applications

M. Brown and D. G. Lowe. Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. (3DIM2005)

Photo synth

Noah Snavely, Steven M. Seitz, Richard Szeliski, "
Photo tourism: Exploring photo collections in 3D," ACM Transactions on Graphics (SIGGRAPH Proceedings),2006,

Incremental reconstruction of construction sites

Initial pair -2168 \& Complete Set 62,323 points, 160 images

Reconstructed scene + Site photos

Dense reconstruction results for RH 160 dataset

The results of automated progress detection

Non-rigid SFM...an example

Nonrigid Structure from Motion in Trajectory Space
 NIPS 2008

ljaz Akhter ${ }^{1}$ Yaser Sheikh ${ }^{2}$ Sohaib Khan ${ }^{1}$ Takeo Kanade ${ }^{2}$
${ }^{1}$ LUMS School of Science and Engineering, Lahore, Pakistan
${ }^{2}$ Carnegie Mellon University, Pittsburgh, PA, USA

http://cvlab.lums.edu.pk/nrsfm

Next Lecture: Introduction to Visual Recognition

- Readings: FP 15.1, 18.1

